xref: /openbmc/linux/include/net/sock.h (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
59 
60 #include <linux/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
63 
64 /*
65  * This structure really needs to be cleaned up.
66  * Most of it is for TCP, and not used by any of
67  * the other protocols.
68  */
69 
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 					printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
79 {
80 }
81 #endif
82 
83 /* This is the per-socket lock.  The spinlock provides a synchronization
84  * between user contexts and software interrupt processing, whereas the
85  * mini-semaphore synchronizes multiple users amongst themselves.
86  */
87 typedef struct {
88 	spinlock_t		slock;
89 	int			owned;
90 	wait_queue_head_t	wq;
91 	/*
92 	 * We express the mutex-alike socket_lock semantics
93 	 * to the lock validator by explicitly managing
94 	 * the slock as a lock variant (in addition to
95 	 * the slock itself):
96 	 */
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 	struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
101 
102 struct sock;
103 struct proto;
104 struct net;
105 
106 /**
107  *	struct sock_common - minimal network layer representation of sockets
108  *	@skc_daddr: Foreign IPv4 addr
109  *	@skc_rcv_saddr: Bound local IPv4 addr
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *	@skc_family: network address family
113  *	@skc_state: Connection state
114  *	@skc_reuse: %SO_REUSEADDR setting
115  *	@skc_bound_dev_if: bound device index if != 0
116  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
117  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
118  *	@skc_prot: protocol handlers inside a network family
119  *	@skc_net: reference to the network namespace of this socket
120  *	@skc_node: main hash linkage for various protocol lookup tables
121  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
122  *	@skc_tx_queue_mapping: tx queue number for this connection
123  *	@skc_refcnt: reference count
124  *
125  *	This is the minimal network layer representation of sockets, the header
126  *	for struct sock and struct inet_timewait_sock.
127  */
128 struct sock_common {
129 	/* skc_daddr and skc_rcv_saddr must be grouped :
130 	 * cf INET_MATCH() and INET_TW_MATCH()
131 	 */
132 	__be32			skc_daddr;
133 	__be32			skc_rcv_saddr;
134 
135 	union  {
136 		unsigned int	skc_hash;
137 		__u16		skc_u16hashes[2];
138 	};
139 	unsigned short		skc_family;
140 	volatile unsigned char	skc_state;
141 	unsigned char		skc_reuse;
142 	int			skc_bound_dev_if;
143 	union {
144 		struct hlist_node	skc_bind_node;
145 		struct hlist_nulls_node skc_portaddr_node;
146 	};
147 	struct proto		*skc_prot;
148 #ifdef CONFIG_NET_NS
149 	struct net	 	*skc_net;
150 #endif
151 	/*
152 	 * fields between dontcopy_begin/dontcopy_end
153 	 * are not copied in sock_copy()
154 	 */
155 	/* private: */
156 	int			skc_dontcopy_begin[0];
157 	/* public: */
158 	union {
159 		struct hlist_node	skc_node;
160 		struct hlist_nulls_node skc_nulls_node;
161 	};
162 	int			skc_tx_queue_mapping;
163 	atomic_t		skc_refcnt;
164 	/* private: */
165 	int                     skc_dontcopy_end[0];
166 	/* public: */
167 };
168 
169 /**
170   *	struct sock - network layer representation of sockets
171   *	@__sk_common: shared layout with inet_timewait_sock
172   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
173   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
174   *	@sk_lock:	synchronizer
175   *	@sk_rcvbuf: size of receive buffer in bytes
176   *	@sk_wq: sock wait queue and async head
177   *	@sk_dst_cache: destination cache
178   *	@sk_dst_lock: destination cache lock
179   *	@sk_policy: flow policy
180   *	@sk_rmem_alloc: receive queue bytes committed
181   *	@sk_receive_queue: incoming packets
182   *	@sk_wmem_alloc: transmit queue bytes committed
183   *	@sk_write_queue: Packet sending queue
184   *	@sk_async_wait_queue: DMA copied packets
185   *	@sk_omem_alloc: "o" is "option" or "other"
186   *	@sk_wmem_queued: persistent queue size
187   *	@sk_forward_alloc: space allocated forward
188   *	@sk_allocation: allocation mode
189   *	@sk_sndbuf: size of send buffer in bytes
190   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
191   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
192   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
193   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
194   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
195   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
196   *	@sk_gso_max_size: Maximum GSO segment size to build
197   *	@sk_lingertime: %SO_LINGER l_linger setting
198   *	@sk_backlog: always used with the per-socket spinlock held
199   *	@sk_callback_lock: used with the callbacks in the end of this struct
200   *	@sk_error_queue: rarely used
201   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
202   *			  IPV6_ADDRFORM for instance)
203   *	@sk_err: last error
204   *	@sk_err_soft: errors that don't cause failure but are the cause of a
205   *		      persistent failure not just 'timed out'
206   *	@sk_drops: raw/udp drops counter
207   *	@sk_ack_backlog: current listen backlog
208   *	@sk_max_ack_backlog: listen backlog set in listen()
209   *	@sk_priority: %SO_PRIORITY setting
210   *	@sk_type: socket type (%SOCK_STREAM, etc)
211   *	@sk_protocol: which protocol this socket belongs in this network family
212   *	@sk_peer_pid: &struct pid for this socket's peer
213   *	@sk_peer_cred: %SO_PEERCRED setting
214   *	@sk_rcvlowat: %SO_RCVLOWAT setting
215   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
216   *	@sk_sndtimeo: %SO_SNDTIMEO setting
217   *	@sk_rxhash: flow hash received from netif layer
218   *	@sk_filter: socket filtering instructions
219   *	@sk_protinfo: private area, net family specific, when not using slab
220   *	@sk_timer: sock cleanup timer
221   *	@sk_stamp: time stamp of last packet received
222   *	@sk_socket: Identd and reporting IO signals
223   *	@sk_user_data: RPC layer private data
224   *	@sk_sndmsg_page: cached page for sendmsg
225   *	@sk_sndmsg_off: cached offset for sendmsg
226   *	@sk_send_head: front of stuff to transmit
227   *	@sk_security: used by security modules
228   *	@sk_mark: generic packet mark
229   *	@sk_classid: this socket's cgroup classid
230   *	@sk_write_pending: a write to stream socket waits to start
231   *	@sk_state_change: callback to indicate change in the state of the sock
232   *	@sk_data_ready: callback to indicate there is data to be processed
233   *	@sk_write_space: callback to indicate there is bf sending space available
234   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
235   *	@sk_backlog_rcv: callback to process the backlog
236   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
237  */
238 struct sock {
239 	/*
240 	 * Now struct inet_timewait_sock also uses sock_common, so please just
241 	 * don't add nothing before this first member (__sk_common) --acme
242 	 */
243 	struct sock_common	__sk_common;
244 #define sk_node			__sk_common.skc_node
245 #define sk_nulls_node		__sk_common.skc_nulls_node
246 #define sk_refcnt		__sk_common.skc_refcnt
247 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
248 
249 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
250 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
251 #define sk_hash			__sk_common.skc_hash
252 #define sk_family		__sk_common.skc_family
253 #define sk_state		__sk_common.skc_state
254 #define sk_reuse		__sk_common.skc_reuse
255 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
256 #define sk_bind_node		__sk_common.skc_bind_node
257 #define sk_prot			__sk_common.skc_prot
258 #define sk_net			__sk_common.skc_net
259 	socket_lock_t		sk_lock;
260 	struct sk_buff_head	sk_receive_queue;
261 	/*
262 	 * The backlog queue is special, it is always used with
263 	 * the per-socket spinlock held and requires low latency
264 	 * access. Therefore we special case it's implementation.
265 	 * Note : rmem_alloc is in this structure to fill a hole
266 	 * on 64bit arches, not because its logically part of
267 	 * backlog.
268 	 */
269 	struct {
270 		atomic_t	rmem_alloc;
271 		int		len;
272 		struct sk_buff	*head;
273 		struct sk_buff	*tail;
274 	} sk_backlog;
275 #define sk_rmem_alloc sk_backlog.rmem_alloc
276 	int			sk_forward_alloc;
277 #ifdef CONFIG_RPS
278 	__u32			sk_rxhash;
279 #endif
280 	atomic_t		sk_drops;
281 	int			sk_rcvbuf;
282 
283 	struct sk_filter __rcu	*sk_filter;
284 	struct socket_wq	*sk_wq;
285 
286 #ifdef CONFIG_NET_DMA
287 	struct sk_buff_head	sk_async_wait_queue;
288 #endif
289 
290 #ifdef CONFIG_XFRM
291 	struct xfrm_policy	*sk_policy[2];
292 #endif
293 	unsigned long 		sk_flags;
294 	struct dst_entry	*sk_dst_cache;
295 	spinlock_t		sk_dst_lock;
296 	atomic_t		sk_wmem_alloc;
297 	atomic_t		sk_omem_alloc;
298 	int			sk_sndbuf;
299 	struct sk_buff_head	sk_write_queue;
300 	kmemcheck_bitfield_begin(flags);
301 	unsigned int		sk_shutdown  : 2,
302 				sk_no_check  : 2,
303 				sk_userlocks : 4,
304 				sk_protocol  : 8,
305 				sk_type      : 16;
306 	kmemcheck_bitfield_end(flags);
307 	int			sk_wmem_queued;
308 	gfp_t			sk_allocation;
309 	int			sk_route_caps;
310 	int			sk_route_nocaps;
311 	int			sk_gso_type;
312 	unsigned int		sk_gso_max_size;
313 	int			sk_rcvlowat;
314 	unsigned long	        sk_lingertime;
315 	struct sk_buff_head	sk_error_queue;
316 	struct proto		*sk_prot_creator;
317 	rwlock_t		sk_callback_lock;
318 	int			sk_err,
319 				sk_err_soft;
320 	unsigned short		sk_ack_backlog;
321 	unsigned short		sk_max_ack_backlog;
322 	__u32			sk_priority;
323 	struct pid		*sk_peer_pid;
324 	const struct cred	*sk_peer_cred;
325 	long			sk_rcvtimeo;
326 	long			sk_sndtimeo;
327 	void			*sk_protinfo;
328 	struct timer_list	sk_timer;
329 	ktime_t			sk_stamp;
330 	struct socket		*sk_socket;
331 	void			*sk_user_data;
332 	struct page		*sk_sndmsg_page;
333 	struct sk_buff		*sk_send_head;
334 	__u32			sk_sndmsg_off;
335 	int			sk_write_pending;
336 #ifdef CONFIG_SECURITY
337 	void			*sk_security;
338 #endif
339 	__u32			sk_mark;
340 	u32			sk_classid;
341 	void			(*sk_state_change)(struct sock *sk);
342 	void			(*sk_data_ready)(struct sock *sk, int bytes);
343 	void			(*sk_write_space)(struct sock *sk);
344 	void			(*sk_error_report)(struct sock *sk);
345   	int			(*sk_backlog_rcv)(struct sock *sk,
346 						  struct sk_buff *skb);
347 	void                    (*sk_destruct)(struct sock *sk);
348 };
349 
350 /*
351  * Hashed lists helper routines
352  */
353 static inline struct sock *sk_entry(const struct hlist_node *node)
354 {
355 	return hlist_entry(node, struct sock, sk_node);
356 }
357 
358 static inline struct sock *__sk_head(const struct hlist_head *head)
359 {
360 	return hlist_entry(head->first, struct sock, sk_node);
361 }
362 
363 static inline struct sock *sk_head(const struct hlist_head *head)
364 {
365 	return hlist_empty(head) ? NULL : __sk_head(head);
366 }
367 
368 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
369 {
370 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
371 }
372 
373 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
374 {
375 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
376 }
377 
378 static inline struct sock *sk_next(const struct sock *sk)
379 {
380 	return sk->sk_node.next ?
381 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
382 }
383 
384 static inline struct sock *sk_nulls_next(const struct sock *sk)
385 {
386 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
387 		hlist_nulls_entry(sk->sk_nulls_node.next,
388 				  struct sock, sk_nulls_node) :
389 		NULL;
390 }
391 
392 static inline int sk_unhashed(const struct sock *sk)
393 {
394 	return hlist_unhashed(&sk->sk_node);
395 }
396 
397 static inline int sk_hashed(const struct sock *sk)
398 {
399 	return !sk_unhashed(sk);
400 }
401 
402 static __inline__ void sk_node_init(struct hlist_node *node)
403 {
404 	node->pprev = NULL;
405 }
406 
407 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
408 {
409 	node->pprev = NULL;
410 }
411 
412 static __inline__ void __sk_del_node(struct sock *sk)
413 {
414 	__hlist_del(&sk->sk_node);
415 }
416 
417 /* NB: equivalent to hlist_del_init_rcu */
418 static __inline__ int __sk_del_node_init(struct sock *sk)
419 {
420 	if (sk_hashed(sk)) {
421 		__sk_del_node(sk);
422 		sk_node_init(&sk->sk_node);
423 		return 1;
424 	}
425 	return 0;
426 }
427 
428 /* Grab socket reference count. This operation is valid only
429    when sk is ALREADY grabbed f.e. it is found in hash table
430    or a list and the lookup is made under lock preventing hash table
431    modifications.
432  */
433 
434 static inline void sock_hold(struct sock *sk)
435 {
436 	atomic_inc(&sk->sk_refcnt);
437 }
438 
439 /* Ungrab socket in the context, which assumes that socket refcnt
440    cannot hit zero, f.e. it is true in context of any socketcall.
441  */
442 static inline void __sock_put(struct sock *sk)
443 {
444 	atomic_dec(&sk->sk_refcnt);
445 }
446 
447 static __inline__ int sk_del_node_init(struct sock *sk)
448 {
449 	int rc = __sk_del_node_init(sk);
450 
451 	if (rc) {
452 		/* paranoid for a while -acme */
453 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
454 		__sock_put(sk);
455 	}
456 	return rc;
457 }
458 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
459 
460 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
461 {
462 	if (sk_hashed(sk)) {
463 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
464 		return 1;
465 	}
466 	return 0;
467 }
468 
469 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
470 {
471 	int rc = __sk_nulls_del_node_init_rcu(sk);
472 
473 	if (rc) {
474 		/* paranoid for a while -acme */
475 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
476 		__sock_put(sk);
477 	}
478 	return rc;
479 }
480 
481 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
482 {
483 	hlist_add_head(&sk->sk_node, list);
484 }
485 
486 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
487 {
488 	sock_hold(sk);
489 	__sk_add_node(sk, list);
490 }
491 
492 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
493 {
494 	sock_hold(sk);
495 	hlist_add_head_rcu(&sk->sk_node, list);
496 }
497 
498 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
499 {
500 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
501 }
502 
503 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
504 {
505 	sock_hold(sk);
506 	__sk_nulls_add_node_rcu(sk, list);
507 }
508 
509 static __inline__ void __sk_del_bind_node(struct sock *sk)
510 {
511 	__hlist_del(&sk->sk_bind_node);
512 }
513 
514 static __inline__ void sk_add_bind_node(struct sock *sk,
515 					struct hlist_head *list)
516 {
517 	hlist_add_head(&sk->sk_bind_node, list);
518 }
519 
520 #define sk_for_each(__sk, node, list) \
521 	hlist_for_each_entry(__sk, node, list, sk_node)
522 #define sk_for_each_rcu(__sk, node, list) \
523 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
524 #define sk_nulls_for_each(__sk, node, list) \
525 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
526 #define sk_nulls_for_each_rcu(__sk, node, list) \
527 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
528 #define sk_for_each_from(__sk, node) \
529 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
530 		hlist_for_each_entry_from(__sk, node, sk_node)
531 #define sk_nulls_for_each_from(__sk, node) \
532 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
533 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
534 #define sk_for_each_safe(__sk, node, tmp, list) \
535 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
536 #define sk_for_each_bound(__sk, node, list) \
537 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
538 
539 /* Sock flags */
540 enum sock_flags {
541 	SOCK_DEAD,
542 	SOCK_DONE,
543 	SOCK_URGINLINE,
544 	SOCK_KEEPOPEN,
545 	SOCK_LINGER,
546 	SOCK_DESTROY,
547 	SOCK_BROADCAST,
548 	SOCK_TIMESTAMP,
549 	SOCK_ZAPPED,
550 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
551 	SOCK_DBG, /* %SO_DEBUG setting */
552 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
553 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
554 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
555 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
556 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
557 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
558 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
559 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
560 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
561 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
562 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
563 	SOCK_FASYNC, /* fasync() active */
564 	SOCK_RXQ_OVFL,
565 };
566 
567 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
568 {
569 	nsk->sk_flags = osk->sk_flags;
570 }
571 
572 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
573 {
574 	__set_bit(flag, &sk->sk_flags);
575 }
576 
577 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
578 {
579 	__clear_bit(flag, &sk->sk_flags);
580 }
581 
582 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
583 {
584 	return test_bit(flag, &sk->sk_flags);
585 }
586 
587 static inline void sk_acceptq_removed(struct sock *sk)
588 {
589 	sk->sk_ack_backlog--;
590 }
591 
592 static inline void sk_acceptq_added(struct sock *sk)
593 {
594 	sk->sk_ack_backlog++;
595 }
596 
597 static inline int sk_acceptq_is_full(struct sock *sk)
598 {
599 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
600 }
601 
602 /*
603  * Compute minimal free write space needed to queue new packets.
604  */
605 static inline int sk_stream_min_wspace(struct sock *sk)
606 {
607 	return sk->sk_wmem_queued >> 1;
608 }
609 
610 static inline int sk_stream_wspace(struct sock *sk)
611 {
612 	return sk->sk_sndbuf - sk->sk_wmem_queued;
613 }
614 
615 extern void sk_stream_write_space(struct sock *sk);
616 
617 static inline int sk_stream_memory_free(struct sock *sk)
618 {
619 	return sk->sk_wmem_queued < sk->sk_sndbuf;
620 }
621 
622 /* OOB backlog add */
623 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
624 {
625 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
626 	skb_dst_force(skb);
627 
628 	if (!sk->sk_backlog.tail)
629 		sk->sk_backlog.head = skb;
630 	else
631 		sk->sk_backlog.tail->next = skb;
632 
633 	sk->sk_backlog.tail = skb;
634 	skb->next = NULL;
635 }
636 
637 /*
638  * Take into account size of receive queue and backlog queue
639  */
640 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
641 {
642 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
643 
644 	return qsize + skb->truesize > sk->sk_rcvbuf;
645 }
646 
647 /* The per-socket spinlock must be held here. */
648 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
649 {
650 	if (sk_rcvqueues_full(sk, skb))
651 		return -ENOBUFS;
652 
653 	__sk_add_backlog(sk, skb);
654 	sk->sk_backlog.len += skb->truesize;
655 	return 0;
656 }
657 
658 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
659 {
660 	return sk->sk_backlog_rcv(sk, skb);
661 }
662 
663 static inline void sock_rps_record_flow(const struct sock *sk)
664 {
665 #ifdef CONFIG_RPS
666 	struct rps_sock_flow_table *sock_flow_table;
667 
668 	rcu_read_lock();
669 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
670 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
671 	rcu_read_unlock();
672 #endif
673 }
674 
675 static inline void sock_rps_reset_flow(const struct sock *sk)
676 {
677 #ifdef CONFIG_RPS
678 	struct rps_sock_flow_table *sock_flow_table;
679 
680 	rcu_read_lock();
681 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
682 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
683 	rcu_read_unlock();
684 #endif
685 }
686 
687 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
688 {
689 #ifdef CONFIG_RPS
690 	if (unlikely(sk->sk_rxhash != rxhash)) {
691 		sock_rps_reset_flow(sk);
692 		sk->sk_rxhash = rxhash;
693 	}
694 #endif
695 }
696 
697 #define sk_wait_event(__sk, __timeo, __condition)			\
698 	({	int __rc;						\
699 		release_sock(__sk);					\
700 		__rc = __condition;					\
701 		if (!__rc) {						\
702 			*(__timeo) = schedule_timeout(*(__timeo));	\
703 		}							\
704 		lock_sock(__sk);					\
705 		__rc = __condition;					\
706 		__rc;							\
707 	})
708 
709 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
710 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
711 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
712 extern int sk_stream_error(struct sock *sk, int flags, int err);
713 extern void sk_stream_kill_queues(struct sock *sk);
714 
715 extern int sk_wait_data(struct sock *sk, long *timeo);
716 
717 struct request_sock_ops;
718 struct timewait_sock_ops;
719 struct inet_hashinfo;
720 struct raw_hashinfo;
721 
722 /* Networking protocol blocks we attach to sockets.
723  * socket layer -> transport layer interface
724  * transport -> network interface is defined by struct inet_proto
725  */
726 struct proto {
727 	void			(*close)(struct sock *sk,
728 					long timeout);
729 	int			(*connect)(struct sock *sk,
730 				        struct sockaddr *uaddr,
731 					int addr_len);
732 	int			(*disconnect)(struct sock *sk, int flags);
733 
734 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
735 
736 	int			(*ioctl)(struct sock *sk, int cmd,
737 					 unsigned long arg);
738 	int			(*init)(struct sock *sk);
739 	void			(*destroy)(struct sock *sk);
740 	void			(*shutdown)(struct sock *sk, int how);
741 	int			(*setsockopt)(struct sock *sk, int level,
742 					int optname, char __user *optval,
743 					unsigned int optlen);
744 	int			(*getsockopt)(struct sock *sk, int level,
745 					int optname, char __user *optval,
746 					int __user *option);
747 #ifdef CONFIG_COMPAT
748 	int			(*compat_setsockopt)(struct sock *sk,
749 					int level,
750 					int optname, char __user *optval,
751 					unsigned int optlen);
752 	int			(*compat_getsockopt)(struct sock *sk,
753 					int level,
754 					int optname, char __user *optval,
755 					int __user *option);
756 	int			(*compat_ioctl)(struct sock *sk,
757 					unsigned int cmd, unsigned long arg);
758 #endif
759 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
760 					   struct msghdr *msg, size_t len);
761 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
762 					   struct msghdr *msg,
763 					size_t len, int noblock, int flags,
764 					int *addr_len);
765 	int			(*sendpage)(struct sock *sk, struct page *page,
766 					int offset, size_t size, int flags);
767 	int			(*bind)(struct sock *sk,
768 					struct sockaddr *uaddr, int addr_len);
769 
770 	int			(*backlog_rcv) (struct sock *sk,
771 						struct sk_buff *skb);
772 
773 	/* Keeping track of sk's, looking them up, and port selection methods. */
774 	void			(*hash)(struct sock *sk);
775 	void			(*unhash)(struct sock *sk);
776 	void			(*rehash)(struct sock *sk);
777 	int			(*get_port)(struct sock *sk, unsigned short snum);
778 	void			(*clear_sk)(struct sock *sk, int size);
779 
780 	/* Keeping track of sockets in use */
781 #ifdef CONFIG_PROC_FS
782 	unsigned int		inuse_idx;
783 #endif
784 
785 	/* Memory pressure */
786 	void			(*enter_memory_pressure)(struct sock *sk);
787 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
788 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
789 	/*
790 	 * Pressure flag: try to collapse.
791 	 * Technical note: it is used by multiple contexts non atomically.
792 	 * All the __sk_mem_schedule() is of this nature: accounting
793 	 * is strict, actions are advisory and have some latency.
794 	 */
795 	int			*memory_pressure;
796 	long			*sysctl_mem;
797 	int			*sysctl_wmem;
798 	int			*sysctl_rmem;
799 	int			max_header;
800 	bool			no_autobind;
801 
802 	struct kmem_cache	*slab;
803 	unsigned int		obj_size;
804 	int			slab_flags;
805 
806 	struct percpu_counter	*orphan_count;
807 
808 	struct request_sock_ops	*rsk_prot;
809 	struct timewait_sock_ops *twsk_prot;
810 
811 	union {
812 		struct inet_hashinfo	*hashinfo;
813 		struct udp_table	*udp_table;
814 		struct raw_hashinfo	*raw_hash;
815 	} h;
816 
817 	struct module		*owner;
818 
819 	char			name[32];
820 
821 	struct list_head	node;
822 #ifdef SOCK_REFCNT_DEBUG
823 	atomic_t		socks;
824 #endif
825 };
826 
827 extern int proto_register(struct proto *prot, int alloc_slab);
828 extern void proto_unregister(struct proto *prot);
829 
830 #ifdef SOCK_REFCNT_DEBUG
831 static inline void sk_refcnt_debug_inc(struct sock *sk)
832 {
833 	atomic_inc(&sk->sk_prot->socks);
834 }
835 
836 static inline void sk_refcnt_debug_dec(struct sock *sk)
837 {
838 	atomic_dec(&sk->sk_prot->socks);
839 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
840 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
841 }
842 
843 static inline void sk_refcnt_debug_release(const struct sock *sk)
844 {
845 	if (atomic_read(&sk->sk_refcnt) != 1)
846 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
847 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
848 }
849 #else /* SOCK_REFCNT_DEBUG */
850 #define sk_refcnt_debug_inc(sk) do { } while (0)
851 #define sk_refcnt_debug_dec(sk) do { } while (0)
852 #define sk_refcnt_debug_release(sk) do { } while (0)
853 #endif /* SOCK_REFCNT_DEBUG */
854 
855 
856 #ifdef CONFIG_PROC_FS
857 /* Called with local bh disabled */
858 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
859 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
860 #else
861 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
862 		int inc)
863 {
864 }
865 #endif
866 
867 
868 /* With per-bucket locks this operation is not-atomic, so that
869  * this version is not worse.
870  */
871 static inline void __sk_prot_rehash(struct sock *sk)
872 {
873 	sk->sk_prot->unhash(sk);
874 	sk->sk_prot->hash(sk);
875 }
876 
877 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
878 
879 /* About 10 seconds */
880 #define SOCK_DESTROY_TIME (10*HZ)
881 
882 /* Sockets 0-1023 can't be bound to unless you are superuser */
883 #define PROT_SOCK	1024
884 
885 #define SHUTDOWN_MASK	3
886 #define RCV_SHUTDOWN	1
887 #define SEND_SHUTDOWN	2
888 
889 #define SOCK_SNDBUF_LOCK	1
890 #define SOCK_RCVBUF_LOCK	2
891 #define SOCK_BINDADDR_LOCK	4
892 #define SOCK_BINDPORT_LOCK	8
893 
894 /* sock_iocb: used to kick off async processing of socket ios */
895 struct sock_iocb {
896 	struct list_head	list;
897 
898 	int			flags;
899 	int			size;
900 	struct socket		*sock;
901 	struct sock		*sk;
902 	struct scm_cookie	*scm;
903 	struct msghdr		*msg, async_msg;
904 	struct kiocb		*kiocb;
905 };
906 
907 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
908 {
909 	return (struct sock_iocb *)iocb->private;
910 }
911 
912 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
913 {
914 	return si->kiocb;
915 }
916 
917 struct socket_alloc {
918 	struct socket socket;
919 	struct inode vfs_inode;
920 };
921 
922 static inline struct socket *SOCKET_I(struct inode *inode)
923 {
924 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
925 }
926 
927 static inline struct inode *SOCK_INODE(struct socket *socket)
928 {
929 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
930 }
931 
932 /*
933  * Functions for memory accounting
934  */
935 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
936 extern void __sk_mem_reclaim(struct sock *sk);
937 
938 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
939 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
940 #define SK_MEM_SEND	0
941 #define SK_MEM_RECV	1
942 
943 static inline int sk_mem_pages(int amt)
944 {
945 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
946 }
947 
948 static inline int sk_has_account(struct sock *sk)
949 {
950 	/* return true if protocol supports memory accounting */
951 	return !!sk->sk_prot->memory_allocated;
952 }
953 
954 static inline int sk_wmem_schedule(struct sock *sk, int size)
955 {
956 	if (!sk_has_account(sk))
957 		return 1;
958 	return size <= sk->sk_forward_alloc ||
959 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
960 }
961 
962 static inline int sk_rmem_schedule(struct sock *sk, int size)
963 {
964 	if (!sk_has_account(sk))
965 		return 1;
966 	return size <= sk->sk_forward_alloc ||
967 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
968 }
969 
970 static inline void sk_mem_reclaim(struct sock *sk)
971 {
972 	if (!sk_has_account(sk))
973 		return;
974 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
975 		__sk_mem_reclaim(sk);
976 }
977 
978 static inline void sk_mem_reclaim_partial(struct sock *sk)
979 {
980 	if (!sk_has_account(sk))
981 		return;
982 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
983 		__sk_mem_reclaim(sk);
984 }
985 
986 static inline void sk_mem_charge(struct sock *sk, int size)
987 {
988 	if (!sk_has_account(sk))
989 		return;
990 	sk->sk_forward_alloc -= size;
991 }
992 
993 static inline void sk_mem_uncharge(struct sock *sk, int size)
994 {
995 	if (!sk_has_account(sk))
996 		return;
997 	sk->sk_forward_alloc += size;
998 }
999 
1000 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1001 {
1002 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1003 	sk->sk_wmem_queued -= skb->truesize;
1004 	sk_mem_uncharge(sk, skb->truesize);
1005 	__kfree_skb(skb);
1006 }
1007 
1008 /* Used by processes to "lock" a socket state, so that
1009  * interrupts and bottom half handlers won't change it
1010  * from under us. It essentially blocks any incoming
1011  * packets, so that we won't get any new data or any
1012  * packets that change the state of the socket.
1013  *
1014  * While locked, BH processing will add new packets to
1015  * the backlog queue.  This queue is processed by the
1016  * owner of the socket lock right before it is released.
1017  *
1018  * Since ~2.3.5 it is also exclusive sleep lock serializing
1019  * accesses from user process context.
1020  */
1021 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1022 
1023 /*
1024  * Macro so as to not evaluate some arguments when
1025  * lockdep is not enabled.
1026  *
1027  * Mark both the sk_lock and the sk_lock.slock as a
1028  * per-address-family lock class.
1029  */
1030 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1031 do {									\
1032 	sk->sk_lock.owned = 0;						\
1033 	init_waitqueue_head(&sk->sk_lock.wq);				\
1034 	spin_lock_init(&(sk)->sk_lock.slock);				\
1035 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1036 			sizeof((sk)->sk_lock));				\
1037 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1038 		       	(skey), (sname));				\
1039 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1040 } while (0)
1041 
1042 extern void lock_sock_nested(struct sock *sk, int subclass);
1043 
1044 static inline void lock_sock(struct sock *sk)
1045 {
1046 	lock_sock_nested(sk, 0);
1047 }
1048 
1049 extern void release_sock(struct sock *sk);
1050 
1051 /* BH context may only use the following locking interface. */
1052 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1053 #define bh_lock_sock_nested(__sk) \
1054 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1055 				SINGLE_DEPTH_NESTING)
1056 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1057 
1058 extern bool lock_sock_fast(struct sock *sk);
1059 /**
1060  * unlock_sock_fast - complement of lock_sock_fast
1061  * @sk: socket
1062  * @slow: slow mode
1063  *
1064  * fast unlock socket for user context.
1065  * If slow mode is on, we call regular release_sock()
1066  */
1067 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1068 {
1069 	if (slow)
1070 		release_sock(sk);
1071 	else
1072 		spin_unlock_bh(&sk->sk_lock.slock);
1073 }
1074 
1075 
1076 extern struct sock		*sk_alloc(struct net *net, int family,
1077 					  gfp_t priority,
1078 					  struct proto *prot);
1079 extern void			sk_free(struct sock *sk);
1080 extern void			sk_release_kernel(struct sock *sk);
1081 extern struct sock		*sk_clone(const struct sock *sk,
1082 					  const gfp_t priority);
1083 
1084 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1085 					      unsigned long size, int force,
1086 					      gfp_t priority);
1087 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1088 					      unsigned long size, int force,
1089 					      gfp_t priority);
1090 extern void			sock_wfree(struct sk_buff *skb);
1091 extern void			sock_rfree(struct sk_buff *skb);
1092 
1093 extern int			sock_setsockopt(struct socket *sock, int level,
1094 						int op, char __user *optval,
1095 						unsigned int optlen);
1096 
1097 extern int			sock_getsockopt(struct socket *sock, int level,
1098 						int op, char __user *optval,
1099 						int __user *optlen);
1100 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1101 						     unsigned long size,
1102 						     int noblock,
1103 						     int *errcode);
1104 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1105 						      unsigned long header_len,
1106 						      unsigned long data_len,
1107 						      int noblock,
1108 						      int *errcode);
1109 extern void *sock_kmalloc(struct sock *sk, int size,
1110 			  gfp_t priority);
1111 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1112 extern void sk_send_sigurg(struct sock *sk);
1113 
1114 #ifdef CONFIG_CGROUPS
1115 extern void sock_update_classid(struct sock *sk);
1116 #else
1117 static inline void sock_update_classid(struct sock *sk)
1118 {
1119 }
1120 #endif
1121 
1122 /*
1123  * Functions to fill in entries in struct proto_ops when a protocol
1124  * does not implement a particular function.
1125  */
1126 extern int                      sock_no_bind(struct socket *,
1127 					     struct sockaddr *, int);
1128 extern int                      sock_no_connect(struct socket *,
1129 						struct sockaddr *, int, int);
1130 extern int                      sock_no_socketpair(struct socket *,
1131 						   struct socket *);
1132 extern int                      sock_no_accept(struct socket *,
1133 					       struct socket *, int);
1134 extern int                      sock_no_getname(struct socket *,
1135 						struct sockaddr *, int *, int);
1136 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1137 					     struct poll_table_struct *);
1138 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1139 					      unsigned long);
1140 extern int			sock_no_listen(struct socket *, int);
1141 extern int                      sock_no_shutdown(struct socket *, int);
1142 extern int			sock_no_getsockopt(struct socket *, int , int,
1143 						   char __user *, int __user *);
1144 extern int			sock_no_setsockopt(struct socket *, int, int,
1145 						   char __user *, unsigned int);
1146 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1147 						struct msghdr *, size_t);
1148 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1149 						struct msghdr *, size_t, int);
1150 extern int			sock_no_mmap(struct file *file,
1151 					     struct socket *sock,
1152 					     struct vm_area_struct *vma);
1153 extern ssize_t			sock_no_sendpage(struct socket *sock,
1154 						struct page *page,
1155 						int offset, size_t size,
1156 						int flags);
1157 
1158 /*
1159  * Functions to fill in entries in struct proto_ops when a protocol
1160  * uses the inet style.
1161  */
1162 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1163 				  char __user *optval, int __user *optlen);
1164 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1165 			       struct msghdr *msg, size_t size, int flags);
1166 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1167 				  char __user *optval, unsigned int optlen);
1168 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1169 		int optname, char __user *optval, int __user *optlen);
1170 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1171 		int optname, char __user *optval, unsigned int optlen);
1172 
1173 extern void sk_common_release(struct sock *sk);
1174 
1175 /*
1176  *	Default socket callbacks and setup code
1177  */
1178 
1179 /* Initialise core socket variables */
1180 extern void sock_init_data(struct socket *sock, struct sock *sk);
1181 
1182 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1183 
1184 /**
1185  *	sk_filter_release - release a socket filter
1186  *	@fp: filter to remove
1187  *
1188  *	Remove a filter from a socket and release its resources.
1189  */
1190 
1191 static inline void sk_filter_release(struct sk_filter *fp)
1192 {
1193 	if (atomic_dec_and_test(&fp->refcnt))
1194 		call_rcu_bh(&fp->rcu, sk_filter_release_rcu);
1195 }
1196 
1197 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1198 {
1199 	unsigned int size = sk_filter_len(fp);
1200 
1201 	atomic_sub(size, &sk->sk_omem_alloc);
1202 	sk_filter_release(fp);
1203 }
1204 
1205 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 	atomic_inc(&fp->refcnt);
1208 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1209 }
1210 
1211 /*
1212  * Socket reference counting postulates.
1213  *
1214  * * Each user of socket SHOULD hold a reference count.
1215  * * Each access point to socket (an hash table bucket, reference from a list,
1216  *   running timer, skb in flight MUST hold a reference count.
1217  * * When reference count hits 0, it means it will never increase back.
1218  * * When reference count hits 0, it means that no references from
1219  *   outside exist to this socket and current process on current CPU
1220  *   is last user and may/should destroy this socket.
1221  * * sk_free is called from any context: process, BH, IRQ. When
1222  *   it is called, socket has no references from outside -> sk_free
1223  *   may release descendant resources allocated by the socket, but
1224  *   to the time when it is called, socket is NOT referenced by any
1225  *   hash tables, lists etc.
1226  * * Packets, delivered from outside (from network or from another process)
1227  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1228  *   when they sit in queue. Otherwise, packets will leak to hole, when
1229  *   socket is looked up by one cpu and unhasing is made by another CPU.
1230  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1231  *   (leak to backlog). Packet socket does all the processing inside
1232  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1233  *   use separate SMP lock, so that they are prone too.
1234  */
1235 
1236 /* Ungrab socket and destroy it, if it was the last reference. */
1237 static inline void sock_put(struct sock *sk)
1238 {
1239 	if (atomic_dec_and_test(&sk->sk_refcnt))
1240 		sk_free(sk);
1241 }
1242 
1243 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1244 			  const int nested);
1245 
1246 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1247 {
1248 	sk->sk_tx_queue_mapping = tx_queue;
1249 }
1250 
1251 static inline void sk_tx_queue_clear(struct sock *sk)
1252 {
1253 	sk->sk_tx_queue_mapping = -1;
1254 }
1255 
1256 static inline int sk_tx_queue_get(const struct sock *sk)
1257 {
1258 	return sk ? sk->sk_tx_queue_mapping : -1;
1259 }
1260 
1261 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1262 {
1263 	sk_tx_queue_clear(sk);
1264 	sk->sk_socket = sock;
1265 }
1266 
1267 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1268 {
1269 	return &sk->sk_wq->wait;
1270 }
1271 /* Detach socket from process context.
1272  * Announce socket dead, detach it from wait queue and inode.
1273  * Note that parent inode held reference count on this struct sock,
1274  * we do not release it in this function, because protocol
1275  * probably wants some additional cleanups or even continuing
1276  * to work with this socket (TCP).
1277  */
1278 static inline void sock_orphan(struct sock *sk)
1279 {
1280 	write_lock_bh(&sk->sk_callback_lock);
1281 	sock_set_flag(sk, SOCK_DEAD);
1282 	sk_set_socket(sk, NULL);
1283 	sk->sk_wq  = NULL;
1284 	write_unlock_bh(&sk->sk_callback_lock);
1285 }
1286 
1287 static inline void sock_graft(struct sock *sk, struct socket *parent)
1288 {
1289 	write_lock_bh(&sk->sk_callback_lock);
1290 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1291 	parent->sk = sk;
1292 	sk_set_socket(sk, parent);
1293 	security_sock_graft(sk, parent);
1294 	write_unlock_bh(&sk->sk_callback_lock);
1295 }
1296 
1297 extern int sock_i_uid(struct sock *sk);
1298 extern unsigned long sock_i_ino(struct sock *sk);
1299 
1300 static inline struct dst_entry *
1301 __sk_dst_get(struct sock *sk)
1302 {
1303 	return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1304 						       sock_owned_by_user(sk) ||
1305 						       lockdep_is_held(&sk->sk_lock.slock));
1306 }
1307 
1308 static inline struct dst_entry *
1309 sk_dst_get(struct sock *sk)
1310 {
1311 	struct dst_entry *dst;
1312 
1313 	rcu_read_lock();
1314 	dst = rcu_dereference(sk->sk_dst_cache);
1315 	if (dst)
1316 		dst_hold(dst);
1317 	rcu_read_unlock();
1318 	return dst;
1319 }
1320 
1321 extern void sk_reset_txq(struct sock *sk);
1322 
1323 static inline void dst_negative_advice(struct sock *sk)
1324 {
1325 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1326 
1327 	if (dst && dst->ops->negative_advice) {
1328 		ndst = dst->ops->negative_advice(dst);
1329 
1330 		if (ndst != dst) {
1331 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1332 			sk_reset_txq(sk);
1333 		}
1334 	}
1335 }
1336 
1337 static inline void
1338 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1339 {
1340 	struct dst_entry *old_dst;
1341 
1342 	sk_tx_queue_clear(sk);
1343 	/*
1344 	 * This can be called while sk is owned by the caller only,
1345 	 * with no state that can be checked in a rcu_dereference_check() cond
1346 	 */
1347 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1348 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1349 	dst_release(old_dst);
1350 }
1351 
1352 static inline void
1353 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1354 {
1355 	spin_lock(&sk->sk_dst_lock);
1356 	__sk_dst_set(sk, dst);
1357 	spin_unlock(&sk->sk_dst_lock);
1358 }
1359 
1360 static inline void
1361 __sk_dst_reset(struct sock *sk)
1362 {
1363 	__sk_dst_set(sk, NULL);
1364 }
1365 
1366 static inline void
1367 sk_dst_reset(struct sock *sk)
1368 {
1369 	spin_lock(&sk->sk_dst_lock);
1370 	__sk_dst_reset(sk);
1371 	spin_unlock(&sk->sk_dst_lock);
1372 }
1373 
1374 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1375 
1376 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1377 
1378 static inline int sk_can_gso(const struct sock *sk)
1379 {
1380 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1381 }
1382 
1383 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1384 
1385 static inline void sk_nocaps_add(struct sock *sk, int flags)
1386 {
1387 	sk->sk_route_nocaps |= flags;
1388 	sk->sk_route_caps &= ~flags;
1389 }
1390 
1391 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1392 				   struct sk_buff *skb, struct page *page,
1393 				   int off, int copy)
1394 {
1395 	if (skb->ip_summed == CHECKSUM_NONE) {
1396 		int err = 0;
1397 		__wsum csum = csum_and_copy_from_user(from,
1398 						     page_address(page) + off,
1399 							    copy, 0, &err);
1400 		if (err)
1401 			return err;
1402 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1403 	} else if (copy_from_user(page_address(page) + off, from, copy))
1404 		return -EFAULT;
1405 
1406 	skb->len	     += copy;
1407 	skb->data_len	     += copy;
1408 	skb->truesize	     += copy;
1409 	sk->sk_wmem_queued   += copy;
1410 	sk_mem_charge(sk, copy);
1411 	return 0;
1412 }
1413 
1414 /**
1415  * sk_wmem_alloc_get - returns write allocations
1416  * @sk: socket
1417  *
1418  * Returns sk_wmem_alloc minus initial offset of one
1419  */
1420 static inline int sk_wmem_alloc_get(const struct sock *sk)
1421 {
1422 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1423 }
1424 
1425 /**
1426  * sk_rmem_alloc_get - returns read allocations
1427  * @sk: socket
1428  *
1429  * Returns sk_rmem_alloc
1430  */
1431 static inline int sk_rmem_alloc_get(const struct sock *sk)
1432 {
1433 	return atomic_read(&sk->sk_rmem_alloc);
1434 }
1435 
1436 /**
1437  * sk_has_allocations - check if allocations are outstanding
1438  * @sk: socket
1439  *
1440  * Returns true if socket has write or read allocations
1441  */
1442 static inline int sk_has_allocations(const struct sock *sk)
1443 {
1444 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1445 }
1446 
1447 /**
1448  * wq_has_sleeper - check if there are any waiting processes
1449  * @wq: struct socket_wq
1450  *
1451  * Returns true if socket_wq has waiting processes
1452  *
1453  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1454  * barrier call. They were added due to the race found within the tcp code.
1455  *
1456  * Consider following tcp code paths:
1457  *
1458  * CPU1                  CPU2
1459  *
1460  * sys_select            receive packet
1461  *   ...                 ...
1462  *   __add_wait_queue    update tp->rcv_nxt
1463  *   ...                 ...
1464  *   tp->rcv_nxt check   sock_def_readable
1465  *   ...                 {
1466  *   schedule               rcu_read_lock();
1467  *                          wq = rcu_dereference(sk->sk_wq);
1468  *                          if (wq && waitqueue_active(&wq->wait))
1469  *                              wake_up_interruptible(&wq->wait)
1470  *                          ...
1471  *                       }
1472  *
1473  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1474  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1475  * could then endup calling schedule and sleep forever if there are no more
1476  * data on the socket.
1477  *
1478  */
1479 static inline bool wq_has_sleeper(struct socket_wq *wq)
1480 {
1481 
1482 	/*
1483 	 * We need to be sure we are in sync with the
1484 	 * add_wait_queue modifications to the wait queue.
1485 	 *
1486 	 * This memory barrier is paired in the sock_poll_wait.
1487 	 */
1488 	smp_mb();
1489 	return wq && waitqueue_active(&wq->wait);
1490 }
1491 
1492 /**
1493  * sock_poll_wait - place memory barrier behind the poll_wait call.
1494  * @filp:           file
1495  * @wait_address:   socket wait queue
1496  * @p:              poll_table
1497  *
1498  * See the comments in the wq_has_sleeper function.
1499  */
1500 static inline void sock_poll_wait(struct file *filp,
1501 		wait_queue_head_t *wait_address, poll_table *p)
1502 {
1503 	if (p && wait_address) {
1504 		poll_wait(filp, wait_address, p);
1505 		/*
1506 		 * We need to be sure we are in sync with the
1507 		 * socket flags modification.
1508 		 *
1509 		 * This memory barrier is paired in the wq_has_sleeper.
1510 		*/
1511 		smp_mb();
1512 	}
1513 }
1514 
1515 /*
1516  * 	Queue a received datagram if it will fit. Stream and sequenced
1517  *	protocols can't normally use this as they need to fit buffers in
1518  *	and play with them.
1519  *
1520  * 	Inlined as it's very short and called for pretty much every
1521  *	packet ever received.
1522  */
1523 
1524 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1525 {
1526 	skb_orphan(skb);
1527 	skb->sk = sk;
1528 	skb->destructor = sock_wfree;
1529 	/*
1530 	 * We used to take a refcount on sk, but following operation
1531 	 * is enough to guarantee sk_free() wont free this sock until
1532 	 * all in-flight packets are completed
1533 	 */
1534 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1535 }
1536 
1537 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1538 {
1539 	skb_orphan(skb);
1540 	skb->sk = sk;
1541 	skb->destructor = sock_rfree;
1542 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1543 	sk_mem_charge(sk, skb->truesize);
1544 }
1545 
1546 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1547 			   unsigned long expires);
1548 
1549 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1550 
1551 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1552 
1553 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1554 
1555 /*
1556  *	Recover an error report and clear atomically
1557  */
1558 
1559 static inline int sock_error(struct sock *sk)
1560 {
1561 	int err;
1562 	if (likely(!sk->sk_err))
1563 		return 0;
1564 	err = xchg(&sk->sk_err, 0);
1565 	return -err;
1566 }
1567 
1568 static inline unsigned long sock_wspace(struct sock *sk)
1569 {
1570 	int amt = 0;
1571 
1572 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1573 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1574 		if (amt < 0)
1575 			amt = 0;
1576 	}
1577 	return amt;
1578 }
1579 
1580 static inline void sk_wake_async(struct sock *sk, int how, int band)
1581 {
1582 	if (sock_flag(sk, SOCK_FASYNC))
1583 		sock_wake_async(sk->sk_socket, how, band);
1584 }
1585 
1586 #define SOCK_MIN_SNDBUF 2048
1587 /*
1588  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1589  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1590  */
1591 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1592 
1593 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1594 {
1595 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1596 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1597 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1598 	}
1599 }
1600 
1601 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1602 
1603 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1604 {
1605 	struct page *page = NULL;
1606 
1607 	page = alloc_pages(sk->sk_allocation, 0);
1608 	if (!page) {
1609 		sk->sk_prot->enter_memory_pressure(sk);
1610 		sk_stream_moderate_sndbuf(sk);
1611 	}
1612 	return page;
1613 }
1614 
1615 /*
1616  *	Default write policy as shown to user space via poll/select/SIGIO
1617  */
1618 static inline int sock_writeable(const struct sock *sk)
1619 {
1620 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1621 }
1622 
1623 static inline gfp_t gfp_any(void)
1624 {
1625 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1626 }
1627 
1628 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1629 {
1630 	return noblock ? 0 : sk->sk_rcvtimeo;
1631 }
1632 
1633 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1634 {
1635 	return noblock ? 0 : sk->sk_sndtimeo;
1636 }
1637 
1638 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1639 {
1640 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1641 }
1642 
1643 /* Alas, with timeout socket operations are not restartable.
1644  * Compare this to poll().
1645  */
1646 static inline int sock_intr_errno(long timeo)
1647 {
1648 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1649 }
1650 
1651 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1652 	struct sk_buff *skb);
1653 
1654 static __inline__ void
1655 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1656 {
1657 	ktime_t kt = skb->tstamp;
1658 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1659 
1660 	/*
1661 	 * generate control messages if
1662 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1663 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1664 	 * - software time stamp available and wanted
1665 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1666 	 * - hardware time stamps available and wanted
1667 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1668 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1669 	 */
1670 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1671 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1672 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1673 	    (hwtstamps->hwtstamp.tv64 &&
1674 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1675 	    (hwtstamps->syststamp.tv64 &&
1676 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1677 		__sock_recv_timestamp(msg, sk, skb);
1678 	else
1679 		sk->sk_stamp = kt;
1680 }
1681 
1682 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1683 				     struct sk_buff *skb);
1684 
1685 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1686 					  struct sk_buff *skb)
1687 {
1688 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1689 			   (1UL << SOCK_RCVTSTAMP)			| \
1690 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1691 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1692 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1693 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1694 
1695 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1696 		__sock_recv_ts_and_drops(msg, sk, skb);
1697 	else
1698 		sk->sk_stamp = skb->tstamp;
1699 }
1700 
1701 /**
1702  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1703  * @sk:		socket sending this packet
1704  * @tx_flags:	filled with instructions for time stamping
1705  *
1706  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1707  * parameters are invalid.
1708  */
1709 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1710 
1711 /**
1712  * sk_eat_skb - Release a skb if it is no longer needed
1713  * @sk: socket to eat this skb from
1714  * @skb: socket buffer to eat
1715  * @copied_early: flag indicating whether DMA operations copied this data early
1716  *
1717  * This routine must be called with interrupts disabled or with the socket
1718  * locked so that the sk_buff queue operation is ok.
1719 */
1720 #ifdef CONFIG_NET_DMA
1721 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1722 {
1723 	__skb_unlink(skb, &sk->sk_receive_queue);
1724 	if (!copied_early)
1725 		__kfree_skb(skb);
1726 	else
1727 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1728 }
1729 #else
1730 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1731 {
1732 	__skb_unlink(skb, &sk->sk_receive_queue);
1733 	__kfree_skb(skb);
1734 }
1735 #endif
1736 
1737 static inline
1738 struct net *sock_net(const struct sock *sk)
1739 {
1740 	return read_pnet(&sk->sk_net);
1741 }
1742 
1743 static inline
1744 void sock_net_set(struct sock *sk, struct net *net)
1745 {
1746 	write_pnet(&sk->sk_net, net);
1747 }
1748 
1749 /*
1750  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1751  * They should not hold a referrence to a namespace in order to allow
1752  * to stop it.
1753  * Sockets after sk_change_net should be released using sk_release_kernel
1754  */
1755 static inline void sk_change_net(struct sock *sk, struct net *net)
1756 {
1757 	put_net(sock_net(sk));
1758 	sock_net_set(sk, hold_net(net));
1759 }
1760 
1761 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1762 {
1763 	if (unlikely(skb->sk)) {
1764 		struct sock *sk = skb->sk;
1765 
1766 		skb->destructor = NULL;
1767 		skb->sk = NULL;
1768 		return sk;
1769 	}
1770 	return NULL;
1771 }
1772 
1773 extern void sock_enable_timestamp(struct sock *sk, int flag);
1774 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1775 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1776 
1777 /*
1778  *	Enable debug/info messages
1779  */
1780 extern int net_msg_warn;
1781 #define NETDEBUG(fmt, args...) \
1782 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1783 
1784 #define LIMIT_NETDEBUG(fmt, args...) \
1785 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1786 
1787 extern __u32 sysctl_wmem_max;
1788 extern __u32 sysctl_rmem_max;
1789 
1790 extern void sk_init(void);
1791 
1792 extern int sysctl_optmem_max;
1793 
1794 extern __u32 sysctl_wmem_default;
1795 extern __u32 sysctl_rmem_default;
1796 
1797 #endif	/* _SOCK_H */
1798