1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 #include <linux/sockptr.h> 63 64 #include <linux/atomic.h> 65 #include <linux/refcount.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 72 /* 73 * This structure really needs to be cleaned up. 74 * Most of it is for TCP, and not used by any of 75 * the other protocols. 76 */ 77 78 /* Define this to get the SOCK_DBG debugging facility. */ 79 #define SOCK_DEBUGGING 80 #ifdef SOCK_DEBUGGING 81 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 82 printk(KERN_DEBUG msg); } while (0) 83 #else 84 /* Validate arguments and do nothing */ 85 static inline __printf(2, 3) 86 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 87 { 88 } 89 #endif 90 91 /* This is the per-socket lock. The spinlock provides a synchronization 92 * between user contexts and software interrupt processing, whereas the 93 * mini-semaphore synchronizes multiple users amongst themselves. 94 */ 95 typedef struct { 96 spinlock_t slock; 97 int owned; 98 wait_queue_head_t wq; 99 /* 100 * We express the mutex-alike socket_lock semantics 101 * to the lock validator by explicitly managing 102 * the slock as a lock variant (in addition to 103 * the slock itself): 104 */ 105 #ifdef CONFIG_DEBUG_LOCK_ALLOC 106 struct lockdep_map dep_map; 107 #endif 108 } socket_lock_t; 109 110 struct sock; 111 struct proto; 112 struct net; 113 114 typedef __u32 __bitwise __portpair; 115 typedef __u64 __bitwise __addrpair; 116 117 /** 118 * struct sock_common - minimal network layer representation of sockets 119 * @skc_daddr: Foreign IPv4 addr 120 * @skc_rcv_saddr: Bound local IPv4 addr 121 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 122 * @skc_hash: hash value used with various protocol lookup tables 123 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 124 * @skc_dport: placeholder for inet_dport/tw_dport 125 * @skc_num: placeholder for inet_num/tw_num 126 * @skc_portpair: __u32 union of @skc_dport & @skc_num 127 * @skc_family: network address family 128 * @skc_state: Connection state 129 * @skc_reuse: %SO_REUSEADDR setting 130 * @skc_reuseport: %SO_REUSEPORT setting 131 * @skc_ipv6only: socket is IPV6 only 132 * @skc_net_refcnt: socket is using net ref counting 133 * @skc_bound_dev_if: bound device index if != 0 134 * @skc_bind_node: bind hash linkage for various protocol lookup tables 135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 136 * @skc_prot: protocol handlers inside a network family 137 * @skc_net: reference to the network namespace of this socket 138 * @skc_v6_daddr: IPV6 destination address 139 * @skc_v6_rcv_saddr: IPV6 source address 140 * @skc_cookie: socket's cookie value 141 * @skc_node: main hash linkage for various protocol lookup tables 142 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 143 * @skc_tx_queue_mapping: tx queue number for this connection 144 * @skc_rx_queue_mapping: rx queue number for this connection 145 * @skc_flags: place holder for sk_flags 146 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 147 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 148 * @skc_listener: connection request listener socket (aka rsk_listener) 149 * [union with @skc_flags] 150 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 151 * [union with @skc_flags] 152 * @skc_incoming_cpu: record/match cpu processing incoming packets 153 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 154 * [union with @skc_incoming_cpu] 155 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 156 * [union with @skc_incoming_cpu] 157 * @skc_refcnt: reference count 158 * 159 * This is the minimal network layer representation of sockets, the header 160 * for struct sock and struct inet_timewait_sock. 161 */ 162 struct sock_common { 163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 164 * address on 64bit arches : cf INET_MATCH() 165 */ 166 union { 167 __addrpair skc_addrpair; 168 struct { 169 __be32 skc_daddr; 170 __be32 skc_rcv_saddr; 171 }; 172 }; 173 union { 174 unsigned int skc_hash; 175 __u16 skc_u16hashes[2]; 176 }; 177 /* skc_dport && skc_num must be grouped as well */ 178 union { 179 __portpair skc_portpair; 180 struct { 181 __be16 skc_dport; 182 __u16 skc_num; 183 }; 184 }; 185 186 unsigned short skc_family; 187 volatile unsigned char skc_state; 188 unsigned char skc_reuse:4; 189 unsigned char skc_reuseport:1; 190 unsigned char skc_ipv6only:1; 191 unsigned char skc_net_refcnt:1; 192 int skc_bound_dev_if; 193 union { 194 struct hlist_node skc_bind_node; 195 struct hlist_node skc_portaddr_node; 196 }; 197 struct proto *skc_prot; 198 possible_net_t skc_net; 199 200 #if IS_ENABLED(CONFIG_IPV6) 201 struct in6_addr skc_v6_daddr; 202 struct in6_addr skc_v6_rcv_saddr; 203 #endif 204 205 atomic64_t skc_cookie; 206 207 /* following fields are padding to force 208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 209 * assuming IPV6 is enabled. We use this padding differently 210 * for different kind of 'sockets' 211 */ 212 union { 213 unsigned long skc_flags; 214 struct sock *skc_listener; /* request_sock */ 215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 216 }; 217 /* 218 * fields between dontcopy_begin/dontcopy_end 219 * are not copied in sock_copy() 220 */ 221 /* private: */ 222 int skc_dontcopy_begin[0]; 223 /* public: */ 224 union { 225 struct hlist_node skc_node; 226 struct hlist_nulls_node skc_nulls_node; 227 }; 228 unsigned short skc_tx_queue_mapping; 229 #ifdef CONFIG_XPS 230 unsigned short skc_rx_queue_mapping; 231 #endif 232 union { 233 int skc_incoming_cpu; 234 u32 skc_rcv_wnd; 235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 236 }; 237 238 refcount_t skc_refcnt; 239 /* private: */ 240 int skc_dontcopy_end[0]; 241 union { 242 u32 skc_rxhash; 243 u32 skc_window_clamp; 244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 245 }; 246 /* public: */ 247 }; 248 249 struct bpf_local_storage; 250 251 /** 252 * struct sock - network layer representation of sockets 253 * @__sk_common: shared layout with inet_timewait_sock 254 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 255 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 256 * @sk_lock: synchronizer 257 * @sk_kern_sock: True if sock is using kernel lock classes 258 * @sk_rcvbuf: size of receive buffer in bytes 259 * @sk_wq: sock wait queue and async head 260 * @sk_rx_dst: receive input route used by early demux 261 * @sk_dst_cache: destination cache 262 * @sk_dst_pending_confirm: need to confirm neighbour 263 * @sk_policy: flow policy 264 * @sk_rx_skb_cache: cache copy of recently accessed RX skb 265 * @sk_receive_queue: incoming packets 266 * @sk_wmem_alloc: transmit queue bytes committed 267 * @sk_tsq_flags: TCP Small Queues flags 268 * @sk_write_queue: Packet sending queue 269 * @sk_omem_alloc: "o" is "option" or "other" 270 * @sk_wmem_queued: persistent queue size 271 * @sk_forward_alloc: space allocated forward 272 * @sk_napi_id: id of the last napi context to receive data for sk 273 * @sk_ll_usec: usecs to busypoll when there is no data 274 * @sk_allocation: allocation mode 275 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 276 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 277 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 278 * @sk_sndbuf: size of send buffer in bytes 279 * @__sk_flags_offset: empty field used to determine location of bitfield 280 * @sk_padding: unused element for alignment 281 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 282 * @sk_no_check_rx: allow zero checksum in RX packets 283 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 284 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 285 * @sk_route_forced_caps: static, forced route capabilities 286 * (set in tcp_init_sock()) 287 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 288 * @sk_gso_max_size: Maximum GSO segment size to build 289 * @sk_gso_max_segs: Maximum number of GSO segments 290 * @sk_pacing_shift: scaling factor for TCP Small Queues 291 * @sk_lingertime: %SO_LINGER l_linger setting 292 * @sk_backlog: always used with the per-socket spinlock held 293 * @sk_callback_lock: used with the callbacks in the end of this struct 294 * @sk_error_queue: rarely used 295 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 296 * IPV6_ADDRFORM for instance) 297 * @sk_err: last error 298 * @sk_err_soft: errors that don't cause failure but are the cause of a 299 * persistent failure not just 'timed out' 300 * @sk_drops: raw/udp drops counter 301 * @sk_ack_backlog: current listen backlog 302 * @sk_max_ack_backlog: listen backlog set in listen() 303 * @sk_uid: user id of owner 304 * @sk_priority: %SO_PRIORITY setting 305 * @sk_type: socket type (%SOCK_STREAM, etc) 306 * @sk_protocol: which protocol this socket belongs in this network family 307 * @sk_peer_pid: &struct pid for this socket's peer 308 * @sk_peer_cred: %SO_PEERCRED setting 309 * @sk_rcvlowat: %SO_RCVLOWAT setting 310 * @sk_rcvtimeo: %SO_RCVTIMEO setting 311 * @sk_sndtimeo: %SO_SNDTIMEO setting 312 * @sk_txhash: computed flow hash for use on transmit 313 * @sk_filter: socket filtering instructions 314 * @sk_timer: sock cleanup timer 315 * @sk_stamp: time stamp of last packet received 316 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 317 * @sk_tsflags: SO_TIMESTAMPING socket options 318 * @sk_tskey: counter to disambiguate concurrent tstamp requests 319 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 320 * @sk_socket: Identd and reporting IO signals 321 * @sk_user_data: RPC layer private data 322 * @sk_frag: cached page frag 323 * @sk_peek_off: current peek_offset value 324 * @sk_send_head: front of stuff to transmit 325 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 326 * @sk_tx_skb_cache: cache copy of recently accessed TX skb 327 * @sk_security: used by security modules 328 * @sk_mark: generic packet mark 329 * @sk_cgrp_data: cgroup data for this cgroup 330 * @sk_memcg: this socket's memory cgroup association 331 * @sk_write_pending: a write to stream socket waits to start 332 * @sk_state_change: callback to indicate change in the state of the sock 333 * @sk_data_ready: callback to indicate there is data to be processed 334 * @sk_write_space: callback to indicate there is bf sending space available 335 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 336 * @sk_backlog_rcv: callback to process the backlog 337 * @sk_validate_xmit_skb: ptr to an optional validate function 338 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 339 * @sk_reuseport_cb: reuseport group container 340 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 341 * @sk_rcu: used during RCU grace period 342 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 343 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 344 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 345 * @sk_txtime_unused: unused txtime flags 346 */ 347 struct sock { 348 /* 349 * Now struct inet_timewait_sock also uses sock_common, so please just 350 * don't add nothing before this first member (__sk_common) --acme 351 */ 352 struct sock_common __sk_common; 353 #define sk_node __sk_common.skc_node 354 #define sk_nulls_node __sk_common.skc_nulls_node 355 #define sk_refcnt __sk_common.skc_refcnt 356 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 357 #ifdef CONFIG_XPS 358 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 359 #endif 360 361 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 362 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 363 #define sk_hash __sk_common.skc_hash 364 #define sk_portpair __sk_common.skc_portpair 365 #define sk_num __sk_common.skc_num 366 #define sk_dport __sk_common.skc_dport 367 #define sk_addrpair __sk_common.skc_addrpair 368 #define sk_daddr __sk_common.skc_daddr 369 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 370 #define sk_family __sk_common.skc_family 371 #define sk_state __sk_common.skc_state 372 #define sk_reuse __sk_common.skc_reuse 373 #define sk_reuseport __sk_common.skc_reuseport 374 #define sk_ipv6only __sk_common.skc_ipv6only 375 #define sk_net_refcnt __sk_common.skc_net_refcnt 376 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 377 #define sk_bind_node __sk_common.skc_bind_node 378 #define sk_prot __sk_common.skc_prot 379 #define sk_net __sk_common.skc_net 380 #define sk_v6_daddr __sk_common.skc_v6_daddr 381 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 382 #define sk_cookie __sk_common.skc_cookie 383 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 384 #define sk_flags __sk_common.skc_flags 385 #define sk_rxhash __sk_common.skc_rxhash 386 387 socket_lock_t sk_lock; 388 atomic_t sk_drops; 389 int sk_rcvlowat; 390 struct sk_buff_head sk_error_queue; 391 struct sk_buff *sk_rx_skb_cache; 392 struct sk_buff_head sk_receive_queue; 393 /* 394 * The backlog queue is special, it is always used with 395 * the per-socket spinlock held and requires low latency 396 * access. Therefore we special case it's implementation. 397 * Note : rmem_alloc is in this structure to fill a hole 398 * on 64bit arches, not because its logically part of 399 * backlog. 400 */ 401 struct { 402 atomic_t rmem_alloc; 403 int len; 404 struct sk_buff *head; 405 struct sk_buff *tail; 406 } sk_backlog; 407 #define sk_rmem_alloc sk_backlog.rmem_alloc 408 409 int sk_forward_alloc; 410 #ifdef CONFIG_NET_RX_BUSY_POLL 411 unsigned int sk_ll_usec; 412 /* ===== mostly read cache line ===== */ 413 unsigned int sk_napi_id; 414 #endif 415 int sk_rcvbuf; 416 417 struct sk_filter __rcu *sk_filter; 418 union { 419 struct socket_wq __rcu *sk_wq; 420 /* private: */ 421 struct socket_wq *sk_wq_raw; 422 /* public: */ 423 }; 424 #ifdef CONFIG_XFRM 425 struct xfrm_policy __rcu *sk_policy[2]; 426 #endif 427 struct dst_entry *sk_rx_dst; 428 struct dst_entry __rcu *sk_dst_cache; 429 atomic_t sk_omem_alloc; 430 int sk_sndbuf; 431 432 /* ===== cache line for TX ===== */ 433 int sk_wmem_queued; 434 refcount_t sk_wmem_alloc; 435 unsigned long sk_tsq_flags; 436 union { 437 struct sk_buff *sk_send_head; 438 struct rb_root tcp_rtx_queue; 439 }; 440 struct sk_buff *sk_tx_skb_cache; 441 struct sk_buff_head sk_write_queue; 442 __s32 sk_peek_off; 443 int sk_write_pending; 444 __u32 sk_dst_pending_confirm; 445 u32 sk_pacing_status; /* see enum sk_pacing */ 446 long sk_sndtimeo; 447 struct timer_list sk_timer; 448 __u32 sk_priority; 449 __u32 sk_mark; 450 unsigned long sk_pacing_rate; /* bytes per second */ 451 unsigned long sk_max_pacing_rate; 452 struct page_frag sk_frag; 453 netdev_features_t sk_route_caps; 454 netdev_features_t sk_route_nocaps; 455 netdev_features_t sk_route_forced_caps; 456 int sk_gso_type; 457 unsigned int sk_gso_max_size; 458 gfp_t sk_allocation; 459 __u32 sk_txhash; 460 461 /* 462 * Because of non atomicity rules, all 463 * changes are protected by socket lock. 464 */ 465 u8 sk_padding : 1, 466 sk_kern_sock : 1, 467 sk_no_check_tx : 1, 468 sk_no_check_rx : 1, 469 sk_userlocks : 4; 470 u8 sk_pacing_shift; 471 u16 sk_type; 472 u16 sk_protocol; 473 u16 sk_gso_max_segs; 474 unsigned long sk_lingertime; 475 struct proto *sk_prot_creator; 476 rwlock_t sk_callback_lock; 477 int sk_err, 478 sk_err_soft; 479 u32 sk_ack_backlog; 480 u32 sk_max_ack_backlog; 481 kuid_t sk_uid; 482 struct pid *sk_peer_pid; 483 const struct cred *sk_peer_cred; 484 long sk_rcvtimeo; 485 ktime_t sk_stamp; 486 #if BITS_PER_LONG==32 487 seqlock_t sk_stamp_seq; 488 #endif 489 u16 sk_tsflags; 490 u8 sk_shutdown; 491 u32 sk_tskey; 492 atomic_t sk_zckey; 493 494 u8 sk_clockid; 495 u8 sk_txtime_deadline_mode : 1, 496 sk_txtime_report_errors : 1, 497 sk_txtime_unused : 6; 498 499 struct socket *sk_socket; 500 void *sk_user_data; 501 #ifdef CONFIG_SECURITY 502 void *sk_security; 503 #endif 504 struct sock_cgroup_data sk_cgrp_data; 505 struct mem_cgroup *sk_memcg; 506 void (*sk_state_change)(struct sock *sk); 507 void (*sk_data_ready)(struct sock *sk); 508 void (*sk_write_space)(struct sock *sk); 509 void (*sk_error_report)(struct sock *sk); 510 int (*sk_backlog_rcv)(struct sock *sk, 511 struct sk_buff *skb); 512 #ifdef CONFIG_SOCK_VALIDATE_XMIT 513 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 514 struct net_device *dev, 515 struct sk_buff *skb); 516 #endif 517 void (*sk_destruct)(struct sock *sk); 518 struct sock_reuseport __rcu *sk_reuseport_cb; 519 #ifdef CONFIG_BPF_SYSCALL 520 struct bpf_local_storage __rcu *sk_bpf_storage; 521 #endif 522 struct rcu_head sk_rcu; 523 }; 524 525 enum sk_pacing { 526 SK_PACING_NONE = 0, 527 SK_PACING_NEEDED = 1, 528 SK_PACING_FQ = 2, 529 }; 530 531 /* Pointer stored in sk_user_data might not be suitable for copying 532 * when cloning the socket. For instance, it can point to a reference 533 * counted object. sk_user_data bottom bit is set if pointer must not 534 * be copied. 535 */ 536 #define SK_USER_DATA_NOCOPY 1UL 537 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ 538 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) 539 540 /** 541 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 542 * @sk: socket 543 */ 544 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 545 { 546 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 547 } 548 549 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 550 551 #define rcu_dereference_sk_user_data(sk) \ 552 ({ \ 553 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 554 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 555 }) 556 #define rcu_assign_sk_user_data(sk, ptr) \ 557 ({ \ 558 uintptr_t __tmp = (uintptr_t)(ptr); \ 559 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 560 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 561 }) 562 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 563 ({ \ 564 uintptr_t __tmp = (uintptr_t)(ptr); \ 565 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 566 rcu_assign_pointer(__sk_user_data((sk)), \ 567 __tmp | SK_USER_DATA_NOCOPY); \ 568 }) 569 570 /* 571 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 572 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 573 * on a socket means that the socket will reuse everybody else's port 574 * without looking at the other's sk_reuse value. 575 */ 576 577 #define SK_NO_REUSE 0 578 #define SK_CAN_REUSE 1 579 #define SK_FORCE_REUSE 2 580 581 int sk_set_peek_off(struct sock *sk, int val); 582 583 static inline int sk_peek_offset(struct sock *sk, int flags) 584 { 585 if (unlikely(flags & MSG_PEEK)) { 586 return READ_ONCE(sk->sk_peek_off); 587 } 588 589 return 0; 590 } 591 592 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 593 { 594 s32 off = READ_ONCE(sk->sk_peek_off); 595 596 if (unlikely(off >= 0)) { 597 off = max_t(s32, off - val, 0); 598 WRITE_ONCE(sk->sk_peek_off, off); 599 } 600 } 601 602 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 603 { 604 sk_peek_offset_bwd(sk, -val); 605 } 606 607 /* 608 * Hashed lists helper routines 609 */ 610 static inline struct sock *sk_entry(const struct hlist_node *node) 611 { 612 return hlist_entry(node, struct sock, sk_node); 613 } 614 615 static inline struct sock *__sk_head(const struct hlist_head *head) 616 { 617 return hlist_entry(head->first, struct sock, sk_node); 618 } 619 620 static inline struct sock *sk_head(const struct hlist_head *head) 621 { 622 return hlist_empty(head) ? NULL : __sk_head(head); 623 } 624 625 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 626 { 627 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 628 } 629 630 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 631 { 632 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 633 } 634 635 static inline struct sock *sk_next(const struct sock *sk) 636 { 637 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 638 } 639 640 static inline struct sock *sk_nulls_next(const struct sock *sk) 641 { 642 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 643 hlist_nulls_entry(sk->sk_nulls_node.next, 644 struct sock, sk_nulls_node) : 645 NULL; 646 } 647 648 static inline bool sk_unhashed(const struct sock *sk) 649 { 650 return hlist_unhashed(&sk->sk_node); 651 } 652 653 static inline bool sk_hashed(const struct sock *sk) 654 { 655 return !sk_unhashed(sk); 656 } 657 658 static inline void sk_node_init(struct hlist_node *node) 659 { 660 node->pprev = NULL; 661 } 662 663 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 664 { 665 node->pprev = NULL; 666 } 667 668 static inline void __sk_del_node(struct sock *sk) 669 { 670 __hlist_del(&sk->sk_node); 671 } 672 673 /* NB: equivalent to hlist_del_init_rcu */ 674 static inline bool __sk_del_node_init(struct sock *sk) 675 { 676 if (sk_hashed(sk)) { 677 __sk_del_node(sk); 678 sk_node_init(&sk->sk_node); 679 return true; 680 } 681 return false; 682 } 683 684 /* Grab socket reference count. This operation is valid only 685 when sk is ALREADY grabbed f.e. it is found in hash table 686 or a list and the lookup is made under lock preventing hash table 687 modifications. 688 */ 689 690 static __always_inline void sock_hold(struct sock *sk) 691 { 692 refcount_inc(&sk->sk_refcnt); 693 } 694 695 /* Ungrab socket in the context, which assumes that socket refcnt 696 cannot hit zero, f.e. it is true in context of any socketcall. 697 */ 698 static __always_inline void __sock_put(struct sock *sk) 699 { 700 refcount_dec(&sk->sk_refcnt); 701 } 702 703 static inline bool sk_del_node_init(struct sock *sk) 704 { 705 bool rc = __sk_del_node_init(sk); 706 707 if (rc) { 708 /* paranoid for a while -acme */ 709 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 710 __sock_put(sk); 711 } 712 return rc; 713 } 714 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 715 716 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 717 { 718 if (sk_hashed(sk)) { 719 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 720 return true; 721 } 722 return false; 723 } 724 725 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 726 { 727 bool rc = __sk_nulls_del_node_init_rcu(sk); 728 729 if (rc) { 730 /* paranoid for a while -acme */ 731 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 732 __sock_put(sk); 733 } 734 return rc; 735 } 736 737 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 738 { 739 hlist_add_head(&sk->sk_node, list); 740 } 741 742 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 743 { 744 sock_hold(sk); 745 __sk_add_node(sk, list); 746 } 747 748 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 749 { 750 sock_hold(sk); 751 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 752 sk->sk_family == AF_INET6) 753 hlist_add_tail_rcu(&sk->sk_node, list); 754 else 755 hlist_add_head_rcu(&sk->sk_node, list); 756 } 757 758 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 759 { 760 sock_hold(sk); 761 hlist_add_tail_rcu(&sk->sk_node, list); 762 } 763 764 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 765 { 766 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 767 } 768 769 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 770 { 771 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 772 } 773 774 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 775 { 776 sock_hold(sk); 777 __sk_nulls_add_node_rcu(sk, list); 778 } 779 780 static inline void __sk_del_bind_node(struct sock *sk) 781 { 782 __hlist_del(&sk->sk_bind_node); 783 } 784 785 static inline void sk_add_bind_node(struct sock *sk, 786 struct hlist_head *list) 787 { 788 hlist_add_head(&sk->sk_bind_node, list); 789 } 790 791 #define sk_for_each(__sk, list) \ 792 hlist_for_each_entry(__sk, list, sk_node) 793 #define sk_for_each_rcu(__sk, list) \ 794 hlist_for_each_entry_rcu(__sk, list, sk_node) 795 #define sk_nulls_for_each(__sk, node, list) \ 796 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 797 #define sk_nulls_for_each_rcu(__sk, node, list) \ 798 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 799 #define sk_for_each_from(__sk) \ 800 hlist_for_each_entry_from(__sk, sk_node) 801 #define sk_nulls_for_each_from(__sk, node) \ 802 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 803 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 804 #define sk_for_each_safe(__sk, tmp, list) \ 805 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 806 #define sk_for_each_bound(__sk, list) \ 807 hlist_for_each_entry(__sk, list, sk_bind_node) 808 809 /** 810 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 811 * @tpos: the type * to use as a loop cursor. 812 * @pos: the &struct hlist_node to use as a loop cursor. 813 * @head: the head for your list. 814 * @offset: offset of hlist_node within the struct. 815 * 816 */ 817 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 818 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 819 pos != NULL && \ 820 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 821 pos = rcu_dereference(hlist_next_rcu(pos))) 822 823 static inline struct user_namespace *sk_user_ns(struct sock *sk) 824 { 825 /* Careful only use this in a context where these parameters 826 * can not change and must all be valid, such as recvmsg from 827 * userspace. 828 */ 829 return sk->sk_socket->file->f_cred->user_ns; 830 } 831 832 /* Sock flags */ 833 enum sock_flags { 834 SOCK_DEAD, 835 SOCK_DONE, 836 SOCK_URGINLINE, 837 SOCK_KEEPOPEN, 838 SOCK_LINGER, 839 SOCK_DESTROY, 840 SOCK_BROADCAST, 841 SOCK_TIMESTAMP, 842 SOCK_ZAPPED, 843 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 844 SOCK_DBG, /* %SO_DEBUG setting */ 845 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 846 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 847 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 848 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 849 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 850 SOCK_FASYNC, /* fasync() active */ 851 SOCK_RXQ_OVFL, 852 SOCK_ZEROCOPY, /* buffers from userspace */ 853 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 854 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 855 * Will use last 4 bytes of packet sent from 856 * user-space instead. 857 */ 858 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 859 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 860 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 861 SOCK_TXTIME, 862 SOCK_XDP, /* XDP is attached */ 863 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 864 }; 865 866 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 867 868 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 869 { 870 nsk->sk_flags = osk->sk_flags; 871 } 872 873 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 874 { 875 __set_bit(flag, &sk->sk_flags); 876 } 877 878 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 879 { 880 __clear_bit(flag, &sk->sk_flags); 881 } 882 883 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 884 int valbool) 885 { 886 if (valbool) 887 sock_set_flag(sk, bit); 888 else 889 sock_reset_flag(sk, bit); 890 } 891 892 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 893 { 894 return test_bit(flag, &sk->sk_flags); 895 } 896 897 #ifdef CONFIG_NET 898 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 899 static inline int sk_memalloc_socks(void) 900 { 901 return static_branch_unlikely(&memalloc_socks_key); 902 } 903 904 void __receive_sock(struct file *file); 905 #else 906 907 static inline int sk_memalloc_socks(void) 908 { 909 return 0; 910 } 911 912 static inline void __receive_sock(struct file *file) 913 { } 914 #endif 915 916 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 917 { 918 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 919 } 920 921 static inline void sk_acceptq_removed(struct sock *sk) 922 { 923 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 924 } 925 926 static inline void sk_acceptq_added(struct sock *sk) 927 { 928 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 929 } 930 931 static inline bool sk_acceptq_is_full(const struct sock *sk) 932 { 933 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 934 } 935 936 /* 937 * Compute minimal free write space needed to queue new packets. 938 */ 939 static inline int sk_stream_min_wspace(const struct sock *sk) 940 { 941 return READ_ONCE(sk->sk_wmem_queued) >> 1; 942 } 943 944 static inline int sk_stream_wspace(const struct sock *sk) 945 { 946 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 947 } 948 949 static inline void sk_wmem_queued_add(struct sock *sk, int val) 950 { 951 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 952 } 953 954 void sk_stream_write_space(struct sock *sk); 955 956 /* OOB backlog add */ 957 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 958 { 959 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 960 skb_dst_force(skb); 961 962 if (!sk->sk_backlog.tail) 963 WRITE_ONCE(sk->sk_backlog.head, skb); 964 else 965 sk->sk_backlog.tail->next = skb; 966 967 WRITE_ONCE(sk->sk_backlog.tail, skb); 968 skb->next = NULL; 969 } 970 971 /* 972 * Take into account size of receive queue and backlog queue 973 * Do not take into account this skb truesize, 974 * to allow even a single big packet to come. 975 */ 976 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 977 { 978 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 979 980 return qsize > limit; 981 } 982 983 /* The per-socket spinlock must be held here. */ 984 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 985 unsigned int limit) 986 { 987 if (sk_rcvqueues_full(sk, limit)) 988 return -ENOBUFS; 989 990 /* 991 * If the skb was allocated from pfmemalloc reserves, only 992 * allow SOCK_MEMALLOC sockets to use it as this socket is 993 * helping free memory 994 */ 995 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 996 return -ENOMEM; 997 998 __sk_add_backlog(sk, skb); 999 sk->sk_backlog.len += skb->truesize; 1000 return 0; 1001 } 1002 1003 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1004 1005 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1006 { 1007 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1008 return __sk_backlog_rcv(sk, skb); 1009 1010 return sk->sk_backlog_rcv(sk, skb); 1011 } 1012 1013 static inline void sk_incoming_cpu_update(struct sock *sk) 1014 { 1015 int cpu = raw_smp_processor_id(); 1016 1017 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1018 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1019 } 1020 1021 static inline void sock_rps_record_flow_hash(__u32 hash) 1022 { 1023 #ifdef CONFIG_RPS 1024 struct rps_sock_flow_table *sock_flow_table; 1025 1026 rcu_read_lock(); 1027 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1028 rps_record_sock_flow(sock_flow_table, hash); 1029 rcu_read_unlock(); 1030 #endif 1031 } 1032 1033 static inline void sock_rps_record_flow(const struct sock *sk) 1034 { 1035 #ifdef CONFIG_RPS 1036 if (static_branch_unlikely(&rfs_needed)) { 1037 /* Reading sk->sk_rxhash might incur an expensive cache line 1038 * miss. 1039 * 1040 * TCP_ESTABLISHED does cover almost all states where RFS 1041 * might be useful, and is cheaper [1] than testing : 1042 * IPv4: inet_sk(sk)->inet_daddr 1043 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1044 * OR an additional socket flag 1045 * [1] : sk_state and sk_prot are in the same cache line. 1046 */ 1047 if (sk->sk_state == TCP_ESTABLISHED) 1048 sock_rps_record_flow_hash(sk->sk_rxhash); 1049 } 1050 #endif 1051 } 1052 1053 static inline void sock_rps_save_rxhash(struct sock *sk, 1054 const struct sk_buff *skb) 1055 { 1056 #ifdef CONFIG_RPS 1057 if (unlikely(sk->sk_rxhash != skb->hash)) 1058 sk->sk_rxhash = skb->hash; 1059 #endif 1060 } 1061 1062 static inline void sock_rps_reset_rxhash(struct sock *sk) 1063 { 1064 #ifdef CONFIG_RPS 1065 sk->sk_rxhash = 0; 1066 #endif 1067 } 1068 1069 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1070 ({ int __rc; \ 1071 release_sock(__sk); \ 1072 __rc = __condition; \ 1073 if (!__rc) { \ 1074 *(__timeo) = wait_woken(__wait, \ 1075 TASK_INTERRUPTIBLE, \ 1076 *(__timeo)); \ 1077 } \ 1078 sched_annotate_sleep(); \ 1079 lock_sock(__sk); \ 1080 __rc = __condition; \ 1081 __rc; \ 1082 }) 1083 1084 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1085 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1086 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1087 int sk_stream_error(struct sock *sk, int flags, int err); 1088 void sk_stream_kill_queues(struct sock *sk); 1089 void sk_set_memalloc(struct sock *sk); 1090 void sk_clear_memalloc(struct sock *sk); 1091 1092 void __sk_flush_backlog(struct sock *sk); 1093 1094 static inline bool sk_flush_backlog(struct sock *sk) 1095 { 1096 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1097 __sk_flush_backlog(sk); 1098 return true; 1099 } 1100 return false; 1101 } 1102 1103 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1104 1105 struct request_sock_ops; 1106 struct timewait_sock_ops; 1107 struct inet_hashinfo; 1108 struct raw_hashinfo; 1109 struct smc_hashinfo; 1110 struct module; 1111 1112 /* 1113 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1114 * un-modified. Special care is taken when initializing object to zero. 1115 */ 1116 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1117 { 1118 if (offsetof(struct sock, sk_node.next) != 0) 1119 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1120 memset(&sk->sk_node.pprev, 0, 1121 size - offsetof(struct sock, sk_node.pprev)); 1122 } 1123 1124 /* Networking protocol blocks we attach to sockets. 1125 * socket layer -> transport layer interface 1126 */ 1127 struct proto { 1128 void (*close)(struct sock *sk, 1129 long timeout); 1130 int (*pre_connect)(struct sock *sk, 1131 struct sockaddr *uaddr, 1132 int addr_len); 1133 int (*connect)(struct sock *sk, 1134 struct sockaddr *uaddr, 1135 int addr_len); 1136 int (*disconnect)(struct sock *sk, int flags); 1137 1138 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1139 bool kern); 1140 1141 int (*ioctl)(struct sock *sk, int cmd, 1142 unsigned long arg); 1143 int (*init)(struct sock *sk); 1144 void (*destroy)(struct sock *sk); 1145 void (*shutdown)(struct sock *sk, int how); 1146 int (*setsockopt)(struct sock *sk, int level, 1147 int optname, sockptr_t optval, 1148 unsigned int optlen); 1149 int (*getsockopt)(struct sock *sk, int level, 1150 int optname, char __user *optval, 1151 int __user *option); 1152 void (*keepalive)(struct sock *sk, int valbool); 1153 #ifdef CONFIG_COMPAT 1154 int (*compat_ioctl)(struct sock *sk, 1155 unsigned int cmd, unsigned long arg); 1156 #endif 1157 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1158 size_t len); 1159 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1160 size_t len, int noblock, int flags, 1161 int *addr_len); 1162 int (*sendpage)(struct sock *sk, struct page *page, 1163 int offset, size_t size, int flags); 1164 int (*bind)(struct sock *sk, 1165 struct sockaddr *addr, int addr_len); 1166 int (*bind_add)(struct sock *sk, 1167 struct sockaddr *addr, int addr_len); 1168 1169 int (*backlog_rcv) (struct sock *sk, 1170 struct sk_buff *skb); 1171 1172 void (*release_cb)(struct sock *sk); 1173 1174 /* Keeping track of sk's, looking them up, and port selection methods. */ 1175 int (*hash)(struct sock *sk); 1176 void (*unhash)(struct sock *sk); 1177 void (*rehash)(struct sock *sk); 1178 int (*get_port)(struct sock *sk, unsigned short snum); 1179 1180 /* Keeping track of sockets in use */ 1181 #ifdef CONFIG_PROC_FS 1182 unsigned int inuse_idx; 1183 #endif 1184 1185 bool (*stream_memory_free)(const struct sock *sk, int wake); 1186 bool (*stream_memory_read)(const struct sock *sk); 1187 /* Memory pressure */ 1188 void (*enter_memory_pressure)(struct sock *sk); 1189 void (*leave_memory_pressure)(struct sock *sk); 1190 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1191 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1192 /* 1193 * Pressure flag: try to collapse. 1194 * Technical note: it is used by multiple contexts non atomically. 1195 * All the __sk_mem_schedule() is of this nature: accounting 1196 * is strict, actions are advisory and have some latency. 1197 */ 1198 unsigned long *memory_pressure; 1199 long *sysctl_mem; 1200 1201 int *sysctl_wmem; 1202 int *sysctl_rmem; 1203 u32 sysctl_wmem_offset; 1204 u32 sysctl_rmem_offset; 1205 1206 int max_header; 1207 bool no_autobind; 1208 1209 struct kmem_cache *slab; 1210 unsigned int obj_size; 1211 slab_flags_t slab_flags; 1212 unsigned int useroffset; /* Usercopy region offset */ 1213 unsigned int usersize; /* Usercopy region size */ 1214 1215 struct percpu_counter *orphan_count; 1216 1217 struct request_sock_ops *rsk_prot; 1218 struct timewait_sock_ops *twsk_prot; 1219 1220 union { 1221 struct inet_hashinfo *hashinfo; 1222 struct udp_table *udp_table; 1223 struct raw_hashinfo *raw_hash; 1224 struct smc_hashinfo *smc_hash; 1225 } h; 1226 1227 struct module *owner; 1228 1229 char name[32]; 1230 1231 struct list_head node; 1232 #ifdef SOCK_REFCNT_DEBUG 1233 atomic_t socks; 1234 #endif 1235 int (*diag_destroy)(struct sock *sk, int err); 1236 } __randomize_layout; 1237 1238 int proto_register(struct proto *prot, int alloc_slab); 1239 void proto_unregister(struct proto *prot); 1240 int sock_load_diag_module(int family, int protocol); 1241 1242 #ifdef SOCK_REFCNT_DEBUG 1243 static inline void sk_refcnt_debug_inc(struct sock *sk) 1244 { 1245 atomic_inc(&sk->sk_prot->socks); 1246 } 1247 1248 static inline void sk_refcnt_debug_dec(struct sock *sk) 1249 { 1250 atomic_dec(&sk->sk_prot->socks); 1251 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1252 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1253 } 1254 1255 static inline void sk_refcnt_debug_release(const struct sock *sk) 1256 { 1257 if (refcount_read(&sk->sk_refcnt) != 1) 1258 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1259 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1260 } 1261 #else /* SOCK_REFCNT_DEBUG */ 1262 #define sk_refcnt_debug_inc(sk) do { } while (0) 1263 #define sk_refcnt_debug_dec(sk) do { } while (0) 1264 #define sk_refcnt_debug_release(sk) do { } while (0) 1265 #endif /* SOCK_REFCNT_DEBUG */ 1266 1267 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1268 { 1269 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1270 return false; 1271 1272 return sk->sk_prot->stream_memory_free ? 1273 sk->sk_prot->stream_memory_free(sk, wake) : true; 1274 } 1275 1276 static inline bool sk_stream_memory_free(const struct sock *sk) 1277 { 1278 return __sk_stream_memory_free(sk, 0); 1279 } 1280 1281 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1282 { 1283 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1284 __sk_stream_memory_free(sk, wake); 1285 } 1286 1287 static inline bool sk_stream_is_writeable(const struct sock *sk) 1288 { 1289 return __sk_stream_is_writeable(sk, 0); 1290 } 1291 1292 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1293 struct cgroup *ancestor) 1294 { 1295 #ifdef CONFIG_SOCK_CGROUP_DATA 1296 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1297 ancestor); 1298 #else 1299 return -ENOTSUPP; 1300 #endif 1301 } 1302 1303 static inline bool sk_has_memory_pressure(const struct sock *sk) 1304 { 1305 return sk->sk_prot->memory_pressure != NULL; 1306 } 1307 1308 static inline bool sk_under_memory_pressure(const struct sock *sk) 1309 { 1310 if (!sk->sk_prot->memory_pressure) 1311 return false; 1312 1313 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1314 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1315 return true; 1316 1317 return !!*sk->sk_prot->memory_pressure; 1318 } 1319 1320 static inline long 1321 sk_memory_allocated(const struct sock *sk) 1322 { 1323 return atomic_long_read(sk->sk_prot->memory_allocated); 1324 } 1325 1326 static inline long 1327 sk_memory_allocated_add(struct sock *sk, int amt) 1328 { 1329 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1330 } 1331 1332 static inline void 1333 sk_memory_allocated_sub(struct sock *sk, int amt) 1334 { 1335 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1336 } 1337 1338 static inline void sk_sockets_allocated_dec(struct sock *sk) 1339 { 1340 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1341 } 1342 1343 static inline void sk_sockets_allocated_inc(struct sock *sk) 1344 { 1345 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1346 } 1347 1348 static inline u64 1349 sk_sockets_allocated_read_positive(struct sock *sk) 1350 { 1351 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1352 } 1353 1354 static inline int 1355 proto_sockets_allocated_sum_positive(struct proto *prot) 1356 { 1357 return percpu_counter_sum_positive(prot->sockets_allocated); 1358 } 1359 1360 static inline long 1361 proto_memory_allocated(struct proto *prot) 1362 { 1363 return atomic_long_read(prot->memory_allocated); 1364 } 1365 1366 static inline bool 1367 proto_memory_pressure(struct proto *prot) 1368 { 1369 if (!prot->memory_pressure) 1370 return false; 1371 return !!*prot->memory_pressure; 1372 } 1373 1374 1375 #ifdef CONFIG_PROC_FS 1376 /* Called with local bh disabled */ 1377 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1378 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1379 int sock_inuse_get(struct net *net); 1380 #else 1381 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1382 int inc) 1383 { 1384 } 1385 #endif 1386 1387 1388 /* With per-bucket locks this operation is not-atomic, so that 1389 * this version is not worse. 1390 */ 1391 static inline int __sk_prot_rehash(struct sock *sk) 1392 { 1393 sk->sk_prot->unhash(sk); 1394 return sk->sk_prot->hash(sk); 1395 } 1396 1397 /* About 10 seconds */ 1398 #define SOCK_DESTROY_TIME (10*HZ) 1399 1400 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1401 #define PROT_SOCK 1024 1402 1403 #define SHUTDOWN_MASK 3 1404 #define RCV_SHUTDOWN 1 1405 #define SEND_SHUTDOWN 2 1406 1407 #define SOCK_SNDBUF_LOCK 1 1408 #define SOCK_RCVBUF_LOCK 2 1409 #define SOCK_BINDADDR_LOCK 4 1410 #define SOCK_BINDPORT_LOCK 8 1411 1412 struct socket_alloc { 1413 struct socket socket; 1414 struct inode vfs_inode; 1415 }; 1416 1417 static inline struct socket *SOCKET_I(struct inode *inode) 1418 { 1419 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1420 } 1421 1422 static inline struct inode *SOCK_INODE(struct socket *socket) 1423 { 1424 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1425 } 1426 1427 /* 1428 * Functions for memory accounting 1429 */ 1430 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1431 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1432 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1433 void __sk_mem_reclaim(struct sock *sk, int amount); 1434 1435 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1436 * do not necessarily have 16x time more memory than 4KB ones. 1437 */ 1438 #define SK_MEM_QUANTUM 4096 1439 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1440 #define SK_MEM_SEND 0 1441 #define SK_MEM_RECV 1 1442 1443 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1444 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1445 { 1446 long val = sk->sk_prot->sysctl_mem[index]; 1447 1448 #if PAGE_SIZE > SK_MEM_QUANTUM 1449 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1450 #elif PAGE_SIZE < SK_MEM_QUANTUM 1451 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1452 #endif 1453 return val; 1454 } 1455 1456 static inline int sk_mem_pages(int amt) 1457 { 1458 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1459 } 1460 1461 static inline bool sk_has_account(struct sock *sk) 1462 { 1463 /* return true if protocol supports memory accounting */ 1464 return !!sk->sk_prot->memory_allocated; 1465 } 1466 1467 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1468 { 1469 if (!sk_has_account(sk)) 1470 return true; 1471 return size <= sk->sk_forward_alloc || 1472 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1473 } 1474 1475 static inline bool 1476 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1477 { 1478 if (!sk_has_account(sk)) 1479 return true; 1480 return size <= sk->sk_forward_alloc || 1481 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1482 skb_pfmemalloc(skb); 1483 } 1484 1485 static inline void sk_mem_reclaim(struct sock *sk) 1486 { 1487 if (!sk_has_account(sk)) 1488 return; 1489 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1490 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1491 } 1492 1493 static inline void sk_mem_reclaim_partial(struct sock *sk) 1494 { 1495 if (!sk_has_account(sk)) 1496 return; 1497 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1498 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1499 } 1500 1501 static inline void sk_mem_charge(struct sock *sk, int size) 1502 { 1503 if (!sk_has_account(sk)) 1504 return; 1505 sk->sk_forward_alloc -= size; 1506 } 1507 1508 static inline void sk_mem_uncharge(struct sock *sk, int size) 1509 { 1510 if (!sk_has_account(sk)) 1511 return; 1512 sk->sk_forward_alloc += size; 1513 1514 /* Avoid a possible overflow. 1515 * TCP send queues can make this happen, if sk_mem_reclaim() 1516 * is not called and more than 2 GBytes are released at once. 1517 * 1518 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1519 * no need to hold that much forward allocation anyway. 1520 */ 1521 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1522 __sk_mem_reclaim(sk, 1 << 20); 1523 } 1524 1525 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 1526 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1527 { 1528 sk_wmem_queued_add(sk, -skb->truesize); 1529 sk_mem_uncharge(sk, skb->truesize); 1530 if (static_branch_unlikely(&tcp_tx_skb_cache_key) && 1531 !sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1532 skb_ext_reset(skb); 1533 skb_zcopy_clear(skb, true); 1534 sk->sk_tx_skb_cache = skb; 1535 return; 1536 } 1537 __kfree_skb(skb); 1538 } 1539 1540 static inline void sock_release_ownership(struct sock *sk) 1541 { 1542 if (sk->sk_lock.owned) { 1543 sk->sk_lock.owned = 0; 1544 1545 /* The sk_lock has mutex_unlock() semantics: */ 1546 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1547 } 1548 } 1549 1550 /* 1551 * Macro so as to not evaluate some arguments when 1552 * lockdep is not enabled. 1553 * 1554 * Mark both the sk_lock and the sk_lock.slock as a 1555 * per-address-family lock class. 1556 */ 1557 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1558 do { \ 1559 sk->sk_lock.owned = 0; \ 1560 init_waitqueue_head(&sk->sk_lock.wq); \ 1561 spin_lock_init(&(sk)->sk_lock.slock); \ 1562 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1563 sizeof((sk)->sk_lock)); \ 1564 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1565 (skey), (sname)); \ 1566 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1567 } while (0) 1568 1569 #ifdef CONFIG_LOCKDEP 1570 static inline bool lockdep_sock_is_held(const struct sock *sk) 1571 { 1572 return lockdep_is_held(&sk->sk_lock) || 1573 lockdep_is_held(&sk->sk_lock.slock); 1574 } 1575 #endif 1576 1577 void lock_sock_nested(struct sock *sk, int subclass); 1578 1579 static inline void lock_sock(struct sock *sk) 1580 { 1581 lock_sock_nested(sk, 0); 1582 } 1583 1584 void __release_sock(struct sock *sk); 1585 void release_sock(struct sock *sk); 1586 1587 /* BH context may only use the following locking interface. */ 1588 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1589 #define bh_lock_sock_nested(__sk) \ 1590 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1591 SINGLE_DEPTH_NESTING) 1592 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1593 1594 bool lock_sock_fast(struct sock *sk); 1595 /** 1596 * unlock_sock_fast - complement of lock_sock_fast 1597 * @sk: socket 1598 * @slow: slow mode 1599 * 1600 * fast unlock socket for user context. 1601 * If slow mode is on, we call regular release_sock() 1602 */ 1603 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1604 { 1605 if (slow) 1606 release_sock(sk); 1607 else 1608 spin_unlock_bh(&sk->sk_lock.slock); 1609 } 1610 1611 /* Used by processes to "lock" a socket state, so that 1612 * interrupts and bottom half handlers won't change it 1613 * from under us. It essentially blocks any incoming 1614 * packets, so that we won't get any new data or any 1615 * packets that change the state of the socket. 1616 * 1617 * While locked, BH processing will add new packets to 1618 * the backlog queue. This queue is processed by the 1619 * owner of the socket lock right before it is released. 1620 * 1621 * Since ~2.3.5 it is also exclusive sleep lock serializing 1622 * accesses from user process context. 1623 */ 1624 1625 static inline void sock_owned_by_me(const struct sock *sk) 1626 { 1627 #ifdef CONFIG_LOCKDEP 1628 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1629 #endif 1630 } 1631 1632 static inline bool sock_owned_by_user(const struct sock *sk) 1633 { 1634 sock_owned_by_me(sk); 1635 return sk->sk_lock.owned; 1636 } 1637 1638 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1639 { 1640 return sk->sk_lock.owned; 1641 } 1642 1643 /* no reclassification while locks are held */ 1644 static inline bool sock_allow_reclassification(const struct sock *csk) 1645 { 1646 struct sock *sk = (struct sock *)csk; 1647 1648 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1649 } 1650 1651 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1652 struct proto *prot, int kern); 1653 void sk_free(struct sock *sk); 1654 void sk_destruct(struct sock *sk); 1655 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1656 void sk_free_unlock_clone(struct sock *sk); 1657 1658 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1659 gfp_t priority); 1660 void __sock_wfree(struct sk_buff *skb); 1661 void sock_wfree(struct sk_buff *skb); 1662 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1663 gfp_t priority); 1664 void skb_orphan_partial(struct sk_buff *skb); 1665 void sock_rfree(struct sk_buff *skb); 1666 void sock_efree(struct sk_buff *skb); 1667 #ifdef CONFIG_INET 1668 void sock_edemux(struct sk_buff *skb); 1669 void sock_pfree(struct sk_buff *skb); 1670 #else 1671 #define sock_edemux sock_efree 1672 #endif 1673 1674 int sock_setsockopt(struct socket *sock, int level, int op, 1675 sockptr_t optval, unsigned int optlen); 1676 1677 int sock_getsockopt(struct socket *sock, int level, int op, 1678 char __user *optval, int __user *optlen); 1679 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1680 bool timeval, bool time32); 1681 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1682 int noblock, int *errcode); 1683 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1684 unsigned long data_len, int noblock, 1685 int *errcode, int max_page_order); 1686 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1687 void sock_kfree_s(struct sock *sk, void *mem, int size); 1688 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1689 void sk_send_sigurg(struct sock *sk); 1690 1691 struct sockcm_cookie { 1692 u64 transmit_time; 1693 u32 mark; 1694 u16 tsflags; 1695 }; 1696 1697 static inline void sockcm_init(struct sockcm_cookie *sockc, 1698 const struct sock *sk) 1699 { 1700 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1701 } 1702 1703 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1704 struct sockcm_cookie *sockc); 1705 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1706 struct sockcm_cookie *sockc); 1707 1708 /* 1709 * Functions to fill in entries in struct proto_ops when a protocol 1710 * does not implement a particular function. 1711 */ 1712 int sock_no_bind(struct socket *, struct sockaddr *, int); 1713 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1714 int sock_no_socketpair(struct socket *, struct socket *); 1715 int sock_no_accept(struct socket *, struct socket *, int, bool); 1716 int sock_no_getname(struct socket *, struct sockaddr *, int); 1717 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1718 int sock_no_listen(struct socket *, int); 1719 int sock_no_shutdown(struct socket *, int); 1720 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1721 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1722 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1723 int sock_no_mmap(struct file *file, struct socket *sock, 1724 struct vm_area_struct *vma); 1725 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1726 size_t size, int flags); 1727 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1728 int offset, size_t size, int flags); 1729 1730 /* 1731 * Functions to fill in entries in struct proto_ops when a protocol 1732 * uses the inet style. 1733 */ 1734 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1735 char __user *optval, int __user *optlen); 1736 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1737 int flags); 1738 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1739 sockptr_t optval, unsigned int optlen); 1740 1741 void sk_common_release(struct sock *sk); 1742 1743 /* 1744 * Default socket callbacks and setup code 1745 */ 1746 1747 /* Initialise core socket variables */ 1748 void sock_init_data(struct socket *sock, struct sock *sk); 1749 1750 /* 1751 * Socket reference counting postulates. 1752 * 1753 * * Each user of socket SHOULD hold a reference count. 1754 * * Each access point to socket (an hash table bucket, reference from a list, 1755 * running timer, skb in flight MUST hold a reference count. 1756 * * When reference count hits 0, it means it will never increase back. 1757 * * When reference count hits 0, it means that no references from 1758 * outside exist to this socket and current process on current CPU 1759 * is last user and may/should destroy this socket. 1760 * * sk_free is called from any context: process, BH, IRQ. When 1761 * it is called, socket has no references from outside -> sk_free 1762 * may release descendant resources allocated by the socket, but 1763 * to the time when it is called, socket is NOT referenced by any 1764 * hash tables, lists etc. 1765 * * Packets, delivered from outside (from network or from another process) 1766 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1767 * when they sit in queue. Otherwise, packets will leak to hole, when 1768 * socket is looked up by one cpu and unhasing is made by another CPU. 1769 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1770 * (leak to backlog). Packet socket does all the processing inside 1771 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1772 * use separate SMP lock, so that they are prone too. 1773 */ 1774 1775 /* Ungrab socket and destroy it, if it was the last reference. */ 1776 static inline void sock_put(struct sock *sk) 1777 { 1778 if (refcount_dec_and_test(&sk->sk_refcnt)) 1779 sk_free(sk); 1780 } 1781 /* Generic version of sock_put(), dealing with all sockets 1782 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1783 */ 1784 void sock_gen_put(struct sock *sk); 1785 1786 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1787 unsigned int trim_cap, bool refcounted); 1788 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1789 const int nested) 1790 { 1791 return __sk_receive_skb(sk, skb, nested, 1, true); 1792 } 1793 1794 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1795 { 1796 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1797 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1798 return; 1799 sk->sk_tx_queue_mapping = tx_queue; 1800 } 1801 1802 #define NO_QUEUE_MAPPING USHRT_MAX 1803 1804 static inline void sk_tx_queue_clear(struct sock *sk) 1805 { 1806 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1807 } 1808 1809 static inline int sk_tx_queue_get(const struct sock *sk) 1810 { 1811 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1812 return sk->sk_tx_queue_mapping; 1813 1814 return -1; 1815 } 1816 1817 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1818 { 1819 #ifdef CONFIG_XPS 1820 if (skb_rx_queue_recorded(skb)) { 1821 u16 rx_queue = skb_get_rx_queue(skb); 1822 1823 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1824 return; 1825 1826 sk->sk_rx_queue_mapping = rx_queue; 1827 } 1828 #endif 1829 } 1830 1831 static inline void sk_rx_queue_clear(struct sock *sk) 1832 { 1833 #ifdef CONFIG_XPS 1834 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1835 #endif 1836 } 1837 1838 #ifdef CONFIG_XPS 1839 static inline int sk_rx_queue_get(const struct sock *sk) 1840 { 1841 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1842 return sk->sk_rx_queue_mapping; 1843 1844 return -1; 1845 } 1846 #endif 1847 1848 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1849 { 1850 sk->sk_socket = sock; 1851 } 1852 1853 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1854 { 1855 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1856 return &rcu_dereference_raw(sk->sk_wq)->wait; 1857 } 1858 /* Detach socket from process context. 1859 * Announce socket dead, detach it from wait queue and inode. 1860 * Note that parent inode held reference count on this struct sock, 1861 * we do not release it in this function, because protocol 1862 * probably wants some additional cleanups or even continuing 1863 * to work with this socket (TCP). 1864 */ 1865 static inline void sock_orphan(struct sock *sk) 1866 { 1867 write_lock_bh(&sk->sk_callback_lock); 1868 sock_set_flag(sk, SOCK_DEAD); 1869 sk_set_socket(sk, NULL); 1870 sk->sk_wq = NULL; 1871 write_unlock_bh(&sk->sk_callback_lock); 1872 } 1873 1874 static inline void sock_graft(struct sock *sk, struct socket *parent) 1875 { 1876 WARN_ON(parent->sk); 1877 write_lock_bh(&sk->sk_callback_lock); 1878 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1879 parent->sk = sk; 1880 sk_set_socket(sk, parent); 1881 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1882 security_sock_graft(sk, parent); 1883 write_unlock_bh(&sk->sk_callback_lock); 1884 } 1885 1886 kuid_t sock_i_uid(struct sock *sk); 1887 unsigned long sock_i_ino(struct sock *sk); 1888 1889 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1890 { 1891 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1892 } 1893 1894 static inline u32 net_tx_rndhash(void) 1895 { 1896 u32 v = prandom_u32(); 1897 1898 return v ?: 1; 1899 } 1900 1901 static inline void sk_set_txhash(struct sock *sk) 1902 { 1903 sk->sk_txhash = net_tx_rndhash(); 1904 } 1905 1906 static inline void sk_rethink_txhash(struct sock *sk) 1907 { 1908 if (sk->sk_txhash) 1909 sk_set_txhash(sk); 1910 } 1911 1912 static inline struct dst_entry * 1913 __sk_dst_get(struct sock *sk) 1914 { 1915 return rcu_dereference_check(sk->sk_dst_cache, 1916 lockdep_sock_is_held(sk)); 1917 } 1918 1919 static inline struct dst_entry * 1920 sk_dst_get(struct sock *sk) 1921 { 1922 struct dst_entry *dst; 1923 1924 rcu_read_lock(); 1925 dst = rcu_dereference(sk->sk_dst_cache); 1926 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1927 dst = NULL; 1928 rcu_read_unlock(); 1929 return dst; 1930 } 1931 1932 static inline void dst_negative_advice(struct sock *sk) 1933 { 1934 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1935 1936 sk_rethink_txhash(sk); 1937 1938 if (dst && dst->ops->negative_advice) { 1939 ndst = dst->ops->negative_advice(dst); 1940 1941 if (ndst != dst) { 1942 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1943 sk_tx_queue_clear(sk); 1944 sk->sk_dst_pending_confirm = 0; 1945 } 1946 } 1947 } 1948 1949 static inline void 1950 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1951 { 1952 struct dst_entry *old_dst; 1953 1954 sk_tx_queue_clear(sk); 1955 sk->sk_dst_pending_confirm = 0; 1956 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1957 lockdep_sock_is_held(sk)); 1958 rcu_assign_pointer(sk->sk_dst_cache, dst); 1959 dst_release(old_dst); 1960 } 1961 1962 static inline void 1963 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1964 { 1965 struct dst_entry *old_dst; 1966 1967 sk_tx_queue_clear(sk); 1968 sk->sk_dst_pending_confirm = 0; 1969 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1970 dst_release(old_dst); 1971 } 1972 1973 static inline void 1974 __sk_dst_reset(struct sock *sk) 1975 { 1976 __sk_dst_set(sk, NULL); 1977 } 1978 1979 static inline void 1980 sk_dst_reset(struct sock *sk) 1981 { 1982 sk_dst_set(sk, NULL); 1983 } 1984 1985 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1986 1987 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1988 1989 static inline void sk_dst_confirm(struct sock *sk) 1990 { 1991 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 1992 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 1993 } 1994 1995 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1996 { 1997 if (skb_get_dst_pending_confirm(skb)) { 1998 struct sock *sk = skb->sk; 1999 unsigned long now = jiffies; 2000 2001 /* avoid dirtying neighbour */ 2002 if (READ_ONCE(n->confirmed) != now) 2003 WRITE_ONCE(n->confirmed, now); 2004 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2005 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2006 } 2007 } 2008 2009 bool sk_mc_loop(struct sock *sk); 2010 2011 static inline bool sk_can_gso(const struct sock *sk) 2012 { 2013 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2014 } 2015 2016 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2017 2018 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 2019 { 2020 sk->sk_route_nocaps |= flags; 2021 sk->sk_route_caps &= ~flags; 2022 } 2023 2024 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2025 struct iov_iter *from, char *to, 2026 int copy, int offset) 2027 { 2028 if (skb->ip_summed == CHECKSUM_NONE) { 2029 __wsum csum = 0; 2030 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2031 return -EFAULT; 2032 skb->csum = csum_block_add(skb->csum, csum, offset); 2033 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2034 if (!copy_from_iter_full_nocache(to, copy, from)) 2035 return -EFAULT; 2036 } else if (!copy_from_iter_full(to, copy, from)) 2037 return -EFAULT; 2038 2039 return 0; 2040 } 2041 2042 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2043 struct iov_iter *from, int copy) 2044 { 2045 int err, offset = skb->len; 2046 2047 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2048 copy, offset); 2049 if (err) 2050 __skb_trim(skb, offset); 2051 2052 return err; 2053 } 2054 2055 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2056 struct sk_buff *skb, 2057 struct page *page, 2058 int off, int copy) 2059 { 2060 int err; 2061 2062 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2063 copy, skb->len); 2064 if (err) 2065 return err; 2066 2067 skb->len += copy; 2068 skb->data_len += copy; 2069 skb->truesize += copy; 2070 sk_wmem_queued_add(sk, copy); 2071 sk_mem_charge(sk, copy); 2072 return 0; 2073 } 2074 2075 /** 2076 * sk_wmem_alloc_get - returns write allocations 2077 * @sk: socket 2078 * 2079 * Return: sk_wmem_alloc minus initial offset of one 2080 */ 2081 static inline int sk_wmem_alloc_get(const struct sock *sk) 2082 { 2083 return refcount_read(&sk->sk_wmem_alloc) - 1; 2084 } 2085 2086 /** 2087 * sk_rmem_alloc_get - returns read allocations 2088 * @sk: socket 2089 * 2090 * Return: sk_rmem_alloc 2091 */ 2092 static inline int sk_rmem_alloc_get(const struct sock *sk) 2093 { 2094 return atomic_read(&sk->sk_rmem_alloc); 2095 } 2096 2097 /** 2098 * sk_has_allocations - check if allocations are outstanding 2099 * @sk: socket 2100 * 2101 * Return: true if socket has write or read allocations 2102 */ 2103 static inline bool sk_has_allocations(const struct sock *sk) 2104 { 2105 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2106 } 2107 2108 /** 2109 * skwq_has_sleeper - check if there are any waiting processes 2110 * @wq: struct socket_wq 2111 * 2112 * Return: true if socket_wq has waiting processes 2113 * 2114 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2115 * barrier call. They were added due to the race found within the tcp code. 2116 * 2117 * Consider following tcp code paths:: 2118 * 2119 * CPU1 CPU2 2120 * sys_select receive packet 2121 * ... ... 2122 * __add_wait_queue update tp->rcv_nxt 2123 * ... ... 2124 * tp->rcv_nxt check sock_def_readable 2125 * ... { 2126 * schedule rcu_read_lock(); 2127 * wq = rcu_dereference(sk->sk_wq); 2128 * if (wq && waitqueue_active(&wq->wait)) 2129 * wake_up_interruptible(&wq->wait) 2130 * ... 2131 * } 2132 * 2133 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2134 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2135 * could then endup calling schedule and sleep forever if there are no more 2136 * data on the socket. 2137 * 2138 */ 2139 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2140 { 2141 return wq && wq_has_sleeper(&wq->wait); 2142 } 2143 2144 /** 2145 * sock_poll_wait - place memory barrier behind the poll_wait call. 2146 * @filp: file 2147 * @sock: socket to wait on 2148 * @p: poll_table 2149 * 2150 * See the comments in the wq_has_sleeper function. 2151 */ 2152 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2153 poll_table *p) 2154 { 2155 if (!poll_does_not_wait(p)) { 2156 poll_wait(filp, &sock->wq.wait, p); 2157 /* We need to be sure we are in sync with the 2158 * socket flags modification. 2159 * 2160 * This memory barrier is paired in the wq_has_sleeper. 2161 */ 2162 smp_mb(); 2163 } 2164 } 2165 2166 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2167 { 2168 if (sk->sk_txhash) { 2169 skb->l4_hash = 1; 2170 skb->hash = sk->sk_txhash; 2171 } 2172 } 2173 2174 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2175 2176 /* 2177 * Queue a received datagram if it will fit. Stream and sequenced 2178 * protocols can't normally use this as they need to fit buffers in 2179 * and play with them. 2180 * 2181 * Inlined as it's very short and called for pretty much every 2182 * packet ever received. 2183 */ 2184 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2185 { 2186 skb_orphan(skb); 2187 skb->sk = sk; 2188 skb->destructor = sock_rfree; 2189 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2190 sk_mem_charge(sk, skb->truesize); 2191 } 2192 2193 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2194 unsigned long expires); 2195 2196 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2197 2198 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2199 2200 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2201 struct sk_buff *skb, unsigned int flags, 2202 void (*destructor)(struct sock *sk, 2203 struct sk_buff *skb)); 2204 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2205 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2206 2207 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2208 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2209 2210 /* 2211 * Recover an error report and clear atomically 2212 */ 2213 2214 static inline int sock_error(struct sock *sk) 2215 { 2216 int err; 2217 if (likely(!sk->sk_err)) 2218 return 0; 2219 err = xchg(&sk->sk_err, 0); 2220 return -err; 2221 } 2222 2223 static inline unsigned long sock_wspace(struct sock *sk) 2224 { 2225 int amt = 0; 2226 2227 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2228 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2229 if (amt < 0) 2230 amt = 0; 2231 } 2232 return amt; 2233 } 2234 2235 /* Note: 2236 * We use sk->sk_wq_raw, from contexts knowing this 2237 * pointer is not NULL and cannot disappear/change. 2238 */ 2239 static inline void sk_set_bit(int nr, struct sock *sk) 2240 { 2241 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2242 !sock_flag(sk, SOCK_FASYNC)) 2243 return; 2244 2245 set_bit(nr, &sk->sk_wq_raw->flags); 2246 } 2247 2248 static inline void sk_clear_bit(int nr, struct sock *sk) 2249 { 2250 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2251 !sock_flag(sk, SOCK_FASYNC)) 2252 return; 2253 2254 clear_bit(nr, &sk->sk_wq_raw->flags); 2255 } 2256 2257 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2258 { 2259 if (sock_flag(sk, SOCK_FASYNC)) { 2260 rcu_read_lock(); 2261 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2262 rcu_read_unlock(); 2263 } 2264 } 2265 2266 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2267 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2268 * Note: for send buffers, TCP works better if we can build two skbs at 2269 * minimum. 2270 */ 2271 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2272 2273 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2274 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2275 2276 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2277 { 2278 u32 val; 2279 2280 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2281 return; 2282 2283 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2284 2285 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2286 } 2287 2288 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2289 bool force_schedule); 2290 2291 /** 2292 * sk_page_frag - return an appropriate page_frag 2293 * @sk: socket 2294 * 2295 * Use the per task page_frag instead of the per socket one for 2296 * optimization when we know that we're in the normal context and owns 2297 * everything that's associated with %current. 2298 * 2299 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2300 * inside other socket operations and end up recursing into sk_page_frag() 2301 * while it's already in use. 2302 * 2303 * Return: a per task page_frag if context allows that, 2304 * otherwise a per socket one. 2305 */ 2306 static inline struct page_frag *sk_page_frag(struct sock *sk) 2307 { 2308 if (gfpflags_normal_context(sk->sk_allocation)) 2309 return ¤t->task_frag; 2310 2311 return &sk->sk_frag; 2312 } 2313 2314 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2315 2316 /* 2317 * Default write policy as shown to user space via poll/select/SIGIO 2318 */ 2319 static inline bool sock_writeable(const struct sock *sk) 2320 { 2321 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2322 } 2323 2324 static inline gfp_t gfp_any(void) 2325 { 2326 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2327 } 2328 2329 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2330 { 2331 return noblock ? 0 : sk->sk_rcvtimeo; 2332 } 2333 2334 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2335 { 2336 return noblock ? 0 : sk->sk_sndtimeo; 2337 } 2338 2339 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2340 { 2341 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2342 2343 return v ?: 1; 2344 } 2345 2346 /* Alas, with timeout socket operations are not restartable. 2347 * Compare this to poll(). 2348 */ 2349 static inline int sock_intr_errno(long timeo) 2350 { 2351 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2352 } 2353 2354 struct sock_skb_cb { 2355 u32 dropcount; 2356 }; 2357 2358 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2359 * using skb->cb[] would keep using it directly and utilize its 2360 * alignement guarantee. 2361 */ 2362 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2363 sizeof(struct sock_skb_cb))) 2364 2365 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2366 SOCK_SKB_CB_OFFSET)) 2367 2368 #define sock_skb_cb_check_size(size) \ 2369 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2370 2371 static inline void 2372 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2373 { 2374 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2375 atomic_read(&sk->sk_drops) : 0; 2376 } 2377 2378 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2379 { 2380 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2381 2382 atomic_add(segs, &sk->sk_drops); 2383 } 2384 2385 static inline ktime_t sock_read_timestamp(struct sock *sk) 2386 { 2387 #if BITS_PER_LONG==32 2388 unsigned int seq; 2389 ktime_t kt; 2390 2391 do { 2392 seq = read_seqbegin(&sk->sk_stamp_seq); 2393 kt = sk->sk_stamp; 2394 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2395 2396 return kt; 2397 #else 2398 return READ_ONCE(sk->sk_stamp); 2399 #endif 2400 } 2401 2402 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2403 { 2404 #if BITS_PER_LONG==32 2405 write_seqlock(&sk->sk_stamp_seq); 2406 sk->sk_stamp = kt; 2407 write_sequnlock(&sk->sk_stamp_seq); 2408 #else 2409 WRITE_ONCE(sk->sk_stamp, kt); 2410 #endif 2411 } 2412 2413 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2414 struct sk_buff *skb); 2415 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2416 struct sk_buff *skb); 2417 2418 static inline void 2419 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2420 { 2421 ktime_t kt = skb->tstamp; 2422 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2423 2424 /* 2425 * generate control messages if 2426 * - receive time stamping in software requested 2427 * - software time stamp available and wanted 2428 * - hardware time stamps available and wanted 2429 */ 2430 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2431 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2432 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2433 (hwtstamps->hwtstamp && 2434 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2435 __sock_recv_timestamp(msg, sk, skb); 2436 else 2437 sock_write_timestamp(sk, kt); 2438 2439 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2440 __sock_recv_wifi_status(msg, sk, skb); 2441 } 2442 2443 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2444 struct sk_buff *skb); 2445 2446 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2447 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2448 struct sk_buff *skb) 2449 { 2450 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2451 (1UL << SOCK_RCVTSTAMP)) 2452 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2453 SOF_TIMESTAMPING_RAW_HARDWARE) 2454 2455 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2456 __sock_recv_ts_and_drops(msg, sk, skb); 2457 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2458 sock_write_timestamp(sk, skb->tstamp); 2459 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2460 sock_write_timestamp(sk, 0); 2461 } 2462 2463 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2464 2465 /** 2466 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2467 * @sk: socket sending this packet 2468 * @tsflags: timestamping flags to use 2469 * @tx_flags: completed with instructions for time stamping 2470 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2471 * 2472 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2473 */ 2474 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2475 __u8 *tx_flags, __u32 *tskey) 2476 { 2477 if (unlikely(tsflags)) { 2478 __sock_tx_timestamp(tsflags, tx_flags); 2479 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2480 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2481 *tskey = sk->sk_tskey++; 2482 } 2483 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2484 *tx_flags |= SKBTX_WIFI_STATUS; 2485 } 2486 2487 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2488 __u8 *tx_flags) 2489 { 2490 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2491 } 2492 2493 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2494 { 2495 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2496 &skb_shinfo(skb)->tskey); 2497 } 2498 2499 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 2500 /** 2501 * sk_eat_skb - Release a skb if it is no longer needed 2502 * @sk: socket to eat this skb from 2503 * @skb: socket buffer to eat 2504 * 2505 * This routine must be called with interrupts disabled or with the socket 2506 * locked so that the sk_buff queue operation is ok. 2507 */ 2508 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2509 { 2510 __skb_unlink(skb, &sk->sk_receive_queue); 2511 if (static_branch_unlikely(&tcp_rx_skb_cache_key) && 2512 !sk->sk_rx_skb_cache) { 2513 sk->sk_rx_skb_cache = skb; 2514 skb_orphan(skb); 2515 return; 2516 } 2517 __kfree_skb(skb); 2518 } 2519 2520 static inline 2521 struct net *sock_net(const struct sock *sk) 2522 { 2523 return read_pnet(&sk->sk_net); 2524 } 2525 2526 static inline 2527 void sock_net_set(struct sock *sk, struct net *net) 2528 { 2529 write_pnet(&sk->sk_net, net); 2530 } 2531 2532 static inline bool 2533 skb_sk_is_prefetched(struct sk_buff *skb) 2534 { 2535 #ifdef CONFIG_INET 2536 return skb->destructor == sock_pfree; 2537 #else 2538 return false; 2539 #endif /* CONFIG_INET */ 2540 } 2541 2542 /* This helper checks if a socket is a full socket, 2543 * ie _not_ a timewait or request socket. 2544 */ 2545 static inline bool sk_fullsock(const struct sock *sk) 2546 { 2547 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2548 } 2549 2550 static inline bool 2551 sk_is_refcounted(struct sock *sk) 2552 { 2553 /* Only full sockets have sk->sk_flags. */ 2554 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2555 } 2556 2557 /** 2558 * skb_steal_sock - steal a socket from an sk_buff 2559 * @skb: sk_buff to steal the socket from 2560 * @refcounted: is set to true if the socket is reference-counted 2561 */ 2562 static inline struct sock * 2563 skb_steal_sock(struct sk_buff *skb, bool *refcounted) 2564 { 2565 if (skb->sk) { 2566 struct sock *sk = skb->sk; 2567 2568 *refcounted = true; 2569 if (skb_sk_is_prefetched(skb)) 2570 *refcounted = sk_is_refcounted(sk); 2571 skb->destructor = NULL; 2572 skb->sk = NULL; 2573 return sk; 2574 } 2575 *refcounted = false; 2576 return NULL; 2577 } 2578 2579 /* Checks if this SKB belongs to an HW offloaded socket 2580 * and whether any SW fallbacks are required based on dev. 2581 * Check decrypted mark in case skb_orphan() cleared socket. 2582 */ 2583 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2584 struct net_device *dev) 2585 { 2586 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2587 struct sock *sk = skb->sk; 2588 2589 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2590 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2591 #ifdef CONFIG_TLS_DEVICE 2592 } else if (unlikely(skb->decrypted)) { 2593 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2594 kfree_skb(skb); 2595 skb = NULL; 2596 #endif 2597 } 2598 #endif 2599 2600 return skb; 2601 } 2602 2603 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2604 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2605 */ 2606 static inline bool sk_listener(const struct sock *sk) 2607 { 2608 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2609 } 2610 2611 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2612 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2613 int type); 2614 2615 bool sk_ns_capable(const struct sock *sk, 2616 struct user_namespace *user_ns, int cap); 2617 bool sk_capable(const struct sock *sk, int cap); 2618 bool sk_net_capable(const struct sock *sk, int cap); 2619 2620 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2621 2622 /* Take into consideration the size of the struct sk_buff overhead in the 2623 * determination of these values, since that is non-constant across 2624 * platforms. This makes socket queueing behavior and performance 2625 * not depend upon such differences. 2626 */ 2627 #define _SK_MEM_PACKETS 256 2628 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2629 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2630 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2631 2632 extern __u32 sysctl_wmem_max; 2633 extern __u32 sysctl_rmem_max; 2634 2635 extern int sysctl_tstamp_allow_data; 2636 extern int sysctl_optmem_max; 2637 2638 extern __u32 sysctl_wmem_default; 2639 extern __u32 sysctl_rmem_default; 2640 2641 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2642 2643 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2644 { 2645 /* Does this proto have per netns sysctl_wmem ? */ 2646 if (proto->sysctl_wmem_offset) 2647 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2648 2649 return *proto->sysctl_wmem; 2650 } 2651 2652 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2653 { 2654 /* Does this proto have per netns sysctl_rmem ? */ 2655 if (proto->sysctl_rmem_offset) 2656 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2657 2658 return *proto->sysctl_rmem; 2659 } 2660 2661 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2662 * Some wifi drivers need to tweak it to get more chunks. 2663 * They can use this helper from their ndo_start_xmit() 2664 */ 2665 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2666 { 2667 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2668 return; 2669 WRITE_ONCE(sk->sk_pacing_shift, val); 2670 } 2671 2672 /* if a socket is bound to a device, check that the given device 2673 * index is either the same or that the socket is bound to an L3 2674 * master device and the given device index is also enslaved to 2675 * that L3 master 2676 */ 2677 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2678 { 2679 int mdif; 2680 2681 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2682 return true; 2683 2684 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2685 if (mdif && mdif == sk->sk_bound_dev_if) 2686 return true; 2687 2688 return false; 2689 } 2690 2691 void sock_def_readable(struct sock *sk); 2692 2693 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2694 void sock_enable_timestamps(struct sock *sk); 2695 void sock_no_linger(struct sock *sk); 2696 void sock_set_keepalive(struct sock *sk); 2697 void sock_set_priority(struct sock *sk, u32 priority); 2698 void sock_set_rcvbuf(struct sock *sk, int val); 2699 void sock_set_mark(struct sock *sk, u32 val); 2700 void sock_set_reuseaddr(struct sock *sk); 2701 void sock_set_reuseport(struct sock *sk); 2702 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2703 2704 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2705 2706 #endif /* _SOCK_H */ 2707