xref: /openbmc/linux/include/net/sock.h (revision dea54fba)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 
76 /*
77  * This structure really needs to be cleaned up.
78  * Most of it is for TCP, and not used by any of
79  * the other protocols.
80  */
81 
82 /* Define this to get the SOCK_DBG debugging facility. */
83 #define SOCK_DEBUGGING
84 #ifdef SOCK_DEBUGGING
85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 					printk(KERN_DEBUG msg); } while (0)
87 #else
88 /* Validate arguments and do nothing */
89 static inline __printf(2, 3)
90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
91 {
92 }
93 #endif
94 
95 /* This is the per-socket lock.  The spinlock provides a synchronization
96  * between user contexts and software interrupt processing, whereas the
97  * mini-semaphore synchronizes multiple users amongst themselves.
98  */
99 typedef struct {
100 	spinlock_t		slock;
101 	int			owned;
102 	wait_queue_head_t	wq;
103 	/*
104 	 * We express the mutex-alike socket_lock semantics
105 	 * to the lock validator by explicitly managing
106 	 * the slock as a lock variant (in addition to
107 	 * the slock itself):
108 	 */
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 	struct lockdep_map dep_map;
111 #endif
112 } socket_lock_t;
113 
114 struct sock;
115 struct proto;
116 struct net;
117 
118 typedef __u32 __bitwise __portpair;
119 typedef __u64 __bitwise __addrpair;
120 
121 /**
122  *	struct sock_common - minimal network layer representation of sockets
123  *	@skc_daddr: Foreign IPv4 addr
124  *	@skc_rcv_saddr: Bound local IPv4 addr
125  *	@skc_hash: hash value used with various protocol lookup tables
126  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
127  *	@skc_dport: placeholder for inet_dport/tw_dport
128  *	@skc_num: placeholder for inet_num/tw_num
129  *	@skc_family: network address family
130  *	@skc_state: Connection state
131  *	@skc_reuse: %SO_REUSEADDR setting
132  *	@skc_reuseport: %SO_REUSEPORT setting
133  *	@skc_bound_dev_if: bound device index if != 0
134  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
135  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136  *	@skc_prot: protocol handlers inside a network family
137  *	@skc_net: reference to the network namespace of this socket
138  *	@skc_node: main hash linkage for various protocol lookup tables
139  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140  *	@skc_tx_queue_mapping: tx queue number for this connection
141  *	@skc_flags: place holder for sk_flags
142  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144  *	@skc_incoming_cpu: record/match cpu processing incoming packets
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 	 * address on 64bit arches : cf INET_MATCH()
153 	 */
154 	union {
155 		__addrpair	skc_addrpair;
156 		struct {
157 			__be32	skc_daddr;
158 			__be32	skc_rcv_saddr;
159 		};
160 	};
161 	union  {
162 		unsigned int	skc_hash;
163 		__u16		skc_u16hashes[2];
164 	};
165 	/* skc_dport && skc_num must be grouped as well */
166 	union {
167 		__portpair	skc_portpair;
168 		struct {
169 			__be16	skc_dport;
170 			__u16	skc_num;
171 		};
172 	};
173 
174 	unsigned short		skc_family;
175 	volatile unsigned char	skc_state;
176 	unsigned char		skc_reuse:4;
177 	unsigned char		skc_reuseport:1;
178 	unsigned char		skc_ipv6only:1;
179 	unsigned char		skc_net_refcnt:1;
180 	int			skc_bound_dev_if;
181 	union {
182 		struct hlist_node	skc_bind_node;
183 		struct hlist_node	skc_portaddr_node;
184 	};
185 	struct proto		*skc_prot;
186 	possible_net_t		skc_net;
187 
188 #if IS_ENABLED(CONFIG_IPV6)
189 	struct in6_addr		skc_v6_daddr;
190 	struct in6_addr		skc_v6_rcv_saddr;
191 #endif
192 
193 	atomic64_t		skc_cookie;
194 
195 	/* following fields are padding to force
196 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 	 * assuming IPV6 is enabled. We use this padding differently
198 	 * for different kind of 'sockets'
199 	 */
200 	union {
201 		unsigned long	skc_flags;
202 		struct sock	*skc_listener; /* request_sock */
203 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
204 	};
205 	/*
206 	 * fields between dontcopy_begin/dontcopy_end
207 	 * are not copied in sock_copy()
208 	 */
209 	/* private: */
210 	int			skc_dontcopy_begin[0];
211 	/* public: */
212 	union {
213 		struct hlist_node	skc_node;
214 		struct hlist_nulls_node skc_nulls_node;
215 	};
216 	int			skc_tx_queue_mapping;
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 /**
235   *	struct sock - network layer representation of sockets
236   *	@__sk_common: shared layout with inet_timewait_sock
237   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239   *	@sk_lock:	synchronizer
240   *	@sk_kern_sock: True if sock is using kernel lock classes
241   *	@sk_rcvbuf: size of receive buffer in bytes
242   *	@sk_wq: sock wait queue and async head
243   *	@sk_rx_dst: receive input route used by early demux
244   *	@sk_dst_cache: destination cache
245   *	@sk_dst_pending_confirm: need to confirm neighbour
246   *	@sk_policy: flow policy
247   *	@sk_receive_queue: incoming packets
248   *	@sk_wmem_alloc: transmit queue bytes committed
249   *	@sk_tsq_flags: TCP Small Queues flags
250   *	@sk_write_queue: Packet sending queue
251   *	@sk_omem_alloc: "o" is "option" or "other"
252   *	@sk_wmem_queued: persistent queue size
253   *	@sk_forward_alloc: space allocated forward
254   *	@sk_napi_id: id of the last napi context to receive data for sk
255   *	@sk_ll_usec: usecs to busypoll when there is no data
256   *	@sk_allocation: allocation mode
257   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
258   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
259   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
260   *	@sk_sndbuf: size of send buffer in bytes
261   *	@__sk_flags_offset: empty field used to determine location of bitfield
262   *	@sk_padding: unused element for alignment
263   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
264   *	@sk_no_check_rx: allow zero checksum in RX packets
265   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
266   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
267   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
268   *	@sk_gso_max_size: Maximum GSO segment size to build
269   *	@sk_gso_max_segs: Maximum number of GSO segments
270   *	@sk_lingertime: %SO_LINGER l_linger setting
271   *	@sk_backlog: always used with the per-socket spinlock held
272   *	@sk_callback_lock: used with the callbacks in the end of this struct
273   *	@sk_error_queue: rarely used
274   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
275   *			  IPV6_ADDRFORM for instance)
276   *	@sk_err: last error
277   *	@sk_err_soft: errors that don't cause failure but are the cause of a
278   *		      persistent failure not just 'timed out'
279   *	@sk_drops: raw/udp drops counter
280   *	@sk_ack_backlog: current listen backlog
281   *	@sk_max_ack_backlog: listen backlog set in listen()
282   *	@sk_uid: user id of owner
283   *	@sk_priority: %SO_PRIORITY setting
284   *	@sk_type: socket type (%SOCK_STREAM, etc)
285   *	@sk_protocol: which protocol this socket belongs in this network family
286   *	@sk_peer_pid: &struct pid for this socket's peer
287   *	@sk_peer_cred: %SO_PEERCRED setting
288   *	@sk_rcvlowat: %SO_RCVLOWAT setting
289   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
290   *	@sk_sndtimeo: %SO_SNDTIMEO setting
291   *	@sk_txhash: computed flow hash for use on transmit
292   *	@sk_filter: socket filtering instructions
293   *	@sk_timer: sock cleanup timer
294   *	@sk_stamp: time stamp of last packet received
295   *	@sk_tsflags: SO_TIMESTAMPING socket options
296   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
297   *	@sk_socket: Identd and reporting IO signals
298   *	@sk_user_data: RPC layer private data
299   *	@sk_frag: cached page frag
300   *	@sk_peek_off: current peek_offset value
301   *	@sk_send_head: front of stuff to transmit
302   *	@sk_security: used by security modules
303   *	@sk_mark: generic packet mark
304   *	@sk_cgrp_data: cgroup data for this cgroup
305   *	@sk_memcg: this socket's memory cgroup association
306   *	@sk_write_pending: a write to stream socket waits to start
307   *	@sk_state_change: callback to indicate change in the state of the sock
308   *	@sk_data_ready: callback to indicate there is data to be processed
309   *	@sk_write_space: callback to indicate there is bf sending space available
310   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
311   *	@sk_backlog_rcv: callback to process the backlog
312   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
313   *	@sk_reuseport_cb: reuseport group container
314   *	@sk_rcu: used during RCU grace period
315   */
316 struct sock {
317 	/*
318 	 * Now struct inet_timewait_sock also uses sock_common, so please just
319 	 * don't add nothing before this first member (__sk_common) --acme
320 	 */
321 	struct sock_common	__sk_common;
322 #define sk_node			__sk_common.skc_node
323 #define sk_nulls_node		__sk_common.skc_nulls_node
324 #define sk_refcnt		__sk_common.skc_refcnt
325 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
326 
327 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
328 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
329 #define sk_hash			__sk_common.skc_hash
330 #define sk_portpair		__sk_common.skc_portpair
331 #define sk_num			__sk_common.skc_num
332 #define sk_dport		__sk_common.skc_dport
333 #define sk_addrpair		__sk_common.skc_addrpair
334 #define sk_daddr		__sk_common.skc_daddr
335 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
336 #define sk_family		__sk_common.skc_family
337 #define sk_state		__sk_common.skc_state
338 #define sk_reuse		__sk_common.skc_reuse
339 #define sk_reuseport		__sk_common.skc_reuseport
340 #define sk_ipv6only		__sk_common.skc_ipv6only
341 #define sk_net_refcnt		__sk_common.skc_net_refcnt
342 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
343 #define sk_bind_node		__sk_common.skc_bind_node
344 #define sk_prot			__sk_common.skc_prot
345 #define sk_net			__sk_common.skc_net
346 #define sk_v6_daddr		__sk_common.skc_v6_daddr
347 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
348 #define sk_cookie		__sk_common.skc_cookie
349 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
350 #define sk_flags		__sk_common.skc_flags
351 #define sk_rxhash		__sk_common.skc_rxhash
352 
353 	socket_lock_t		sk_lock;
354 	atomic_t		sk_drops;
355 	int			sk_rcvlowat;
356 	struct sk_buff_head	sk_error_queue;
357 	struct sk_buff_head	sk_receive_queue;
358 	/*
359 	 * The backlog queue is special, it is always used with
360 	 * the per-socket spinlock held and requires low latency
361 	 * access. Therefore we special case it's implementation.
362 	 * Note : rmem_alloc is in this structure to fill a hole
363 	 * on 64bit arches, not because its logically part of
364 	 * backlog.
365 	 */
366 	struct {
367 		atomic_t	rmem_alloc;
368 		int		len;
369 		struct sk_buff	*head;
370 		struct sk_buff	*tail;
371 	} sk_backlog;
372 #define sk_rmem_alloc sk_backlog.rmem_alloc
373 
374 	int			sk_forward_alloc;
375 #ifdef CONFIG_NET_RX_BUSY_POLL
376 	unsigned int		sk_ll_usec;
377 	/* ===== mostly read cache line ===== */
378 	unsigned int		sk_napi_id;
379 #endif
380 	int			sk_rcvbuf;
381 
382 	struct sk_filter __rcu	*sk_filter;
383 	union {
384 		struct socket_wq __rcu	*sk_wq;
385 		struct socket_wq	*sk_wq_raw;
386 	};
387 #ifdef CONFIG_XFRM
388 	struct xfrm_policy __rcu *sk_policy[2];
389 #endif
390 	struct dst_entry	*sk_rx_dst;
391 	struct dst_entry __rcu	*sk_dst_cache;
392 	atomic_t		sk_omem_alloc;
393 	int			sk_sndbuf;
394 
395 	/* ===== cache line for TX ===== */
396 	int			sk_wmem_queued;
397 	refcount_t		sk_wmem_alloc;
398 	unsigned long		sk_tsq_flags;
399 	struct sk_buff		*sk_send_head;
400 	struct sk_buff_head	sk_write_queue;
401 	__s32			sk_peek_off;
402 	int			sk_write_pending;
403 	__u32			sk_dst_pending_confirm;
404 	u32			sk_pacing_status; /* see enum sk_pacing */
405 	long			sk_sndtimeo;
406 	struct timer_list	sk_timer;
407 	__u32			sk_priority;
408 	__u32			sk_mark;
409 	u32			sk_pacing_rate; /* bytes per second */
410 	u32			sk_max_pacing_rate;
411 	struct page_frag	sk_frag;
412 	netdev_features_t	sk_route_caps;
413 	netdev_features_t	sk_route_nocaps;
414 	int			sk_gso_type;
415 	unsigned int		sk_gso_max_size;
416 	gfp_t			sk_allocation;
417 	__u32			sk_txhash;
418 
419 	/*
420 	 * Because of non atomicity rules, all
421 	 * changes are protected by socket lock.
422 	 */
423 	unsigned int		__sk_flags_offset[0];
424 #ifdef __BIG_ENDIAN_BITFIELD
425 #define SK_FL_PROTO_SHIFT  16
426 #define SK_FL_PROTO_MASK   0x00ff0000
427 
428 #define SK_FL_TYPE_SHIFT   0
429 #define SK_FL_TYPE_MASK    0x0000ffff
430 #else
431 #define SK_FL_PROTO_SHIFT  8
432 #define SK_FL_PROTO_MASK   0x0000ff00
433 
434 #define SK_FL_TYPE_SHIFT   16
435 #define SK_FL_TYPE_MASK    0xffff0000
436 #endif
437 
438 	kmemcheck_bitfield_begin(flags);
439 	unsigned int		sk_padding : 1,
440 				sk_kern_sock : 1,
441 				sk_no_check_tx : 1,
442 				sk_no_check_rx : 1,
443 				sk_userlocks : 4,
444 				sk_protocol  : 8,
445 				sk_type      : 16;
446 #define SK_PROTOCOL_MAX U8_MAX
447 	kmemcheck_bitfield_end(flags);
448 
449 	u16			sk_gso_max_segs;
450 	unsigned long	        sk_lingertime;
451 	struct proto		*sk_prot_creator;
452 	rwlock_t		sk_callback_lock;
453 	int			sk_err,
454 				sk_err_soft;
455 	u32			sk_ack_backlog;
456 	u32			sk_max_ack_backlog;
457 	kuid_t			sk_uid;
458 	struct pid		*sk_peer_pid;
459 	const struct cred	*sk_peer_cred;
460 	long			sk_rcvtimeo;
461 	ktime_t			sk_stamp;
462 	u16			sk_tsflags;
463 	u8			sk_shutdown;
464 	u32			sk_tskey;
465 	struct socket		*sk_socket;
466 	void			*sk_user_data;
467 #ifdef CONFIG_SECURITY
468 	void			*sk_security;
469 #endif
470 	struct sock_cgroup_data	sk_cgrp_data;
471 	struct mem_cgroup	*sk_memcg;
472 	void			(*sk_state_change)(struct sock *sk);
473 	void			(*sk_data_ready)(struct sock *sk);
474 	void			(*sk_write_space)(struct sock *sk);
475 	void			(*sk_error_report)(struct sock *sk);
476 	int			(*sk_backlog_rcv)(struct sock *sk,
477 						  struct sk_buff *skb);
478 	void                    (*sk_destruct)(struct sock *sk);
479 	struct sock_reuseport __rcu	*sk_reuseport_cb;
480 	struct rcu_head		sk_rcu;
481 };
482 
483 enum sk_pacing {
484 	SK_PACING_NONE		= 0,
485 	SK_PACING_NEEDED	= 1,
486 	SK_PACING_FQ		= 2,
487 };
488 
489 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
490 
491 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
492 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
493 
494 /*
495  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
496  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
497  * on a socket means that the socket will reuse everybody else's port
498  * without looking at the other's sk_reuse value.
499  */
500 
501 #define SK_NO_REUSE	0
502 #define SK_CAN_REUSE	1
503 #define SK_FORCE_REUSE	2
504 
505 int sk_set_peek_off(struct sock *sk, int val);
506 
507 static inline int sk_peek_offset(struct sock *sk, int flags)
508 {
509 	if (unlikely(flags & MSG_PEEK)) {
510 		return READ_ONCE(sk->sk_peek_off);
511 	}
512 
513 	return 0;
514 }
515 
516 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
517 {
518 	s32 off = READ_ONCE(sk->sk_peek_off);
519 
520 	if (unlikely(off >= 0)) {
521 		off = max_t(s32, off - val, 0);
522 		WRITE_ONCE(sk->sk_peek_off, off);
523 	}
524 }
525 
526 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
527 {
528 	sk_peek_offset_bwd(sk, -val);
529 }
530 
531 /*
532  * Hashed lists helper routines
533  */
534 static inline struct sock *sk_entry(const struct hlist_node *node)
535 {
536 	return hlist_entry(node, struct sock, sk_node);
537 }
538 
539 static inline struct sock *__sk_head(const struct hlist_head *head)
540 {
541 	return hlist_entry(head->first, struct sock, sk_node);
542 }
543 
544 static inline struct sock *sk_head(const struct hlist_head *head)
545 {
546 	return hlist_empty(head) ? NULL : __sk_head(head);
547 }
548 
549 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
550 {
551 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
552 }
553 
554 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
555 {
556 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
557 }
558 
559 static inline struct sock *sk_next(const struct sock *sk)
560 {
561 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
562 }
563 
564 static inline struct sock *sk_nulls_next(const struct sock *sk)
565 {
566 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
567 		hlist_nulls_entry(sk->sk_nulls_node.next,
568 				  struct sock, sk_nulls_node) :
569 		NULL;
570 }
571 
572 static inline bool sk_unhashed(const struct sock *sk)
573 {
574 	return hlist_unhashed(&sk->sk_node);
575 }
576 
577 static inline bool sk_hashed(const struct sock *sk)
578 {
579 	return !sk_unhashed(sk);
580 }
581 
582 static inline void sk_node_init(struct hlist_node *node)
583 {
584 	node->pprev = NULL;
585 }
586 
587 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
588 {
589 	node->pprev = NULL;
590 }
591 
592 static inline void __sk_del_node(struct sock *sk)
593 {
594 	__hlist_del(&sk->sk_node);
595 }
596 
597 /* NB: equivalent to hlist_del_init_rcu */
598 static inline bool __sk_del_node_init(struct sock *sk)
599 {
600 	if (sk_hashed(sk)) {
601 		__sk_del_node(sk);
602 		sk_node_init(&sk->sk_node);
603 		return true;
604 	}
605 	return false;
606 }
607 
608 /* Grab socket reference count. This operation is valid only
609    when sk is ALREADY grabbed f.e. it is found in hash table
610    or a list and the lookup is made under lock preventing hash table
611    modifications.
612  */
613 
614 static __always_inline void sock_hold(struct sock *sk)
615 {
616 	refcount_inc(&sk->sk_refcnt);
617 }
618 
619 /* Ungrab socket in the context, which assumes that socket refcnt
620    cannot hit zero, f.e. it is true in context of any socketcall.
621  */
622 static __always_inline void __sock_put(struct sock *sk)
623 {
624 	refcount_dec(&sk->sk_refcnt);
625 }
626 
627 static inline bool sk_del_node_init(struct sock *sk)
628 {
629 	bool rc = __sk_del_node_init(sk);
630 
631 	if (rc) {
632 		/* paranoid for a while -acme */
633 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
634 		__sock_put(sk);
635 	}
636 	return rc;
637 }
638 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
639 
640 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
641 {
642 	if (sk_hashed(sk)) {
643 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
644 		return true;
645 	}
646 	return false;
647 }
648 
649 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
650 {
651 	bool rc = __sk_nulls_del_node_init_rcu(sk);
652 
653 	if (rc) {
654 		/* paranoid for a while -acme */
655 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
656 		__sock_put(sk);
657 	}
658 	return rc;
659 }
660 
661 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
662 {
663 	hlist_add_head(&sk->sk_node, list);
664 }
665 
666 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
667 {
668 	sock_hold(sk);
669 	__sk_add_node(sk, list);
670 }
671 
672 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
673 {
674 	sock_hold(sk);
675 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
676 	    sk->sk_family == AF_INET6)
677 		hlist_add_tail_rcu(&sk->sk_node, list);
678 	else
679 		hlist_add_head_rcu(&sk->sk_node, list);
680 }
681 
682 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
683 {
684 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
685 	    sk->sk_family == AF_INET6)
686 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
687 	else
688 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
689 }
690 
691 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
692 {
693 	sock_hold(sk);
694 	__sk_nulls_add_node_rcu(sk, list);
695 }
696 
697 static inline void __sk_del_bind_node(struct sock *sk)
698 {
699 	__hlist_del(&sk->sk_bind_node);
700 }
701 
702 static inline void sk_add_bind_node(struct sock *sk,
703 					struct hlist_head *list)
704 {
705 	hlist_add_head(&sk->sk_bind_node, list);
706 }
707 
708 #define sk_for_each(__sk, list) \
709 	hlist_for_each_entry(__sk, list, sk_node)
710 #define sk_for_each_rcu(__sk, list) \
711 	hlist_for_each_entry_rcu(__sk, list, sk_node)
712 #define sk_nulls_for_each(__sk, node, list) \
713 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
714 #define sk_nulls_for_each_rcu(__sk, node, list) \
715 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
716 #define sk_for_each_from(__sk) \
717 	hlist_for_each_entry_from(__sk, sk_node)
718 #define sk_nulls_for_each_from(__sk, node) \
719 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
720 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
721 #define sk_for_each_safe(__sk, tmp, list) \
722 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
723 #define sk_for_each_bound(__sk, list) \
724 	hlist_for_each_entry(__sk, list, sk_bind_node)
725 
726 /**
727  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
728  * @tpos:	the type * to use as a loop cursor.
729  * @pos:	the &struct hlist_node to use as a loop cursor.
730  * @head:	the head for your list.
731  * @offset:	offset of hlist_node within the struct.
732  *
733  */
734 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
735 	for (pos = rcu_dereference((head)->first);			       \
736 	     pos != NULL &&						       \
737 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
738 	     pos = rcu_dereference(pos->next))
739 
740 static inline struct user_namespace *sk_user_ns(struct sock *sk)
741 {
742 	/* Careful only use this in a context where these parameters
743 	 * can not change and must all be valid, such as recvmsg from
744 	 * userspace.
745 	 */
746 	return sk->sk_socket->file->f_cred->user_ns;
747 }
748 
749 /* Sock flags */
750 enum sock_flags {
751 	SOCK_DEAD,
752 	SOCK_DONE,
753 	SOCK_URGINLINE,
754 	SOCK_KEEPOPEN,
755 	SOCK_LINGER,
756 	SOCK_DESTROY,
757 	SOCK_BROADCAST,
758 	SOCK_TIMESTAMP,
759 	SOCK_ZAPPED,
760 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
761 	SOCK_DBG, /* %SO_DEBUG setting */
762 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
763 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
764 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
765 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
766 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
767 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
768 	SOCK_FASYNC, /* fasync() active */
769 	SOCK_RXQ_OVFL,
770 	SOCK_ZEROCOPY, /* buffers from userspace */
771 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
772 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
773 		     * Will use last 4 bytes of packet sent from
774 		     * user-space instead.
775 		     */
776 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
777 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
778 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
779 };
780 
781 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
782 
783 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
784 {
785 	nsk->sk_flags = osk->sk_flags;
786 }
787 
788 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
789 {
790 	__set_bit(flag, &sk->sk_flags);
791 }
792 
793 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
794 {
795 	__clear_bit(flag, &sk->sk_flags);
796 }
797 
798 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
799 {
800 	return test_bit(flag, &sk->sk_flags);
801 }
802 
803 #ifdef CONFIG_NET
804 extern struct static_key memalloc_socks;
805 static inline int sk_memalloc_socks(void)
806 {
807 	return static_key_false(&memalloc_socks);
808 }
809 #else
810 
811 static inline int sk_memalloc_socks(void)
812 {
813 	return 0;
814 }
815 
816 #endif
817 
818 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
819 {
820 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
821 }
822 
823 static inline void sk_acceptq_removed(struct sock *sk)
824 {
825 	sk->sk_ack_backlog--;
826 }
827 
828 static inline void sk_acceptq_added(struct sock *sk)
829 {
830 	sk->sk_ack_backlog++;
831 }
832 
833 static inline bool sk_acceptq_is_full(const struct sock *sk)
834 {
835 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
836 }
837 
838 /*
839  * Compute minimal free write space needed to queue new packets.
840  */
841 static inline int sk_stream_min_wspace(const struct sock *sk)
842 {
843 	return sk->sk_wmem_queued >> 1;
844 }
845 
846 static inline int sk_stream_wspace(const struct sock *sk)
847 {
848 	return sk->sk_sndbuf - sk->sk_wmem_queued;
849 }
850 
851 void sk_stream_write_space(struct sock *sk);
852 
853 /* OOB backlog add */
854 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
855 {
856 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
857 	skb_dst_force_safe(skb);
858 
859 	if (!sk->sk_backlog.tail)
860 		sk->sk_backlog.head = skb;
861 	else
862 		sk->sk_backlog.tail->next = skb;
863 
864 	sk->sk_backlog.tail = skb;
865 	skb->next = NULL;
866 }
867 
868 /*
869  * Take into account size of receive queue and backlog queue
870  * Do not take into account this skb truesize,
871  * to allow even a single big packet to come.
872  */
873 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
874 {
875 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
876 
877 	return qsize > limit;
878 }
879 
880 /* The per-socket spinlock must be held here. */
881 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
882 					      unsigned int limit)
883 {
884 	if (sk_rcvqueues_full(sk, limit))
885 		return -ENOBUFS;
886 
887 	/*
888 	 * If the skb was allocated from pfmemalloc reserves, only
889 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
890 	 * helping free memory
891 	 */
892 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
893 		return -ENOMEM;
894 
895 	__sk_add_backlog(sk, skb);
896 	sk->sk_backlog.len += skb->truesize;
897 	return 0;
898 }
899 
900 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
901 
902 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
903 {
904 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
905 		return __sk_backlog_rcv(sk, skb);
906 
907 	return sk->sk_backlog_rcv(sk, skb);
908 }
909 
910 static inline void sk_incoming_cpu_update(struct sock *sk)
911 {
912 	int cpu = raw_smp_processor_id();
913 
914 	if (unlikely(sk->sk_incoming_cpu != cpu))
915 		sk->sk_incoming_cpu = cpu;
916 }
917 
918 static inline void sock_rps_record_flow_hash(__u32 hash)
919 {
920 #ifdef CONFIG_RPS
921 	struct rps_sock_flow_table *sock_flow_table;
922 
923 	rcu_read_lock();
924 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
925 	rps_record_sock_flow(sock_flow_table, hash);
926 	rcu_read_unlock();
927 #endif
928 }
929 
930 static inline void sock_rps_record_flow(const struct sock *sk)
931 {
932 #ifdef CONFIG_RPS
933 	if (static_key_false(&rfs_needed)) {
934 		/* Reading sk->sk_rxhash might incur an expensive cache line
935 		 * miss.
936 		 *
937 		 * TCP_ESTABLISHED does cover almost all states where RFS
938 		 * might be useful, and is cheaper [1] than testing :
939 		 *	IPv4: inet_sk(sk)->inet_daddr
940 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
941 		 * OR	an additional socket flag
942 		 * [1] : sk_state and sk_prot are in the same cache line.
943 		 */
944 		if (sk->sk_state == TCP_ESTABLISHED)
945 			sock_rps_record_flow_hash(sk->sk_rxhash);
946 	}
947 #endif
948 }
949 
950 static inline void sock_rps_save_rxhash(struct sock *sk,
951 					const struct sk_buff *skb)
952 {
953 #ifdef CONFIG_RPS
954 	if (unlikely(sk->sk_rxhash != skb->hash))
955 		sk->sk_rxhash = skb->hash;
956 #endif
957 }
958 
959 static inline void sock_rps_reset_rxhash(struct sock *sk)
960 {
961 #ifdef CONFIG_RPS
962 	sk->sk_rxhash = 0;
963 #endif
964 }
965 
966 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
967 	({	int __rc;						\
968 		release_sock(__sk);					\
969 		__rc = __condition;					\
970 		if (!__rc) {						\
971 			*(__timeo) = wait_woken(__wait,			\
972 						TASK_INTERRUPTIBLE,	\
973 						*(__timeo));		\
974 		}							\
975 		sched_annotate_sleep();					\
976 		lock_sock(__sk);					\
977 		__rc = __condition;					\
978 		__rc;							\
979 	})
980 
981 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
982 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
983 void sk_stream_wait_close(struct sock *sk, long timeo_p);
984 int sk_stream_error(struct sock *sk, int flags, int err);
985 void sk_stream_kill_queues(struct sock *sk);
986 void sk_set_memalloc(struct sock *sk);
987 void sk_clear_memalloc(struct sock *sk);
988 
989 void __sk_flush_backlog(struct sock *sk);
990 
991 static inline bool sk_flush_backlog(struct sock *sk)
992 {
993 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
994 		__sk_flush_backlog(sk);
995 		return true;
996 	}
997 	return false;
998 }
999 
1000 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1001 
1002 struct request_sock_ops;
1003 struct timewait_sock_ops;
1004 struct inet_hashinfo;
1005 struct raw_hashinfo;
1006 struct smc_hashinfo;
1007 struct module;
1008 
1009 /*
1010  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1011  * un-modified. Special care is taken when initializing object to zero.
1012  */
1013 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1014 {
1015 	if (offsetof(struct sock, sk_node.next) != 0)
1016 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1017 	memset(&sk->sk_node.pprev, 0,
1018 	       size - offsetof(struct sock, sk_node.pprev));
1019 }
1020 
1021 /* Networking protocol blocks we attach to sockets.
1022  * socket layer -> transport layer interface
1023  */
1024 struct proto {
1025 	void			(*close)(struct sock *sk,
1026 					long timeout);
1027 	int			(*connect)(struct sock *sk,
1028 					struct sockaddr *uaddr,
1029 					int addr_len);
1030 	int			(*disconnect)(struct sock *sk, int flags);
1031 
1032 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1033 					  bool kern);
1034 
1035 	int			(*ioctl)(struct sock *sk, int cmd,
1036 					 unsigned long arg);
1037 	int			(*init)(struct sock *sk);
1038 	void			(*destroy)(struct sock *sk);
1039 	void			(*shutdown)(struct sock *sk, int how);
1040 	int			(*setsockopt)(struct sock *sk, int level,
1041 					int optname, char __user *optval,
1042 					unsigned int optlen);
1043 	int			(*getsockopt)(struct sock *sk, int level,
1044 					int optname, char __user *optval,
1045 					int __user *option);
1046 	void			(*keepalive)(struct sock *sk, int valbool);
1047 #ifdef CONFIG_COMPAT
1048 	int			(*compat_setsockopt)(struct sock *sk,
1049 					int level,
1050 					int optname, char __user *optval,
1051 					unsigned int optlen);
1052 	int			(*compat_getsockopt)(struct sock *sk,
1053 					int level,
1054 					int optname, char __user *optval,
1055 					int __user *option);
1056 	int			(*compat_ioctl)(struct sock *sk,
1057 					unsigned int cmd, unsigned long arg);
1058 #endif
1059 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1060 					   size_t len);
1061 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1062 					   size_t len, int noblock, int flags,
1063 					   int *addr_len);
1064 	int			(*sendpage)(struct sock *sk, struct page *page,
1065 					int offset, size_t size, int flags);
1066 	int			(*bind)(struct sock *sk,
1067 					struct sockaddr *uaddr, int addr_len);
1068 
1069 	int			(*backlog_rcv) (struct sock *sk,
1070 						struct sk_buff *skb);
1071 
1072 	void		(*release_cb)(struct sock *sk);
1073 
1074 	/* Keeping track of sk's, looking them up, and port selection methods. */
1075 	int			(*hash)(struct sock *sk);
1076 	void			(*unhash)(struct sock *sk);
1077 	void			(*rehash)(struct sock *sk);
1078 	int			(*get_port)(struct sock *sk, unsigned short snum);
1079 
1080 	/* Keeping track of sockets in use */
1081 #ifdef CONFIG_PROC_FS
1082 	unsigned int		inuse_idx;
1083 #endif
1084 
1085 	bool			(*stream_memory_free)(const struct sock *sk);
1086 	/* Memory pressure */
1087 	void			(*enter_memory_pressure)(struct sock *sk);
1088 	void			(*leave_memory_pressure)(struct sock *sk);
1089 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1090 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1091 	/*
1092 	 * Pressure flag: try to collapse.
1093 	 * Technical note: it is used by multiple contexts non atomically.
1094 	 * All the __sk_mem_schedule() is of this nature: accounting
1095 	 * is strict, actions are advisory and have some latency.
1096 	 */
1097 	unsigned long		*memory_pressure;
1098 	long			*sysctl_mem;
1099 	int			*sysctl_wmem;
1100 	int			*sysctl_rmem;
1101 	int			max_header;
1102 	bool			no_autobind;
1103 
1104 	struct kmem_cache	*slab;
1105 	unsigned int		obj_size;
1106 	int			slab_flags;
1107 
1108 	struct percpu_counter	*orphan_count;
1109 
1110 	struct request_sock_ops	*rsk_prot;
1111 	struct timewait_sock_ops *twsk_prot;
1112 
1113 	union {
1114 		struct inet_hashinfo	*hashinfo;
1115 		struct udp_table	*udp_table;
1116 		struct raw_hashinfo	*raw_hash;
1117 		struct smc_hashinfo	*smc_hash;
1118 	} h;
1119 
1120 	struct module		*owner;
1121 
1122 	char			name[32];
1123 
1124 	struct list_head	node;
1125 #ifdef SOCK_REFCNT_DEBUG
1126 	atomic_t		socks;
1127 #endif
1128 	int			(*diag_destroy)(struct sock *sk, int err);
1129 } __randomize_layout;
1130 
1131 int proto_register(struct proto *prot, int alloc_slab);
1132 void proto_unregister(struct proto *prot);
1133 
1134 #ifdef SOCK_REFCNT_DEBUG
1135 static inline void sk_refcnt_debug_inc(struct sock *sk)
1136 {
1137 	atomic_inc(&sk->sk_prot->socks);
1138 }
1139 
1140 static inline void sk_refcnt_debug_dec(struct sock *sk)
1141 {
1142 	atomic_dec(&sk->sk_prot->socks);
1143 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1144 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1145 }
1146 
1147 static inline void sk_refcnt_debug_release(const struct sock *sk)
1148 {
1149 	if (refcount_read(&sk->sk_refcnt) != 1)
1150 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1151 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1152 }
1153 #else /* SOCK_REFCNT_DEBUG */
1154 #define sk_refcnt_debug_inc(sk) do { } while (0)
1155 #define sk_refcnt_debug_dec(sk) do { } while (0)
1156 #define sk_refcnt_debug_release(sk) do { } while (0)
1157 #endif /* SOCK_REFCNT_DEBUG */
1158 
1159 static inline bool sk_stream_memory_free(const struct sock *sk)
1160 {
1161 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1162 		return false;
1163 
1164 	return sk->sk_prot->stream_memory_free ?
1165 		sk->sk_prot->stream_memory_free(sk) : true;
1166 }
1167 
1168 static inline bool sk_stream_is_writeable(const struct sock *sk)
1169 {
1170 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1171 	       sk_stream_memory_free(sk);
1172 }
1173 
1174 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1175 					    struct cgroup *ancestor)
1176 {
1177 #ifdef CONFIG_SOCK_CGROUP_DATA
1178 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1179 				    ancestor);
1180 #else
1181 	return -ENOTSUPP;
1182 #endif
1183 }
1184 
1185 static inline bool sk_has_memory_pressure(const struct sock *sk)
1186 {
1187 	return sk->sk_prot->memory_pressure != NULL;
1188 }
1189 
1190 static inline bool sk_under_memory_pressure(const struct sock *sk)
1191 {
1192 	if (!sk->sk_prot->memory_pressure)
1193 		return false;
1194 
1195 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1196 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1197 		return true;
1198 
1199 	return !!*sk->sk_prot->memory_pressure;
1200 }
1201 
1202 static inline long
1203 sk_memory_allocated(const struct sock *sk)
1204 {
1205 	return atomic_long_read(sk->sk_prot->memory_allocated);
1206 }
1207 
1208 static inline long
1209 sk_memory_allocated_add(struct sock *sk, int amt)
1210 {
1211 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1212 }
1213 
1214 static inline void
1215 sk_memory_allocated_sub(struct sock *sk, int amt)
1216 {
1217 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1218 }
1219 
1220 static inline void sk_sockets_allocated_dec(struct sock *sk)
1221 {
1222 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1223 }
1224 
1225 static inline void sk_sockets_allocated_inc(struct sock *sk)
1226 {
1227 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1228 }
1229 
1230 static inline int
1231 sk_sockets_allocated_read_positive(struct sock *sk)
1232 {
1233 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1234 }
1235 
1236 static inline int
1237 proto_sockets_allocated_sum_positive(struct proto *prot)
1238 {
1239 	return percpu_counter_sum_positive(prot->sockets_allocated);
1240 }
1241 
1242 static inline long
1243 proto_memory_allocated(struct proto *prot)
1244 {
1245 	return atomic_long_read(prot->memory_allocated);
1246 }
1247 
1248 static inline bool
1249 proto_memory_pressure(struct proto *prot)
1250 {
1251 	if (!prot->memory_pressure)
1252 		return false;
1253 	return !!*prot->memory_pressure;
1254 }
1255 
1256 
1257 #ifdef CONFIG_PROC_FS
1258 /* Called with local bh disabled */
1259 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1260 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1261 #else
1262 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1263 		int inc)
1264 {
1265 }
1266 #endif
1267 
1268 
1269 /* With per-bucket locks this operation is not-atomic, so that
1270  * this version is not worse.
1271  */
1272 static inline int __sk_prot_rehash(struct sock *sk)
1273 {
1274 	sk->sk_prot->unhash(sk);
1275 	return sk->sk_prot->hash(sk);
1276 }
1277 
1278 /* About 10 seconds */
1279 #define SOCK_DESTROY_TIME (10*HZ)
1280 
1281 /* Sockets 0-1023 can't be bound to unless you are superuser */
1282 #define PROT_SOCK	1024
1283 
1284 #define SHUTDOWN_MASK	3
1285 #define RCV_SHUTDOWN	1
1286 #define SEND_SHUTDOWN	2
1287 
1288 #define SOCK_SNDBUF_LOCK	1
1289 #define SOCK_RCVBUF_LOCK	2
1290 #define SOCK_BINDADDR_LOCK	4
1291 #define SOCK_BINDPORT_LOCK	8
1292 
1293 struct socket_alloc {
1294 	struct socket socket;
1295 	struct inode vfs_inode;
1296 };
1297 
1298 static inline struct socket *SOCKET_I(struct inode *inode)
1299 {
1300 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1301 }
1302 
1303 static inline struct inode *SOCK_INODE(struct socket *socket)
1304 {
1305 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1306 }
1307 
1308 /*
1309  * Functions for memory accounting
1310  */
1311 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1312 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1313 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1314 void __sk_mem_reclaim(struct sock *sk, int amount);
1315 
1316 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1317  * do not necessarily have 16x time more memory than 4KB ones.
1318  */
1319 #define SK_MEM_QUANTUM 4096
1320 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1321 #define SK_MEM_SEND	0
1322 #define SK_MEM_RECV	1
1323 
1324 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1325 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1326 {
1327 	long val = sk->sk_prot->sysctl_mem[index];
1328 
1329 #if PAGE_SIZE > SK_MEM_QUANTUM
1330 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1331 #elif PAGE_SIZE < SK_MEM_QUANTUM
1332 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1333 #endif
1334 	return val;
1335 }
1336 
1337 static inline int sk_mem_pages(int amt)
1338 {
1339 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1340 }
1341 
1342 static inline bool sk_has_account(struct sock *sk)
1343 {
1344 	/* return true if protocol supports memory accounting */
1345 	return !!sk->sk_prot->memory_allocated;
1346 }
1347 
1348 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1349 {
1350 	if (!sk_has_account(sk))
1351 		return true;
1352 	return size <= sk->sk_forward_alloc ||
1353 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1354 }
1355 
1356 static inline bool
1357 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1358 {
1359 	if (!sk_has_account(sk))
1360 		return true;
1361 	return size<= sk->sk_forward_alloc ||
1362 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1363 		skb_pfmemalloc(skb);
1364 }
1365 
1366 static inline void sk_mem_reclaim(struct sock *sk)
1367 {
1368 	if (!sk_has_account(sk))
1369 		return;
1370 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1371 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1372 }
1373 
1374 static inline void sk_mem_reclaim_partial(struct sock *sk)
1375 {
1376 	if (!sk_has_account(sk))
1377 		return;
1378 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1379 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1380 }
1381 
1382 static inline void sk_mem_charge(struct sock *sk, int size)
1383 {
1384 	if (!sk_has_account(sk))
1385 		return;
1386 	sk->sk_forward_alloc -= size;
1387 }
1388 
1389 static inline void sk_mem_uncharge(struct sock *sk, int size)
1390 {
1391 	if (!sk_has_account(sk))
1392 		return;
1393 	sk->sk_forward_alloc += size;
1394 
1395 	/* Avoid a possible overflow.
1396 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1397 	 * is not called and more than 2 GBytes are released at once.
1398 	 *
1399 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1400 	 * no need to hold that much forward allocation anyway.
1401 	 */
1402 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1403 		__sk_mem_reclaim(sk, 1 << 20);
1404 }
1405 
1406 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1407 {
1408 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1409 	sk->sk_wmem_queued -= skb->truesize;
1410 	sk_mem_uncharge(sk, skb->truesize);
1411 	__kfree_skb(skb);
1412 }
1413 
1414 static inline void sock_release_ownership(struct sock *sk)
1415 {
1416 	if (sk->sk_lock.owned) {
1417 		sk->sk_lock.owned = 0;
1418 
1419 		/* The sk_lock has mutex_unlock() semantics: */
1420 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1421 	}
1422 }
1423 
1424 /*
1425  * Macro so as to not evaluate some arguments when
1426  * lockdep is not enabled.
1427  *
1428  * Mark both the sk_lock and the sk_lock.slock as a
1429  * per-address-family lock class.
1430  */
1431 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1432 do {									\
1433 	sk->sk_lock.owned = 0;						\
1434 	init_waitqueue_head(&sk->sk_lock.wq);				\
1435 	spin_lock_init(&(sk)->sk_lock.slock);				\
1436 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1437 			sizeof((sk)->sk_lock));				\
1438 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1439 				(skey), (sname));				\
1440 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1441 } while (0)
1442 
1443 #ifdef CONFIG_LOCKDEP
1444 static inline bool lockdep_sock_is_held(const struct sock *csk)
1445 {
1446 	struct sock *sk = (struct sock *)csk;
1447 
1448 	return lockdep_is_held(&sk->sk_lock) ||
1449 	       lockdep_is_held(&sk->sk_lock.slock);
1450 }
1451 #endif
1452 
1453 void lock_sock_nested(struct sock *sk, int subclass);
1454 
1455 static inline void lock_sock(struct sock *sk)
1456 {
1457 	lock_sock_nested(sk, 0);
1458 }
1459 
1460 void release_sock(struct sock *sk);
1461 
1462 /* BH context may only use the following locking interface. */
1463 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1464 #define bh_lock_sock_nested(__sk) \
1465 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1466 				SINGLE_DEPTH_NESTING)
1467 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1468 
1469 bool lock_sock_fast(struct sock *sk);
1470 /**
1471  * unlock_sock_fast - complement of lock_sock_fast
1472  * @sk: socket
1473  * @slow: slow mode
1474  *
1475  * fast unlock socket for user context.
1476  * If slow mode is on, we call regular release_sock()
1477  */
1478 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1479 {
1480 	if (slow)
1481 		release_sock(sk);
1482 	else
1483 		spin_unlock_bh(&sk->sk_lock.slock);
1484 }
1485 
1486 /* Used by processes to "lock" a socket state, so that
1487  * interrupts and bottom half handlers won't change it
1488  * from under us. It essentially blocks any incoming
1489  * packets, so that we won't get any new data or any
1490  * packets that change the state of the socket.
1491  *
1492  * While locked, BH processing will add new packets to
1493  * the backlog queue.  This queue is processed by the
1494  * owner of the socket lock right before it is released.
1495  *
1496  * Since ~2.3.5 it is also exclusive sleep lock serializing
1497  * accesses from user process context.
1498  */
1499 
1500 static inline void sock_owned_by_me(const struct sock *sk)
1501 {
1502 #ifdef CONFIG_LOCKDEP
1503 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1504 #endif
1505 }
1506 
1507 static inline bool sock_owned_by_user(const struct sock *sk)
1508 {
1509 	sock_owned_by_me(sk);
1510 	return sk->sk_lock.owned;
1511 }
1512 
1513 /* no reclassification while locks are held */
1514 static inline bool sock_allow_reclassification(const struct sock *csk)
1515 {
1516 	struct sock *sk = (struct sock *)csk;
1517 
1518 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1519 }
1520 
1521 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1522 		      struct proto *prot, int kern);
1523 void sk_free(struct sock *sk);
1524 void sk_destruct(struct sock *sk);
1525 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1526 void sk_free_unlock_clone(struct sock *sk);
1527 
1528 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1529 			     gfp_t priority);
1530 void __sock_wfree(struct sk_buff *skb);
1531 void sock_wfree(struct sk_buff *skb);
1532 void skb_orphan_partial(struct sk_buff *skb);
1533 void sock_rfree(struct sk_buff *skb);
1534 void sock_efree(struct sk_buff *skb);
1535 #ifdef CONFIG_INET
1536 void sock_edemux(struct sk_buff *skb);
1537 #else
1538 #define sock_edemux sock_efree
1539 #endif
1540 
1541 int sock_setsockopt(struct socket *sock, int level, int op,
1542 		    char __user *optval, unsigned int optlen);
1543 
1544 int sock_getsockopt(struct socket *sock, int level, int op,
1545 		    char __user *optval, int __user *optlen);
1546 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1547 				    int noblock, int *errcode);
1548 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1549 				     unsigned long data_len, int noblock,
1550 				     int *errcode, int max_page_order);
1551 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1552 void sock_kfree_s(struct sock *sk, void *mem, int size);
1553 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1554 void sk_send_sigurg(struct sock *sk);
1555 
1556 struct sockcm_cookie {
1557 	u32 mark;
1558 	u16 tsflags;
1559 };
1560 
1561 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1562 		     struct sockcm_cookie *sockc);
1563 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1564 		   struct sockcm_cookie *sockc);
1565 
1566 /*
1567  * Functions to fill in entries in struct proto_ops when a protocol
1568  * does not implement a particular function.
1569  */
1570 int sock_no_bind(struct socket *, struct sockaddr *, int);
1571 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1572 int sock_no_socketpair(struct socket *, struct socket *);
1573 int sock_no_accept(struct socket *, struct socket *, int, bool);
1574 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1575 unsigned int sock_no_poll(struct file *, struct socket *,
1576 			  struct poll_table_struct *);
1577 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1578 int sock_no_listen(struct socket *, int);
1579 int sock_no_shutdown(struct socket *, int);
1580 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1581 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1582 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1583 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1584 int sock_no_mmap(struct file *file, struct socket *sock,
1585 		 struct vm_area_struct *vma);
1586 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1587 			 size_t size, int flags);
1588 
1589 /*
1590  * Functions to fill in entries in struct proto_ops when a protocol
1591  * uses the inet style.
1592  */
1593 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1594 				  char __user *optval, int __user *optlen);
1595 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1596 			int flags);
1597 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1598 				  char __user *optval, unsigned int optlen);
1599 int compat_sock_common_getsockopt(struct socket *sock, int level,
1600 		int optname, char __user *optval, int __user *optlen);
1601 int compat_sock_common_setsockopt(struct socket *sock, int level,
1602 		int optname, char __user *optval, unsigned int optlen);
1603 
1604 void sk_common_release(struct sock *sk);
1605 
1606 /*
1607  *	Default socket callbacks and setup code
1608  */
1609 
1610 /* Initialise core socket variables */
1611 void sock_init_data(struct socket *sock, struct sock *sk);
1612 
1613 /*
1614  * Socket reference counting postulates.
1615  *
1616  * * Each user of socket SHOULD hold a reference count.
1617  * * Each access point to socket (an hash table bucket, reference from a list,
1618  *   running timer, skb in flight MUST hold a reference count.
1619  * * When reference count hits 0, it means it will never increase back.
1620  * * When reference count hits 0, it means that no references from
1621  *   outside exist to this socket and current process on current CPU
1622  *   is last user and may/should destroy this socket.
1623  * * sk_free is called from any context: process, BH, IRQ. When
1624  *   it is called, socket has no references from outside -> sk_free
1625  *   may release descendant resources allocated by the socket, but
1626  *   to the time when it is called, socket is NOT referenced by any
1627  *   hash tables, lists etc.
1628  * * Packets, delivered from outside (from network or from another process)
1629  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1630  *   when they sit in queue. Otherwise, packets will leak to hole, when
1631  *   socket is looked up by one cpu and unhasing is made by another CPU.
1632  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1633  *   (leak to backlog). Packet socket does all the processing inside
1634  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1635  *   use separate SMP lock, so that they are prone too.
1636  */
1637 
1638 /* Ungrab socket and destroy it, if it was the last reference. */
1639 static inline void sock_put(struct sock *sk)
1640 {
1641 	if (refcount_dec_and_test(&sk->sk_refcnt))
1642 		sk_free(sk);
1643 }
1644 /* Generic version of sock_put(), dealing with all sockets
1645  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1646  */
1647 void sock_gen_put(struct sock *sk);
1648 
1649 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1650 		     unsigned int trim_cap, bool refcounted);
1651 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1652 				 const int nested)
1653 {
1654 	return __sk_receive_skb(sk, skb, nested, 1, true);
1655 }
1656 
1657 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1658 {
1659 	sk->sk_tx_queue_mapping = tx_queue;
1660 }
1661 
1662 static inline void sk_tx_queue_clear(struct sock *sk)
1663 {
1664 	sk->sk_tx_queue_mapping = -1;
1665 }
1666 
1667 static inline int sk_tx_queue_get(const struct sock *sk)
1668 {
1669 	return sk ? sk->sk_tx_queue_mapping : -1;
1670 }
1671 
1672 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1673 {
1674 	sk_tx_queue_clear(sk);
1675 	sk->sk_socket = sock;
1676 }
1677 
1678 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1679 {
1680 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1681 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1682 }
1683 /* Detach socket from process context.
1684  * Announce socket dead, detach it from wait queue and inode.
1685  * Note that parent inode held reference count on this struct sock,
1686  * we do not release it in this function, because protocol
1687  * probably wants some additional cleanups or even continuing
1688  * to work with this socket (TCP).
1689  */
1690 static inline void sock_orphan(struct sock *sk)
1691 {
1692 	write_lock_bh(&sk->sk_callback_lock);
1693 	sock_set_flag(sk, SOCK_DEAD);
1694 	sk_set_socket(sk, NULL);
1695 	sk->sk_wq  = NULL;
1696 	write_unlock_bh(&sk->sk_callback_lock);
1697 }
1698 
1699 static inline void sock_graft(struct sock *sk, struct socket *parent)
1700 {
1701 	WARN_ON(parent->sk);
1702 	write_lock_bh(&sk->sk_callback_lock);
1703 	sk->sk_wq = parent->wq;
1704 	parent->sk = sk;
1705 	sk_set_socket(sk, parent);
1706 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1707 	security_sock_graft(sk, parent);
1708 	write_unlock_bh(&sk->sk_callback_lock);
1709 }
1710 
1711 kuid_t sock_i_uid(struct sock *sk);
1712 unsigned long sock_i_ino(struct sock *sk);
1713 
1714 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1715 {
1716 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1717 }
1718 
1719 static inline u32 net_tx_rndhash(void)
1720 {
1721 	u32 v = prandom_u32();
1722 
1723 	return v ?: 1;
1724 }
1725 
1726 static inline void sk_set_txhash(struct sock *sk)
1727 {
1728 	sk->sk_txhash = net_tx_rndhash();
1729 }
1730 
1731 static inline void sk_rethink_txhash(struct sock *sk)
1732 {
1733 	if (sk->sk_txhash)
1734 		sk_set_txhash(sk);
1735 }
1736 
1737 static inline struct dst_entry *
1738 __sk_dst_get(struct sock *sk)
1739 {
1740 	return rcu_dereference_check(sk->sk_dst_cache,
1741 				     lockdep_sock_is_held(sk));
1742 }
1743 
1744 static inline struct dst_entry *
1745 sk_dst_get(struct sock *sk)
1746 {
1747 	struct dst_entry *dst;
1748 
1749 	rcu_read_lock();
1750 	dst = rcu_dereference(sk->sk_dst_cache);
1751 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1752 		dst = NULL;
1753 	rcu_read_unlock();
1754 	return dst;
1755 }
1756 
1757 static inline void dst_negative_advice(struct sock *sk)
1758 {
1759 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1760 
1761 	sk_rethink_txhash(sk);
1762 
1763 	if (dst && dst->ops->negative_advice) {
1764 		ndst = dst->ops->negative_advice(dst);
1765 
1766 		if (ndst != dst) {
1767 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1768 			sk_tx_queue_clear(sk);
1769 			sk->sk_dst_pending_confirm = 0;
1770 		}
1771 	}
1772 }
1773 
1774 static inline void
1775 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1776 {
1777 	struct dst_entry *old_dst;
1778 
1779 	sk_tx_queue_clear(sk);
1780 	sk->sk_dst_pending_confirm = 0;
1781 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1782 					    lockdep_sock_is_held(sk));
1783 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1784 	dst_release(old_dst);
1785 }
1786 
1787 static inline void
1788 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1789 {
1790 	struct dst_entry *old_dst;
1791 
1792 	sk_tx_queue_clear(sk);
1793 	sk->sk_dst_pending_confirm = 0;
1794 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1795 	dst_release(old_dst);
1796 }
1797 
1798 static inline void
1799 __sk_dst_reset(struct sock *sk)
1800 {
1801 	__sk_dst_set(sk, NULL);
1802 }
1803 
1804 static inline void
1805 sk_dst_reset(struct sock *sk)
1806 {
1807 	sk_dst_set(sk, NULL);
1808 }
1809 
1810 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1811 
1812 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1813 
1814 static inline void sk_dst_confirm(struct sock *sk)
1815 {
1816 	if (!sk->sk_dst_pending_confirm)
1817 		sk->sk_dst_pending_confirm = 1;
1818 }
1819 
1820 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1821 {
1822 	if (skb_get_dst_pending_confirm(skb)) {
1823 		struct sock *sk = skb->sk;
1824 		unsigned long now = jiffies;
1825 
1826 		/* avoid dirtying neighbour */
1827 		if (n->confirmed != now)
1828 			n->confirmed = now;
1829 		if (sk && sk->sk_dst_pending_confirm)
1830 			sk->sk_dst_pending_confirm = 0;
1831 	}
1832 }
1833 
1834 bool sk_mc_loop(struct sock *sk);
1835 
1836 static inline bool sk_can_gso(const struct sock *sk)
1837 {
1838 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1839 }
1840 
1841 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1842 
1843 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1844 {
1845 	sk->sk_route_nocaps |= flags;
1846 	sk->sk_route_caps &= ~flags;
1847 }
1848 
1849 static inline bool sk_check_csum_caps(struct sock *sk)
1850 {
1851 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1852 	       (sk->sk_family == PF_INET &&
1853 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1854 	       (sk->sk_family == PF_INET6 &&
1855 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1856 }
1857 
1858 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1859 					   struct iov_iter *from, char *to,
1860 					   int copy, int offset)
1861 {
1862 	if (skb->ip_summed == CHECKSUM_NONE) {
1863 		__wsum csum = 0;
1864 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1865 			return -EFAULT;
1866 		skb->csum = csum_block_add(skb->csum, csum, offset);
1867 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1868 		if (!copy_from_iter_full_nocache(to, copy, from))
1869 			return -EFAULT;
1870 	} else if (!copy_from_iter_full(to, copy, from))
1871 		return -EFAULT;
1872 
1873 	return 0;
1874 }
1875 
1876 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1877 				       struct iov_iter *from, int copy)
1878 {
1879 	int err, offset = skb->len;
1880 
1881 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1882 				       copy, offset);
1883 	if (err)
1884 		__skb_trim(skb, offset);
1885 
1886 	return err;
1887 }
1888 
1889 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1890 					   struct sk_buff *skb,
1891 					   struct page *page,
1892 					   int off, int copy)
1893 {
1894 	int err;
1895 
1896 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1897 				       copy, skb->len);
1898 	if (err)
1899 		return err;
1900 
1901 	skb->len	     += copy;
1902 	skb->data_len	     += copy;
1903 	skb->truesize	     += copy;
1904 	sk->sk_wmem_queued   += copy;
1905 	sk_mem_charge(sk, copy);
1906 	return 0;
1907 }
1908 
1909 /**
1910  * sk_wmem_alloc_get - returns write allocations
1911  * @sk: socket
1912  *
1913  * Returns sk_wmem_alloc minus initial offset of one
1914  */
1915 static inline int sk_wmem_alloc_get(const struct sock *sk)
1916 {
1917 	return refcount_read(&sk->sk_wmem_alloc) - 1;
1918 }
1919 
1920 /**
1921  * sk_rmem_alloc_get - returns read allocations
1922  * @sk: socket
1923  *
1924  * Returns sk_rmem_alloc
1925  */
1926 static inline int sk_rmem_alloc_get(const struct sock *sk)
1927 {
1928 	return atomic_read(&sk->sk_rmem_alloc);
1929 }
1930 
1931 /**
1932  * sk_has_allocations - check if allocations are outstanding
1933  * @sk: socket
1934  *
1935  * Returns true if socket has write or read allocations
1936  */
1937 static inline bool sk_has_allocations(const struct sock *sk)
1938 {
1939 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1940 }
1941 
1942 /**
1943  * skwq_has_sleeper - check if there are any waiting processes
1944  * @wq: struct socket_wq
1945  *
1946  * Returns true if socket_wq has waiting processes
1947  *
1948  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1949  * barrier call. They were added due to the race found within the tcp code.
1950  *
1951  * Consider following tcp code paths::
1952  *
1953  *   CPU1                CPU2
1954  *   sys_select          receive packet
1955  *   ...                 ...
1956  *   __add_wait_queue    update tp->rcv_nxt
1957  *   ...                 ...
1958  *   tp->rcv_nxt check   sock_def_readable
1959  *   ...                 {
1960  *   schedule               rcu_read_lock();
1961  *                          wq = rcu_dereference(sk->sk_wq);
1962  *                          if (wq && waitqueue_active(&wq->wait))
1963  *                              wake_up_interruptible(&wq->wait)
1964  *                          ...
1965  *                       }
1966  *
1967  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1968  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1969  * could then endup calling schedule and sleep forever if there are no more
1970  * data on the socket.
1971  *
1972  */
1973 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1974 {
1975 	return wq && wq_has_sleeper(&wq->wait);
1976 }
1977 
1978 /**
1979  * sock_poll_wait - place memory barrier behind the poll_wait call.
1980  * @filp:           file
1981  * @wait_address:   socket wait queue
1982  * @p:              poll_table
1983  *
1984  * See the comments in the wq_has_sleeper function.
1985  */
1986 static inline void sock_poll_wait(struct file *filp,
1987 		wait_queue_head_t *wait_address, poll_table *p)
1988 {
1989 	if (!poll_does_not_wait(p) && wait_address) {
1990 		poll_wait(filp, wait_address, p);
1991 		/* We need to be sure we are in sync with the
1992 		 * socket flags modification.
1993 		 *
1994 		 * This memory barrier is paired in the wq_has_sleeper.
1995 		 */
1996 		smp_mb();
1997 	}
1998 }
1999 
2000 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2001 {
2002 	if (sk->sk_txhash) {
2003 		skb->l4_hash = 1;
2004 		skb->hash = sk->sk_txhash;
2005 	}
2006 }
2007 
2008 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2009 
2010 /*
2011  *	Queue a received datagram if it will fit. Stream and sequenced
2012  *	protocols can't normally use this as they need to fit buffers in
2013  *	and play with them.
2014  *
2015  *	Inlined as it's very short and called for pretty much every
2016  *	packet ever received.
2017  */
2018 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2019 {
2020 	skb_orphan(skb);
2021 	skb->sk = sk;
2022 	skb->destructor = sock_rfree;
2023 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2024 	sk_mem_charge(sk, skb->truesize);
2025 }
2026 
2027 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2028 		    unsigned long expires);
2029 
2030 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2031 
2032 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2033 			struct sk_buff *skb, unsigned int flags,
2034 			void (*destructor)(struct sock *sk,
2035 					   struct sk_buff *skb));
2036 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2037 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2038 
2039 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2040 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2041 
2042 /*
2043  *	Recover an error report and clear atomically
2044  */
2045 
2046 static inline int sock_error(struct sock *sk)
2047 {
2048 	int err;
2049 	if (likely(!sk->sk_err))
2050 		return 0;
2051 	err = xchg(&sk->sk_err, 0);
2052 	return -err;
2053 }
2054 
2055 static inline unsigned long sock_wspace(struct sock *sk)
2056 {
2057 	int amt = 0;
2058 
2059 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2060 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2061 		if (amt < 0)
2062 			amt = 0;
2063 	}
2064 	return amt;
2065 }
2066 
2067 /* Note:
2068  *  We use sk->sk_wq_raw, from contexts knowing this
2069  *  pointer is not NULL and cannot disappear/change.
2070  */
2071 static inline void sk_set_bit(int nr, struct sock *sk)
2072 {
2073 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2074 	    !sock_flag(sk, SOCK_FASYNC))
2075 		return;
2076 
2077 	set_bit(nr, &sk->sk_wq_raw->flags);
2078 }
2079 
2080 static inline void sk_clear_bit(int nr, struct sock *sk)
2081 {
2082 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2083 	    !sock_flag(sk, SOCK_FASYNC))
2084 		return;
2085 
2086 	clear_bit(nr, &sk->sk_wq_raw->flags);
2087 }
2088 
2089 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2090 {
2091 	if (sock_flag(sk, SOCK_FASYNC)) {
2092 		rcu_read_lock();
2093 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2094 		rcu_read_unlock();
2095 	}
2096 }
2097 
2098 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2099  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2100  * Note: for send buffers, TCP works better if we can build two skbs at
2101  * minimum.
2102  */
2103 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2104 
2105 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2106 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2107 
2108 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2109 {
2110 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2111 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2112 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2113 	}
2114 }
2115 
2116 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2117 				    bool force_schedule);
2118 
2119 /**
2120  * sk_page_frag - return an appropriate page_frag
2121  * @sk: socket
2122  *
2123  * If socket allocation mode allows current thread to sleep, it means its
2124  * safe to use the per task page_frag instead of the per socket one.
2125  */
2126 static inline struct page_frag *sk_page_frag(struct sock *sk)
2127 {
2128 	if (gfpflags_allow_blocking(sk->sk_allocation))
2129 		return &current->task_frag;
2130 
2131 	return &sk->sk_frag;
2132 }
2133 
2134 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2135 
2136 /*
2137  *	Default write policy as shown to user space via poll/select/SIGIO
2138  */
2139 static inline bool sock_writeable(const struct sock *sk)
2140 {
2141 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2142 }
2143 
2144 static inline gfp_t gfp_any(void)
2145 {
2146 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2147 }
2148 
2149 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2150 {
2151 	return noblock ? 0 : sk->sk_rcvtimeo;
2152 }
2153 
2154 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2155 {
2156 	return noblock ? 0 : sk->sk_sndtimeo;
2157 }
2158 
2159 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2160 {
2161 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2162 }
2163 
2164 /* Alas, with timeout socket operations are not restartable.
2165  * Compare this to poll().
2166  */
2167 static inline int sock_intr_errno(long timeo)
2168 {
2169 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2170 }
2171 
2172 struct sock_skb_cb {
2173 	u32 dropcount;
2174 };
2175 
2176 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2177  * using skb->cb[] would keep using it directly and utilize its
2178  * alignement guarantee.
2179  */
2180 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2181 			    sizeof(struct sock_skb_cb)))
2182 
2183 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2184 			    SOCK_SKB_CB_OFFSET))
2185 
2186 #define sock_skb_cb_check_size(size) \
2187 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2188 
2189 static inline void
2190 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2191 {
2192 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2193 						atomic_read(&sk->sk_drops) : 0;
2194 }
2195 
2196 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2197 {
2198 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2199 
2200 	atomic_add(segs, &sk->sk_drops);
2201 }
2202 
2203 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2204 			   struct sk_buff *skb);
2205 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2206 			     struct sk_buff *skb);
2207 
2208 static inline void
2209 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2210 {
2211 	ktime_t kt = skb->tstamp;
2212 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2213 
2214 	/*
2215 	 * generate control messages if
2216 	 * - receive time stamping in software requested
2217 	 * - software time stamp available and wanted
2218 	 * - hardware time stamps available and wanted
2219 	 */
2220 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2221 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2222 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2223 	    (hwtstamps->hwtstamp &&
2224 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2225 		__sock_recv_timestamp(msg, sk, skb);
2226 	else
2227 		sk->sk_stamp = kt;
2228 
2229 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2230 		__sock_recv_wifi_status(msg, sk, skb);
2231 }
2232 
2233 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2234 			      struct sk_buff *skb);
2235 
2236 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2237 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2238 					  struct sk_buff *skb)
2239 {
2240 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2241 			   (1UL << SOCK_RCVTSTAMP))
2242 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2243 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2244 
2245 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2246 		__sock_recv_ts_and_drops(msg, sk, skb);
2247 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2248 		sk->sk_stamp = skb->tstamp;
2249 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2250 		sk->sk_stamp = 0;
2251 }
2252 
2253 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2254 
2255 /**
2256  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2257  * @sk:		socket sending this packet
2258  * @tsflags:	timestamping flags to use
2259  * @tx_flags:	completed with instructions for time stamping
2260  *
2261  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2262  */
2263 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2264 				     __u8 *tx_flags)
2265 {
2266 	if (unlikely(tsflags))
2267 		__sock_tx_timestamp(tsflags, tx_flags);
2268 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2269 		*tx_flags |= SKBTX_WIFI_STATUS;
2270 }
2271 
2272 /**
2273  * sk_eat_skb - Release a skb if it is no longer needed
2274  * @sk: socket to eat this skb from
2275  * @skb: socket buffer to eat
2276  *
2277  * This routine must be called with interrupts disabled or with the socket
2278  * locked so that the sk_buff queue operation is ok.
2279 */
2280 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2281 {
2282 	__skb_unlink(skb, &sk->sk_receive_queue);
2283 	__kfree_skb(skb);
2284 }
2285 
2286 static inline
2287 struct net *sock_net(const struct sock *sk)
2288 {
2289 	return read_pnet(&sk->sk_net);
2290 }
2291 
2292 static inline
2293 void sock_net_set(struct sock *sk, struct net *net)
2294 {
2295 	write_pnet(&sk->sk_net, net);
2296 }
2297 
2298 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2299 {
2300 	if (skb->sk) {
2301 		struct sock *sk = skb->sk;
2302 
2303 		skb->destructor = NULL;
2304 		skb->sk = NULL;
2305 		return sk;
2306 	}
2307 	return NULL;
2308 }
2309 
2310 /* This helper checks if a socket is a full socket,
2311  * ie _not_ a timewait or request socket.
2312  */
2313 static inline bool sk_fullsock(const struct sock *sk)
2314 {
2315 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2316 }
2317 
2318 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2319  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2320  */
2321 static inline bool sk_listener(const struct sock *sk)
2322 {
2323 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2324 }
2325 
2326 /**
2327  * sk_state_load - read sk->sk_state for lockless contexts
2328  * @sk: socket pointer
2329  *
2330  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2331  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2332  */
2333 static inline int sk_state_load(const struct sock *sk)
2334 {
2335 	return smp_load_acquire(&sk->sk_state);
2336 }
2337 
2338 /**
2339  * sk_state_store - update sk->sk_state
2340  * @sk: socket pointer
2341  * @newstate: new state
2342  *
2343  * Paired with sk_state_load(). Should be used in contexts where
2344  * state change might impact lockless readers.
2345  */
2346 static inline void sk_state_store(struct sock *sk, int newstate)
2347 {
2348 	smp_store_release(&sk->sk_state, newstate);
2349 }
2350 
2351 void sock_enable_timestamp(struct sock *sk, int flag);
2352 int sock_get_timestamp(struct sock *, struct timeval __user *);
2353 int sock_get_timestampns(struct sock *, struct timespec __user *);
2354 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2355 		       int type);
2356 
2357 bool sk_ns_capable(const struct sock *sk,
2358 		   struct user_namespace *user_ns, int cap);
2359 bool sk_capable(const struct sock *sk, int cap);
2360 bool sk_net_capable(const struct sock *sk, int cap);
2361 
2362 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2363 
2364 extern __u32 sysctl_wmem_max;
2365 extern __u32 sysctl_rmem_max;
2366 
2367 extern int sysctl_tstamp_allow_data;
2368 extern int sysctl_optmem_max;
2369 
2370 extern __u32 sysctl_wmem_default;
2371 extern __u32 sysctl_rmem_default;
2372 
2373 #endif	/* _SOCK_H */
2374