xref: /openbmc/linux/include/net/sock.h (revision df202b452fe6c6d6f1351bad485e2367ef1e644e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	union {
165 		__addrpair	skc_addrpair;
166 		struct {
167 			__be32	skc_daddr;
168 			__be32	skc_rcv_saddr;
169 		};
170 	};
171 	union  {
172 		unsigned int	skc_hash;
173 		__u16		skc_u16hashes[2];
174 	};
175 	/* skc_dport && skc_num must be grouped as well */
176 	union {
177 		__portpair	skc_portpair;
178 		struct {
179 			__be16	skc_dport;
180 			__u16	skc_num;
181 		};
182 	};
183 
184 	unsigned short		skc_family;
185 	volatile unsigned char	skc_state;
186 	unsigned char		skc_reuse:4;
187 	unsigned char		skc_reuseport:1;
188 	unsigned char		skc_ipv6only:1;
189 	unsigned char		skc_net_refcnt:1;
190 	int			skc_bound_dev_if;
191 	union {
192 		struct hlist_node	skc_bind_node;
193 		struct hlist_node	skc_portaddr_node;
194 	};
195 	struct proto		*skc_prot;
196 	possible_net_t		skc_net;
197 
198 #if IS_ENABLED(CONFIG_IPV6)
199 	struct in6_addr		skc_v6_daddr;
200 	struct in6_addr		skc_v6_rcv_saddr;
201 #endif
202 
203 	atomic64_t		skc_cookie;
204 
205 	/* following fields are padding to force
206 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 	 * assuming IPV6 is enabled. We use this padding differently
208 	 * for different kind of 'sockets'
209 	 */
210 	union {
211 		unsigned long	skc_flags;
212 		struct sock	*skc_listener; /* request_sock */
213 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 	};
215 	/*
216 	 * fields between dontcopy_begin/dontcopy_end
217 	 * are not copied in sock_copy()
218 	 */
219 	/* private: */
220 	int			skc_dontcopy_begin[0];
221 	/* public: */
222 	union {
223 		struct hlist_node	skc_node;
224 		struct hlist_nulls_node skc_nulls_node;
225 	};
226 	unsigned short		skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 	unsigned short		skc_rx_queue_mapping;
229 #endif
230 	union {
231 		int		skc_incoming_cpu;
232 		u32		skc_rcv_wnd;
233 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
234 	};
235 
236 	refcount_t		skc_refcnt;
237 	/* private: */
238 	int                     skc_dontcopy_end[0];
239 	union {
240 		u32		skc_rxhash;
241 		u32		skc_window_clamp;
242 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 	};
244 	/* public: */
245 };
246 
247 struct bpf_local_storage;
248 struct sk_filter;
249 
250 /**
251   *	struct sock - network layer representation of sockets
252   *	@__sk_common: shared layout with inet_timewait_sock
253   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255   *	@sk_lock:	synchronizer
256   *	@sk_kern_sock: True if sock is using kernel lock classes
257   *	@sk_rcvbuf: size of receive buffer in bytes
258   *	@sk_wq: sock wait queue and async head
259   *	@sk_rx_dst: receive input route used by early demux
260   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
262   *	@sk_dst_cache: destination cache
263   *	@sk_dst_pending_confirm: need to confirm neighbour
264   *	@sk_policy: flow policy
265   *	@sk_receive_queue: incoming packets
266   *	@sk_wmem_alloc: transmit queue bytes committed
267   *	@sk_tsq_flags: TCP Small Queues flags
268   *	@sk_write_queue: Packet sending queue
269   *	@sk_omem_alloc: "o" is "option" or "other"
270   *	@sk_wmem_queued: persistent queue size
271   *	@sk_forward_alloc: space allocated forward
272   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
273   *	@sk_napi_id: id of the last napi context to receive data for sk
274   *	@sk_ll_usec: usecs to busypoll when there is no data
275   *	@sk_allocation: allocation mode
276   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
278   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279   *	@sk_sndbuf: size of send buffer in bytes
280   *	@__sk_flags_offset: empty field used to determine location of bitfield
281   *	@sk_padding: unused element for alignment
282   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283   *	@sk_no_check_rx: allow zero checksum in RX packets
284   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287   *	@sk_gso_max_size: Maximum GSO segment size to build
288   *	@sk_gso_max_segs: Maximum number of GSO segments
289   *	@sk_pacing_shift: scaling factor for TCP Small Queues
290   *	@sk_lingertime: %SO_LINGER l_linger setting
291   *	@sk_backlog: always used with the per-socket spinlock held
292   *	@sk_callback_lock: used with the callbacks in the end of this struct
293   *	@sk_error_queue: rarely used
294   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295   *			  IPV6_ADDRFORM for instance)
296   *	@sk_err: last error
297   *	@sk_err_soft: errors that don't cause failure but are the cause of a
298   *		      persistent failure not just 'timed out'
299   *	@sk_drops: raw/udp drops counter
300   *	@sk_ack_backlog: current listen backlog
301   *	@sk_max_ack_backlog: listen backlog set in listen()
302   *	@sk_uid: user id of owner
303   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
304   *	@sk_busy_poll_budget: napi processing budget when busypolling
305   *	@sk_priority: %SO_PRIORITY setting
306   *	@sk_type: socket type (%SOCK_STREAM, etc)
307   *	@sk_protocol: which protocol this socket belongs in this network family
308   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309   *	@sk_peer_pid: &struct pid for this socket's peer
310   *	@sk_peer_cred: %SO_PEERCRED setting
311   *	@sk_rcvlowat: %SO_RCVLOWAT setting
312   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
313   *	@sk_sndtimeo: %SO_SNDTIMEO setting
314   *	@sk_txhash: computed flow hash for use on transmit
315   *	@sk_txrehash: enable TX hash rethink
316   *	@sk_filter: socket filtering instructions
317   *	@sk_timer: sock cleanup timer
318   *	@sk_stamp: time stamp of last packet received
319   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320   *	@sk_tsflags: SO_TIMESTAMPING flags
321   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
322   *	              for timestamping
323   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
324   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
325   *	@sk_socket: Identd and reporting IO signals
326   *	@sk_user_data: RPC layer private data
327   *	@sk_frag: cached page frag
328   *	@sk_peek_off: current peek_offset value
329   *	@sk_send_head: front of stuff to transmit
330   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331   *	@sk_security: used by security modules
332   *	@sk_mark: generic packet mark
333   *	@sk_cgrp_data: cgroup data for this cgroup
334   *	@sk_memcg: this socket's memory cgroup association
335   *	@sk_write_pending: a write to stream socket waits to start
336   *	@sk_state_change: callback to indicate change in the state of the sock
337   *	@sk_data_ready: callback to indicate there is data to be processed
338   *	@sk_write_space: callback to indicate there is bf sending space available
339   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
340   *	@sk_backlog_rcv: callback to process the backlog
341   *	@sk_validate_xmit_skb: ptr to an optional validate function
342   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
343   *	@sk_reuseport_cb: reuseport group container
344   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
345   *	@sk_rcu: used during RCU grace period
346   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
347   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
348   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
349   *	@sk_txtime_unused: unused txtime flags
350   *	@ns_tracker: tracker for netns reference
351   *	@sk_bind2_node: bind node in the bhash2 table
352   */
353 struct sock {
354 	/*
355 	 * Now struct inet_timewait_sock also uses sock_common, so please just
356 	 * don't add nothing before this first member (__sk_common) --acme
357 	 */
358 	struct sock_common	__sk_common;
359 #define sk_node			__sk_common.skc_node
360 #define sk_nulls_node		__sk_common.skc_nulls_node
361 #define sk_refcnt		__sk_common.skc_refcnt
362 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
363 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
364 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
365 #endif
366 
367 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
368 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
369 #define sk_hash			__sk_common.skc_hash
370 #define sk_portpair		__sk_common.skc_portpair
371 #define sk_num			__sk_common.skc_num
372 #define sk_dport		__sk_common.skc_dport
373 #define sk_addrpair		__sk_common.skc_addrpair
374 #define sk_daddr		__sk_common.skc_daddr
375 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
376 #define sk_family		__sk_common.skc_family
377 #define sk_state		__sk_common.skc_state
378 #define sk_reuse		__sk_common.skc_reuse
379 #define sk_reuseport		__sk_common.skc_reuseport
380 #define sk_ipv6only		__sk_common.skc_ipv6only
381 #define sk_net_refcnt		__sk_common.skc_net_refcnt
382 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
383 #define sk_bind_node		__sk_common.skc_bind_node
384 #define sk_prot			__sk_common.skc_prot
385 #define sk_net			__sk_common.skc_net
386 #define sk_v6_daddr		__sk_common.skc_v6_daddr
387 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
388 #define sk_cookie		__sk_common.skc_cookie
389 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
390 #define sk_flags		__sk_common.skc_flags
391 #define sk_rxhash		__sk_common.skc_rxhash
392 
393 	/* early demux fields */
394 	struct dst_entry __rcu	*sk_rx_dst;
395 	int			sk_rx_dst_ifindex;
396 	u32			sk_rx_dst_cookie;
397 
398 	socket_lock_t		sk_lock;
399 	atomic_t		sk_drops;
400 	int			sk_rcvlowat;
401 	struct sk_buff_head	sk_error_queue;
402 	struct sk_buff_head	sk_receive_queue;
403 	/*
404 	 * The backlog queue is special, it is always used with
405 	 * the per-socket spinlock held and requires low latency
406 	 * access. Therefore we special case it's implementation.
407 	 * Note : rmem_alloc is in this structure to fill a hole
408 	 * on 64bit arches, not because its logically part of
409 	 * backlog.
410 	 */
411 	struct {
412 		atomic_t	rmem_alloc;
413 		int		len;
414 		struct sk_buff	*head;
415 		struct sk_buff	*tail;
416 	} sk_backlog;
417 
418 #define sk_rmem_alloc sk_backlog.rmem_alloc
419 
420 	int			sk_forward_alloc;
421 	u32			sk_reserved_mem;
422 #ifdef CONFIG_NET_RX_BUSY_POLL
423 	unsigned int		sk_ll_usec;
424 	/* ===== mostly read cache line ===== */
425 	unsigned int		sk_napi_id;
426 #endif
427 	int			sk_rcvbuf;
428 
429 	struct sk_filter __rcu	*sk_filter;
430 	union {
431 		struct socket_wq __rcu	*sk_wq;
432 		/* private: */
433 		struct socket_wq	*sk_wq_raw;
434 		/* public: */
435 	};
436 #ifdef CONFIG_XFRM
437 	struct xfrm_policy __rcu *sk_policy[2];
438 #endif
439 
440 	struct dst_entry __rcu	*sk_dst_cache;
441 	atomic_t		sk_omem_alloc;
442 	int			sk_sndbuf;
443 
444 	/* ===== cache line for TX ===== */
445 	int			sk_wmem_queued;
446 	refcount_t		sk_wmem_alloc;
447 	unsigned long		sk_tsq_flags;
448 	union {
449 		struct sk_buff	*sk_send_head;
450 		struct rb_root	tcp_rtx_queue;
451 	};
452 	struct sk_buff_head	sk_write_queue;
453 	__s32			sk_peek_off;
454 	int			sk_write_pending;
455 	__u32			sk_dst_pending_confirm;
456 	u32			sk_pacing_status; /* see enum sk_pacing */
457 	long			sk_sndtimeo;
458 	struct timer_list	sk_timer;
459 	__u32			sk_priority;
460 	__u32			sk_mark;
461 	unsigned long		sk_pacing_rate; /* bytes per second */
462 	unsigned long		sk_max_pacing_rate;
463 	struct page_frag	sk_frag;
464 	netdev_features_t	sk_route_caps;
465 	int			sk_gso_type;
466 	unsigned int		sk_gso_max_size;
467 	gfp_t			sk_allocation;
468 	__u32			sk_txhash;
469 
470 	/*
471 	 * Because of non atomicity rules, all
472 	 * changes are protected by socket lock.
473 	 */
474 	u8			sk_gso_disabled : 1,
475 				sk_kern_sock : 1,
476 				sk_no_check_tx : 1,
477 				sk_no_check_rx : 1,
478 				sk_userlocks : 4;
479 	u8			sk_pacing_shift;
480 	u16			sk_type;
481 	u16			sk_protocol;
482 	u16			sk_gso_max_segs;
483 	unsigned long	        sk_lingertime;
484 	struct proto		*sk_prot_creator;
485 	rwlock_t		sk_callback_lock;
486 	int			sk_err,
487 				sk_err_soft;
488 	u32			sk_ack_backlog;
489 	u32			sk_max_ack_backlog;
490 	kuid_t			sk_uid;
491 	u8			sk_txrehash;
492 #ifdef CONFIG_NET_RX_BUSY_POLL
493 	u8			sk_prefer_busy_poll;
494 	u16			sk_busy_poll_budget;
495 #endif
496 	spinlock_t		sk_peer_lock;
497 	int			sk_bind_phc;
498 	struct pid		*sk_peer_pid;
499 	const struct cred	*sk_peer_cred;
500 
501 	long			sk_rcvtimeo;
502 	ktime_t			sk_stamp;
503 #if BITS_PER_LONG==32
504 	seqlock_t		sk_stamp_seq;
505 #endif
506 	u16			sk_tsflags;
507 	u8			sk_shutdown;
508 	atomic_t		sk_tskey;
509 	atomic_t		sk_zckey;
510 
511 	u8			sk_clockid;
512 	u8			sk_txtime_deadline_mode : 1,
513 				sk_txtime_report_errors : 1,
514 				sk_txtime_unused : 6;
515 
516 	struct socket		*sk_socket;
517 	void			*sk_user_data;
518 #ifdef CONFIG_SECURITY
519 	void			*sk_security;
520 #endif
521 	struct sock_cgroup_data	sk_cgrp_data;
522 	struct mem_cgroup	*sk_memcg;
523 	void			(*sk_state_change)(struct sock *sk);
524 	void			(*sk_data_ready)(struct sock *sk);
525 	void			(*sk_write_space)(struct sock *sk);
526 	void			(*sk_error_report)(struct sock *sk);
527 	int			(*sk_backlog_rcv)(struct sock *sk,
528 						  struct sk_buff *skb);
529 #ifdef CONFIG_SOCK_VALIDATE_XMIT
530 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
531 							struct net_device *dev,
532 							struct sk_buff *skb);
533 #endif
534 	void                    (*sk_destruct)(struct sock *sk);
535 	struct sock_reuseport __rcu	*sk_reuseport_cb;
536 #ifdef CONFIG_BPF_SYSCALL
537 	struct bpf_local_storage __rcu	*sk_bpf_storage;
538 #endif
539 	struct rcu_head		sk_rcu;
540 	netns_tracker		ns_tracker;
541 	struct hlist_node	sk_bind2_node;
542 };
543 
544 enum sk_pacing {
545 	SK_PACING_NONE		= 0,
546 	SK_PACING_NEEDED	= 1,
547 	SK_PACING_FQ		= 2,
548 };
549 
550 /* Pointer stored in sk_user_data might not be suitable for copying
551  * when cloning the socket. For instance, it can point to a reference
552  * counted object. sk_user_data bottom bit is set if pointer must not
553  * be copied.
554  */
555 #define SK_USER_DATA_NOCOPY	1UL
556 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
557 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
558 
559 /**
560  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
561  * @sk: socket
562  */
563 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
564 {
565 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
566 }
567 
568 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
569 
570 #define rcu_dereference_sk_user_data(sk)				\
571 ({									\
572 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
573 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
574 })
575 #define rcu_assign_sk_user_data(sk, ptr)				\
576 ({									\
577 	uintptr_t __tmp = (uintptr_t)(ptr);				\
578 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
579 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
580 })
581 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
582 ({									\
583 	uintptr_t __tmp = (uintptr_t)(ptr);				\
584 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
585 	rcu_assign_pointer(__sk_user_data((sk)),			\
586 			   __tmp | SK_USER_DATA_NOCOPY);		\
587 })
588 
589 static inline
590 struct net *sock_net(const struct sock *sk)
591 {
592 	return read_pnet(&sk->sk_net);
593 }
594 
595 static inline
596 void sock_net_set(struct sock *sk, struct net *net)
597 {
598 	write_pnet(&sk->sk_net, net);
599 }
600 
601 /*
602  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
603  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
604  * on a socket means that the socket will reuse everybody else's port
605  * without looking at the other's sk_reuse value.
606  */
607 
608 #define SK_NO_REUSE	0
609 #define SK_CAN_REUSE	1
610 #define SK_FORCE_REUSE	2
611 
612 int sk_set_peek_off(struct sock *sk, int val);
613 
614 static inline int sk_peek_offset(struct sock *sk, int flags)
615 {
616 	if (unlikely(flags & MSG_PEEK)) {
617 		return READ_ONCE(sk->sk_peek_off);
618 	}
619 
620 	return 0;
621 }
622 
623 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
624 {
625 	s32 off = READ_ONCE(sk->sk_peek_off);
626 
627 	if (unlikely(off >= 0)) {
628 		off = max_t(s32, off - val, 0);
629 		WRITE_ONCE(sk->sk_peek_off, off);
630 	}
631 }
632 
633 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
634 {
635 	sk_peek_offset_bwd(sk, -val);
636 }
637 
638 /*
639  * Hashed lists helper routines
640  */
641 static inline struct sock *sk_entry(const struct hlist_node *node)
642 {
643 	return hlist_entry(node, struct sock, sk_node);
644 }
645 
646 static inline struct sock *__sk_head(const struct hlist_head *head)
647 {
648 	return hlist_entry(head->first, struct sock, sk_node);
649 }
650 
651 static inline struct sock *sk_head(const struct hlist_head *head)
652 {
653 	return hlist_empty(head) ? NULL : __sk_head(head);
654 }
655 
656 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
657 {
658 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
659 }
660 
661 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
662 {
663 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
664 }
665 
666 static inline struct sock *sk_next(const struct sock *sk)
667 {
668 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
669 }
670 
671 static inline struct sock *sk_nulls_next(const struct sock *sk)
672 {
673 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
674 		hlist_nulls_entry(sk->sk_nulls_node.next,
675 				  struct sock, sk_nulls_node) :
676 		NULL;
677 }
678 
679 static inline bool sk_unhashed(const struct sock *sk)
680 {
681 	return hlist_unhashed(&sk->sk_node);
682 }
683 
684 static inline bool sk_hashed(const struct sock *sk)
685 {
686 	return !sk_unhashed(sk);
687 }
688 
689 static inline void sk_node_init(struct hlist_node *node)
690 {
691 	node->pprev = NULL;
692 }
693 
694 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
695 {
696 	node->pprev = NULL;
697 }
698 
699 static inline void __sk_del_node(struct sock *sk)
700 {
701 	__hlist_del(&sk->sk_node);
702 }
703 
704 /* NB: equivalent to hlist_del_init_rcu */
705 static inline bool __sk_del_node_init(struct sock *sk)
706 {
707 	if (sk_hashed(sk)) {
708 		__sk_del_node(sk);
709 		sk_node_init(&sk->sk_node);
710 		return true;
711 	}
712 	return false;
713 }
714 
715 /* Grab socket reference count. This operation is valid only
716    when sk is ALREADY grabbed f.e. it is found in hash table
717    or a list and the lookup is made under lock preventing hash table
718    modifications.
719  */
720 
721 static __always_inline void sock_hold(struct sock *sk)
722 {
723 	refcount_inc(&sk->sk_refcnt);
724 }
725 
726 /* Ungrab socket in the context, which assumes that socket refcnt
727    cannot hit zero, f.e. it is true in context of any socketcall.
728  */
729 static __always_inline void __sock_put(struct sock *sk)
730 {
731 	refcount_dec(&sk->sk_refcnt);
732 }
733 
734 static inline bool sk_del_node_init(struct sock *sk)
735 {
736 	bool rc = __sk_del_node_init(sk);
737 
738 	if (rc) {
739 		/* paranoid for a while -acme */
740 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
741 		__sock_put(sk);
742 	}
743 	return rc;
744 }
745 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
746 
747 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
748 {
749 	if (sk_hashed(sk)) {
750 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
751 		return true;
752 	}
753 	return false;
754 }
755 
756 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
757 {
758 	bool rc = __sk_nulls_del_node_init_rcu(sk);
759 
760 	if (rc) {
761 		/* paranoid for a while -acme */
762 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
763 		__sock_put(sk);
764 	}
765 	return rc;
766 }
767 
768 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
769 {
770 	hlist_add_head(&sk->sk_node, list);
771 }
772 
773 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
774 {
775 	sock_hold(sk);
776 	__sk_add_node(sk, list);
777 }
778 
779 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
780 {
781 	sock_hold(sk);
782 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
783 	    sk->sk_family == AF_INET6)
784 		hlist_add_tail_rcu(&sk->sk_node, list);
785 	else
786 		hlist_add_head_rcu(&sk->sk_node, list);
787 }
788 
789 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
790 {
791 	sock_hold(sk);
792 	hlist_add_tail_rcu(&sk->sk_node, list);
793 }
794 
795 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
796 {
797 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
798 }
799 
800 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
801 {
802 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
803 }
804 
805 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
806 {
807 	sock_hold(sk);
808 	__sk_nulls_add_node_rcu(sk, list);
809 }
810 
811 static inline void __sk_del_bind_node(struct sock *sk)
812 {
813 	__hlist_del(&sk->sk_bind_node);
814 }
815 
816 static inline void sk_add_bind_node(struct sock *sk,
817 					struct hlist_head *list)
818 {
819 	hlist_add_head(&sk->sk_bind_node, list);
820 }
821 
822 static inline void __sk_del_bind2_node(struct sock *sk)
823 {
824 	__hlist_del(&sk->sk_bind2_node);
825 }
826 
827 static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
828 {
829 	hlist_add_head(&sk->sk_bind2_node, list);
830 }
831 
832 #define sk_for_each(__sk, list) \
833 	hlist_for_each_entry(__sk, list, sk_node)
834 #define sk_for_each_rcu(__sk, list) \
835 	hlist_for_each_entry_rcu(__sk, list, sk_node)
836 #define sk_nulls_for_each(__sk, node, list) \
837 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
838 #define sk_nulls_for_each_rcu(__sk, node, list) \
839 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
840 #define sk_for_each_from(__sk) \
841 	hlist_for_each_entry_from(__sk, sk_node)
842 #define sk_nulls_for_each_from(__sk, node) \
843 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
844 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
845 #define sk_for_each_safe(__sk, tmp, list) \
846 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
847 #define sk_for_each_bound(__sk, list) \
848 	hlist_for_each_entry(__sk, list, sk_bind_node)
849 #define sk_for_each_bound_bhash2(__sk, list) \
850 	hlist_for_each_entry(__sk, list, sk_bind2_node)
851 
852 /**
853  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
854  * @tpos:	the type * to use as a loop cursor.
855  * @pos:	the &struct hlist_node to use as a loop cursor.
856  * @head:	the head for your list.
857  * @offset:	offset of hlist_node within the struct.
858  *
859  */
860 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
861 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
862 	     pos != NULL &&						       \
863 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
864 	     pos = rcu_dereference(hlist_next_rcu(pos)))
865 
866 static inline struct user_namespace *sk_user_ns(struct sock *sk)
867 {
868 	/* Careful only use this in a context where these parameters
869 	 * can not change and must all be valid, such as recvmsg from
870 	 * userspace.
871 	 */
872 	return sk->sk_socket->file->f_cred->user_ns;
873 }
874 
875 /* Sock flags */
876 enum sock_flags {
877 	SOCK_DEAD,
878 	SOCK_DONE,
879 	SOCK_URGINLINE,
880 	SOCK_KEEPOPEN,
881 	SOCK_LINGER,
882 	SOCK_DESTROY,
883 	SOCK_BROADCAST,
884 	SOCK_TIMESTAMP,
885 	SOCK_ZAPPED,
886 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
887 	SOCK_DBG, /* %SO_DEBUG setting */
888 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
889 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
890 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
891 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
892 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
893 	SOCK_FASYNC, /* fasync() active */
894 	SOCK_RXQ_OVFL,
895 	SOCK_ZEROCOPY, /* buffers from userspace */
896 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
897 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
898 		     * Will use last 4 bytes of packet sent from
899 		     * user-space instead.
900 		     */
901 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
902 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
903 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
904 	SOCK_TXTIME,
905 	SOCK_XDP, /* XDP is attached */
906 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
907 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
908 };
909 
910 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
911 
912 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
913 {
914 	nsk->sk_flags = osk->sk_flags;
915 }
916 
917 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
918 {
919 	__set_bit(flag, &sk->sk_flags);
920 }
921 
922 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
923 {
924 	__clear_bit(flag, &sk->sk_flags);
925 }
926 
927 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
928 				     int valbool)
929 {
930 	if (valbool)
931 		sock_set_flag(sk, bit);
932 	else
933 		sock_reset_flag(sk, bit);
934 }
935 
936 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
937 {
938 	return test_bit(flag, &sk->sk_flags);
939 }
940 
941 #ifdef CONFIG_NET
942 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
943 static inline int sk_memalloc_socks(void)
944 {
945 	return static_branch_unlikely(&memalloc_socks_key);
946 }
947 
948 void __receive_sock(struct file *file);
949 #else
950 
951 static inline int sk_memalloc_socks(void)
952 {
953 	return 0;
954 }
955 
956 static inline void __receive_sock(struct file *file)
957 { }
958 #endif
959 
960 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
961 {
962 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
963 }
964 
965 static inline void sk_acceptq_removed(struct sock *sk)
966 {
967 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
968 }
969 
970 static inline void sk_acceptq_added(struct sock *sk)
971 {
972 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
973 }
974 
975 /* Note: If you think the test should be:
976  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
977  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
978  */
979 static inline bool sk_acceptq_is_full(const struct sock *sk)
980 {
981 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
982 }
983 
984 /*
985  * Compute minimal free write space needed to queue new packets.
986  */
987 static inline int sk_stream_min_wspace(const struct sock *sk)
988 {
989 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
990 }
991 
992 static inline int sk_stream_wspace(const struct sock *sk)
993 {
994 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
995 }
996 
997 static inline void sk_wmem_queued_add(struct sock *sk, int val)
998 {
999 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1000 }
1001 
1002 void sk_stream_write_space(struct sock *sk);
1003 
1004 /* OOB backlog add */
1005 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1006 {
1007 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1008 	skb_dst_force(skb);
1009 
1010 	if (!sk->sk_backlog.tail)
1011 		WRITE_ONCE(sk->sk_backlog.head, skb);
1012 	else
1013 		sk->sk_backlog.tail->next = skb;
1014 
1015 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1016 	skb->next = NULL;
1017 }
1018 
1019 /*
1020  * Take into account size of receive queue and backlog queue
1021  * Do not take into account this skb truesize,
1022  * to allow even a single big packet to come.
1023  */
1024 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1025 {
1026 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1027 
1028 	return qsize > limit;
1029 }
1030 
1031 /* The per-socket spinlock must be held here. */
1032 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1033 					      unsigned int limit)
1034 {
1035 	if (sk_rcvqueues_full(sk, limit))
1036 		return -ENOBUFS;
1037 
1038 	/*
1039 	 * If the skb was allocated from pfmemalloc reserves, only
1040 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1041 	 * helping free memory
1042 	 */
1043 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1044 		return -ENOMEM;
1045 
1046 	__sk_add_backlog(sk, skb);
1047 	sk->sk_backlog.len += skb->truesize;
1048 	return 0;
1049 }
1050 
1051 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1052 
1053 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1054 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1055 
1056 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1057 {
1058 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1059 		return __sk_backlog_rcv(sk, skb);
1060 
1061 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1062 				  tcp_v6_do_rcv,
1063 				  tcp_v4_do_rcv,
1064 				  sk, skb);
1065 }
1066 
1067 static inline void sk_incoming_cpu_update(struct sock *sk)
1068 {
1069 	int cpu = raw_smp_processor_id();
1070 
1071 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1072 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1073 }
1074 
1075 static inline void sock_rps_record_flow_hash(__u32 hash)
1076 {
1077 #ifdef CONFIG_RPS
1078 	struct rps_sock_flow_table *sock_flow_table;
1079 
1080 	rcu_read_lock();
1081 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1082 	rps_record_sock_flow(sock_flow_table, hash);
1083 	rcu_read_unlock();
1084 #endif
1085 }
1086 
1087 static inline void sock_rps_record_flow(const struct sock *sk)
1088 {
1089 #ifdef CONFIG_RPS
1090 	if (static_branch_unlikely(&rfs_needed)) {
1091 		/* Reading sk->sk_rxhash might incur an expensive cache line
1092 		 * miss.
1093 		 *
1094 		 * TCP_ESTABLISHED does cover almost all states where RFS
1095 		 * might be useful, and is cheaper [1] than testing :
1096 		 *	IPv4: inet_sk(sk)->inet_daddr
1097 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1098 		 * OR	an additional socket flag
1099 		 * [1] : sk_state and sk_prot are in the same cache line.
1100 		 */
1101 		if (sk->sk_state == TCP_ESTABLISHED)
1102 			sock_rps_record_flow_hash(sk->sk_rxhash);
1103 	}
1104 #endif
1105 }
1106 
1107 static inline void sock_rps_save_rxhash(struct sock *sk,
1108 					const struct sk_buff *skb)
1109 {
1110 #ifdef CONFIG_RPS
1111 	if (unlikely(sk->sk_rxhash != skb->hash))
1112 		sk->sk_rxhash = skb->hash;
1113 #endif
1114 }
1115 
1116 static inline void sock_rps_reset_rxhash(struct sock *sk)
1117 {
1118 #ifdef CONFIG_RPS
1119 	sk->sk_rxhash = 0;
1120 #endif
1121 }
1122 
1123 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1124 	({	int __rc;						\
1125 		release_sock(__sk);					\
1126 		__rc = __condition;					\
1127 		if (!__rc) {						\
1128 			*(__timeo) = wait_woken(__wait,			\
1129 						TASK_INTERRUPTIBLE,	\
1130 						*(__timeo));		\
1131 		}							\
1132 		sched_annotate_sleep();					\
1133 		lock_sock(__sk);					\
1134 		__rc = __condition;					\
1135 		__rc;							\
1136 	})
1137 
1138 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1139 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1140 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1141 int sk_stream_error(struct sock *sk, int flags, int err);
1142 void sk_stream_kill_queues(struct sock *sk);
1143 void sk_set_memalloc(struct sock *sk);
1144 void sk_clear_memalloc(struct sock *sk);
1145 
1146 void __sk_flush_backlog(struct sock *sk);
1147 
1148 static inline bool sk_flush_backlog(struct sock *sk)
1149 {
1150 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1151 		__sk_flush_backlog(sk);
1152 		return true;
1153 	}
1154 	return false;
1155 }
1156 
1157 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1158 
1159 struct request_sock_ops;
1160 struct timewait_sock_ops;
1161 struct inet_hashinfo;
1162 struct raw_hashinfo;
1163 struct smc_hashinfo;
1164 struct module;
1165 struct sk_psock;
1166 
1167 /*
1168  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1169  * un-modified. Special care is taken when initializing object to zero.
1170  */
1171 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1172 {
1173 	if (offsetof(struct sock, sk_node.next) != 0)
1174 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1175 	memset(&sk->sk_node.pprev, 0,
1176 	       size - offsetof(struct sock, sk_node.pprev));
1177 }
1178 
1179 /* Networking protocol blocks we attach to sockets.
1180  * socket layer -> transport layer interface
1181  */
1182 struct proto {
1183 	void			(*close)(struct sock *sk,
1184 					long timeout);
1185 	int			(*pre_connect)(struct sock *sk,
1186 					struct sockaddr *uaddr,
1187 					int addr_len);
1188 	int			(*connect)(struct sock *sk,
1189 					struct sockaddr *uaddr,
1190 					int addr_len);
1191 	int			(*disconnect)(struct sock *sk, int flags);
1192 
1193 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1194 					  bool kern);
1195 
1196 	int			(*ioctl)(struct sock *sk, int cmd,
1197 					 unsigned long arg);
1198 	int			(*init)(struct sock *sk);
1199 	void			(*destroy)(struct sock *sk);
1200 	void			(*shutdown)(struct sock *sk, int how);
1201 	int			(*setsockopt)(struct sock *sk, int level,
1202 					int optname, sockptr_t optval,
1203 					unsigned int optlen);
1204 	int			(*getsockopt)(struct sock *sk, int level,
1205 					int optname, char __user *optval,
1206 					int __user *option);
1207 	void			(*keepalive)(struct sock *sk, int valbool);
1208 #ifdef CONFIG_COMPAT
1209 	int			(*compat_ioctl)(struct sock *sk,
1210 					unsigned int cmd, unsigned long arg);
1211 #endif
1212 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1213 					   size_t len);
1214 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1215 					   size_t len, int flags, int *addr_len);
1216 	int			(*sendpage)(struct sock *sk, struct page *page,
1217 					int offset, size_t size, int flags);
1218 	int			(*bind)(struct sock *sk,
1219 					struct sockaddr *addr, int addr_len);
1220 	int			(*bind_add)(struct sock *sk,
1221 					struct sockaddr *addr, int addr_len);
1222 
1223 	int			(*backlog_rcv) (struct sock *sk,
1224 						struct sk_buff *skb);
1225 	bool			(*bpf_bypass_getsockopt)(int level,
1226 							 int optname);
1227 
1228 	void		(*release_cb)(struct sock *sk);
1229 
1230 	/* Keeping track of sk's, looking them up, and port selection methods. */
1231 	int			(*hash)(struct sock *sk);
1232 	void			(*unhash)(struct sock *sk);
1233 	void			(*rehash)(struct sock *sk);
1234 	int			(*get_port)(struct sock *sk, unsigned short snum);
1235 	void			(*put_port)(struct sock *sk);
1236 #ifdef CONFIG_BPF_SYSCALL
1237 	int			(*psock_update_sk_prot)(struct sock *sk,
1238 							struct sk_psock *psock,
1239 							bool restore);
1240 #endif
1241 
1242 	/* Keeping track of sockets in use */
1243 #ifdef CONFIG_PROC_FS
1244 	unsigned int		inuse_idx;
1245 #endif
1246 
1247 #if IS_ENABLED(CONFIG_MPTCP)
1248 	int			(*forward_alloc_get)(const struct sock *sk);
1249 #endif
1250 
1251 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1252 	bool			(*sock_is_readable)(struct sock *sk);
1253 	/* Memory pressure */
1254 	void			(*enter_memory_pressure)(struct sock *sk);
1255 	void			(*leave_memory_pressure)(struct sock *sk);
1256 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1257 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1258 
1259 	/*
1260 	 * Pressure flag: try to collapse.
1261 	 * Technical note: it is used by multiple contexts non atomically.
1262 	 * All the __sk_mem_schedule() is of this nature: accounting
1263 	 * is strict, actions are advisory and have some latency.
1264 	 */
1265 	unsigned long		*memory_pressure;
1266 	long			*sysctl_mem;
1267 
1268 	int			*sysctl_wmem;
1269 	int			*sysctl_rmem;
1270 	u32			sysctl_wmem_offset;
1271 	u32			sysctl_rmem_offset;
1272 
1273 	int			max_header;
1274 	bool			no_autobind;
1275 
1276 	struct kmem_cache	*slab;
1277 	unsigned int		obj_size;
1278 	slab_flags_t		slab_flags;
1279 	unsigned int		useroffset;	/* Usercopy region offset */
1280 	unsigned int		usersize;	/* Usercopy region size */
1281 
1282 	unsigned int __percpu	*orphan_count;
1283 
1284 	struct request_sock_ops	*rsk_prot;
1285 	struct timewait_sock_ops *twsk_prot;
1286 
1287 	union {
1288 		struct inet_hashinfo	*hashinfo;
1289 		struct udp_table	*udp_table;
1290 		struct raw_hashinfo	*raw_hash;
1291 		struct smc_hashinfo	*smc_hash;
1292 	} h;
1293 
1294 	struct module		*owner;
1295 
1296 	char			name[32];
1297 
1298 	struct list_head	node;
1299 #ifdef SOCK_REFCNT_DEBUG
1300 	atomic_t		socks;
1301 #endif
1302 	int			(*diag_destroy)(struct sock *sk, int err);
1303 } __randomize_layout;
1304 
1305 int proto_register(struct proto *prot, int alloc_slab);
1306 void proto_unregister(struct proto *prot);
1307 int sock_load_diag_module(int family, int protocol);
1308 
1309 #ifdef SOCK_REFCNT_DEBUG
1310 static inline void sk_refcnt_debug_inc(struct sock *sk)
1311 {
1312 	atomic_inc(&sk->sk_prot->socks);
1313 }
1314 
1315 static inline void sk_refcnt_debug_dec(struct sock *sk)
1316 {
1317 	atomic_dec(&sk->sk_prot->socks);
1318 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1319 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1320 }
1321 
1322 static inline void sk_refcnt_debug_release(const struct sock *sk)
1323 {
1324 	if (refcount_read(&sk->sk_refcnt) != 1)
1325 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1326 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1327 }
1328 #else /* SOCK_REFCNT_DEBUG */
1329 #define sk_refcnt_debug_inc(sk) do { } while (0)
1330 #define sk_refcnt_debug_dec(sk) do { } while (0)
1331 #define sk_refcnt_debug_release(sk) do { } while (0)
1332 #endif /* SOCK_REFCNT_DEBUG */
1333 
1334 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1335 
1336 static inline int sk_forward_alloc_get(const struct sock *sk)
1337 {
1338 #if IS_ENABLED(CONFIG_MPTCP)
1339 	if (sk->sk_prot->forward_alloc_get)
1340 		return sk->sk_prot->forward_alloc_get(sk);
1341 #endif
1342 	return sk->sk_forward_alloc;
1343 }
1344 
1345 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1346 {
1347 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1348 		return false;
1349 
1350 	return sk->sk_prot->stream_memory_free ?
1351 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1352 				     tcp_stream_memory_free, sk, wake) : true;
1353 }
1354 
1355 static inline bool sk_stream_memory_free(const struct sock *sk)
1356 {
1357 	return __sk_stream_memory_free(sk, 0);
1358 }
1359 
1360 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1361 {
1362 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1363 	       __sk_stream_memory_free(sk, wake);
1364 }
1365 
1366 static inline bool sk_stream_is_writeable(const struct sock *sk)
1367 {
1368 	return __sk_stream_is_writeable(sk, 0);
1369 }
1370 
1371 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1372 					    struct cgroup *ancestor)
1373 {
1374 #ifdef CONFIG_SOCK_CGROUP_DATA
1375 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1376 				    ancestor);
1377 #else
1378 	return -ENOTSUPP;
1379 #endif
1380 }
1381 
1382 static inline bool sk_has_memory_pressure(const struct sock *sk)
1383 {
1384 	return sk->sk_prot->memory_pressure != NULL;
1385 }
1386 
1387 static inline bool sk_under_memory_pressure(const struct sock *sk)
1388 {
1389 	if (!sk->sk_prot->memory_pressure)
1390 		return false;
1391 
1392 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1393 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1394 		return true;
1395 
1396 	return !!*sk->sk_prot->memory_pressure;
1397 }
1398 
1399 static inline long
1400 sk_memory_allocated(const struct sock *sk)
1401 {
1402 	return atomic_long_read(sk->sk_prot->memory_allocated);
1403 }
1404 
1405 static inline long
1406 sk_memory_allocated_add(struct sock *sk, int amt)
1407 {
1408 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1409 }
1410 
1411 static inline void
1412 sk_memory_allocated_sub(struct sock *sk, int amt)
1413 {
1414 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1415 }
1416 
1417 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1418 
1419 static inline void sk_sockets_allocated_dec(struct sock *sk)
1420 {
1421 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1422 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1423 }
1424 
1425 static inline void sk_sockets_allocated_inc(struct sock *sk)
1426 {
1427 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1428 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1429 }
1430 
1431 static inline u64
1432 sk_sockets_allocated_read_positive(struct sock *sk)
1433 {
1434 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1435 }
1436 
1437 static inline int
1438 proto_sockets_allocated_sum_positive(struct proto *prot)
1439 {
1440 	return percpu_counter_sum_positive(prot->sockets_allocated);
1441 }
1442 
1443 static inline long
1444 proto_memory_allocated(struct proto *prot)
1445 {
1446 	return atomic_long_read(prot->memory_allocated);
1447 }
1448 
1449 static inline bool
1450 proto_memory_pressure(struct proto *prot)
1451 {
1452 	if (!prot->memory_pressure)
1453 		return false;
1454 	return !!*prot->memory_pressure;
1455 }
1456 
1457 
1458 #ifdef CONFIG_PROC_FS
1459 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1460 struct prot_inuse {
1461 	int all;
1462 	int val[PROTO_INUSE_NR];
1463 };
1464 
1465 static inline void sock_prot_inuse_add(const struct net *net,
1466 				       const struct proto *prot, int val)
1467 {
1468 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1469 }
1470 
1471 static inline void sock_inuse_add(const struct net *net, int val)
1472 {
1473 	this_cpu_add(net->core.prot_inuse->all, val);
1474 }
1475 
1476 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1477 int sock_inuse_get(struct net *net);
1478 #else
1479 static inline void sock_prot_inuse_add(const struct net *net,
1480 				       const struct proto *prot, int val)
1481 {
1482 }
1483 
1484 static inline void sock_inuse_add(const struct net *net, int val)
1485 {
1486 }
1487 #endif
1488 
1489 
1490 /* With per-bucket locks this operation is not-atomic, so that
1491  * this version is not worse.
1492  */
1493 static inline int __sk_prot_rehash(struct sock *sk)
1494 {
1495 	sk->sk_prot->unhash(sk);
1496 	return sk->sk_prot->hash(sk);
1497 }
1498 
1499 /* About 10 seconds */
1500 #define SOCK_DESTROY_TIME (10*HZ)
1501 
1502 /* Sockets 0-1023 can't be bound to unless you are superuser */
1503 #define PROT_SOCK	1024
1504 
1505 #define SHUTDOWN_MASK	3
1506 #define RCV_SHUTDOWN	1
1507 #define SEND_SHUTDOWN	2
1508 
1509 #define SOCK_BINDADDR_LOCK	4
1510 #define SOCK_BINDPORT_LOCK	8
1511 
1512 struct socket_alloc {
1513 	struct socket socket;
1514 	struct inode vfs_inode;
1515 };
1516 
1517 static inline struct socket *SOCKET_I(struct inode *inode)
1518 {
1519 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1520 }
1521 
1522 static inline struct inode *SOCK_INODE(struct socket *socket)
1523 {
1524 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1525 }
1526 
1527 /*
1528  * Functions for memory accounting
1529  */
1530 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1531 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1532 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1533 void __sk_mem_reclaim(struct sock *sk, int amount);
1534 
1535 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1536  * do not necessarily have 16x time more memory than 4KB ones.
1537  */
1538 #define SK_MEM_QUANTUM 4096
1539 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1540 #define SK_MEM_SEND	0
1541 #define SK_MEM_RECV	1
1542 
1543 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1544 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1545 {
1546 	long val = sk->sk_prot->sysctl_mem[index];
1547 
1548 #if PAGE_SIZE > SK_MEM_QUANTUM
1549 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1550 #elif PAGE_SIZE < SK_MEM_QUANTUM
1551 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1552 #endif
1553 	return val;
1554 }
1555 
1556 static inline int sk_mem_pages(int amt)
1557 {
1558 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1559 }
1560 
1561 static inline bool sk_has_account(struct sock *sk)
1562 {
1563 	/* return true if protocol supports memory accounting */
1564 	return !!sk->sk_prot->memory_allocated;
1565 }
1566 
1567 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1568 {
1569 	if (!sk_has_account(sk))
1570 		return true;
1571 	return size <= sk->sk_forward_alloc ||
1572 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1573 }
1574 
1575 static inline bool
1576 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1577 {
1578 	if (!sk_has_account(sk))
1579 		return true;
1580 	return size <= sk->sk_forward_alloc ||
1581 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1582 		skb_pfmemalloc(skb);
1583 }
1584 
1585 static inline int sk_unused_reserved_mem(const struct sock *sk)
1586 {
1587 	int unused_mem;
1588 
1589 	if (likely(!sk->sk_reserved_mem))
1590 		return 0;
1591 
1592 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1593 			atomic_read(&sk->sk_rmem_alloc);
1594 
1595 	return unused_mem > 0 ? unused_mem : 0;
1596 }
1597 
1598 static inline void sk_mem_reclaim(struct sock *sk)
1599 {
1600 	int reclaimable;
1601 
1602 	if (!sk_has_account(sk))
1603 		return;
1604 
1605 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1606 
1607 	if (reclaimable >= SK_MEM_QUANTUM)
1608 		__sk_mem_reclaim(sk, reclaimable);
1609 }
1610 
1611 static inline void sk_mem_reclaim_final(struct sock *sk)
1612 {
1613 	sk->sk_reserved_mem = 0;
1614 	sk_mem_reclaim(sk);
1615 }
1616 
1617 static inline void sk_mem_reclaim_partial(struct sock *sk)
1618 {
1619 	int reclaimable;
1620 
1621 	if (!sk_has_account(sk))
1622 		return;
1623 
1624 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1625 
1626 	if (reclaimable > SK_MEM_QUANTUM)
1627 		__sk_mem_reclaim(sk, reclaimable - 1);
1628 }
1629 
1630 static inline void sk_mem_charge(struct sock *sk, int size)
1631 {
1632 	if (!sk_has_account(sk))
1633 		return;
1634 	sk->sk_forward_alloc -= size;
1635 }
1636 
1637 /* the following macros control memory reclaiming in sk_mem_uncharge()
1638  */
1639 #define SK_RECLAIM_THRESHOLD	(1 << 21)
1640 #define SK_RECLAIM_CHUNK	(1 << 20)
1641 
1642 static inline void sk_mem_uncharge(struct sock *sk, int size)
1643 {
1644 	int reclaimable;
1645 
1646 	if (!sk_has_account(sk))
1647 		return;
1648 	sk->sk_forward_alloc += size;
1649 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1650 
1651 	/* Avoid a possible overflow.
1652 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1653 	 * is not called and more than 2 GBytes are released at once.
1654 	 *
1655 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1656 	 * no need to hold that much forward allocation anyway.
1657 	 */
1658 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1659 		__sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1660 }
1661 
1662 /*
1663  * Macro so as to not evaluate some arguments when
1664  * lockdep is not enabled.
1665  *
1666  * Mark both the sk_lock and the sk_lock.slock as a
1667  * per-address-family lock class.
1668  */
1669 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1670 do {									\
1671 	sk->sk_lock.owned = 0;						\
1672 	init_waitqueue_head(&sk->sk_lock.wq);				\
1673 	spin_lock_init(&(sk)->sk_lock.slock);				\
1674 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1675 			sizeof((sk)->sk_lock));				\
1676 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1677 				(skey), (sname));				\
1678 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1679 } while (0)
1680 
1681 static inline bool lockdep_sock_is_held(const struct sock *sk)
1682 {
1683 	return lockdep_is_held(&sk->sk_lock) ||
1684 	       lockdep_is_held(&sk->sk_lock.slock);
1685 }
1686 
1687 void lock_sock_nested(struct sock *sk, int subclass);
1688 
1689 static inline void lock_sock(struct sock *sk)
1690 {
1691 	lock_sock_nested(sk, 0);
1692 }
1693 
1694 void __lock_sock(struct sock *sk);
1695 void __release_sock(struct sock *sk);
1696 void release_sock(struct sock *sk);
1697 
1698 /* BH context may only use the following locking interface. */
1699 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1700 #define bh_lock_sock_nested(__sk) \
1701 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1702 				SINGLE_DEPTH_NESTING)
1703 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1704 
1705 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1706 
1707 /**
1708  * lock_sock_fast - fast version of lock_sock
1709  * @sk: socket
1710  *
1711  * This version should be used for very small section, where process wont block
1712  * return false if fast path is taken:
1713  *
1714  *   sk_lock.slock locked, owned = 0, BH disabled
1715  *
1716  * return true if slow path is taken:
1717  *
1718  *   sk_lock.slock unlocked, owned = 1, BH enabled
1719  */
1720 static inline bool lock_sock_fast(struct sock *sk)
1721 {
1722 	/* The sk_lock has mutex_lock() semantics here. */
1723 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1724 
1725 	return __lock_sock_fast(sk);
1726 }
1727 
1728 /* fast socket lock variant for caller already holding a [different] socket lock */
1729 static inline bool lock_sock_fast_nested(struct sock *sk)
1730 {
1731 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1732 
1733 	return __lock_sock_fast(sk);
1734 }
1735 
1736 /**
1737  * unlock_sock_fast - complement of lock_sock_fast
1738  * @sk: socket
1739  * @slow: slow mode
1740  *
1741  * fast unlock socket for user context.
1742  * If slow mode is on, we call regular release_sock()
1743  */
1744 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1745 	__releases(&sk->sk_lock.slock)
1746 {
1747 	if (slow) {
1748 		release_sock(sk);
1749 		__release(&sk->sk_lock.slock);
1750 	} else {
1751 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1752 		spin_unlock_bh(&sk->sk_lock.slock);
1753 	}
1754 }
1755 
1756 /* Used by processes to "lock" a socket state, so that
1757  * interrupts and bottom half handlers won't change it
1758  * from under us. It essentially blocks any incoming
1759  * packets, so that we won't get any new data or any
1760  * packets that change the state of the socket.
1761  *
1762  * While locked, BH processing will add new packets to
1763  * the backlog queue.  This queue is processed by the
1764  * owner of the socket lock right before it is released.
1765  *
1766  * Since ~2.3.5 it is also exclusive sleep lock serializing
1767  * accesses from user process context.
1768  */
1769 
1770 static inline void sock_owned_by_me(const struct sock *sk)
1771 {
1772 #ifdef CONFIG_LOCKDEP
1773 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1774 #endif
1775 }
1776 
1777 static inline bool sock_owned_by_user(const struct sock *sk)
1778 {
1779 	sock_owned_by_me(sk);
1780 	return sk->sk_lock.owned;
1781 }
1782 
1783 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1784 {
1785 	return sk->sk_lock.owned;
1786 }
1787 
1788 static inline void sock_release_ownership(struct sock *sk)
1789 {
1790 	if (sock_owned_by_user_nocheck(sk)) {
1791 		sk->sk_lock.owned = 0;
1792 
1793 		/* The sk_lock has mutex_unlock() semantics: */
1794 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1795 	}
1796 }
1797 
1798 /* no reclassification while locks are held */
1799 static inline bool sock_allow_reclassification(const struct sock *csk)
1800 {
1801 	struct sock *sk = (struct sock *)csk;
1802 
1803 	return !sock_owned_by_user_nocheck(sk) &&
1804 		!spin_is_locked(&sk->sk_lock.slock);
1805 }
1806 
1807 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1808 		      struct proto *prot, int kern);
1809 void sk_free(struct sock *sk);
1810 void sk_destruct(struct sock *sk);
1811 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1812 void sk_free_unlock_clone(struct sock *sk);
1813 
1814 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1815 			     gfp_t priority);
1816 void __sock_wfree(struct sk_buff *skb);
1817 void sock_wfree(struct sk_buff *skb);
1818 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1819 			     gfp_t priority);
1820 void skb_orphan_partial(struct sk_buff *skb);
1821 void sock_rfree(struct sk_buff *skb);
1822 void sock_efree(struct sk_buff *skb);
1823 #ifdef CONFIG_INET
1824 void sock_edemux(struct sk_buff *skb);
1825 void sock_pfree(struct sk_buff *skb);
1826 #else
1827 #define sock_edemux sock_efree
1828 #endif
1829 
1830 int sock_setsockopt(struct socket *sock, int level, int op,
1831 		    sockptr_t optval, unsigned int optlen);
1832 
1833 int sock_getsockopt(struct socket *sock, int level, int op,
1834 		    char __user *optval, int __user *optlen);
1835 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1836 		   bool timeval, bool time32);
1837 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1838 				     unsigned long data_len, int noblock,
1839 				     int *errcode, int max_page_order);
1840 
1841 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1842 						  unsigned long size,
1843 						  int noblock, int *errcode)
1844 {
1845 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1846 }
1847 
1848 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1849 void sock_kfree_s(struct sock *sk, void *mem, int size);
1850 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1851 void sk_send_sigurg(struct sock *sk);
1852 
1853 struct sockcm_cookie {
1854 	u64 transmit_time;
1855 	u32 mark;
1856 	u16 tsflags;
1857 };
1858 
1859 static inline void sockcm_init(struct sockcm_cookie *sockc,
1860 			       const struct sock *sk)
1861 {
1862 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1863 }
1864 
1865 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1866 		     struct sockcm_cookie *sockc);
1867 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1868 		   struct sockcm_cookie *sockc);
1869 
1870 /*
1871  * Functions to fill in entries in struct proto_ops when a protocol
1872  * does not implement a particular function.
1873  */
1874 int sock_no_bind(struct socket *, struct sockaddr *, int);
1875 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1876 int sock_no_socketpair(struct socket *, struct socket *);
1877 int sock_no_accept(struct socket *, struct socket *, int, bool);
1878 int sock_no_getname(struct socket *, struct sockaddr *, int);
1879 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1880 int sock_no_listen(struct socket *, int);
1881 int sock_no_shutdown(struct socket *, int);
1882 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1883 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1884 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1885 int sock_no_mmap(struct file *file, struct socket *sock,
1886 		 struct vm_area_struct *vma);
1887 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1888 			 size_t size, int flags);
1889 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1890 				int offset, size_t size, int flags);
1891 
1892 /*
1893  * Functions to fill in entries in struct proto_ops when a protocol
1894  * uses the inet style.
1895  */
1896 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1897 				  char __user *optval, int __user *optlen);
1898 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1899 			int flags);
1900 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1901 			   sockptr_t optval, unsigned int optlen);
1902 
1903 void sk_common_release(struct sock *sk);
1904 
1905 /*
1906  *	Default socket callbacks and setup code
1907  */
1908 
1909 /* Initialise core socket variables */
1910 void sock_init_data(struct socket *sock, struct sock *sk);
1911 
1912 /*
1913  * Socket reference counting postulates.
1914  *
1915  * * Each user of socket SHOULD hold a reference count.
1916  * * Each access point to socket (an hash table bucket, reference from a list,
1917  *   running timer, skb in flight MUST hold a reference count.
1918  * * When reference count hits 0, it means it will never increase back.
1919  * * When reference count hits 0, it means that no references from
1920  *   outside exist to this socket and current process on current CPU
1921  *   is last user and may/should destroy this socket.
1922  * * sk_free is called from any context: process, BH, IRQ. When
1923  *   it is called, socket has no references from outside -> sk_free
1924  *   may release descendant resources allocated by the socket, but
1925  *   to the time when it is called, socket is NOT referenced by any
1926  *   hash tables, lists etc.
1927  * * Packets, delivered from outside (from network or from another process)
1928  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1929  *   when they sit in queue. Otherwise, packets will leak to hole, when
1930  *   socket is looked up by one cpu and unhasing is made by another CPU.
1931  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1932  *   (leak to backlog). Packet socket does all the processing inside
1933  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1934  *   use separate SMP lock, so that they are prone too.
1935  */
1936 
1937 /* Ungrab socket and destroy it, if it was the last reference. */
1938 static inline void sock_put(struct sock *sk)
1939 {
1940 	if (refcount_dec_and_test(&sk->sk_refcnt))
1941 		sk_free(sk);
1942 }
1943 /* Generic version of sock_put(), dealing with all sockets
1944  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1945  */
1946 void sock_gen_put(struct sock *sk);
1947 
1948 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1949 		     unsigned int trim_cap, bool refcounted);
1950 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1951 				 const int nested)
1952 {
1953 	return __sk_receive_skb(sk, skb, nested, 1, true);
1954 }
1955 
1956 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1957 {
1958 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1959 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1960 		return;
1961 	sk->sk_tx_queue_mapping = tx_queue;
1962 }
1963 
1964 #define NO_QUEUE_MAPPING	USHRT_MAX
1965 
1966 static inline void sk_tx_queue_clear(struct sock *sk)
1967 {
1968 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1969 }
1970 
1971 static inline int sk_tx_queue_get(const struct sock *sk)
1972 {
1973 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1974 		return sk->sk_tx_queue_mapping;
1975 
1976 	return -1;
1977 }
1978 
1979 static inline void __sk_rx_queue_set(struct sock *sk,
1980 				     const struct sk_buff *skb,
1981 				     bool force_set)
1982 {
1983 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1984 	if (skb_rx_queue_recorded(skb)) {
1985 		u16 rx_queue = skb_get_rx_queue(skb);
1986 
1987 		if (force_set ||
1988 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1989 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1990 	}
1991 #endif
1992 }
1993 
1994 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1995 {
1996 	__sk_rx_queue_set(sk, skb, true);
1997 }
1998 
1999 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2000 {
2001 	__sk_rx_queue_set(sk, skb, false);
2002 }
2003 
2004 static inline void sk_rx_queue_clear(struct sock *sk)
2005 {
2006 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2007 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2008 #endif
2009 }
2010 
2011 static inline int sk_rx_queue_get(const struct sock *sk)
2012 {
2013 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2014 	if (sk) {
2015 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2016 
2017 		if (res != NO_QUEUE_MAPPING)
2018 			return res;
2019 	}
2020 #endif
2021 
2022 	return -1;
2023 }
2024 
2025 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2026 {
2027 	sk->sk_socket = sock;
2028 }
2029 
2030 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2031 {
2032 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2033 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2034 }
2035 /* Detach socket from process context.
2036  * Announce socket dead, detach it from wait queue and inode.
2037  * Note that parent inode held reference count on this struct sock,
2038  * we do not release it in this function, because protocol
2039  * probably wants some additional cleanups or even continuing
2040  * to work with this socket (TCP).
2041  */
2042 static inline void sock_orphan(struct sock *sk)
2043 {
2044 	write_lock_bh(&sk->sk_callback_lock);
2045 	sock_set_flag(sk, SOCK_DEAD);
2046 	sk_set_socket(sk, NULL);
2047 	sk->sk_wq  = NULL;
2048 	write_unlock_bh(&sk->sk_callback_lock);
2049 }
2050 
2051 static inline void sock_graft(struct sock *sk, struct socket *parent)
2052 {
2053 	WARN_ON(parent->sk);
2054 	write_lock_bh(&sk->sk_callback_lock);
2055 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2056 	parent->sk = sk;
2057 	sk_set_socket(sk, parent);
2058 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2059 	security_sock_graft(sk, parent);
2060 	write_unlock_bh(&sk->sk_callback_lock);
2061 }
2062 
2063 kuid_t sock_i_uid(struct sock *sk);
2064 unsigned long sock_i_ino(struct sock *sk);
2065 
2066 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2067 {
2068 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2069 }
2070 
2071 static inline u32 net_tx_rndhash(void)
2072 {
2073 	u32 v = prandom_u32();
2074 
2075 	return v ?: 1;
2076 }
2077 
2078 static inline void sk_set_txhash(struct sock *sk)
2079 {
2080 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2081 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2082 }
2083 
2084 static inline bool sk_rethink_txhash(struct sock *sk)
2085 {
2086 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2087 		sk_set_txhash(sk);
2088 		return true;
2089 	}
2090 	return false;
2091 }
2092 
2093 static inline struct dst_entry *
2094 __sk_dst_get(struct sock *sk)
2095 {
2096 	return rcu_dereference_check(sk->sk_dst_cache,
2097 				     lockdep_sock_is_held(sk));
2098 }
2099 
2100 static inline struct dst_entry *
2101 sk_dst_get(struct sock *sk)
2102 {
2103 	struct dst_entry *dst;
2104 
2105 	rcu_read_lock();
2106 	dst = rcu_dereference(sk->sk_dst_cache);
2107 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2108 		dst = NULL;
2109 	rcu_read_unlock();
2110 	return dst;
2111 }
2112 
2113 static inline void __dst_negative_advice(struct sock *sk)
2114 {
2115 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2116 
2117 	if (dst && dst->ops->negative_advice) {
2118 		ndst = dst->ops->negative_advice(dst);
2119 
2120 		if (ndst != dst) {
2121 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2122 			sk_tx_queue_clear(sk);
2123 			sk->sk_dst_pending_confirm = 0;
2124 		}
2125 	}
2126 }
2127 
2128 static inline void dst_negative_advice(struct sock *sk)
2129 {
2130 	sk_rethink_txhash(sk);
2131 	__dst_negative_advice(sk);
2132 }
2133 
2134 static inline void
2135 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2136 {
2137 	struct dst_entry *old_dst;
2138 
2139 	sk_tx_queue_clear(sk);
2140 	sk->sk_dst_pending_confirm = 0;
2141 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2142 					    lockdep_sock_is_held(sk));
2143 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2144 	dst_release(old_dst);
2145 }
2146 
2147 static inline void
2148 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2149 {
2150 	struct dst_entry *old_dst;
2151 
2152 	sk_tx_queue_clear(sk);
2153 	sk->sk_dst_pending_confirm = 0;
2154 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2155 	dst_release(old_dst);
2156 }
2157 
2158 static inline void
2159 __sk_dst_reset(struct sock *sk)
2160 {
2161 	__sk_dst_set(sk, NULL);
2162 }
2163 
2164 static inline void
2165 sk_dst_reset(struct sock *sk)
2166 {
2167 	sk_dst_set(sk, NULL);
2168 }
2169 
2170 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2171 
2172 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2173 
2174 static inline void sk_dst_confirm(struct sock *sk)
2175 {
2176 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2177 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2178 }
2179 
2180 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2181 {
2182 	if (skb_get_dst_pending_confirm(skb)) {
2183 		struct sock *sk = skb->sk;
2184 
2185 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2186 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2187 		neigh_confirm(n);
2188 	}
2189 }
2190 
2191 bool sk_mc_loop(struct sock *sk);
2192 
2193 static inline bool sk_can_gso(const struct sock *sk)
2194 {
2195 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2196 }
2197 
2198 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2199 
2200 static inline void sk_gso_disable(struct sock *sk)
2201 {
2202 	sk->sk_gso_disabled = 1;
2203 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2204 }
2205 
2206 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2207 					   struct iov_iter *from, char *to,
2208 					   int copy, int offset)
2209 {
2210 	if (skb->ip_summed == CHECKSUM_NONE) {
2211 		__wsum csum = 0;
2212 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2213 			return -EFAULT;
2214 		skb->csum = csum_block_add(skb->csum, csum, offset);
2215 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2216 		if (!copy_from_iter_full_nocache(to, copy, from))
2217 			return -EFAULT;
2218 	} else if (!copy_from_iter_full(to, copy, from))
2219 		return -EFAULT;
2220 
2221 	return 0;
2222 }
2223 
2224 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2225 				       struct iov_iter *from, int copy)
2226 {
2227 	int err, offset = skb->len;
2228 
2229 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2230 				       copy, offset);
2231 	if (err)
2232 		__skb_trim(skb, offset);
2233 
2234 	return err;
2235 }
2236 
2237 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2238 					   struct sk_buff *skb,
2239 					   struct page *page,
2240 					   int off, int copy)
2241 {
2242 	int err;
2243 
2244 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2245 				       copy, skb->len);
2246 	if (err)
2247 		return err;
2248 
2249 	skb->len	     += copy;
2250 	skb->data_len	     += copy;
2251 	skb->truesize	     += copy;
2252 	sk_wmem_queued_add(sk, copy);
2253 	sk_mem_charge(sk, copy);
2254 	return 0;
2255 }
2256 
2257 /**
2258  * sk_wmem_alloc_get - returns write allocations
2259  * @sk: socket
2260  *
2261  * Return: sk_wmem_alloc minus initial offset of one
2262  */
2263 static inline int sk_wmem_alloc_get(const struct sock *sk)
2264 {
2265 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2266 }
2267 
2268 /**
2269  * sk_rmem_alloc_get - returns read allocations
2270  * @sk: socket
2271  *
2272  * Return: sk_rmem_alloc
2273  */
2274 static inline int sk_rmem_alloc_get(const struct sock *sk)
2275 {
2276 	return atomic_read(&sk->sk_rmem_alloc);
2277 }
2278 
2279 /**
2280  * sk_has_allocations - check if allocations are outstanding
2281  * @sk: socket
2282  *
2283  * Return: true if socket has write or read allocations
2284  */
2285 static inline bool sk_has_allocations(const struct sock *sk)
2286 {
2287 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2288 }
2289 
2290 /**
2291  * skwq_has_sleeper - check if there are any waiting processes
2292  * @wq: struct socket_wq
2293  *
2294  * Return: true if socket_wq has waiting processes
2295  *
2296  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2297  * barrier call. They were added due to the race found within the tcp code.
2298  *
2299  * Consider following tcp code paths::
2300  *
2301  *   CPU1                CPU2
2302  *   sys_select          receive packet
2303  *   ...                 ...
2304  *   __add_wait_queue    update tp->rcv_nxt
2305  *   ...                 ...
2306  *   tp->rcv_nxt check   sock_def_readable
2307  *   ...                 {
2308  *   schedule               rcu_read_lock();
2309  *                          wq = rcu_dereference(sk->sk_wq);
2310  *                          if (wq && waitqueue_active(&wq->wait))
2311  *                              wake_up_interruptible(&wq->wait)
2312  *                          ...
2313  *                       }
2314  *
2315  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2316  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2317  * could then endup calling schedule and sleep forever if there are no more
2318  * data on the socket.
2319  *
2320  */
2321 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2322 {
2323 	return wq && wq_has_sleeper(&wq->wait);
2324 }
2325 
2326 /**
2327  * sock_poll_wait - place memory barrier behind the poll_wait call.
2328  * @filp:           file
2329  * @sock:           socket to wait on
2330  * @p:              poll_table
2331  *
2332  * See the comments in the wq_has_sleeper function.
2333  */
2334 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2335 				  poll_table *p)
2336 {
2337 	if (!poll_does_not_wait(p)) {
2338 		poll_wait(filp, &sock->wq.wait, p);
2339 		/* We need to be sure we are in sync with the
2340 		 * socket flags modification.
2341 		 *
2342 		 * This memory barrier is paired in the wq_has_sleeper.
2343 		 */
2344 		smp_mb();
2345 	}
2346 }
2347 
2348 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2349 {
2350 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2351 	u32 txhash = READ_ONCE(sk->sk_txhash);
2352 
2353 	if (txhash) {
2354 		skb->l4_hash = 1;
2355 		skb->hash = txhash;
2356 	}
2357 }
2358 
2359 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2360 
2361 /*
2362  *	Queue a received datagram if it will fit. Stream and sequenced
2363  *	protocols can't normally use this as they need to fit buffers in
2364  *	and play with them.
2365  *
2366  *	Inlined as it's very short and called for pretty much every
2367  *	packet ever received.
2368  */
2369 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2370 {
2371 	skb_orphan(skb);
2372 	skb->sk = sk;
2373 	skb->destructor = sock_rfree;
2374 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2375 	sk_mem_charge(sk, skb->truesize);
2376 }
2377 
2378 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2379 {
2380 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2381 		skb_orphan(skb);
2382 		skb->destructor = sock_efree;
2383 		skb->sk = sk;
2384 		return true;
2385 	}
2386 	return false;
2387 }
2388 
2389 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2390 {
2391 	if (skb->destructor != sock_wfree) {
2392 		skb_orphan(skb);
2393 		return;
2394 	}
2395 	skb->slow_gro = 1;
2396 }
2397 
2398 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2399 		    unsigned long expires);
2400 
2401 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2402 
2403 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2404 
2405 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2406 			struct sk_buff *skb, unsigned int flags,
2407 			void (*destructor)(struct sock *sk,
2408 					   struct sk_buff *skb));
2409 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2410 
2411 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2412 			      enum skb_drop_reason *reason);
2413 
2414 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2415 {
2416 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2417 }
2418 
2419 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2420 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2421 
2422 /*
2423  *	Recover an error report and clear atomically
2424  */
2425 
2426 static inline int sock_error(struct sock *sk)
2427 {
2428 	int err;
2429 
2430 	/* Avoid an atomic operation for the common case.
2431 	 * This is racy since another cpu/thread can change sk_err under us.
2432 	 */
2433 	if (likely(data_race(!sk->sk_err)))
2434 		return 0;
2435 
2436 	err = xchg(&sk->sk_err, 0);
2437 	return -err;
2438 }
2439 
2440 void sk_error_report(struct sock *sk);
2441 
2442 static inline unsigned long sock_wspace(struct sock *sk)
2443 {
2444 	int amt = 0;
2445 
2446 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2447 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2448 		if (amt < 0)
2449 			amt = 0;
2450 	}
2451 	return amt;
2452 }
2453 
2454 /* Note:
2455  *  We use sk->sk_wq_raw, from contexts knowing this
2456  *  pointer is not NULL and cannot disappear/change.
2457  */
2458 static inline void sk_set_bit(int nr, struct sock *sk)
2459 {
2460 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2461 	    !sock_flag(sk, SOCK_FASYNC))
2462 		return;
2463 
2464 	set_bit(nr, &sk->sk_wq_raw->flags);
2465 }
2466 
2467 static inline void sk_clear_bit(int nr, struct sock *sk)
2468 {
2469 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2470 	    !sock_flag(sk, SOCK_FASYNC))
2471 		return;
2472 
2473 	clear_bit(nr, &sk->sk_wq_raw->flags);
2474 }
2475 
2476 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2477 {
2478 	if (sock_flag(sk, SOCK_FASYNC)) {
2479 		rcu_read_lock();
2480 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2481 		rcu_read_unlock();
2482 	}
2483 }
2484 
2485 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2486  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2487  * Note: for send buffers, TCP works better if we can build two skbs at
2488  * minimum.
2489  */
2490 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2491 
2492 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2493 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2494 
2495 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2496 {
2497 	u32 val;
2498 
2499 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2500 		return;
2501 
2502 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2503 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2504 
2505 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2506 }
2507 
2508 /**
2509  * sk_page_frag - return an appropriate page_frag
2510  * @sk: socket
2511  *
2512  * Use the per task page_frag instead of the per socket one for
2513  * optimization when we know that we're in process context and own
2514  * everything that's associated with %current.
2515  *
2516  * Both direct reclaim and page faults can nest inside other
2517  * socket operations and end up recursing into sk_page_frag()
2518  * while it's already in use: explicitly avoid task page_frag
2519  * usage if the caller is potentially doing any of them.
2520  * This assumes that page fault handlers use the GFP_NOFS flags.
2521  *
2522  * Return: a per task page_frag if context allows that,
2523  * otherwise a per socket one.
2524  */
2525 static inline struct page_frag *sk_page_frag(struct sock *sk)
2526 {
2527 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2528 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2529 		return &current->task_frag;
2530 
2531 	return &sk->sk_frag;
2532 }
2533 
2534 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2535 
2536 /*
2537  *	Default write policy as shown to user space via poll/select/SIGIO
2538  */
2539 static inline bool sock_writeable(const struct sock *sk)
2540 {
2541 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2542 }
2543 
2544 static inline gfp_t gfp_any(void)
2545 {
2546 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2547 }
2548 
2549 static inline gfp_t gfp_memcg_charge(void)
2550 {
2551 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2552 }
2553 
2554 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2555 {
2556 	return noblock ? 0 : sk->sk_rcvtimeo;
2557 }
2558 
2559 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2560 {
2561 	return noblock ? 0 : sk->sk_sndtimeo;
2562 }
2563 
2564 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2565 {
2566 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2567 
2568 	return v ?: 1;
2569 }
2570 
2571 /* Alas, with timeout socket operations are not restartable.
2572  * Compare this to poll().
2573  */
2574 static inline int sock_intr_errno(long timeo)
2575 {
2576 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2577 }
2578 
2579 struct sock_skb_cb {
2580 	u32 dropcount;
2581 };
2582 
2583 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2584  * using skb->cb[] would keep using it directly and utilize its
2585  * alignement guarantee.
2586  */
2587 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2588 			    sizeof(struct sock_skb_cb)))
2589 
2590 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2591 			    SOCK_SKB_CB_OFFSET))
2592 
2593 #define sock_skb_cb_check_size(size) \
2594 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2595 
2596 static inline void
2597 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2598 {
2599 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2600 						atomic_read(&sk->sk_drops) : 0;
2601 }
2602 
2603 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2604 {
2605 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2606 
2607 	atomic_add(segs, &sk->sk_drops);
2608 }
2609 
2610 static inline ktime_t sock_read_timestamp(struct sock *sk)
2611 {
2612 #if BITS_PER_LONG==32
2613 	unsigned int seq;
2614 	ktime_t kt;
2615 
2616 	do {
2617 		seq = read_seqbegin(&sk->sk_stamp_seq);
2618 		kt = sk->sk_stamp;
2619 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2620 
2621 	return kt;
2622 #else
2623 	return READ_ONCE(sk->sk_stamp);
2624 #endif
2625 }
2626 
2627 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2628 {
2629 #if BITS_PER_LONG==32
2630 	write_seqlock(&sk->sk_stamp_seq);
2631 	sk->sk_stamp = kt;
2632 	write_sequnlock(&sk->sk_stamp_seq);
2633 #else
2634 	WRITE_ONCE(sk->sk_stamp, kt);
2635 #endif
2636 }
2637 
2638 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2639 			   struct sk_buff *skb);
2640 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2641 			     struct sk_buff *skb);
2642 
2643 static inline void
2644 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2645 {
2646 	ktime_t kt = skb->tstamp;
2647 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2648 
2649 	/*
2650 	 * generate control messages if
2651 	 * - receive time stamping in software requested
2652 	 * - software time stamp available and wanted
2653 	 * - hardware time stamps available and wanted
2654 	 */
2655 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2656 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2657 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2658 	    (hwtstamps->hwtstamp &&
2659 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2660 		__sock_recv_timestamp(msg, sk, skb);
2661 	else
2662 		sock_write_timestamp(sk, kt);
2663 
2664 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2665 		__sock_recv_wifi_status(msg, sk, skb);
2666 }
2667 
2668 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2669 		       struct sk_buff *skb);
2670 
2671 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2672 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2673 				   struct sk_buff *skb)
2674 {
2675 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2676 			   (1UL << SOCK_RCVTSTAMP)			| \
2677 			   (1UL << SOCK_RCVMARK))
2678 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2679 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2680 
2681 	if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2682 		__sock_recv_cmsgs(msg, sk, skb);
2683 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2684 		sock_write_timestamp(sk, skb->tstamp);
2685 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2686 		sock_write_timestamp(sk, 0);
2687 }
2688 
2689 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2690 
2691 /**
2692  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2693  * @sk:		socket sending this packet
2694  * @tsflags:	timestamping flags to use
2695  * @tx_flags:	completed with instructions for time stamping
2696  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2697  *
2698  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2699  */
2700 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2701 				      __u8 *tx_flags, __u32 *tskey)
2702 {
2703 	if (unlikely(tsflags)) {
2704 		__sock_tx_timestamp(tsflags, tx_flags);
2705 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2706 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2707 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2708 	}
2709 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2710 		*tx_flags |= SKBTX_WIFI_STATUS;
2711 }
2712 
2713 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2714 				     __u8 *tx_flags)
2715 {
2716 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2717 }
2718 
2719 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2720 {
2721 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2722 			   &skb_shinfo(skb)->tskey);
2723 }
2724 
2725 static inline bool sk_is_tcp(const struct sock *sk)
2726 {
2727 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2728 }
2729 
2730 /**
2731  * sk_eat_skb - Release a skb if it is no longer needed
2732  * @sk: socket to eat this skb from
2733  * @skb: socket buffer to eat
2734  *
2735  * This routine must be called with interrupts disabled or with the socket
2736  * locked so that the sk_buff queue operation is ok.
2737 */
2738 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2739 {
2740 	__skb_unlink(skb, &sk->sk_receive_queue);
2741 	__kfree_skb(skb);
2742 }
2743 
2744 static inline bool
2745 skb_sk_is_prefetched(struct sk_buff *skb)
2746 {
2747 #ifdef CONFIG_INET
2748 	return skb->destructor == sock_pfree;
2749 #else
2750 	return false;
2751 #endif /* CONFIG_INET */
2752 }
2753 
2754 /* This helper checks if a socket is a full socket,
2755  * ie _not_ a timewait or request socket.
2756  */
2757 static inline bool sk_fullsock(const struct sock *sk)
2758 {
2759 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2760 }
2761 
2762 static inline bool
2763 sk_is_refcounted(struct sock *sk)
2764 {
2765 	/* Only full sockets have sk->sk_flags. */
2766 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2767 }
2768 
2769 /**
2770  * skb_steal_sock - steal a socket from an sk_buff
2771  * @skb: sk_buff to steal the socket from
2772  * @refcounted: is set to true if the socket is reference-counted
2773  */
2774 static inline struct sock *
2775 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2776 {
2777 	if (skb->sk) {
2778 		struct sock *sk = skb->sk;
2779 
2780 		*refcounted = true;
2781 		if (skb_sk_is_prefetched(skb))
2782 			*refcounted = sk_is_refcounted(sk);
2783 		skb->destructor = NULL;
2784 		skb->sk = NULL;
2785 		return sk;
2786 	}
2787 	*refcounted = false;
2788 	return NULL;
2789 }
2790 
2791 /* Checks if this SKB belongs to an HW offloaded socket
2792  * and whether any SW fallbacks are required based on dev.
2793  * Check decrypted mark in case skb_orphan() cleared socket.
2794  */
2795 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2796 						   struct net_device *dev)
2797 {
2798 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2799 	struct sock *sk = skb->sk;
2800 
2801 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2802 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2803 #ifdef CONFIG_TLS_DEVICE
2804 	} else if (unlikely(skb->decrypted)) {
2805 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2806 		kfree_skb(skb);
2807 		skb = NULL;
2808 #endif
2809 	}
2810 #endif
2811 
2812 	return skb;
2813 }
2814 
2815 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2816  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2817  */
2818 static inline bool sk_listener(const struct sock *sk)
2819 {
2820 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2821 }
2822 
2823 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2824 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2825 		       int type);
2826 
2827 bool sk_ns_capable(const struct sock *sk,
2828 		   struct user_namespace *user_ns, int cap);
2829 bool sk_capable(const struct sock *sk, int cap);
2830 bool sk_net_capable(const struct sock *sk, int cap);
2831 
2832 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2833 
2834 /* Take into consideration the size of the struct sk_buff overhead in the
2835  * determination of these values, since that is non-constant across
2836  * platforms.  This makes socket queueing behavior and performance
2837  * not depend upon such differences.
2838  */
2839 #define _SK_MEM_PACKETS		256
2840 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2841 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2842 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2843 
2844 extern __u32 sysctl_wmem_max;
2845 extern __u32 sysctl_rmem_max;
2846 
2847 extern int sysctl_tstamp_allow_data;
2848 extern int sysctl_optmem_max;
2849 
2850 extern __u32 sysctl_wmem_default;
2851 extern __u32 sysctl_rmem_default;
2852 
2853 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2854 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2855 
2856 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2857 {
2858 	/* Does this proto have per netns sysctl_wmem ? */
2859 	if (proto->sysctl_wmem_offset)
2860 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2861 
2862 	return *proto->sysctl_wmem;
2863 }
2864 
2865 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2866 {
2867 	/* Does this proto have per netns sysctl_rmem ? */
2868 	if (proto->sysctl_rmem_offset)
2869 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2870 
2871 	return *proto->sysctl_rmem;
2872 }
2873 
2874 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2875  * Some wifi drivers need to tweak it to get more chunks.
2876  * They can use this helper from their ndo_start_xmit()
2877  */
2878 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2879 {
2880 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2881 		return;
2882 	WRITE_ONCE(sk->sk_pacing_shift, val);
2883 }
2884 
2885 /* if a socket is bound to a device, check that the given device
2886  * index is either the same or that the socket is bound to an L3
2887  * master device and the given device index is also enslaved to
2888  * that L3 master
2889  */
2890 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2891 {
2892 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2893 	int mdif;
2894 
2895 	if (!bound_dev_if || bound_dev_if == dif)
2896 		return true;
2897 
2898 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2899 	if (mdif && mdif == bound_dev_if)
2900 		return true;
2901 
2902 	return false;
2903 }
2904 
2905 void sock_def_readable(struct sock *sk);
2906 
2907 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2908 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2909 int sock_set_timestamping(struct sock *sk, int optname,
2910 			  struct so_timestamping timestamping);
2911 
2912 void sock_enable_timestamps(struct sock *sk);
2913 void sock_no_linger(struct sock *sk);
2914 void sock_set_keepalive(struct sock *sk);
2915 void sock_set_priority(struct sock *sk, u32 priority);
2916 void sock_set_rcvbuf(struct sock *sk, int val);
2917 void sock_set_mark(struct sock *sk, u32 val);
2918 void sock_set_reuseaddr(struct sock *sk);
2919 void sock_set_reuseport(struct sock *sk);
2920 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2921 
2922 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2923 
2924 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2925 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2926 			   sockptr_t optval, int optlen, bool old_timeval);
2927 
2928 static inline bool sk_is_readable(struct sock *sk)
2929 {
2930 	if (sk->sk_prot->sock_is_readable)
2931 		return sk->sk_prot->sock_is_readable(sk);
2932 	return false;
2933 }
2934 #endif	/* _SOCK_H */
2935