1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 #include <linux/wait.h> 62 #include <linux/cgroup-defs.h> 63 64 #include <linux/filter.h> 65 #include <linux/rculist_nulls.h> 66 #include <linux/poll.h> 67 68 #include <linux/atomic.h> 69 #include <linux/refcount.h> 70 #include <net/dst.h> 71 #include <net/checksum.h> 72 #include <net/tcp_states.h> 73 #include <linux/net_tstamp.h> 74 #include <net/smc.h> 75 76 /* 77 * This structure really needs to be cleaned up. 78 * Most of it is for TCP, and not used by any of 79 * the other protocols. 80 */ 81 82 /* Define this to get the SOCK_DBG debugging facility. */ 83 #define SOCK_DEBUGGING 84 #ifdef SOCK_DEBUGGING 85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 86 printk(KERN_DEBUG msg); } while (0) 87 #else 88 /* Validate arguments and do nothing */ 89 static inline __printf(2, 3) 90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 91 { 92 } 93 #endif 94 95 /* This is the per-socket lock. The spinlock provides a synchronization 96 * between user contexts and software interrupt processing, whereas the 97 * mini-semaphore synchronizes multiple users amongst themselves. 98 */ 99 typedef struct { 100 spinlock_t slock; 101 int owned; 102 wait_queue_head_t wq; 103 /* 104 * We express the mutex-alike socket_lock semantics 105 * to the lock validator by explicitly managing 106 * the slock as a lock variant (in addition to 107 * the slock itself): 108 */ 109 #ifdef CONFIG_DEBUG_LOCK_ALLOC 110 struct lockdep_map dep_map; 111 #endif 112 } socket_lock_t; 113 114 struct sock; 115 struct proto; 116 struct net; 117 118 typedef __u32 __bitwise __portpair; 119 typedef __u64 __bitwise __addrpair; 120 121 /** 122 * struct sock_common - minimal network layer representation of sockets 123 * @skc_daddr: Foreign IPv4 addr 124 * @skc_rcv_saddr: Bound local IPv4 addr 125 * @skc_hash: hash value used with various protocol lookup tables 126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 127 * @skc_dport: placeholder for inet_dport/tw_dport 128 * @skc_num: placeholder for inet_num/tw_num 129 * @skc_family: network address family 130 * @skc_state: Connection state 131 * @skc_reuse: %SO_REUSEADDR setting 132 * @skc_reuseport: %SO_REUSEPORT setting 133 * @skc_bound_dev_if: bound device index if != 0 134 * @skc_bind_node: bind hash linkage for various protocol lookup tables 135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 136 * @skc_prot: protocol handlers inside a network family 137 * @skc_net: reference to the network namespace of this socket 138 * @skc_node: main hash linkage for various protocol lookup tables 139 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 140 * @skc_tx_queue_mapping: tx queue number for this connection 141 * @skc_flags: place holder for sk_flags 142 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 143 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 144 * @skc_incoming_cpu: record/match cpu processing incoming packets 145 * @skc_refcnt: reference count 146 * 147 * This is the minimal network layer representation of sockets, the header 148 * for struct sock and struct inet_timewait_sock. 149 */ 150 struct sock_common { 151 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 152 * address on 64bit arches : cf INET_MATCH() 153 */ 154 union { 155 __addrpair skc_addrpair; 156 struct { 157 __be32 skc_daddr; 158 __be32 skc_rcv_saddr; 159 }; 160 }; 161 union { 162 unsigned int skc_hash; 163 __u16 skc_u16hashes[2]; 164 }; 165 /* skc_dport && skc_num must be grouped as well */ 166 union { 167 __portpair skc_portpair; 168 struct { 169 __be16 skc_dport; 170 __u16 skc_num; 171 }; 172 }; 173 174 unsigned short skc_family; 175 volatile unsigned char skc_state; 176 unsigned char skc_reuse:4; 177 unsigned char skc_reuseport:1; 178 unsigned char skc_ipv6only:1; 179 unsigned char skc_net_refcnt:1; 180 int skc_bound_dev_if; 181 union { 182 struct hlist_node skc_bind_node; 183 struct hlist_node skc_portaddr_node; 184 }; 185 struct proto *skc_prot; 186 possible_net_t skc_net; 187 188 #if IS_ENABLED(CONFIG_IPV6) 189 struct in6_addr skc_v6_daddr; 190 struct in6_addr skc_v6_rcv_saddr; 191 #endif 192 193 atomic64_t skc_cookie; 194 195 /* following fields are padding to force 196 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 197 * assuming IPV6 is enabled. We use this padding differently 198 * for different kind of 'sockets' 199 */ 200 union { 201 unsigned long skc_flags; 202 struct sock *skc_listener; /* request_sock */ 203 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 204 }; 205 /* 206 * fields between dontcopy_begin/dontcopy_end 207 * are not copied in sock_copy() 208 */ 209 /* private: */ 210 int skc_dontcopy_begin[0]; 211 /* public: */ 212 union { 213 struct hlist_node skc_node; 214 struct hlist_nulls_node skc_nulls_node; 215 }; 216 int skc_tx_queue_mapping; 217 union { 218 int skc_incoming_cpu; 219 u32 skc_rcv_wnd; 220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 221 }; 222 223 refcount_t skc_refcnt; 224 /* private: */ 225 int skc_dontcopy_end[0]; 226 union { 227 u32 skc_rxhash; 228 u32 skc_window_clamp; 229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 230 }; 231 /* public: */ 232 }; 233 234 /** 235 * struct sock - network layer representation of sockets 236 * @__sk_common: shared layout with inet_timewait_sock 237 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 238 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 239 * @sk_lock: synchronizer 240 * @sk_kern_sock: True if sock is using kernel lock classes 241 * @sk_rcvbuf: size of receive buffer in bytes 242 * @sk_wq: sock wait queue and async head 243 * @sk_rx_dst: receive input route used by early demux 244 * @sk_dst_cache: destination cache 245 * @sk_dst_pending_confirm: need to confirm neighbour 246 * @sk_policy: flow policy 247 * @sk_receive_queue: incoming packets 248 * @sk_wmem_alloc: transmit queue bytes committed 249 * @sk_tsq_flags: TCP Small Queues flags 250 * @sk_write_queue: Packet sending queue 251 * @sk_omem_alloc: "o" is "option" or "other" 252 * @sk_wmem_queued: persistent queue size 253 * @sk_forward_alloc: space allocated forward 254 * @sk_napi_id: id of the last napi context to receive data for sk 255 * @sk_ll_usec: usecs to busypoll when there is no data 256 * @sk_allocation: allocation mode 257 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 258 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 259 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 260 * @sk_sndbuf: size of send buffer in bytes 261 * @__sk_flags_offset: empty field used to determine location of bitfield 262 * @sk_padding: unused element for alignment 263 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 264 * @sk_no_check_rx: allow zero checksum in RX packets 265 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 266 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 267 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 268 * @sk_gso_max_size: Maximum GSO segment size to build 269 * @sk_gso_max_segs: Maximum number of GSO segments 270 * @sk_lingertime: %SO_LINGER l_linger setting 271 * @sk_backlog: always used with the per-socket spinlock held 272 * @sk_callback_lock: used with the callbacks in the end of this struct 273 * @sk_error_queue: rarely used 274 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 275 * IPV6_ADDRFORM for instance) 276 * @sk_err: last error 277 * @sk_err_soft: errors that don't cause failure but are the cause of a 278 * persistent failure not just 'timed out' 279 * @sk_drops: raw/udp drops counter 280 * @sk_ack_backlog: current listen backlog 281 * @sk_max_ack_backlog: listen backlog set in listen() 282 * @sk_uid: user id of owner 283 * @sk_priority: %SO_PRIORITY setting 284 * @sk_type: socket type (%SOCK_STREAM, etc) 285 * @sk_protocol: which protocol this socket belongs in this network family 286 * @sk_peer_pid: &struct pid for this socket's peer 287 * @sk_peer_cred: %SO_PEERCRED setting 288 * @sk_rcvlowat: %SO_RCVLOWAT setting 289 * @sk_rcvtimeo: %SO_RCVTIMEO setting 290 * @sk_sndtimeo: %SO_SNDTIMEO setting 291 * @sk_txhash: computed flow hash for use on transmit 292 * @sk_filter: socket filtering instructions 293 * @sk_timer: sock cleanup timer 294 * @sk_stamp: time stamp of last packet received 295 * @sk_tsflags: SO_TIMESTAMPING socket options 296 * @sk_tskey: counter to disambiguate concurrent tstamp requests 297 * @sk_socket: Identd and reporting IO signals 298 * @sk_user_data: RPC layer private data 299 * @sk_frag: cached page frag 300 * @sk_peek_off: current peek_offset value 301 * @sk_send_head: front of stuff to transmit 302 * @sk_security: used by security modules 303 * @sk_mark: generic packet mark 304 * @sk_cgrp_data: cgroup data for this cgroup 305 * @sk_memcg: this socket's memory cgroup association 306 * @sk_write_pending: a write to stream socket waits to start 307 * @sk_state_change: callback to indicate change in the state of the sock 308 * @sk_data_ready: callback to indicate there is data to be processed 309 * @sk_write_space: callback to indicate there is bf sending space available 310 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 311 * @sk_backlog_rcv: callback to process the backlog 312 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 313 * @sk_reuseport_cb: reuseport group container 314 * @sk_rcu: used during RCU grace period 315 */ 316 struct sock { 317 /* 318 * Now struct inet_timewait_sock also uses sock_common, so please just 319 * don't add nothing before this first member (__sk_common) --acme 320 */ 321 struct sock_common __sk_common; 322 #define sk_node __sk_common.skc_node 323 #define sk_nulls_node __sk_common.skc_nulls_node 324 #define sk_refcnt __sk_common.skc_refcnt 325 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 326 327 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 328 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 329 #define sk_hash __sk_common.skc_hash 330 #define sk_portpair __sk_common.skc_portpair 331 #define sk_num __sk_common.skc_num 332 #define sk_dport __sk_common.skc_dport 333 #define sk_addrpair __sk_common.skc_addrpair 334 #define sk_daddr __sk_common.skc_daddr 335 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 336 #define sk_family __sk_common.skc_family 337 #define sk_state __sk_common.skc_state 338 #define sk_reuse __sk_common.skc_reuse 339 #define sk_reuseport __sk_common.skc_reuseport 340 #define sk_ipv6only __sk_common.skc_ipv6only 341 #define sk_net_refcnt __sk_common.skc_net_refcnt 342 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 343 #define sk_bind_node __sk_common.skc_bind_node 344 #define sk_prot __sk_common.skc_prot 345 #define sk_net __sk_common.skc_net 346 #define sk_v6_daddr __sk_common.skc_v6_daddr 347 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 348 #define sk_cookie __sk_common.skc_cookie 349 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 350 #define sk_flags __sk_common.skc_flags 351 #define sk_rxhash __sk_common.skc_rxhash 352 353 socket_lock_t sk_lock; 354 atomic_t sk_drops; 355 int sk_rcvlowat; 356 struct sk_buff_head sk_error_queue; 357 struct sk_buff_head sk_receive_queue; 358 /* 359 * The backlog queue is special, it is always used with 360 * the per-socket spinlock held and requires low latency 361 * access. Therefore we special case it's implementation. 362 * Note : rmem_alloc is in this structure to fill a hole 363 * on 64bit arches, not because its logically part of 364 * backlog. 365 */ 366 struct { 367 atomic_t rmem_alloc; 368 int len; 369 struct sk_buff *head; 370 struct sk_buff *tail; 371 } sk_backlog; 372 #define sk_rmem_alloc sk_backlog.rmem_alloc 373 374 int sk_forward_alloc; 375 #ifdef CONFIG_NET_RX_BUSY_POLL 376 unsigned int sk_ll_usec; 377 /* ===== mostly read cache line ===== */ 378 unsigned int sk_napi_id; 379 #endif 380 int sk_rcvbuf; 381 382 struct sk_filter __rcu *sk_filter; 383 union { 384 struct socket_wq __rcu *sk_wq; 385 struct socket_wq *sk_wq_raw; 386 }; 387 #ifdef CONFIG_XFRM 388 struct xfrm_policy __rcu *sk_policy[2]; 389 #endif 390 struct dst_entry *sk_rx_dst; 391 struct dst_entry __rcu *sk_dst_cache; 392 atomic_t sk_omem_alloc; 393 int sk_sndbuf; 394 395 /* ===== cache line for TX ===== */ 396 int sk_wmem_queued; 397 refcount_t sk_wmem_alloc; 398 unsigned long sk_tsq_flags; 399 struct sk_buff *sk_send_head; 400 struct sk_buff_head sk_write_queue; 401 __s32 sk_peek_off; 402 int sk_write_pending; 403 __u32 sk_dst_pending_confirm; 404 u32 sk_pacing_status; /* see enum sk_pacing */ 405 long sk_sndtimeo; 406 struct timer_list sk_timer; 407 __u32 sk_priority; 408 __u32 sk_mark; 409 u32 sk_pacing_rate; /* bytes per second */ 410 u32 sk_max_pacing_rate; 411 struct page_frag sk_frag; 412 netdev_features_t sk_route_caps; 413 netdev_features_t sk_route_nocaps; 414 int sk_gso_type; 415 unsigned int sk_gso_max_size; 416 gfp_t sk_allocation; 417 __u32 sk_txhash; 418 419 /* 420 * Because of non atomicity rules, all 421 * changes are protected by socket lock. 422 */ 423 unsigned int __sk_flags_offset[0]; 424 #ifdef __BIG_ENDIAN_BITFIELD 425 #define SK_FL_PROTO_SHIFT 16 426 #define SK_FL_PROTO_MASK 0x00ff0000 427 428 #define SK_FL_TYPE_SHIFT 0 429 #define SK_FL_TYPE_MASK 0x0000ffff 430 #else 431 #define SK_FL_PROTO_SHIFT 8 432 #define SK_FL_PROTO_MASK 0x0000ff00 433 434 #define SK_FL_TYPE_SHIFT 16 435 #define SK_FL_TYPE_MASK 0xffff0000 436 #endif 437 438 kmemcheck_bitfield_begin(flags); 439 unsigned int sk_padding : 1, 440 sk_kern_sock : 1, 441 sk_no_check_tx : 1, 442 sk_no_check_rx : 1, 443 sk_userlocks : 4, 444 sk_protocol : 8, 445 sk_type : 16; 446 #define SK_PROTOCOL_MAX U8_MAX 447 kmemcheck_bitfield_end(flags); 448 449 u16 sk_gso_max_segs; 450 unsigned long sk_lingertime; 451 struct proto *sk_prot_creator; 452 rwlock_t sk_callback_lock; 453 int sk_err, 454 sk_err_soft; 455 u32 sk_ack_backlog; 456 u32 sk_max_ack_backlog; 457 kuid_t sk_uid; 458 struct pid *sk_peer_pid; 459 const struct cred *sk_peer_cred; 460 long sk_rcvtimeo; 461 ktime_t sk_stamp; 462 u16 sk_tsflags; 463 u8 sk_shutdown; 464 u32 sk_tskey; 465 struct socket *sk_socket; 466 void *sk_user_data; 467 #ifdef CONFIG_SECURITY 468 void *sk_security; 469 #endif 470 struct sock_cgroup_data sk_cgrp_data; 471 struct mem_cgroup *sk_memcg; 472 void (*sk_state_change)(struct sock *sk); 473 void (*sk_data_ready)(struct sock *sk); 474 void (*sk_write_space)(struct sock *sk); 475 void (*sk_error_report)(struct sock *sk); 476 int (*sk_backlog_rcv)(struct sock *sk, 477 struct sk_buff *skb); 478 void (*sk_destruct)(struct sock *sk); 479 struct sock_reuseport __rcu *sk_reuseport_cb; 480 struct rcu_head sk_rcu; 481 }; 482 483 enum sk_pacing { 484 SK_PACING_NONE = 0, 485 SK_PACING_NEEDED = 1, 486 SK_PACING_FQ = 2, 487 }; 488 489 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 490 491 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 492 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 493 494 /* 495 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 496 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 497 * on a socket means that the socket will reuse everybody else's port 498 * without looking at the other's sk_reuse value. 499 */ 500 501 #define SK_NO_REUSE 0 502 #define SK_CAN_REUSE 1 503 #define SK_FORCE_REUSE 2 504 505 int sk_set_peek_off(struct sock *sk, int val); 506 507 static inline int sk_peek_offset(struct sock *sk, int flags) 508 { 509 if (unlikely(flags & MSG_PEEK)) { 510 return READ_ONCE(sk->sk_peek_off); 511 } 512 513 return 0; 514 } 515 516 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 517 { 518 s32 off = READ_ONCE(sk->sk_peek_off); 519 520 if (unlikely(off >= 0)) { 521 off = max_t(s32, off - val, 0); 522 WRITE_ONCE(sk->sk_peek_off, off); 523 } 524 } 525 526 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 527 { 528 sk_peek_offset_bwd(sk, -val); 529 } 530 531 /* 532 * Hashed lists helper routines 533 */ 534 static inline struct sock *sk_entry(const struct hlist_node *node) 535 { 536 return hlist_entry(node, struct sock, sk_node); 537 } 538 539 static inline struct sock *__sk_head(const struct hlist_head *head) 540 { 541 return hlist_entry(head->first, struct sock, sk_node); 542 } 543 544 static inline struct sock *sk_head(const struct hlist_head *head) 545 { 546 return hlist_empty(head) ? NULL : __sk_head(head); 547 } 548 549 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 550 { 551 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 552 } 553 554 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 555 { 556 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 557 } 558 559 static inline struct sock *sk_next(const struct sock *sk) 560 { 561 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 562 } 563 564 static inline struct sock *sk_nulls_next(const struct sock *sk) 565 { 566 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 567 hlist_nulls_entry(sk->sk_nulls_node.next, 568 struct sock, sk_nulls_node) : 569 NULL; 570 } 571 572 static inline bool sk_unhashed(const struct sock *sk) 573 { 574 return hlist_unhashed(&sk->sk_node); 575 } 576 577 static inline bool sk_hashed(const struct sock *sk) 578 { 579 return !sk_unhashed(sk); 580 } 581 582 static inline void sk_node_init(struct hlist_node *node) 583 { 584 node->pprev = NULL; 585 } 586 587 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 588 { 589 node->pprev = NULL; 590 } 591 592 static inline void __sk_del_node(struct sock *sk) 593 { 594 __hlist_del(&sk->sk_node); 595 } 596 597 /* NB: equivalent to hlist_del_init_rcu */ 598 static inline bool __sk_del_node_init(struct sock *sk) 599 { 600 if (sk_hashed(sk)) { 601 __sk_del_node(sk); 602 sk_node_init(&sk->sk_node); 603 return true; 604 } 605 return false; 606 } 607 608 /* Grab socket reference count. This operation is valid only 609 when sk is ALREADY grabbed f.e. it is found in hash table 610 or a list and the lookup is made under lock preventing hash table 611 modifications. 612 */ 613 614 static __always_inline void sock_hold(struct sock *sk) 615 { 616 refcount_inc(&sk->sk_refcnt); 617 } 618 619 /* Ungrab socket in the context, which assumes that socket refcnt 620 cannot hit zero, f.e. it is true in context of any socketcall. 621 */ 622 static __always_inline void __sock_put(struct sock *sk) 623 { 624 refcount_dec(&sk->sk_refcnt); 625 } 626 627 static inline bool sk_del_node_init(struct sock *sk) 628 { 629 bool rc = __sk_del_node_init(sk); 630 631 if (rc) { 632 /* paranoid for a while -acme */ 633 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 634 __sock_put(sk); 635 } 636 return rc; 637 } 638 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 639 640 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 641 { 642 if (sk_hashed(sk)) { 643 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 644 return true; 645 } 646 return false; 647 } 648 649 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 650 { 651 bool rc = __sk_nulls_del_node_init_rcu(sk); 652 653 if (rc) { 654 /* paranoid for a while -acme */ 655 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 656 __sock_put(sk); 657 } 658 return rc; 659 } 660 661 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 662 { 663 hlist_add_head(&sk->sk_node, list); 664 } 665 666 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 667 { 668 sock_hold(sk); 669 __sk_add_node(sk, list); 670 } 671 672 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 673 { 674 sock_hold(sk); 675 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 676 sk->sk_family == AF_INET6) 677 hlist_add_tail_rcu(&sk->sk_node, list); 678 else 679 hlist_add_head_rcu(&sk->sk_node, list); 680 } 681 682 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 683 { 684 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 685 sk->sk_family == AF_INET6) 686 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 687 else 688 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 689 } 690 691 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 692 { 693 sock_hold(sk); 694 __sk_nulls_add_node_rcu(sk, list); 695 } 696 697 static inline void __sk_del_bind_node(struct sock *sk) 698 { 699 __hlist_del(&sk->sk_bind_node); 700 } 701 702 static inline void sk_add_bind_node(struct sock *sk, 703 struct hlist_head *list) 704 { 705 hlist_add_head(&sk->sk_bind_node, list); 706 } 707 708 #define sk_for_each(__sk, list) \ 709 hlist_for_each_entry(__sk, list, sk_node) 710 #define sk_for_each_rcu(__sk, list) \ 711 hlist_for_each_entry_rcu(__sk, list, sk_node) 712 #define sk_nulls_for_each(__sk, node, list) \ 713 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 714 #define sk_nulls_for_each_rcu(__sk, node, list) \ 715 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 716 #define sk_for_each_from(__sk) \ 717 hlist_for_each_entry_from(__sk, sk_node) 718 #define sk_nulls_for_each_from(__sk, node) \ 719 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 720 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 721 #define sk_for_each_safe(__sk, tmp, list) \ 722 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 723 #define sk_for_each_bound(__sk, list) \ 724 hlist_for_each_entry(__sk, list, sk_bind_node) 725 726 /** 727 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 728 * @tpos: the type * to use as a loop cursor. 729 * @pos: the &struct hlist_node to use as a loop cursor. 730 * @head: the head for your list. 731 * @offset: offset of hlist_node within the struct. 732 * 733 */ 734 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 735 for (pos = rcu_dereference((head)->first); \ 736 pos != NULL && \ 737 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 738 pos = rcu_dereference(pos->next)) 739 740 static inline struct user_namespace *sk_user_ns(struct sock *sk) 741 { 742 /* Careful only use this in a context where these parameters 743 * can not change and must all be valid, such as recvmsg from 744 * userspace. 745 */ 746 return sk->sk_socket->file->f_cred->user_ns; 747 } 748 749 /* Sock flags */ 750 enum sock_flags { 751 SOCK_DEAD, 752 SOCK_DONE, 753 SOCK_URGINLINE, 754 SOCK_KEEPOPEN, 755 SOCK_LINGER, 756 SOCK_DESTROY, 757 SOCK_BROADCAST, 758 SOCK_TIMESTAMP, 759 SOCK_ZAPPED, 760 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 761 SOCK_DBG, /* %SO_DEBUG setting */ 762 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 763 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 764 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 765 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 766 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 767 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 768 SOCK_FASYNC, /* fasync() active */ 769 SOCK_RXQ_OVFL, 770 SOCK_ZEROCOPY, /* buffers from userspace */ 771 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 772 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 773 * Will use last 4 bytes of packet sent from 774 * user-space instead. 775 */ 776 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 777 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 778 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 779 }; 780 781 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 782 783 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 784 { 785 nsk->sk_flags = osk->sk_flags; 786 } 787 788 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 789 { 790 __set_bit(flag, &sk->sk_flags); 791 } 792 793 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 794 { 795 __clear_bit(flag, &sk->sk_flags); 796 } 797 798 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 799 { 800 return test_bit(flag, &sk->sk_flags); 801 } 802 803 #ifdef CONFIG_NET 804 extern struct static_key memalloc_socks; 805 static inline int sk_memalloc_socks(void) 806 { 807 return static_key_false(&memalloc_socks); 808 } 809 #else 810 811 static inline int sk_memalloc_socks(void) 812 { 813 return 0; 814 } 815 816 #endif 817 818 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 819 { 820 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 821 } 822 823 static inline void sk_acceptq_removed(struct sock *sk) 824 { 825 sk->sk_ack_backlog--; 826 } 827 828 static inline void sk_acceptq_added(struct sock *sk) 829 { 830 sk->sk_ack_backlog++; 831 } 832 833 static inline bool sk_acceptq_is_full(const struct sock *sk) 834 { 835 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 836 } 837 838 /* 839 * Compute minimal free write space needed to queue new packets. 840 */ 841 static inline int sk_stream_min_wspace(const struct sock *sk) 842 { 843 return sk->sk_wmem_queued >> 1; 844 } 845 846 static inline int sk_stream_wspace(const struct sock *sk) 847 { 848 return sk->sk_sndbuf - sk->sk_wmem_queued; 849 } 850 851 void sk_stream_write_space(struct sock *sk); 852 853 /* OOB backlog add */ 854 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 855 { 856 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 857 skb_dst_force_safe(skb); 858 859 if (!sk->sk_backlog.tail) 860 sk->sk_backlog.head = skb; 861 else 862 sk->sk_backlog.tail->next = skb; 863 864 sk->sk_backlog.tail = skb; 865 skb->next = NULL; 866 } 867 868 /* 869 * Take into account size of receive queue and backlog queue 870 * Do not take into account this skb truesize, 871 * to allow even a single big packet to come. 872 */ 873 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 874 { 875 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 876 877 return qsize > limit; 878 } 879 880 /* The per-socket spinlock must be held here. */ 881 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 882 unsigned int limit) 883 { 884 if (sk_rcvqueues_full(sk, limit)) 885 return -ENOBUFS; 886 887 /* 888 * If the skb was allocated from pfmemalloc reserves, only 889 * allow SOCK_MEMALLOC sockets to use it as this socket is 890 * helping free memory 891 */ 892 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 893 return -ENOMEM; 894 895 __sk_add_backlog(sk, skb); 896 sk->sk_backlog.len += skb->truesize; 897 return 0; 898 } 899 900 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 901 902 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 903 { 904 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 905 return __sk_backlog_rcv(sk, skb); 906 907 return sk->sk_backlog_rcv(sk, skb); 908 } 909 910 static inline void sk_incoming_cpu_update(struct sock *sk) 911 { 912 int cpu = raw_smp_processor_id(); 913 914 if (unlikely(sk->sk_incoming_cpu != cpu)) 915 sk->sk_incoming_cpu = cpu; 916 } 917 918 static inline void sock_rps_record_flow_hash(__u32 hash) 919 { 920 #ifdef CONFIG_RPS 921 struct rps_sock_flow_table *sock_flow_table; 922 923 rcu_read_lock(); 924 sock_flow_table = rcu_dereference(rps_sock_flow_table); 925 rps_record_sock_flow(sock_flow_table, hash); 926 rcu_read_unlock(); 927 #endif 928 } 929 930 static inline void sock_rps_record_flow(const struct sock *sk) 931 { 932 #ifdef CONFIG_RPS 933 if (static_key_false(&rfs_needed)) { 934 /* Reading sk->sk_rxhash might incur an expensive cache line 935 * miss. 936 * 937 * TCP_ESTABLISHED does cover almost all states where RFS 938 * might be useful, and is cheaper [1] than testing : 939 * IPv4: inet_sk(sk)->inet_daddr 940 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 941 * OR an additional socket flag 942 * [1] : sk_state and sk_prot are in the same cache line. 943 */ 944 if (sk->sk_state == TCP_ESTABLISHED) 945 sock_rps_record_flow_hash(sk->sk_rxhash); 946 } 947 #endif 948 } 949 950 static inline void sock_rps_save_rxhash(struct sock *sk, 951 const struct sk_buff *skb) 952 { 953 #ifdef CONFIG_RPS 954 if (unlikely(sk->sk_rxhash != skb->hash)) 955 sk->sk_rxhash = skb->hash; 956 #endif 957 } 958 959 static inline void sock_rps_reset_rxhash(struct sock *sk) 960 { 961 #ifdef CONFIG_RPS 962 sk->sk_rxhash = 0; 963 #endif 964 } 965 966 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 967 ({ int __rc; \ 968 release_sock(__sk); \ 969 __rc = __condition; \ 970 if (!__rc) { \ 971 *(__timeo) = wait_woken(__wait, \ 972 TASK_INTERRUPTIBLE, \ 973 *(__timeo)); \ 974 } \ 975 sched_annotate_sleep(); \ 976 lock_sock(__sk); \ 977 __rc = __condition; \ 978 __rc; \ 979 }) 980 981 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 982 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 983 void sk_stream_wait_close(struct sock *sk, long timeo_p); 984 int sk_stream_error(struct sock *sk, int flags, int err); 985 void sk_stream_kill_queues(struct sock *sk); 986 void sk_set_memalloc(struct sock *sk); 987 void sk_clear_memalloc(struct sock *sk); 988 989 void __sk_flush_backlog(struct sock *sk); 990 991 static inline bool sk_flush_backlog(struct sock *sk) 992 { 993 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 994 __sk_flush_backlog(sk); 995 return true; 996 } 997 return false; 998 } 999 1000 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1001 1002 struct request_sock_ops; 1003 struct timewait_sock_ops; 1004 struct inet_hashinfo; 1005 struct raw_hashinfo; 1006 struct smc_hashinfo; 1007 struct module; 1008 1009 /* 1010 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1011 * un-modified. Special care is taken when initializing object to zero. 1012 */ 1013 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1014 { 1015 if (offsetof(struct sock, sk_node.next) != 0) 1016 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1017 memset(&sk->sk_node.pprev, 0, 1018 size - offsetof(struct sock, sk_node.pprev)); 1019 } 1020 1021 /* Networking protocol blocks we attach to sockets. 1022 * socket layer -> transport layer interface 1023 */ 1024 struct proto { 1025 void (*close)(struct sock *sk, 1026 long timeout); 1027 int (*connect)(struct sock *sk, 1028 struct sockaddr *uaddr, 1029 int addr_len); 1030 int (*disconnect)(struct sock *sk, int flags); 1031 1032 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1033 bool kern); 1034 1035 int (*ioctl)(struct sock *sk, int cmd, 1036 unsigned long arg); 1037 int (*init)(struct sock *sk); 1038 void (*destroy)(struct sock *sk); 1039 void (*shutdown)(struct sock *sk, int how); 1040 int (*setsockopt)(struct sock *sk, int level, 1041 int optname, char __user *optval, 1042 unsigned int optlen); 1043 int (*getsockopt)(struct sock *sk, int level, 1044 int optname, char __user *optval, 1045 int __user *option); 1046 void (*keepalive)(struct sock *sk, int valbool); 1047 #ifdef CONFIG_COMPAT 1048 int (*compat_setsockopt)(struct sock *sk, 1049 int level, 1050 int optname, char __user *optval, 1051 unsigned int optlen); 1052 int (*compat_getsockopt)(struct sock *sk, 1053 int level, 1054 int optname, char __user *optval, 1055 int __user *option); 1056 int (*compat_ioctl)(struct sock *sk, 1057 unsigned int cmd, unsigned long arg); 1058 #endif 1059 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1060 size_t len); 1061 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1062 size_t len, int noblock, int flags, 1063 int *addr_len); 1064 int (*sendpage)(struct sock *sk, struct page *page, 1065 int offset, size_t size, int flags); 1066 int (*bind)(struct sock *sk, 1067 struct sockaddr *uaddr, int addr_len); 1068 1069 int (*backlog_rcv) (struct sock *sk, 1070 struct sk_buff *skb); 1071 1072 void (*release_cb)(struct sock *sk); 1073 1074 /* Keeping track of sk's, looking them up, and port selection methods. */ 1075 int (*hash)(struct sock *sk); 1076 void (*unhash)(struct sock *sk); 1077 void (*rehash)(struct sock *sk); 1078 int (*get_port)(struct sock *sk, unsigned short snum); 1079 1080 /* Keeping track of sockets in use */ 1081 #ifdef CONFIG_PROC_FS 1082 unsigned int inuse_idx; 1083 #endif 1084 1085 bool (*stream_memory_free)(const struct sock *sk); 1086 /* Memory pressure */ 1087 void (*enter_memory_pressure)(struct sock *sk); 1088 void (*leave_memory_pressure)(struct sock *sk); 1089 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1090 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1091 /* 1092 * Pressure flag: try to collapse. 1093 * Technical note: it is used by multiple contexts non atomically. 1094 * All the __sk_mem_schedule() is of this nature: accounting 1095 * is strict, actions are advisory and have some latency. 1096 */ 1097 unsigned long *memory_pressure; 1098 long *sysctl_mem; 1099 int *sysctl_wmem; 1100 int *sysctl_rmem; 1101 int max_header; 1102 bool no_autobind; 1103 1104 struct kmem_cache *slab; 1105 unsigned int obj_size; 1106 int slab_flags; 1107 1108 struct percpu_counter *orphan_count; 1109 1110 struct request_sock_ops *rsk_prot; 1111 struct timewait_sock_ops *twsk_prot; 1112 1113 union { 1114 struct inet_hashinfo *hashinfo; 1115 struct udp_table *udp_table; 1116 struct raw_hashinfo *raw_hash; 1117 struct smc_hashinfo *smc_hash; 1118 } h; 1119 1120 struct module *owner; 1121 1122 char name[32]; 1123 1124 struct list_head node; 1125 #ifdef SOCK_REFCNT_DEBUG 1126 atomic_t socks; 1127 #endif 1128 int (*diag_destroy)(struct sock *sk, int err); 1129 } __randomize_layout; 1130 1131 int proto_register(struct proto *prot, int alloc_slab); 1132 void proto_unregister(struct proto *prot); 1133 1134 #ifdef SOCK_REFCNT_DEBUG 1135 static inline void sk_refcnt_debug_inc(struct sock *sk) 1136 { 1137 atomic_inc(&sk->sk_prot->socks); 1138 } 1139 1140 static inline void sk_refcnt_debug_dec(struct sock *sk) 1141 { 1142 atomic_dec(&sk->sk_prot->socks); 1143 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1144 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1145 } 1146 1147 static inline void sk_refcnt_debug_release(const struct sock *sk) 1148 { 1149 if (refcount_read(&sk->sk_refcnt) != 1) 1150 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1151 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1152 } 1153 #else /* SOCK_REFCNT_DEBUG */ 1154 #define sk_refcnt_debug_inc(sk) do { } while (0) 1155 #define sk_refcnt_debug_dec(sk) do { } while (0) 1156 #define sk_refcnt_debug_release(sk) do { } while (0) 1157 #endif /* SOCK_REFCNT_DEBUG */ 1158 1159 static inline bool sk_stream_memory_free(const struct sock *sk) 1160 { 1161 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1162 return false; 1163 1164 return sk->sk_prot->stream_memory_free ? 1165 sk->sk_prot->stream_memory_free(sk) : true; 1166 } 1167 1168 static inline bool sk_stream_is_writeable(const struct sock *sk) 1169 { 1170 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1171 sk_stream_memory_free(sk); 1172 } 1173 1174 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1175 struct cgroup *ancestor) 1176 { 1177 #ifdef CONFIG_SOCK_CGROUP_DATA 1178 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1179 ancestor); 1180 #else 1181 return -ENOTSUPP; 1182 #endif 1183 } 1184 1185 static inline bool sk_has_memory_pressure(const struct sock *sk) 1186 { 1187 return sk->sk_prot->memory_pressure != NULL; 1188 } 1189 1190 static inline bool sk_under_memory_pressure(const struct sock *sk) 1191 { 1192 if (!sk->sk_prot->memory_pressure) 1193 return false; 1194 1195 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1196 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1197 return true; 1198 1199 return !!*sk->sk_prot->memory_pressure; 1200 } 1201 1202 static inline long 1203 sk_memory_allocated(const struct sock *sk) 1204 { 1205 return atomic_long_read(sk->sk_prot->memory_allocated); 1206 } 1207 1208 static inline long 1209 sk_memory_allocated_add(struct sock *sk, int amt) 1210 { 1211 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1212 } 1213 1214 static inline void 1215 sk_memory_allocated_sub(struct sock *sk, int amt) 1216 { 1217 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1218 } 1219 1220 static inline void sk_sockets_allocated_dec(struct sock *sk) 1221 { 1222 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1223 } 1224 1225 static inline void sk_sockets_allocated_inc(struct sock *sk) 1226 { 1227 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1228 } 1229 1230 static inline int 1231 sk_sockets_allocated_read_positive(struct sock *sk) 1232 { 1233 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1234 } 1235 1236 static inline int 1237 proto_sockets_allocated_sum_positive(struct proto *prot) 1238 { 1239 return percpu_counter_sum_positive(prot->sockets_allocated); 1240 } 1241 1242 static inline long 1243 proto_memory_allocated(struct proto *prot) 1244 { 1245 return atomic_long_read(prot->memory_allocated); 1246 } 1247 1248 static inline bool 1249 proto_memory_pressure(struct proto *prot) 1250 { 1251 if (!prot->memory_pressure) 1252 return false; 1253 return !!*prot->memory_pressure; 1254 } 1255 1256 1257 #ifdef CONFIG_PROC_FS 1258 /* Called with local bh disabled */ 1259 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1260 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1261 #else 1262 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1263 int inc) 1264 { 1265 } 1266 #endif 1267 1268 1269 /* With per-bucket locks this operation is not-atomic, so that 1270 * this version is not worse. 1271 */ 1272 static inline int __sk_prot_rehash(struct sock *sk) 1273 { 1274 sk->sk_prot->unhash(sk); 1275 return sk->sk_prot->hash(sk); 1276 } 1277 1278 /* About 10 seconds */ 1279 #define SOCK_DESTROY_TIME (10*HZ) 1280 1281 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1282 #define PROT_SOCK 1024 1283 1284 #define SHUTDOWN_MASK 3 1285 #define RCV_SHUTDOWN 1 1286 #define SEND_SHUTDOWN 2 1287 1288 #define SOCK_SNDBUF_LOCK 1 1289 #define SOCK_RCVBUF_LOCK 2 1290 #define SOCK_BINDADDR_LOCK 4 1291 #define SOCK_BINDPORT_LOCK 8 1292 1293 struct socket_alloc { 1294 struct socket socket; 1295 struct inode vfs_inode; 1296 }; 1297 1298 static inline struct socket *SOCKET_I(struct inode *inode) 1299 { 1300 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1301 } 1302 1303 static inline struct inode *SOCK_INODE(struct socket *socket) 1304 { 1305 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1306 } 1307 1308 /* 1309 * Functions for memory accounting 1310 */ 1311 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1312 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1313 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1314 void __sk_mem_reclaim(struct sock *sk, int amount); 1315 1316 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1317 * do not necessarily have 16x time more memory than 4KB ones. 1318 */ 1319 #define SK_MEM_QUANTUM 4096 1320 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1321 #define SK_MEM_SEND 0 1322 #define SK_MEM_RECV 1 1323 1324 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1325 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1326 { 1327 long val = sk->sk_prot->sysctl_mem[index]; 1328 1329 #if PAGE_SIZE > SK_MEM_QUANTUM 1330 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1331 #elif PAGE_SIZE < SK_MEM_QUANTUM 1332 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1333 #endif 1334 return val; 1335 } 1336 1337 static inline int sk_mem_pages(int amt) 1338 { 1339 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1340 } 1341 1342 static inline bool sk_has_account(struct sock *sk) 1343 { 1344 /* return true if protocol supports memory accounting */ 1345 return !!sk->sk_prot->memory_allocated; 1346 } 1347 1348 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1349 { 1350 if (!sk_has_account(sk)) 1351 return true; 1352 return size <= sk->sk_forward_alloc || 1353 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1354 } 1355 1356 static inline bool 1357 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1358 { 1359 if (!sk_has_account(sk)) 1360 return true; 1361 return size<= sk->sk_forward_alloc || 1362 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1363 skb_pfmemalloc(skb); 1364 } 1365 1366 static inline void sk_mem_reclaim(struct sock *sk) 1367 { 1368 if (!sk_has_account(sk)) 1369 return; 1370 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1371 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1372 } 1373 1374 static inline void sk_mem_reclaim_partial(struct sock *sk) 1375 { 1376 if (!sk_has_account(sk)) 1377 return; 1378 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1379 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1380 } 1381 1382 static inline void sk_mem_charge(struct sock *sk, int size) 1383 { 1384 if (!sk_has_account(sk)) 1385 return; 1386 sk->sk_forward_alloc -= size; 1387 } 1388 1389 static inline void sk_mem_uncharge(struct sock *sk, int size) 1390 { 1391 if (!sk_has_account(sk)) 1392 return; 1393 sk->sk_forward_alloc += size; 1394 1395 /* Avoid a possible overflow. 1396 * TCP send queues can make this happen, if sk_mem_reclaim() 1397 * is not called and more than 2 GBytes are released at once. 1398 * 1399 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1400 * no need to hold that much forward allocation anyway. 1401 */ 1402 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1403 __sk_mem_reclaim(sk, 1 << 20); 1404 } 1405 1406 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1407 { 1408 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1409 sk->sk_wmem_queued -= skb->truesize; 1410 sk_mem_uncharge(sk, skb->truesize); 1411 __kfree_skb(skb); 1412 } 1413 1414 static inline void sock_release_ownership(struct sock *sk) 1415 { 1416 if (sk->sk_lock.owned) { 1417 sk->sk_lock.owned = 0; 1418 1419 /* The sk_lock has mutex_unlock() semantics: */ 1420 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1421 } 1422 } 1423 1424 /* 1425 * Macro so as to not evaluate some arguments when 1426 * lockdep is not enabled. 1427 * 1428 * Mark both the sk_lock and the sk_lock.slock as a 1429 * per-address-family lock class. 1430 */ 1431 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1432 do { \ 1433 sk->sk_lock.owned = 0; \ 1434 init_waitqueue_head(&sk->sk_lock.wq); \ 1435 spin_lock_init(&(sk)->sk_lock.slock); \ 1436 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1437 sizeof((sk)->sk_lock)); \ 1438 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1439 (skey), (sname)); \ 1440 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1441 } while (0) 1442 1443 #ifdef CONFIG_LOCKDEP 1444 static inline bool lockdep_sock_is_held(const struct sock *csk) 1445 { 1446 struct sock *sk = (struct sock *)csk; 1447 1448 return lockdep_is_held(&sk->sk_lock) || 1449 lockdep_is_held(&sk->sk_lock.slock); 1450 } 1451 #endif 1452 1453 void lock_sock_nested(struct sock *sk, int subclass); 1454 1455 static inline void lock_sock(struct sock *sk) 1456 { 1457 lock_sock_nested(sk, 0); 1458 } 1459 1460 void release_sock(struct sock *sk); 1461 1462 /* BH context may only use the following locking interface. */ 1463 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1464 #define bh_lock_sock_nested(__sk) \ 1465 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1466 SINGLE_DEPTH_NESTING) 1467 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1468 1469 bool lock_sock_fast(struct sock *sk); 1470 /** 1471 * unlock_sock_fast - complement of lock_sock_fast 1472 * @sk: socket 1473 * @slow: slow mode 1474 * 1475 * fast unlock socket for user context. 1476 * If slow mode is on, we call regular release_sock() 1477 */ 1478 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1479 { 1480 if (slow) 1481 release_sock(sk); 1482 else 1483 spin_unlock_bh(&sk->sk_lock.slock); 1484 } 1485 1486 /* Used by processes to "lock" a socket state, so that 1487 * interrupts and bottom half handlers won't change it 1488 * from under us. It essentially blocks any incoming 1489 * packets, so that we won't get any new data or any 1490 * packets that change the state of the socket. 1491 * 1492 * While locked, BH processing will add new packets to 1493 * the backlog queue. This queue is processed by the 1494 * owner of the socket lock right before it is released. 1495 * 1496 * Since ~2.3.5 it is also exclusive sleep lock serializing 1497 * accesses from user process context. 1498 */ 1499 1500 static inline void sock_owned_by_me(const struct sock *sk) 1501 { 1502 #ifdef CONFIG_LOCKDEP 1503 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1504 #endif 1505 } 1506 1507 static inline bool sock_owned_by_user(const struct sock *sk) 1508 { 1509 sock_owned_by_me(sk); 1510 return sk->sk_lock.owned; 1511 } 1512 1513 /* no reclassification while locks are held */ 1514 static inline bool sock_allow_reclassification(const struct sock *csk) 1515 { 1516 struct sock *sk = (struct sock *)csk; 1517 1518 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1519 } 1520 1521 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1522 struct proto *prot, int kern); 1523 void sk_free(struct sock *sk); 1524 void sk_destruct(struct sock *sk); 1525 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1526 void sk_free_unlock_clone(struct sock *sk); 1527 1528 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1529 gfp_t priority); 1530 void __sock_wfree(struct sk_buff *skb); 1531 void sock_wfree(struct sk_buff *skb); 1532 void skb_orphan_partial(struct sk_buff *skb); 1533 void sock_rfree(struct sk_buff *skb); 1534 void sock_efree(struct sk_buff *skb); 1535 #ifdef CONFIG_INET 1536 void sock_edemux(struct sk_buff *skb); 1537 #else 1538 #define sock_edemux sock_efree 1539 #endif 1540 1541 int sock_setsockopt(struct socket *sock, int level, int op, 1542 char __user *optval, unsigned int optlen); 1543 1544 int sock_getsockopt(struct socket *sock, int level, int op, 1545 char __user *optval, int __user *optlen); 1546 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1547 int noblock, int *errcode); 1548 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1549 unsigned long data_len, int noblock, 1550 int *errcode, int max_page_order); 1551 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1552 void sock_kfree_s(struct sock *sk, void *mem, int size); 1553 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1554 void sk_send_sigurg(struct sock *sk); 1555 1556 struct sockcm_cookie { 1557 u32 mark; 1558 u16 tsflags; 1559 }; 1560 1561 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1562 struct sockcm_cookie *sockc); 1563 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1564 struct sockcm_cookie *sockc); 1565 1566 /* 1567 * Functions to fill in entries in struct proto_ops when a protocol 1568 * does not implement a particular function. 1569 */ 1570 int sock_no_bind(struct socket *, struct sockaddr *, int); 1571 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1572 int sock_no_socketpair(struct socket *, struct socket *); 1573 int sock_no_accept(struct socket *, struct socket *, int, bool); 1574 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1575 unsigned int sock_no_poll(struct file *, struct socket *, 1576 struct poll_table_struct *); 1577 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1578 int sock_no_listen(struct socket *, int); 1579 int sock_no_shutdown(struct socket *, int); 1580 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1581 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1582 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1583 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1584 int sock_no_mmap(struct file *file, struct socket *sock, 1585 struct vm_area_struct *vma); 1586 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1587 size_t size, int flags); 1588 1589 /* 1590 * Functions to fill in entries in struct proto_ops when a protocol 1591 * uses the inet style. 1592 */ 1593 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1594 char __user *optval, int __user *optlen); 1595 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1596 int flags); 1597 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1598 char __user *optval, unsigned int optlen); 1599 int compat_sock_common_getsockopt(struct socket *sock, int level, 1600 int optname, char __user *optval, int __user *optlen); 1601 int compat_sock_common_setsockopt(struct socket *sock, int level, 1602 int optname, char __user *optval, unsigned int optlen); 1603 1604 void sk_common_release(struct sock *sk); 1605 1606 /* 1607 * Default socket callbacks and setup code 1608 */ 1609 1610 /* Initialise core socket variables */ 1611 void sock_init_data(struct socket *sock, struct sock *sk); 1612 1613 /* 1614 * Socket reference counting postulates. 1615 * 1616 * * Each user of socket SHOULD hold a reference count. 1617 * * Each access point to socket (an hash table bucket, reference from a list, 1618 * running timer, skb in flight MUST hold a reference count. 1619 * * When reference count hits 0, it means it will never increase back. 1620 * * When reference count hits 0, it means that no references from 1621 * outside exist to this socket and current process on current CPU 1622 * is last user and may/should destroy this socket. 1623 * * sk_free is called from any context: process, BH, IRQ. When 1624 * it is called, socket has no references from outside -> sk_free 1625 * may release descendant resources allocated by the socket, but 1626 * to the time when it is called, socket is NOT referenced by any 1627 * hash tables, lists etc. 1628 * * Packets, delivered from outside (from network or from another process) 1629 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1630 * when they sit in queue. Otherwise, packets will leak to hole, when 1631 * socket is looked up by one cpu and unhasing is made by another CPU. 1632 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1633 * (leak to backlog). Packet socket does all the processing inside 1634 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1635 * use separate SMP lock, so that they are prone too. 1636 */ 1637 1638 /* Ungrab socket and destroy it, if it was the last reference. */ 1639 static inline void sock_put(struct sock *sk) 1640 { 1641 if (refcount_dec_and_test(&sk->sk_refcnt)) 1642 sk_free(sk); 1643 } 1644 /* Generic version of sock_put(), dealing with all sockets 1645 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1646 */ 1647 void sock_gen_put(struct sock *sk); 1648 1649 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1650 unsigned int trim_cap, bool refcounted); 1651 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1652 const int nested) 1653 { 1654 return __sk_receive_skb(sk, skb, nested, 1, true); 1655 } 1656 1657 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1658 { 1659 sk->sk_tx_queue_mapping = tx_queue; 1660 } 1661 1662 static inline void sk_tx_queue_clear(struct sock *sk) 1663 { 1664 sk->sk_tx_queue_mapping = -1; 1665 } 1666 1667 static inline int sk_tx_queue_get(const struct sock *sk) 1668 { 1669 return sk ? sk->sk_tx_queue_mapping : -1; 1670 } 1671 1672 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1673 { 1674 sk_tx_queue_clear(sk); 1675 sk->sk_socket = sock; 1676 } 1677 1678 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1679 { 1680 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1681 return &rcu_dereference_raw(sk->sk_wq)->wait; 1682 } 1683 /* Detach socket from process context. 1684 * Announce socket dead, detach it from wait queue and inode. 1685 * Note that parent inode held reference count on this struct sock, 1686 * we do not release it in this function, because protocol 1687 * probably wants some additional cleanups or even continuing 1688 * to work with this socket (TCP). 1689 */ 1690 static inline void sock_orphan(struct sock *sk) 1691 { 1692 write_lock_bh(&sk->sk_callback_lock); 1693 sock_set_flag(sk, SOCK_DEAD); 1694 sk_set_socket(sk, NULL); 1695 sk->sk_wq = NULL; 1696 write_unlock_bh(&sk->sk_callback_lock); 1697 } 1698 1699 static inline void sock_graft(struct sock *sk, struct socket *parent) 1700 { 1701 WARN_ON(parent->sk); 1702 write_lock_bh(&sk->sk_callback_lock); 1703 sk->sk_wq = parent->wq; 1704 parent->sk = sk; 1705 sk_set_socket(sk, parent); 1706 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1707 security_sock_graft(sk, parent); 1708 write_unlock_bh(&sk->sk_callback_lock); 1709 } 1710 1711 kuid_t sock_i_uid(struct sock *sk); 1712 unsigned long sock_i_ino(struct sock *sk); 1713 1714 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1715 { 1716 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1717 } 1718 1719 static inline u32 net_tx_rndhash(void) 1720 { 1721 u32 v = prandom_u32(); 1722 1723 return v ?: 1; 1724 } 1725 1726 static inline void sk_set_txhash(struct sock *sk) 1727 { 1728 sk->sk_txhash = net_tx_rndhash(); 1729 } 1730 1731 static inline void sk_rethink_txhash(struct sock *sk) 1732 { 1733 if (sk->sk_txhash) 1734 sk_set_txhash(sk); 1735 } 1736 1737 static inline struct dst_entry * 1738 __sk_dst_get(struct sock *sk) 1739 { 1740 return rcu_dereference_check(sk->sk_dst_cache, 1741 lockdep_sock_is_held(sk)); 1742 } 1743 1744 static inline struct dst_entry * 1745 sk_dst_get(struct sock *sk) 1746 { 1747 struct dst_entry *dst; 1748 1749 rcu_read_lock(); 1750 dst = rcu_dereference(sk->sk_dst_cache); 1751 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1752 dst = NULL; 1753 rcu_read_unlock(); 1754 return dst; 1755 } 1756 1757 static inline void dst_negative_advice(struct sock *sk) 1758 { 1759 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1760 1761 sk_rethink_txhash(sk); 1762 1763 if (dst && dst->ops->negative_advice) { 1764 ndst = dst->ops->negative_advice(dst); 1765 1766 if (ndst != dst) { 1767 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1768 sk_tx_queue_clear(sk); 1769 sk->sk_dst_pending_confirm = 0; 1770 } 1771 } 1772 } 1773 1774 static inline void 1775 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1776 { 1777 struct dst_entry *old_dst; 1778 1779 sk_tx_queue_clear(sk); 1780 sk->sk_dst_pending_confirm = 0; 1781 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1782 lockdep_sock_is_held(sk)); 1783 rcu_assign_pointer(sk->sk_dst_cache, dst); 1784 dst_release(old_dst); 1785 } 1786 1787 static inline void 1788 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1789 { 1790 struct dst_entry *old_dst; 1791 1792 sk_tx_queue_clear(sk); 1793 sk->sk_dst_pending_confirm = 0; 1794 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1795 dst_release(old_dst); 1796 } 1797 1798 static inline void 1799 __sk_dst_reset(struct sock *sk) 1800 { 1801 __sk_dst_set(sk, NULL); 1802 } 1803 1804 static inline void 1805 sk_dst_reset(struct sock *sk) 1806 { 1807 sk_dst_set(sk, NULL); 1808 } 1809 1810 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1811 1812 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1813 1814 static inline void sk_dst_confirm(struct sock *sk) 1815 { 1816 if (!sk->sk_dst_pending_confirm) 1817 sk->sk_dst_pending_confirm = 1; 1818 } 1819 1820 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1821 { 1822 if (skb_get_dst_pending_confirm(skb)) { 1823 struct sock *sk = skb->sk; 1824 unsigned long now = jiffies; 1825 1826 /* avoid dirtying neighbour */ 1827 if (n->confirmed != now) 1828 n->confirmed = now; 1829 if (sk && sk->sk_dst_pending_confirm) 1830 sk->sk_dst_pending_confirm = 0; 1831 } 1832 } 1833 1834 bool sk_mc_loop(struct sock *sk); 1835 1836 static inline bool sk_can_gso(const struct sock *sk) 1837 { 1838 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1839 } 1840 1841 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1842 1843 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1844 { 1845 sk->sk_route_nocaps |= flags; 1846 sk->sk_route_caps &= ~flags; 1847 } 1848 1849 static inline bool sk_check_csum_caps(struct sock *sk) 1850 { 1851 return (sk->sk_route_caps & NETIF_F_HW_CSUM) || 1852 (sk->sk_family == PF_INET && 1853 (sk->sk_route_caps & NETIF_F_IP_CSUM)) || 1854 (sk->sk_family == PF_INET6 && 1855 (sk->sk_route_caps & NETIF_F_IPV6_CSUM)); 1856 } 1857 1858 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1859 struct iov_iter *from, char *to, 1860 int copy, int offset) 1861 { 1862 if (skb->ip_summed == CHECKSUM_NONE) { 1863 __wsum csum = 0; 1864 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 1865 return -EFAULT; 1866 skb->csum = csum_block_add(skb->csum, csum, offset); 1867 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1868 if (!copy_from_iter_full_nocache(to, copy, from)) 1869 return -EFAULT; 1870 } else if (!copy_from_iter_full(to, copy, from)) 1871 return -EFAULT; 1872 1873 return 0; 1874 } 1875 1876 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1877 struct iov_iter *from, int copy) 1878 { 1879 int err, offset = skb->len; 1880 1881 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1882 copy, offset); 1883 if (err) 1884 __skb_trim(skb, offset); 1885 1886 return err; 1887 } 1888 1889 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1890 struct sk_buff *skb, 1891 struct page *page, 1892 int off, int copy) 1893 { 1894 int err; 1895 1896 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1897 copy, skb->len); 1898 if (err) 1899 return err; 1900 1901 skb->len += copy; 1902 skb->data_len += copy; 1903 skb->truesize += copy; 1904 sk->sk_wmem_queued += copy; 1905 sk_mem_charge(sk, copy); 1906 return 0; 1907 } 1908 1909 /** 1910 * sk_wmem_alloc_get - returns write allocations 1911 * @sk: socket 1912 * 1913 * Returns sk_wmem_alloc minus initial offset of one 1914 */ 1915 static inline int sk_wmem_alloc_get(const struct sock *sk) 1916 { 1917 return refcount_read(&sk->sk_wmem_alloc) - 1; 1918 } 1919 1920 /** 1921 * sk_rmem_alloc_get - returns read allocations 1922 * @sk: socket 1923 * 1924 * Returns sk_rmem_alloc 1925 */ 1926 static inline int sk_rmem_alloc_get(const struct sock *sk) 1927 { 1928 return atomic_read(&sk->sk_rmem_alloc); 1929 } 1930 1931 /** 1932 * sk_has_allocations - check if allocations are outstanding 1933 * @sk: socket 1934 * 1935 * Returns true if socket has write or read allocations 1936 */ 1937 static inline bool sk_has_allocations(const struct sock *sk) 1938 { 1939 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1940 } 1941 1942 /** 1943 * skwq_has_sleeper - check if there are any waiting processes 1944 * @wq: struct socket_wq 1945 * 1946 * Returns true if socket_wq has waiting processes 1947 * 1948 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 1949 * barrier call. They were added due to the race found within the tcp code. 1950 * 1951 * Consider following tcp code paths:: 1952 * 1953 * CPU1 CPU2 1954 * sys_select receive packet 1955 * ... ... 1956 * __add_wait_queue update tp->rcv_nxt 1957 * ... ... 1958 * tp->rcv_nxt check sock_def_readable 1959 * ... { 1960 * schedule rcu_read_lock(); 1961 * wq = rcu_dereference(sk->sk_wq); 1962 * if (wq && waitqueue_active(&wq->wait)) 1963 * wake_up_interruptible(&wq->wait) 1964 * ... 1965 * } 1966 * 1967 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1968 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1969 * could then endup calling schedule and sleep forever if there are no more 1970 * data on the socket. 1971 * 1972 */ 1973 static inline bool skwq_has_sleeper(struct socket_wq *wq) 1974 { 1975 return wq && wq_has_sleeper(&wq->wait); 1976 } 1977 1978 /** 1979 * sock_poll_wait - place memory barrier behind the poll_wait call. 1980 * @filp: file 1981 * @wait_address: socket wait queue 1982 * @p: poll_table 1983 * 1984 * See the comments in the wq_has_sleeper function. 1985 */ 1986 static inline void sock_poll_wait(struct file *filp, 1987 wait_queue_head_t *wait_address, poll_table *p) 1988 { 1989 if (!poll_does_not_wait(p) && wait_address) { 1990 poll_wait(filp, wait_address, p); 1991 /* We need to be sure we are in sync with the 1992 * socket flags modification. 1993 * 1994 * This memory barrier is paired in the wq_has_sleeper. 1995 */ 1996 smp_mb(); 1997 } 1998 } 1999 2000 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2001 { 2002 if (sk->sk_txhash) { 2003 skb->l4_hash = 1; 2004 skb->hash = sk->sk_txhash; 2005 } 2006 } 2007 2008 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2009 2010 /* 2011 * Queue a received datagram if it will fit. Stream and sequenced 2012 * protocols can't normally use this as they need to fit buffers in 2013 * and play with them. 2014 * 2015 * Inlined as it's very short and called for pretty much every 2016 * packet ever received. 2017 */ 2018 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2019 { 2020 skb_orphan(skb); 2021 skb->sk = sk; 2022 skb->destructor = sock_rfree; 2023 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2024 sk_mem_charge(sk, skb->truesize); 2025 } 2026 2027 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2028 unsigned long expires); 2029 2030 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2031 2032 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2033 struct sk_buff *skb, unsigned int flags, 2034 void (*destructor)(struct sock *sk, 2035 struct sk_buff *skb)); 2036 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2037 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2038 2039 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2040 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2041 2042 /* 2043 * Recover an error report and clear atomically 2044 */ 2045 2046 static inline int sock_error(struct sock *sk) 2047 { 2048 int err; 2049 if (likely(!sk->sk_err)) 2050 return 0; 2051 err = xchg(&sk->sk_err, 0); 2052 return -err; 2053 } 2054 2055 static inline unsigned long sock_wspace(struct sock *sk) 2056 { 2057 int amt = 0; 2058 2059 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2060 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2061 if (amt < 0) 2062 amt = 0; 2063 } 2064 return amt; 2065 } 2066 2067 /* Note: 2068 * We use sk->sk_wq_raw, from contexts knowing this 2069 * pointer is not NULL and cannot disappear/change. 2070 */ 2071 static inline void sk_set_bit(int nr, struct sock *sk) 2072 { 2073 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2074 !sock_flag(sk, SOCK_FASYNC)) 2075 return; 2076 2077 set_bit(nr, &sk->sk_wq_raw->flags); 2078 } 2079 2080 static inline void sk_clear_bit(int nr, struct sock *sk) 2081 { 2082 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2083 !sock_flag(sk, SOCK_FASYNC)) 2084 return; 2085 2086 clear_bit(nr, &sk->sk_wq_raw->flags); 2087 } 2088 2089 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2090 { 2091 if (sock_flag(sk, SOCK_FASYNC)) { 2092 rcu_read_lock(); 2093 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2094 rcu_read_unlock(); 2095 } 2096 } 2097 2098 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2099 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2100 * Note: for send buffers, TCP works better if we can build two skbs at 2101 * minimum. 2102 */ 2103 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2104 2105 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2106 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2107 2108 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2109 { 2110 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2111 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2112 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2113 } 2114 } 2115 2116 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2117 bool force_schedule); 2118 2119 /** 2120 * sk_page_frag - return an appropriate page_frag 2121 * @sk: socket 2122 * 2123 * If socket allocation mode allows current thread to sleep, it means its 2124 * safe to use the per task page_frag instead of the per socket one. 2125 */ 2126 static inline struct page_frag *sk_page_frag(struct sock *sk) 2127 { 2128 if (gfpflags_allow_blocking(sk->sk_allocation)) 2129 return ¤t->task_frag; 2130 2131 return &sk->sk_frag; 2132 } 2133 2134 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2135 2136 /* 2137 * Default write policy as shown to user space via poll/select/SIGIO 2138 */ 2139 static inline bool sock_writeable(const struct sock *sk) 2140 { 2141 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2142 } 2143 2144 static inline gfp_t gfp_any(void) 2145 { 2146 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2147 } 2148 2149 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2150 { 2151 return noblock ? 0 : sk->sk_rcvtimeo; 2152 } 2153 2154 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2155 { 2156 return noblock ? 0 : sk->sk_sndtimeo; 2157 } 2158 2159 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2160 { 2161 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2162 } 2163 2164 /* Alas, with timeout socket operations are not restartable. 2165 * Compare this to poll(). 2166 */ 2167 static inline int sock_intr_errno(long timeo) 2168 { 2169 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2170 } 2171 2172 struct sock_skb_cb { 2173 u32 dropcount; 2174 }; 2175 2176 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2177 * using skb->cb[] would keep using it directly and utilize its 2178 * alignement guarantee. 2179 */ 2180 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2181 sizeof(struct sock_skb_cb))) 2182 2183 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2184 SOCK_SKB_CB_OFFSET)) 2185 2186 #define sock_skb_cb_check_size(size) \ 2187 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2188 2189 static inline void 2190 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2191 { 2192 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2193 atomic_read(&sk->sk_drops) : 0; 2194 } 2195 2196 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2197 { 2198 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2199 2200 atomic_add(segs, &sk->sk_drops); 2201 } 2202 2203 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2204 struct sk_buff *skb); 2205 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2206 struct sk_buff *skb); 2207 2208 static inline void 2209 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2210 { 2211 ktime_t kt = skb->tstamp; 2212 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2213 2214 /* 2215 * generate control messages if 2216 * - receive time stamping in software requested 2217 * - software time stamp available and wanted 2218 * - hardware time stamps available and wanted 2219 */ 2220 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2221 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2222 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2223 (hwtstamps->hwtstamp && 2224 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2225 __sock_recv_timestamp(msg, sk, skb); 2226 else 2227 sk->sk_stamp = kt; 2228 2229 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2230 __sock_recv_wifi_status(msg, sk, skb); 2231 } 2232 2233 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2234 struct sk_buff *skb); 2235 2236 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2237 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2238 struct sk_buff *skb) 2239 { 2240 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2241 (1UL << SOCK_RCVTSTAMP)) 2242 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2243 SOF_TIMESTAMPING_RAW_HARDWARE) 2244 2245 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2246 __sock_recv_ts_and_drops(msg, sk, skb); 2247 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2248 sk->sk_stamp = skb->tstamp; 2249 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2250 sk->sk_stamp = 0; 2251 } 2252 2253 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2254 2255 /** 2256 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2257 * @sk: socket sending this packet 2258 * @tsflags: timestamping flags to use 2259 * @tx_flags: completed with instructions for time stamping 2260 * 2261 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2262 */ 2263 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags, 2264 __u8 *tx_flags) 2265 { 2266 if (unlikely(tsflags)) 2267 __sock_tx_timestamp(tsflags, tx_flags); 2268 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2269 *tx_flags |= SKBTX_WIFI_STATUS; 2270 } 2271 2272 /** 2273 * sk_eat_skb - Release a skb if it is no longer needed 2274 * @sk: socket to eat this skb from 2275 * @skb: socket buffer to eat 2276 * 2277 * This routine must be called with interrupts disabled or with the socket 2278 * locked so that the sk_buff queue operation is ok. 2279 */ 2280 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2281 { 2282 __skb_unlink(skb, &sk->sk_receive_queue); 2283 __kfree_skb(skb); 2284 } 2285 2286 static inline 2287 struct net *sock_net(const struct sock *sk) 2288 { 2289 return read_pnet(&sk->sk_net); 2290 } 2291 2292 static inline 2293 void sock_net_set(struct sock *sk, struct net *net) 2294 { 2295 write_pnet(&sk->sk_net, net); 2296 } 2297 2298 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2299 { 2300 if (skb->sk) { 2301 struct sock *sk = skb->sk; 2302 2303 skb->destructor = NULL; 2304 skb->sk = NULL; 2305 return sk; 2306 } 2307 return NULL; 2308 } 2309 2310 /* This helper checks if a socket is a full socket, 2311 * ie _not_ a timewait or request socket. 2312 */ 2313 static inline bool sk_fullsock(const struct sock *sk) 2314 { 2315 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2316 } 2317 2318 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2319 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2320 */ 2321 static inline bool sk_listener(const struct sock *sk) 2322 { 2323 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2324 } 2325 2326 /** 2327 * sk_state_load - read sk->sk_state for lockless contexts 2328 * @sk: socket pointer 2329 * 2330 * Paired with sk_state_store(). Used in places we do not hold socket lock : 2331 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ... 2332 */ 2333 static inline int sk_state_load(const struct sock *sk) 2334 { 2335 return smp_load_acquire(&sk->sk_state); 2336 } 2337 2338 /** 2339 * sk_state_store - update sk->sk_state 2340 * @sk: socket pointer 2341 * @newstate: new state 2342 * 2343 * Paired with sk_state_load(). Should be used in contexts where 2344 * state change might impact lockless readers. 2345 */ 2346 static inline void sk_state_store(struct sock *sk, int newstate) 2347 { 2348 smp_store_release(&sk->sk_state, newstate); 2349 } 2350 2351 void sock_enable_timestamp(struct sock *sk, int flag); 2352 int sock_get_timestamp(struct sock *, struct timeval __user *); 2353 int sock_get_timestampns(struct sock *, struct timespec __user *); 2354 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2355 int type); 2356 2357 bool sk_ns_capable(const struct sock *sk, 2358 struct user_namespace *user_ns, int cap); 2359 bool sk_capable(const struct sock *sk, int cap); 2360 bool sk_net_capable(const struct sock *sk, int cap); 2361 2362 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2363 2364 extern __u32 sysctl_wmem_max; 2365 extern __u32 sysctl_rmem_max; 2366 2367 extern int sysctl_tstamp_allow_data; 2368 extern int sysctl_optmem_max; 2369 2370 extern __u32 sysctl_wmem_default; 2371 extern __u32 sysctl_rmem_default; 2372 2373 #endif /* _SOCK_H */ 2374