xref: /openbmc/linux/include/net/sock.h (revision de2bdb3d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 
74 /*
75  * This structure really needs to be cleaned up.
76  * Most of it is for TCP, and not used by any of
77  * the other protocols.
78  */
79 
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 					printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92 
93 /* This is the per-socket lock.  The spinlock provides a synchronization
94  * between user contexts and software interrupt processing, whereas the
95  * mini-semaphore synchronizes multiple users amongst themselves.
96  */
97 typedef struct {
98 	spinlock_t		slock;
99 	int			owned;
100 	wait_queue_head_t	wq;
101 	/*
102 	 * We express the mutex-alike socket_lock semantics
103 	 * to the lock validator by explicitly managing
104 	 * the slock as a lock variant (in addition to
105 	 * the slock itself):
106 	 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111 
112 struct sock;
113 struct proto;
114 struct net;
115 
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118 
119 /**
120  *	struct sock_common - minimal network layer representation of sockets
121  *	@skc_daddr: Foreign IPv4 addr
122  *	@skc_rcv_saddr: Bound local IPv4 addr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_family: network address family
128  *	@skc_state: Connection state
129  *	@skc_reuse: %SO_REUSEADDR setting
130  *	@skc_reuseport: %SO_REUSEPORT setting
131  *	@skc_bound_dev_if: bound device index if != 0
132  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
133  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134  *	@skc_prot: protocol handlers inside a network family
135  *	@skc_net: reference to the network namespace of this socket
136  *	@skc_node: main hash linkage for various protocol lookup tables
137  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138  *	@skc_tx_queue_mapping: tx queue number for this connection
139  *	@skc_flags: place holder for sk_flags
140  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142  *	@skc_incoming_cpu: record/match cpu processing incoming packets
143  *	@skc_refcnt: reference count
144  *
145  *	This is the minimal network layer representation of sockets, the header
146  *	for struct sock and struct inet_timewait_sock.
147  */
148 struct sock_common {
149 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 	 * address on 64bit arches : cf INET_MATCH()
151 	 */
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	int			skc_bound_dev_if;
179 	union {
180 		struct hlist_node	skc_bind_node;
181 		struct hlist_node	skc_portaddr_node;
182 	};
183 	struct proto		*skc_prot;
184 	possible_net_t		skc_net;
185 
186 #if IS_ENABLED(CONFIG_IPV6)
187 	struct in6_addr		skc_v6_daddr;
188 	struct in6_addr		skc_v6_rcv_saddr;
189 #endif
190 
191 	atomic64_t		skc_cookie;
192 
193 	/* following fields are padding to force
194 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 	 * assuming IPV6 is enabled. We use this padding differently
196 	 * for different kind of 'sockets'
197 	 */
198 	union {
199 		unsigned long	skc_flags;
200 		struct sock	*skc_listener; /* request_sock */
201 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 	};
203 	/*
204 	 * fields between dontcopy_begin/dontcopy_end
205 	 * are not copied in sock_copy()
206 	 */
207 	/* private: */
208 	int			skc_dontcopy_begin[0];
209 	/* public: */
210 	union {
211 		struct hlist_node	skc_node;
212 		struct hlist_nulls_node skc_nulls_node;
213 	};
214 	int			skc_tx_queue_mapping;
215 	union {
216 		int		skc_incoming_cpu;
217 		u32		skc_rcv_wnd;
218 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
219 	};
220 
221 	atomic_t		skc_refcnt;
222 	/* private: */
223 	int                     skc_dontcopy_end[0];
224 	union {
225 		u32		skc_rxhash;
226 		u32		skc_window_clamp;
227 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 	};
229 	/* public: */
230 };
231 
232 /**
233   *	struct sock - network layer representation of sockets
234   *	@__sk_common: shared layout with inet_timewait_sock
235   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237   *	@sk_lock:	synchronizer
238   *	@sk_rcvbuf: size of receive buffer in bytes
239   *	@sk_wq: sock wait queue and async head
240   *	@sk_rx_dst: receive input route used by early demux
241   *	@sk_dst_cache: destination cache
242   *	@sk_policy: flow policy
243   *	@sk_receive_queue: incoming packets
244   *	@sk_wmem_alloc: transmit queue bytes committed
245   *	@sk_write_queue: Packet sending queue
246   *	@sk_omem_alloc: "o" is "option" or "other"
247   *	@sk_wmem_queued: persistent queue size
248   *	@sk_forward_alloc: space allocated forward
249   *	@sk_napi_id: id of the last napi context to receive data for sk
250   *	@sk_ll_usec: usecs to busypoll when there is no data
251   *	@sk_allocation: allocation mode
252   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254   *	@sk_sndbuf: size of send buffer in bytes
255   *	@sk_padding: unused element for alignment
256   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
257   *	@sk_no_check_rx: allow zero checksum in RX packets
258   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
259   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
260   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
261   *	@sk_gso_max_size: Maximum GSO segment size to build
262   *	@sk_gso_max_segs: Maximum number of GSO segments
263   *	@sk_lingertime: %SO_LINGER l_linger setting
264   *	@sk_backlog: always used with the per-socket spinlock held
265   *	@sk_callback_lock: used with the callbacks in the end of this struct
266   *	@sk_error_queue: rarely used
267   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
268   *			  IPV6_ADDRFORM for instance)
269   *	@sk_err: last error
270   *	@sk_err_soft: errors that don't cause failure but are the cause of a
271   *		      persistent failure not just 'timed out'
272   *	@sk_drops: raw/udp drops counter
273   *	@sk_ack_backlog: current listen backlog
274   *	@sk_max_ack_backlog: listen backlog set in listen()
275   *	@sk_priority: %SO_PRIORITY setting
276   *	@sk_type: socket type (%SOCK_STREAM, etc)
277   *	@sk_protocol: which protocol this socket belongs in this network family
278   *	@sk_peer_pid: &struct pid for this socket's peer
279   *	@sk_peer_cred: %SO_PEERCRED setting
280   *	@sk_rcvlowat: %SO_RCVLOWAT setting
281   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
282   *	@sk_sndtimeo: %SO_SNDTIMEO setting
283   *	@sk_txhash: computed flow hash for use on transmit
284   *	@sk_filter: socket filtering instructions
285   *	@sk_timer: sock cleanup timer
286   *	@sk_stamp: time stamp of last packet received
287   *	@sk_tsflags: SO_TIMESTAMPING socket options
288   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
289   *	@sk_socket: Identd and reporting IO signals
290   *	@sk_user_data: RPC layer private data
291   *	@sk_frag: cached page frag
292   *	@sk_peek_off: current peek_offset value
293   *	@sk_send_head: front of stuff to transmit
294   *	@sk_security: used by security modules
295   *	@sk_mark: generic packet mark
296   *	@sk_cgrp_data: cgroup data for this cgroup
297   *	@sk_memcg: this socket's memory cgroup association
298   *	@sk_write_pending: a write to stream socket waits to start
299   *	@sk_state_change: callback to indicate change in the state of the sock
300   *	@sk_data_ready: callback to indicate there is data to be processed
301   *	@sk_write_space: callback to indicate there is bf sending space available
302   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
303   *	@sk_backlog_rcv: callback to process the backlog
304   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
305   *	@sk_reuseport_cb: reuseport group container
306   *	@sk_rcu: used during RCU grace period
307   */
308 struct sock {
309 	/*
310 	 * Now struct inet_timewait_sock also uses sock_common, so please just
311 	 * don't add nothing before this first member (__sk_common) --acme
312 	 */
313 	struct sock_common	__sk_common;
314 #define sk_node			__sk_common.skc_node
315 #define sk_nulls_node		__sk_common.skc_nulls_node
316 #define sk_refcnt		__sk_common.skc_refcnt
317 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
318 
319 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
320 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
321 #define sk_hash			__sk_common.skc_hash
322 #define sk_portpair		__sk_common.skc_portpair
323 #define sk_num			__sk_common.skc_num
324 #define sk_dport		__sk_common.skc_dport
325 #define sk_addrpair		__sk_common.skc_addrpair
326 #define sk_daddr		__sk_common.skc_daddr
327 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
328 #define sk_family		__sk_common.skc_family
329 #define sk_state		__sk_common.skc_state
330 #define sk_reuse		__sk_common.skc_reuse
331 #define sk_reuseport		__sk_common.skc_reuseport
332 #define sk_ipv6only		__sk_common.skc_ipv6only
333 #define sk_net_refcnt		__sk_common.skc_net_refcnt
334 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
335 #define sk_bind_node		__sk_common.skc_bind_node
336 #define sk_prot			__sk_common.skc_prot
337 #define sk_net			__sk_common.skc_net
338 #define sk_v6_daddr		__sk_common.skc_v6_daddr
339 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
340 #define sk_cookie		__sk_common.skc_cookie
341 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
342 #define sk_flags		__sk_common.skc_flags
343 #define sk_rxhash		__sk_common.skc_rxhash
344 
345 	socket_lock_t		sk_lock;
346 	struct sk_buff_head	sk_receive_queue;
347 	/*
348 	 * The backlog queue is special, it is always used with
349 	 * the per-socket spinlock held and requires low latency
350 	 * access. Therefore we special case it's implementation.
351 	 * Note : rmem_alloc is in this structure to fill a hole
352 	 * on 64bit arches, not because its logically part of
353 	 * backlog.
354 	 */
355 	struct {
356 		atomic_t	rmem_alloc;
357 		int		len;
358 		struct sk_buff	*head;
359 		struct sk_buff	*tail;
360 	} sk_backlog;
361 #define sk_rmem_alloc sk_backlog.rmem_alloc
362 	int			sk_forward_alloc;
363 
364 	__u32			sk_txhash;
365 #ifdef CONFIG_NET_RX_BUSY_POLL
366 	unsigned int		sk_napi_id;
367 	unsigned int		sk_ll_usec;
368 #endif
369 	atomic_t		sk_drops;
370 	int			sk_rcvbuf;
371 
372 	struct sk_filter __rcu	*sk_filter;
373 	union {
374 		struct socket_wq __rcu	*sk_wq;
375 		struct socket_wq	*sk_wq_raw;
376 	};
377 #ifdef CONFIG_XFRM
378 	struct xfrm_policy __rcu *sk_policy[2];
379 #endif
380 	struct dst_entry	*sk_rx_dst;
381 	struct dst_entry __rcu	*sk_dst_cache;
382 	/* Note: 32bit hole on 64bit arches */
383 	atomic_t		sk_wmem_alloc;
384 	atomic_t		sk_omem_alloc;
385 	int			sk_sndbuf;
386 	struct sk_buff_head	sk_write_queue;
387 
388 	/*
389 	 * Because of non atomicity rules, all
390 	 * changes are protected by socket lock.
391 	 */
392 	kmemcheck_bitfield_begin(flags);
393 	unsigned int		sk_padding : 2,
394 				sk_no_check_tx : 1,
395 				sk_no_check_rx : 1,
396 				sk_userlocks : 4,
397 				sk_protocol  : 8,
398 				sk_type      : 16;
399 #define SK_PROTOCOL_MAX U8_MAX
400 	kmemcheck_bitfield_end(flags);
401 
402 	int			sk_wmem_queued;
403 	gfp_t			sk_allocation;
404 	u32			sk_pacing_rate; /* bytes per second */
405 	u32			sk_max_pacing_rate;
406 	netdev_features_t	sk_route_caps;
407 	netdev_features_t	sk_route_nocaps;
408 	int			sk_gso_type;
409 	unsigned int		sk_gso_max_size;
410 	u16			sk_gso_max_segs;
411 	int			sk_rcvlowat;
412 	unsigned long	        sk_lingertime;
413 	struct sk_buff_head	sk_error_queue;
414 	struct proto		*sk_prot_creator;
415 	rwlock_t		sk_callback_lock;
416 	int			sk_err,
417 				sk_err_soft;
418 	u32			sk_ack_backlog;
419 	u32			sk_max_ack_backlog;
420 	__u32			sk_priority;
421 	__u32			sk_mark;
422 	struct pid		*sk_peer_pid;
423 	const struct cred	*sk_peer_cred;
424 	long			sk_rcvtimeo;
425 	long			sk_sndtimeo;
426 	struct timer_list	sk_timer;
427 	ktime_t			sk_stamp;
428 	u16			sk_tsflags;
429 	u8			sk_shutdown;
430 	u32			sk_tskey;
431 	struct socket		*sk_socket;
432 	void			*sk_user_data;
433 	struct page_frag	sk_frag;
434 	struct sk_buff		*sk_send_head;
435 	__s32			sk_peek_off;
436 	int			sk_write_pending;
437 #ifdef CONFIG_SECURITY
438 	void			*sk_security;
439 #endif
440 	struct sock_cgroup_data	sk_cgrp_data;
441 	struct mem_cgroup	*sk_memcg;
442 	void			(*sk_state_change)(struct sock *sk);
443 	void			(*sk_data_ready)(struct sock *sk);
444 	void			(*sk_write_space)(struct sock *sk);
445 	void			(*sk_error_report)(struct sock *sk);
446 	int			(*sk_backlog_rcv)(struct sock *sk,
447 						  struct sk_buff *skb);
448 	void                    (*sk_destruct)(struct sock *sk);
449 	struct sock_reuseport __rcu	*sk_reuseport_cb;
450 	struct rcu_head		sk_rcu;
451 };
452 
453 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
454 
455 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
456 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
457 
458 /*
459  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
460  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
461  * on a socket means that the socket will reuse everybody else's port
462  * without looking at the other's sk_reuse value.
463  */
464 
465 #define SK_NO_REUSE	0
466 #define SK_CAN_REUSE	1
467 #define SK_FORCE_REUSE	2
468 
469 int sk_set_peek_off(struct sock *sk, int val);
470 
471 static inline int sk_peek_offset(struct sock *sk, int flags)
472 {
473 	if (unlikely(flags & MSG_PEEK)) {
474 		s32 off = READ_ONCE(sk->sk_peek_off);
475 		if (off >= 0)
476 			return off;
477 	}
478 
479 	return 0;
480 }
481 
482 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
483 {
484 	s32 off = READ_ONCE(sk->sk_peek_off);
485 
486 	if (unlikely(off >= 0)) {
487 		off = max_t(s32, off - val, 0);
488 		WRITE_ONCE(sk->sk_peek_off, off);
489 	}
490 }
491 
492 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
493 {
494 	sk_peek_offset_bwd(sk, -val);
495 }
496 
497 /*
498  * Hashed lists helper routines
499  */
500 static inline struct sock *sk_entry(const struct hlist_node *node)
501 {
502 	return hlist_entry(node, struct sock, sk_node);
503 }
504 
505 static inline struct sock *__sk_head(const struct hlist_head *head)
506 {
507 	return hlist_entry(head->first, struct sock, sk_node);
508 }
509 
510 static inline struct sock *sk_head(const struct hlist_head *head)
511 {
512 	return hlist_empty(head) ? NULL : __sk_head(head);
513 }
514 
515 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
516 {
517 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
518 }
519 
520 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
521 {
522 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
523 }
524 
525 static inline struct sock *sk_next(const struct sock *sk)
526 {
527 	return sk->sk_node.next ?
528 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
529 }
530 
531 static inline struct sock *sk_nulls_next(const struct sock *sk)
532 {
533 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
534 		hlist_nulls_entry(sk->sk_nulls_node.next,
535 				  struct sock, sk_nulls_node) :
536 		NULL;
537 }
538 
539 static inline bool sk_unhashed(const struct sock *sk)
540 {
541 	return hlist_unhashed(&sk->sk_node);
542 }
543 
544 static inline bool sk_hashed(const struct sock *sk)
545 {
546 	return !sk_unhashed(sk);
547 }
548 
549 static inline void sk_node_init(struct hlist_node *node)
550 {
551 	node->pprev = NULL;
552 }
553 
554 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
555 {
556 	node->pprev = NULL;
557 }
558 
559 static inline void __sk_del_node(struct sock *sk)
560 {
561 	__hlist_del(&sk->sk_node);
562 }
563 
564 /* NB: equivalent to hlist_del_init_rcu */
565 static inline bool __sk_del_node_init(struct sock *sk)
566 {
567 	if (sk_hashed(sk)) {
568 		__sk_del_node(sk);
569 		sk_node_init(&sk->sk_node);
570 		return true;
571 	}
572 	return false;
573 }
574 
575 /* Grab socket reference count. This operation is valid only
576    when sk is ALREADY grabbed f.e. it is found in hash table
577    or a list and the lookup is made under lock preventing hash table
578    modifications.
579  */
580 
581 static __always_inline void sock_hold(struct sock *sk)
582 {
583 	atomic_inc(&sk->sk_refcnt);
584 }
585 
586 /* Ungrab socket in the context, which assumes that socket refcnt
587    cannot hit zero, f.e. it is true in context of any socketcall.
588  */
589 static __always_inline void __sock_put(struct sock *sk)
590 {
591 	atomic_dec(&sk->sk_refcnt);
592 }
593 
594 static inline bool sk_del_node_init(struct sock *sk)
595 {
596 	bool rc = __sk_del_node_init(sk);
597 
598 	if (rc) {
599 		/* paranoid for a while -acme */
600 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
601 		__sock_put(sk);
602 	}
603 	return rc;
604 }
605 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
606 
607 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
608 {
609 	if (sk_hashed(sk)) {
610 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
611 		return true;
612 	}
613 	return false;
614 }
615 
616 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
617 {
618 	bool rc = __sk_nulls_del_node_init_rcu(sk);
619 
620 	if (rc) {
621 		/* paranoid for a while -acme */
622 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
623 		__sock_put(sk);
624 	}
625 	return rc;
626 }
627 
628 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
629 {
630 	hlist_add_head(&sk->sk_node, list);
631 }
632 
633 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
634 {
635 	sock_hold(sk);
636 	__sk_add_node(sk, list);
637 }
638 
639 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
640 {
641 	sock_hold(sk);
642 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
643 	    sk->sk_family == AF_INET6)
644 		hlist_add_tail_rcu(&sk->sk_node, list);
645 	else
646 		hlist_add_head_rcu(&sk->sk_node, list);
647 }
648 
649 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
650 {
651 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
652 	    sk->sk_family == AF_INET6)
653 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
654 	else
655 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
656 }
657 
658 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
659 {
660 	sock_hold(sk);
661 	__sk_nulls_add_node_rcu(sk, list);
662 }
663 
664 static inline void __sk_del_bind_node(struct sock *sk)
665 {
666 	__hlist_del(&sk->sk_bind_node);
667 }
668 
669 static inline void sk_add_bind_node(struct sock *sk,
670 					struct hlist_head *list)
671 {
672 	hlist_add_head(&sk->sk_bind_node, list);
673 }
674 
675 #define sk_for_each(__sk, list) \
676 	hlist_for_each_entry(__sk, list, sk_node)
677 #define sk_for_each_rcu(__sk, list) \
678 	hlist_for_each_entry_rcu(__sk, list, sk_node)
679 #define sk_nulls_for_each(__sk, node, list) \
680 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
681 #define sk_nulls_for_each_rcu(__sk, node, list) \
682 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
683 #define sk_for_each_from(__sk) \
684 	hlist_for_each_entry_from(__sk, sk_node)
685 #define sk_nulls_for_each_from(__sk, node) \
686 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
687 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
688 #define sk_for_each_safe(__sk, tmp, list) \
689 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
690 #define sk_for_each_bound(__sk, list) \
691 	hlist_for_each_entry(__sk, list, sk_bind_node)
692 
693 /**
694  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
695  * @tpos:	the type * to use as a loop cursor.
696  * @pos:	the &struct hlist_node to use as a loop cursor.
697  * @head:	the head for your list.
698  * @offset:	offset of hlist_node within the struct.
699  *
700  */
701 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
702 	for (pos = rcu_dereference((head)->first);			       \
703 	     pos != NULL &&						       \
704 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
705 	     pos = rcu_dereference(pos->next))
706 
707 static inline struct user_namespace *sk_user_ns(struct sock *sk)
708 {
709 	/* Careful only use this in a context where these parameters
710 	 * can not change and must all be valid, such as recvmsg from
711 	 * userspace.
712 	 */
713 	return sk->sk_socket->file->f_cred->user_ns;
714 }
715 
716 /* Sock flags */
717 enum sock_flags {
718 	SOCK_DEAD,
719 	SOCK_DONE,
720 	SOCK_URGINLINE,
721 	SOCK_KEEPOPEN,
722 	SOCK_LINGER,
723 	SOCK_DESTROY,
724 	SOCK_BROADCAST,
725 	SOCK_TIMESTAMP,
726 	SOCK_ZAPPED,
727 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
728 	SOCK_DBG, /* %SO_DEBUG setting */
729 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
730 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
731 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
732 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
733 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
734 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
735 	SOCK_FASYNC, /* fasync() active */
736 	SOCK_RXQ_OVFL,
737 	SOCK_ZEROCOPY, /* buffers from userspace */
738 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
739 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
740 		     * Will use last 4 bytes of packet sent from
741 		     * user-space instead.
742 		     */
743 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
744 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
745 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
746 };
747 
748 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
749 
750 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
751 {
752 	nsk->sk_flags = osk->sk_flags;
753 }
754 
755 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
756 {
757 	__set_bit(flag, &sk->sk_flags);
758 }
759 
760 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
761 {
762 	__clear_bit(flag, &sk->sk_flags);
763 }
764 
765 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
766 {
767 	return test_bit(flag, &sk->sk_flags);
768 }
769 
770 #ifdef CONFIG_NET
771 extern struct static_key memalloc_socks;
772 static inline int sk_memalloc_socks(void)
773 {
774 	return static_key_false(&memalloc_socks);
775 }
776 #else
777 
778 static inline int sk_memalloc_socks(void)
779 {
780 	return 0;
781 }
782 
783 #endif
784 
785 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
786 {
787 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
788 }
789 
790 static inline void sk_acceptq_removed(struct sock *sk)
791 {
792 	sk->sk_ack_backlog--;
793 }
794 
795 static inline void sk_acceptq_added(struct sock *sk)
796 {
797 	sk->sk_ack_backlog++;
798 }
799 
800 static inline bool sk_acceptq_is_full(const struct sock *sk)
801 {
802 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
803 }
804 
805 /*
806  * Compute minimal free write space needed to queue new packets.
807  */
808 static inline int sk_stream_min_wspace(const struct sock *sk)
809 {
810 	return sk->sk_wmem_queued >> 1;
811 }
812 
813 static inline int sk_stream_wspace(const struct sock *sk)
814 {
815 	return sk->sk_sndbuf - sk->sk_wmem_queued;
816 }
817 
818 void sk_stream_write_space(struct sock *sk);
819 
820 /* OOB backlog add */
821 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
822 {
823 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
824 	skb_dst_force_safe(skb);
825 
826 	if (!sk->sk_backlog.tail)
827 		sk->sk_backlog.head = skb;
828 	else
829 		sk->sk_backlog.tail->next = skb;
830 
831 	sk->sk_backlog.tail = skb;
832 	skb->next = NULL;
833 }
834 
835 /*
836  * Take into account size of receive queue and backlog queue
837  * Do not take into account this skb truesize,
838  * to allow even a single big packet to come.
839  */
840 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
841 {
842 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
843 
844 	return qsize > limit;
845 }
846 
847 /* The per-socket spinlock must be held here. */
848 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
849 					      unsigned int limit)
850 {
851 	if (sk_rcvqueues_full(sk, limit))
852 		return -ENOBUFS;
853 
854 	/*
855 	 * If the skb was allocated from pfmemalloc reserves, only
856 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
857 	 * helping free memory
858 	 */
859 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
860 		return -ENOMEM;
861 
862 	__sk_add_backlog(sk, skb);
863 	sk->sk_backlog.len += skb->truesize;
864 	return 0;
865 }
866 
867 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
868 
869 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
870 {
871 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
872 		return __sk_backlog_rcv(sk, skb);
873 
874 	return sk->sk_backlog_rcv(sk, skb);
875 }
876 
877 static inline void sk_incoming_cpu_update(struct sock *sk)
878 {
879 	sk->sk_incoming_cpu = raw_smp_processor_id();
880 }
881 
882 static inline void sock_rps_record_flow_hash(__u32 hash)
883 {
884 #ifdef CONFIG_RPS
885 	struct rps_sock_flow_table *sock_flow_table;
886 
887 	rcu_read_lock();
888 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
889 	rps_record_sock_flow(sock_flow_table, hash);
890 	rcu_read_unlock();
891 #endif
892 }
893 
894 static inline void sock_rps_record_flow(const struct sock *sk)
895 {
896 #ifdef CONFIG_RPS
897 	sock_rps_record_flow_hash(sk->sk_rxhash);
898 #endif
899 }
900 
901 static inline void sock_rps_save_rxhash(struct sock *sk,
902 					const struct sk_buff *skb)
903 {
904 #ifdef CONFIG_RPS
905 	if (unlikely(sk->sk_rxhash != skb->hash))
906 		sk->sk_rxhash = skb->hash;
907 #endif
908 }
909 
910 static inline void sock_rps_reset_rxhash(struct sock *sk)
911 {
912 #ifdef CONFIG_RPS
913 	sk->sk_rxhash = 0;
914 #endif
915 }
916 
917 #define sk_wait_event(__sk, __timeo, __condition)			\
918 	({	int __rc;						\
919 		release_sock(__sk);					\
920 		__rc = __condition;					\
921 		if (!__rc) {						\
922 			*(__timeo) = schedule_timeout(*(__timeo));	\
923 		}							\
924 		sched_annotate_sleep();						\
925 		lock_sock(__sk);					\
926 		__rc = __condition;					\
927 		__rc;							\
928 	})
929 
930 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
931 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
932 void sk_stream_wait_close(struct sock *sk, long timeo_p);
933 int sk_stream_error(struct sock *sk, int flags, int err);
934 void sk_stream_kill_queues(struct sock *sk);
935 void sk_set_memalloc(struct sock *sk);
936 void sk_clear_memalloc(struct sock *sk);
937 
938 void __sk_flush_backlog(struct sock *sk);
939 
940 static inline bool sk_flush_backlog(struct sock *sk)
941 {
942 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
943 		__sk_flush_backlog(sk);
944 		return true;
945 	}
946 	return false;
947 }
948 
949 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
950 
951 struct request_sock_ops;
952 struct timewait_sock_ops;
953 struct inet_hashinfo;
954 struct raw_hashinfo;
955 struct module;
956 
957 /*
958  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
959  * un-modified. Special care is taken when initializing object to zero.
960  */
961 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
962 {
963 	if (offsetof(struct sock, sk_node.next) != 0)
964 		memset(sk, 0, offsetof(struct sock, sk_node.next));
965 	memset(&sk->sk_node.pprev, 0,
966 	       size - offsetof(struct sock, sk_node.pprev));
967 }
968 
969 /* Networking protocol blocks we attach to sockets.
970  * socket layer -> transport layer interface
971  */
972 struct proto {
973 	void			(*close)(struct sock *sk,
974 					long timeout);
975 	int			(*connect)(struct sock *sk,
976 					struct sockaddr *uaddr,
977 					int addr_len);
978 	int			(*disconnect)(struct sock *sk, int flags);
979 
980 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
981 
982 	int			(*ioctl)(struct sock *sk, int cmd,
983 					 unsigned long arg);
984 	int			(*init)(struct sock *sk);
985 	void			(*destroy)(struct sock *sk);
986 	void			(*shutdown)(struct sock *sk, int how);
987 	int			(*setsockopt)(struct sock *sk, int level,
988 					int optname, char __user *optval,
989 					unsigned int optlen);
990 	int			(*getsockopt)(struct sock *sk, int level,
991 					int optname, char __user *optval,
992 					int __user *option);
993 #ifdef CONFIG_COMPAT
994 	int			(*compat_setsockopt)(struct sock *sk,
995 					int level,
996 					int optname, char __user *optval,
997 					unsigned int optlen);
998 	int			(*compat_getsockopt)(struct sock *sk,
999 					int level,
1000 					int optname, char __user *optval,
1001 					int __user *option);
1002 	int			(*compat_ioctl)(struct sock *sk,
1003 					unsigned int cmd, unsigned long arg);
1004 #endif
1005 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1006 					   size_t len);
1007 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1008 					   size_t len, int noblock, int flags,
1009 					   int *addr_len);
1010 	int			(*sendpage)(struct sock *sk, struct page *page,
1011 					int offset, size_t size, int flags);
1012 	int			(*bind)(struct sock *sk,
1013 					struct sockaddr *uaddr, int addr_len);
1014 
1015 	int			(*backlog_rcv) (struct sock *sk,
1016 						struct sk_buff *skb);
1017 
1018 	void		(*release_cb)(struct sock *sk);
1019 
1020 	/* Keeping track of sk's, looking them up, and port selection methods. */
1021 	int			(*hash)(struct sock *sk);
1022 	void			(*unhash)(struct sock *sk);
1023 	void			(*rehash)(struct sock *sk);
1024 	int			(*get_port)(struct sock *sk, unsigned short snum);
1025 
1026 	/* Keeping track of sockets in use */
1027 #ifdef CONFIG_PROC_FS
1028 	unsigned int		inuse_idx;
1029 #endif
1030 
1031 	bool			(*stream_memory_free)(const struct sock *sk);
1032 	/* Memory pressure */
1033 	void			(*enter_memory_pressure)(struct sock *sk);
1034 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1035 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1036 	/*
1037 	 * Pressure flag: try to collapse.
1038 	 * Technical note: it is used by multiple contexts non atomically.
1039 	 * All the __sk_mem_schedule() is of this nature: accounting
1040 	 * is strict, actions are advisory and have some latency.
1041 	 */
1042 	int			*memory_pressure;
1043 	long			*sysctl_mem;
1044 	int			*sysctl_wmem;
1045 	int			*sysctl_rmem;
1046 	int			max_header;
1047 	bool			no_autobind;
1048 
1049 	struct kmem_cache	*slab;
1050 	unsigned int		obj_size;
1051 	int			slab_flags;
1052 
1053 	struct percpu_counter	*orphan_count;
1054 
1055 	struct request_sock_ops	*rsk_prot;
1056 	struct timewait_sock_ops *twsk_prot;
1057 
1058 	union {
1059 		struct inet_hashinfo	*hashinfo;
1060 		struct udp_table	*udp_table;
1061 		struct raw_hashinfo	*raw_hash;
1062 	} h;
1063 
1064 	struct module		*owner;
1065 
1066 	char			name[32];
1067 
1068 	struct list_head	node;
1069 #ifdef SOCK_REFCNT_DEBUG
1070 	atomic_t		socks;
1071 #endif
1072 	int			(*diag_destroy)(struct sock *sk, int err);
1073 };
1074 
1075 int proto_register(struct proto *prot, int alloc_slab);
1076 void proto_unregister(struct proto *prot);
1077 
1078 #ifdef SOCK_REFCNT_DEBUG
1079 static inline void sk_refcnt_debug_inc(struct sock *sk)
1080 {
1081 	atomic_inc(&sk->sk_prot->socks);
1082 }
1083 
1084 static inline void sk_refcnt_debug_dec(struct sock *sk)
1085 {
1086 	atomic_dec(&sk->sk_prot->socks);
1087 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1088 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1089 }
1090 
1091 static inline void sk_refcnt_debug_release(const struct sock *sk)
1092 {
1093 	if (atomic_read(&sk->sk_refcnt) != 1)
1094 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1095 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1096 }
1097 #else /* SOCK_REFCNT_DEBUG */
1098 #define sk_refcnt_debug_inc(sk) do { } while (0)
1099 #define sk_refcnt_debug_dec(sk) do { } while (0)
1100 #define sk_refcnt_debug_release(sk) do { } while (0)
1101 #endif /* SOCK_REFCNT_DEBUG */
1102 
1103 static inline bool sk_stream_memory_free(const struct sock *sk)
1104 {
1105 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1106 		return false;
1107 
1108 	return sk->sk_prot->stream_memory_free ?
1109 		sk->sk_prot->stream_memory_free(sk) : true;
1110 }
1111 
1112 static inline bool sk_stream_is_writeable(const struct sock *sk)
1113 {
1114 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1115 	       sk_stream_memory_free(sk);
1116 }
1117 
1118 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1119 					    struct cgroup *ancestor)
1120 {
1121 #ifdef CONFIG_SOCK_CGROUP_DATA
1122 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1123 				    ancestor);
1124 #else
1125 	return -ENOTSUPP;
1126 #endif
1127 }
1128 
1129 static inline bool sk_has_memory_pressure(const struct sock *sk)
1130 {
1131 	return sk->sk_prot->memory_pressure != NULL;
1132 }
1133 
1134 static inline bool sk_under_memory_pressure(const struct sock *sk)
1135 {
1136 	if (!sk->sk_prot->memory_pressure)
1137 		return false;
1138 
1139 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1140 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1141 		return true;
1142 
1143 	return !!*sk->sk_prot->memory_pressure;
1144 }
1145 
1146 static inline void sk_leave_memory_pressure(struct sock *sk)
1147 {
1148 	int *memory_pressure = sk->sk_prot->memory_pressure;
1149 
1150 	if (!memory_pressure)
1151 		return;
1152 
1153 	if (*memory_pressure)
1154 		*memory_pressure = 0;
1155 }
1156 
1157 static inline void sk_enter_memory_pressure(struct sock *sk)
1158 {
1159 	if (!sk->sk_prot->enter_memory_pressure)
1160 		return;
1161 
1162 	sk->sk_prot->enter_memory_pressure(sk);
1163 }
1164 
1165 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1166 {
1167 	return sk->sk_prot->sysctl_mem[index];
1168 }
1169 
1170 static inline long
1171 sk_memory_allocated(const struct sock *sk)
1172 {
1173 	return atomic_long_read(sk->sk_prot->memory_allocated);
1174 }
1175 
1176 static inline long
1177 sk_memory_allocated_add(struct sock *sk, int amt)
1178 {
1179 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1180 }
1181 
1182 static inline void
1183 sk_memory_allocated_sub(struct sock *sk, int amt)
1184 {
1185 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1186 }
1187 
1188 static inline void sk_sockets_allocated_dec(struct sock *sk)
1189 {
1190 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1191 }
1192 
1193 static inline void sk_sockets_allocated_inc(struct sock *sk)
1194 {
1195 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1196 }
1197 
1198 static inline int
1199 sk_sockets_allocated_read_positive(struct sock *sk)
1200 {
1201 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1202 }
1203 
1204 static inline int
1205 proto_sockets_allocated_sum_positive(struct proto *prot)
1206 {
1207 	return percpu_counter_sum_positive(prot->sockets_allocated);
1208 }
1209 
1210 static inline long
1211 proto_memory_allocated(struct proto *prot)
1212 {
1213 	return atomic_long_read(prot->memory_allocated);
1214 }
1215 
1216 static inline bool
1217 proto_memory_pressure(struct proto *prot)
1218 {
1219 	if (!prot->memory_pressure)
1220 		return false;
1221 	return !!*prot->memory_pressure;
1222 }
1223 
1224 
1225 #ifdef CONFIG_PROC_FS
1226 /* Called with local bh disabled */
1227 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1228 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1229 #else
1230 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1231 		int inc)
1232 {
1233 }
1234 #endif
1235 
1236 
1237 /* With per-bucket locks this operation is not-atomic, so that
1238  * this version is not worse.
1239  */
1240 static inline int __sk_prot_rehash(struct sock *sk)
1241 {
1242 	sk->sk_prot->unhash(sk);
1243 	return sk->sk_prot->hash(sk);
1244 }
1245 
1246 /* About 10 seconds */
1247 #define SOCK_DESTROY_TIME (10*HZ)
1248 
1249 /* Sockets 0-1023 can't be bound to unless you are superuser */
1250 #define PROT_SOCK	1024
1251 
1252 #define SHUTDOWN_MASK	3
1253 #define RCV_SHUTDOWN	1
1254 #define SEND_SHUTDOWN	2
1255 
1256 #define SOCK_SNDBUF_LOCK	1
1257 #define SOCK_RCVBUF_LOCK	2
1258 #define SOCK_BINDADDR_LOCK	4
1259 #define SOCK_BINDPORT_LOCK	8
1260 
1261 struct socket_alloc {
1262 	struct socket socket;
1263 	struct inode vfs_inode;
1264 };
1265 
1266 static inline struct socket *SOCKET_I(struct inode *inode)
1267 {
1268 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1269 }
1270 
1271 static inline struct inode *SOCK_INODE(struct socket *socket)
1272 {
1273 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1274 }
1275 
1276 /*
1277  * Functions for memory accounting
1278  */
1279 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1280 void __sk_mem_reclaim(struct sock *sk, int amount);
1281 
1282 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1283 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1284 #define SK_MEM_SEND	0
1285 #define SK_MEM_RECV	1
1286 
1287 static inline int sk_mem_pages(int amt)
1288 {
1289 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1290 }
1291 
1292 static inline bool sk_has_account(struct sock *sk)
1293 {
1294 	/* return true if protocol supports memory accounting */
1295 	return !!sk->sk_prot->memory_allocated;
1296 }
1297 
1298 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1299 {
1300 	if (!sk_has_account(sk))
1301 		return true;
1302 	return size <= sk->sk_forward_alloc ||
1303 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1304 }
1305 
1306 static inline bool
1307 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1308 {
1309 	if (!sk_has_account(sk))
1310 		return true;
1311 	return size<= sk->sk_forward_alloc ||
1312 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1313 		skb_pfmemalloc(skb);
1314 }
1315 
1316 static inline void sk_mem_reclaim(struct sock *sk)
1317 {
1318 	if (!sk_has_account(sk))
1319 		return;
1320 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1321 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1322 }
1323 
1324 static inline void sk_mem_reclaim_partial(struct sock *sk)
1325 {
1326 	if (!sk_has_account(sk))
1327 		return;
1328 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1329 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1330 }
1331 
1332 static inline void sk_mem_charge(struct sock *sk, int size)
1333 {
1334 	if (!sk_has_account(sk))
1335 		return;
1336 	sk->sk_forward_alloc -= size;
1337 }
1338 
1339 static inline void sk_mem_uncharge(struct sock *sk, int size)
1340 {
1341 	if (!sk_has_account(sk))
1342 		return;
1343 	sk->sk_forward_alloc += size;
1344 
1345 	/* Avoid a possible overflow.
1346 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1347 	 * is not called and more than 2 GBytes are released at once.
1348 	 *
1349 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1350 	 * no need to hold that much forward allocation anyway.
1351 	 */
1352 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1353 		__sk_mem_reclaim(sk, 1 << 20);
1354 }
1355 
1356 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1357 {
1358 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1359 	sk->sk_wmem_queued -= skb->truesize;
1360 	sk_mem_uncharge(sk, skb->truesize);
1361 	__kfree_skb(skb);
1362 }
1363 
1364 static inline void sock_release_ownership(struct sock *sk)
1365 {
1366 	if (sk->sk_lock.owned) {
1367 		sk->sk_lock.owned = 0;
1368 
1369 		/* The sk_lock has mutex_unlock() semantics: */
1370 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1371 	}
1372 }
1373 
1374 /*
1375  * Macro so as to not evaluate some arguments when
1376  * lockdep is not enabled.
1377  *
1378  * Mark both the sk_lock and the sk_lock.slock as a
1379  * per-address-family lock class.
1380  */
1381 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1382 do {									\
1383 	sk->sk_lock.owned = 0;						\
1384 	init_waitqueue_head(&sk->sk_lock.wq);				\
1385 	spin_lock_init(&(sk)->sk_lock.slock);				\
1386 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1387 			sizeof((sk)->sk_lock));				\
1388 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1389 				(skey), (sname));				\
1390 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1391 } while (0)
1392 
1393 #ifdef CONFIG_LOCKDEP
1394 static inline bool lockdep_sock_is_held(const struct sock *csk)
1395 {
1396 	struct sock *sk = (struct sock *)csk;
1397 
1398 	return lockdep_is_held(&sk->sk_lock) ||
1399 	       lockdep_is_held(&sk->sk_lock.slock);
1400 }
1401 #endif
1402 
1403 void lock_sock_nested(struct sock *sk, int subclass);
1404 
1405 static inline void lock_sock(struct sock *sk)
1406 {
1407 	lock_sock_nested(sk, 0);
1408 }
1409 
1410 void release_sock(struct sock *sk);
1411 
1412 /* BH context may only use the following locking interface. */
1413 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1414 #define bh_lock_sock_nested(__sk) \
1415 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1416 				SINGLE_DEPTH_NESTING)
1417 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1418 
1419 bool lock_sock_fast(struct sock *sk);
1420 /**
1421  * unlock_sock_fast - complement of lock_sock_fast
1422  * @sk: socket
1423  * @slow: slow mode
1424  *
1425  * fast unlock socket for user context.
1426  * If slow mode is on, we call regular release_sock()
1427  */
1428 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1429 {
1430 	if (slow)
1431 		release_sock(sk);
1432 	else
1433 		spin_unlock_bh(&sk->sk_lock.slock);
1434 }
1435 
1436 /* Used by processes to "lock" a socket state, so that
1437  * interrupts and bottom half handlers won't change it
1438  * from under us. It essentially blocks any incoming
1439  * packets, so that we won't get any new data or any
1440  * packets that change the state of the socket.
1441  *
1442  * While locked, BH processing will add new packets to
1443  * the backlog queue.  This queue is processed by the
1444  * owner of the socket lock right before it is released.
1445  *
1446  * Since ~2.3.5 it is also exclusive sleep lock serializing
1447  * accesses from user process context.
1448  */
1449 
1450 static inline void sock_owned_by_me(const struct sock *sk)
1451 {
1452 #ifdef CONFIG_LOCKDEP
1453 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1454 #endif
1455 }
1456 
1457 static inline bool sock_owned_by_user(const struct sock *sk)
1458 {
1459 	sock_owned_by_me(sk);
1460 	return sk->sk_lock.owned;
1461 }
1462 
1463 /* no reclassification while locks are held */
1464 static inline bool sock_allow_reclassification(const struct sock *csk)
1465 {
1466 	struct sock *sk = (struct sock *)csk;
1467 
1468 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1469 }
1470 
1471 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1472 		      struct proto *prot, int kern);
1473 void sk_free(struct sock *sk);
1474 void sk_destruct(struct sock *sk);
1475 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1476 
1477 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1478 			     gfp_t priority);
1479 void __sock_wfree(struct sk_buff *skb);
1480 void sock_wfree(struct sk_buff *skb);
1481 void skb_orphan_partial(struct sk_buff *skb);
1482 void sock_rfree(struct sk_buff *skb);
1483 void sock_efree(struct sk_buff *skb);
1484 #ifdef CONFIG_INET
1485 void sock_edemux(struct sk_buff *skb);
1486 #else
1487 #define sock_edemux(skb) sock_efree(skb)
1488 #endif
1489 
1490 int sock_setsockopt(struct socket *sock, int level, int op,
1491 		    char __user *optval, unsigned int optlen);
1492 
1493 int sock_getsockopt(struct socket *sock, int level, int op,
1494 		    char __user *optval, int __user *optlen);
1495 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1496 				    int noblock, int *errcode);
1497 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1498 				     unsigned long data_len, int noblock,
1499 				     int *errcode, int max_page_order);
1500 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1501 void sock_kfree_s(struct sock *sk, void *mem, int size);
1502 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1503 void sk_send_sigurg(struct sock *sk);
1504 
1505 struct sockcm_cookie {
1506 	u32 mark;
1507 	u16 tsflags;
1508 };
1509 
1510 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1511 		     struct sockcm_cookie *sockc);
1512 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1513 		   struct sockcm_cookie *sockc);
1514 
1515 /*
1516  * Functions to fill in entries in struct proto_ops when a protocol
1517  * does not implement a particular function.
1518  */
1519 int sock_no_bind(struct socket *, struct sockaddr *, int);
1520 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1521 int sock_no_socketpair(struct socket *, struct socket *);
1522 int sock_no_accept(struct socket *, struct socket *, int);
1523 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1524 unsigned int sock_no_poll(struct file *, struct socket *,
1525 			  struct poll_table_struct *);
1526 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1527 int sock_no_listen(struct socket *, int);
1528 int sock_no_shutdown(struct socket *, int);
1529 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1530 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1531 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1532 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1533 int sock_no_mmap(struct file *file, struct socket *sock,
1534 		 struct vm_area_struct *vma);
1535 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1536 			 size_t size, int flags);
1537 
1538 /*
1539  * Functions to fill in entries in struct proto_ops when a protocol
1540  * uses the inet style.
1541  */
1542 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1543 				  char __user *optval, int __user *optlen);
1544 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1545 			int flags);
1546 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1547 				  char __user *optval, unsigned int optlen);
1548 int compat_sock_common_getsockopt(struct socket *sock, int level,
1549 		int optname, char __user *optval, int __user *optlen);
1550 int compat_sock_common_setsockopt(struct socket *sock, int level,
1551 		int optname, char __user *optval, unsigned int optlen);
1552 
1553 void sk_common_release(struct sock *sk);
1554 
1555 /*
1556  *	Default socket callbacks and setup code
1557  */
1558 
1559 /* Initialise core socket variables */
1560 void sock_init_data(struct socket *sock, struct sock *sk);
1561 
1562 /*
1563  * Socket reference counting postulates.
1564  *
1565  * * Each user of socket SHOULD hold a reference count.
1566  * * Each access point to socket (an hash table bucket, reference from a list,
1567  *   running timer, skb in flight MUST hold a reference count.
1568  * * When reference count hits 0, it means it will never increase back.
1569  * * When reference count hits 0, it means that no references from
1570  *   outside exist to this socket and current process on current CPU
1571  *   is last user and may/should destroy this socket.
1572  * * sk_free is called from any context: process, BH, IRQ. When
1573  *   it is called, socket has no references from outside -> sk_free
1574  *   may release descendant resources allocated by the socket, but
1575  *   to the time when it is called, socket is NOT referenced by any
1576  *   hash tables, lists etc.
1577  * * Packets, delivered from outside (from network or from another process)
1578  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1579  *   when they sit in queue. Otherwise, packets will leak to hole, when
1580  *   socket is looked up by one cpu and unhasing is made by another CPU.
1581  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1582  *   (leak to backlog). Packet socket does all the processing inside
1583  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1584  *   use separate SMP lock, so that they are prone too.
1585  */
1586 
1587 /* Ungrab socket and destroy it, if it was the last reference. */
1588 static inline void sock_put(struct sock *sk)
1589 {
1590 	if (atomic_dec_and_test(&sk->sk_refcnt))
1591 		sk_free(sk);
1592 }
1593 /* Generic version of sock_put(), dealing with all sockets
1594  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1595  */
1596 void sock_gen_put(struct sock *sk);
1597 
1598 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1599 		     unsigned int trim_cap);
1600 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1601 				 const int nested)
1602 {
1603 	return __sk_receive_skb(sk, skb, nested, 1);
1604 }
1605 
1606 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1607 {
1608 	sk->sk_tx_queue_mapping = tx_queue;
1609 }
1610 
1611 static inline void sk_tx_queue_clear(struct sock *sk)
1612 {
1613 	sk->sk_tx_queue_mapping = -1;
1614 }
1615 
1616 static inline int sk_tx_queue_get(const struct sock *sk)
1617 {
1618 	return sk ? sk->sk_tx_queue_mapping : -1;
1619 }
1620 
1621 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1622 {
1623 	sk_tx_queue_clear(sk);
1624 	sk->sk_socket = sock;
1625 }
1626 
1627 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1628 {
1629 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1630 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1631 }
1632 /* Detach socket from process context.
1633  * Announce socket dead, detach it from wait queue and inode.
1634  * Note that parent inode held reference count on this struct sock,
1635  * we do not release it in this function, because protocol
1636  * probably wants some additional cleanups or even continuing
1637  * to work with this socket (TCP).
1638  */
1639 static inline void sock_orphan(struct sock *sk)
1640 {
1641 	write_lock_bh(&sk->sk_callback_lock);
1642 	sock_set_flag(sk, SOCK_DEAD);
1643 	sk_set_socket(sk, NULL);
1644 	sk->sk_wq  = NULL;
1645 	write_unlock_bh(&sk->sk_callback_lock);
1646 }
1647 
1648 static inline void sock_graft(struct sock *sk, struct socket *parent)
1649 {
1650 	write_lock_bh(&sk->sk_callback_lock);
1651 	sk->sk_wq = parent->wq;
1652 	parent->sk = sk;
1653 	sk_set_socket(sk, parent);
1654 	security_sock_graft(sk, parent);
1655 	write_unlock_bh(&sk->sk_callback_lock);
1656 }
1657 
1658 kuid_t sock_i_uid(struct sock *sk);
1659 unsigned long sock_i_ino(struct sock *sk);
1660 
1661 static inline u32 net_tx_rndhash(void)
1662 {
1663 	u32 v = prandom_u32();
1664 
1665 	return v ?: 1;
1666 }
1667 
1668 static inline void sk_set_txhash(struct sock *sk)
1669 {
1670 	sk->sk_txhash = net_tx_rndhash();
1671 }
1672 
1673 static inline void sk_rethink_txhash(struct sock *sk)
1674 {
1675 	if (sk->sk_txhash)
1676 		sk_set_txhash(sk);
1677 }
1678 
1679 static inline struct dst_entry *
1680 __sk_dst_get(struct sock *sk)
1681 {
1682 	return rcu_dereference_check(sk->sk_dst_cache,
1683 				     lockdep_sock_is_held(sk));
1684 }
1685 
1686 static inline struct dst_entry *
1687 sk_dst_get(struct sock *sk)
1688 {
1689 	struct dst_entry *dst;
1690 
1691 	rcu_read_lock();
1692 	dst = rcu_dereference(sk->sk_dst_cache);
1693 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1694 		dst = NULL;
1695 	rcu_read_unlock();
1696 	return dst;
1697 }
1698 
1699 static inline void dst_negative_advice(struct sock *sk)
1700 {
1701 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1702 
1703 	sk_rethink_txhash(sk);
1704 
1705 	if (dst && dst->ops->negative_advice) {
1706 		ndst = dst->ops->negative_advice(dst);
1707 
1708 		if (ndst != dst) {
1709 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1710 			sk_tx_queue_clear(sk);
1711 		}
1712 	}
1713 }
1714 
1715 static inline void
1716 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1717 {
1718 	struct dst_entry *old_dst;
1719 
1720 	sk_tx_queue_clear(sk);
1721 	/*
1722 	 * This can be called while sk is owned by the caller only,
1723 	 * with no state that can be checked in a rcu_dereference_check() cond
1724 	 */
1725 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1726 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1727 	dst_release(old_dst);
1728 }
1729 
1730 static inline void
1731 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1732 {
1733 	struct dst_entry *old_dst;
1734 
1735 	sk_tx_queue_clear(sk);
1736 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1737 	dst_release(old_dst);
1738 }
1739 
1740 static inline void
1741 __sk_dst_reset(struct sock *sk)
1742 {
1743 	__sk_dst_set(sk, NULL);
1744 }
1745 
1746 static inline void
1747 sk_dst_reset(struct sock *sk)
1748 {
1749 	sk_dst_set(sk, NULL);
1750 }
1751 
1752 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1753 
1754 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1755 
1756 bool sk_mc_loop(struct sock *sk);
1757 
1758 static inline bool sk_can_gso(const struct sock *sk)
1759 {
1760 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1761 }
1762 
1763 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1764 
1765 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1766 {
1767 	sk->sk_route_nocaps |= flags;
1768 	sk->sk_route_caps &= ~flags;
1769 }
1770 
1771 static inline bool sk_check_csum_caps(struct sock *sk)
1772 {
1773 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1774 	       (sk->sk_family == PF_INET &&
1775 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1776 	       (sk->sk_family == PF_INET6 &&
1777 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1778 }
1779 
1780 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1781 					   struct iov_iter *from, char *to,
1782 					   int copy, int offset)
1783 {
1784 	if (skb->ip_summed == CHECKSUM_NONE) {
1785 		__wsum csum = 0;
1786 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1787 			return -EFAULT;
1788 		skb->csum = csum_block_add(skb->csum, csum, offset);
1789 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1790 		if (copy_from_iter_nocache(to, copy, from) != copy)
1791 			return -EFAULT;
1792 	} else if (copy_from_iter(to, copy, from) != copy)
1793 		return -EFAULT;
1794 
1795 	return 0;
1796 }
1797 
1798 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1799 				       struct iov_iter *from, int copy)
1800 {
1801 	int err, offset = skb->len;
1802 
1803 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1804 				       copy, offset);
1805 	if (err)
1806 		__skb_trim(skb, offset);
1807 
1808 	return err;
1809 }
1810 
1811 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1812 					   struct sk_buff *skb,
1813 					   struct page *page,
1814 					   int off, int copy)
1815 {
1816 	int err;
1817 
1818 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1819 				       copy, skb->len);
1820 	if (err)
1821 		return err;
1822 
1823 	skb->len	     += copy;
1824 	skb->data_len	     += copy;
1825 	skb->truesize	     += copy;
1826 	sk->sk_wmem_queued   += copy;
1827 	sk_mem_charge(sk, copy);
1828 	return 0;
1829 }
1830 
1831 /**
1832  * sk_wmem_alloc_get - returns write allocations
1833  * @sk: socket
1834  *
1835  * Returns sk_wmem_alloc minus initial offset of one
1836  */
1837 static inline int sk_wmem_alloc_get(const struct sock *sk)
1838 {
1839 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1840 }
1841 
1842 /**
1843  * sk_rmem_alloc_get - returns read allocations
1844  * @sk: socket
1845  *
1846  * Returns sk_rmem_alloc
1847  */
1848 static inline int sk_rmem_alloc_get(const struct sock *sk)
1849 {
1850 	return atomic_read(&sk->sk_rmem_alloc);
1851 }
1852 
1853 /**
1854  * sk_has_allocations - check if allocations are outstanding
1855  * @sk: socket
1856  *
1857  * Returns true if socket has write or read allocations
1858  */
1859 static inline bool sk_has_allocations(const struct sock *sk)
1860 {
1861 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1862 }
1863 
1864 /**
1865  * skwq_has_sleeper - check if there are any waiting processes
1866  * @wq: struct socket_wq
1867  *
1868  * Returns true if socket_wq has waiting processes
1869  *
1870  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1871  * barrier call. They were added due to the race found within the tcp code.
1872  *
1873  * Consider following tcp code paths:
1874  *
1875  * CPU1                  CPU2
1876  *
1877  * sys_select            receive packet
1878  *   ...                 ...
1879  *   __add_wait_queue    update tp->rcv_nxt
1880  *   ...                 ...
1881  *   tp->rcv_nxt check   sock_def_readable
1882  *   ...                 {
1883  *   schedule               rcu_read_lock();
1884  *                          wq = rcu_dereference(sk->sk_wq);
1885  *                          if (wq && waitqueue_active(&wq->wait))
1886  *                              wake_up_interruptible(&wq->wait)
1887  *                          ...
1888  *                       }
1889  *
1890  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1891  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1892  * could then endup calling schedule and sleep forever if there are no more
1893  * data on the socket.
1894  *
1895  */
1896 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1897 {
1898 	return wq && wq_has_sleeper(&wq->wait);
1899 }
1900 
1901 /**
1902  * sock_poll_wait - place memory barrier behind the poll_wait call.
1903  * @filp:           file
1904  * @wait_address:   socket wait queue
1905  * @p:              poll_table
1906  *
1907  * See the comments in the wq_has_sleeper function.
1908  */
1909 static inline void sock_poll_wait(struct file *filp,
1910 		wait_queue_head_t *wait_address, poll_table *p)
1911 {
1912 	if (!poll_does_not_wait(p) && wait_address) {
1913 		poll_wait(filp, wait_address, p);
1914 		/* We need to be sure we are in sync with the
1915 		 * socket flags modification.
1916 		 *
1917 		 * This memory barrier is paired in the wq_has_sleeper.
1918 		 */
1919 		smp_mb();
1920 	}
1921 }
1922 
1923 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1924 {
1925 	if (sk->sk_txhash) {
1926 		skb->l4_hash = 1;
1927 		skb->hash = sk->sk_txhash;
1928 	}
1929 }
1930 
1931 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1932 
1933 /*
1934  *	Queue a received datagram if it will fit. Stream and sequenced
1935  *	protocols can't normally use this as they need to fit buffers in
1936  *	and play with them.
1937  *
1938  *	Inlined as it's very short and called for pretty much every
1939  *	packet ever received.
1940  */
1941 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1942 {
1943 	skb_orphan(skb);
1944 	skb->sk = sk;
1945 	skb->destructor = sock_rfree;
1946 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1947 	sk_mem_charge(sk, skb->truesize);
1948 }
1949 
1950 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1951 		    unsigned long expires);
1952 
1953 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1954 
1955 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1956 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1957 
1958 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1959 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1960 
1961 /*
1962  *	Recover an error report and clear atomically
1963  */
1964 
1965 static inline int sock_error(struct sock *sk)
1966 {
1967 	int err;
1968 	if (likely(!sk->sk_err))
1969 		return 0;
1970 	err = xchg(&sk->sk_err, 0);
1971 	return -err;
1972 }
1973 
1974 static inline unsigned long sock_wspace(struct sock *sk)
1975 {
1976 	int amt = 0;
1977 
1978 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1979 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1980 		if (amt < 0)
1981 			amt = 0;
1982 	}
1983 	return amt;
1984 }
1985 
1986 /* Note:
1987  *  We use sk->sk_wq_raw, from contexts knowing this
1988  *  pointer is not NULL and cannot disappear/change.
1989  */
1990 static inline void sk_set_bit(int nr, struct sock *sk)
1991 {
1992 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1993 	    !sock_flag(sk, SOCK_FASYNC))
1994 		return;
1995 
1996 	set_bit(nr, &sk->sk_wq_raw->flags);
1997 }
1998 
1999 static inline void sk_clear_bit(int nr, struct sock *sk)
2000 {
2001 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2002 	    !sock_flag(sk, SOCK_FASYNC))
2003 		return;
2004 
2005 	clear_bit(nr, &sk->sk_wq_raw->flags);
2006 }
2007 
2008 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2009 {
2010 	if (sock_flag(sk, SOCK_FASYNC)) {
2011 		rcu_read_lock();
2012 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2013 		rcu_read_unlock();
2014 	}
2015 }
2016 
2017 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2018  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2019  * Note: for send buffers, TCP works better if we can build two skbs at
2020  * minimum.
2021  */
2022 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2023 
2024 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2025 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2026 
2027 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2028 {
2029 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2030 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2031 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2032 	}
2033 }
2034 
2035 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2036 				    bool force_schedule);
2037 
2038 /**
2039  * sk_page_frag - return an appropriate page_frag
2040  * @sk: socket
2041  *
2042  * If socket allocation mode allows current thread to sleep, it means its
2043  * safe to use the per task page_frag instead of the per socket one.
2044  */
2045 static inline struct page_frag *sk_page_frag(struct sock *sk)
2046 {
2047 	if (gfpflags_allow_blocking(sk->sk_allocation))
2048 		return &current->task_frag;
2049 
2050 	return &sk->sk_frag;
2051 }
2052 
2053 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2054 
2055 /*
2056  *	Default write policy as shown to user space via poll/select/SIGIO
2057  */
2058 static inline bool sock_writeable(const struct sock *sk)
2059 {
2060 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2061 }
2062 
2063 static inline gfp_t gfp_any(void)
2064 {
2065 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2066 }
2067 
2068 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2069 {
2070 	return noblock ? 0 : sk->sk_rcvtimeo;
2071 }
2072 
2073 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2074 {
2075 	return noblock ? 0 : sk->sk_sndtimeo;
2076 }
2077 
2078 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2079 {
2080 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2081 }
2082 
2083 /* Alas, with timeout socket operations are not restartable.
2084  * Compare this to poll().
2085  */
2086 static inline int sock_intr_errno(long timeo)
2087 {
2088 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2089 }
2090 
2091 struct sock_skb_cb {
2092 	u32 dropcount;
2093 };
2094 
2095 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2096  * using skb->cb[] would keep using it directly and utilize its
2097  * alignement guarantee.
2098  */
2099 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2100 			    sizeof(struct sock_skb_cb)))
2101 
2102 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2103 			    SOCK_SKB_CB_OFFSET))
2104 
2105 #define sock_skb_cb_check_size(size) \
2106 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2107 
2108 static inline void
2109 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2110 {
2111 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2112 }
2113 
2114 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2115 {
2116 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2117 
2118 	atomic_add(segs, &sk->sk_drops);
2119 }
2120 
2121 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2122 			   struct sk_buff *skb);
2123 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2124 			     struct sk_buff *skb);
2125 
2126 static inline void
2127 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2128 {
2129 	ktime_t kt = skb->tstamp;
2130 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2131 
2132 	/*
2133 	 * generate control messages if
2134 	 * - receive time stamping in software requested
2135 	 * - software time stamp available and wanted
2136 	 * - hardware time stamps available and wanted
2137 	 */
2138 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2139 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2140 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2141 	    (hwtstamps->hwtstamp.tv64 &&
2142 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2143 		__sock_recv_timestamp(msg, sk, skb);
2144 	else
2145 		sk->sk_stamp = kt;
2146 
2147 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2148 		__sock_recv_wifi_status(msg, sk, skb);
2149 }
2150 
2151 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2152 			      struct sk_buff *skb);
2153 
2154 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2155 					  struct sk_buff *skb)
2156 {
2157 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2158 			   (1UL << SOCK_RCVTSTAMP))
2159 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2160 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2161 
2162 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2163 		__sock_recv_ts_and_drops(msg, sk, skb);
2164 	else
2165 		sk->sk_stamp = skb->tstamp;
2166 }
2167 
2168 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2169 
2170 /**
2171  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2172  * @sk:		socket sending this packet
2173  * @tsflags:	timestamping flags to use
2174  * @tx_flags:	completed with instructions for time stamping
2175  *
2176  * Note : callers should take care of initial *tx_flags value (usually 0)
2177  */
2178 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2179 				     __u8 *tx_flags)
2180 {
2181 	if (unlikely(tsflags))
2182 		__sock_tx_timestamp(tsflags, tx_flags);
2183 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2184 		*tx_flags |= SKBTX_WIFI_STATUS;
2185 }
2186 
2187 /**
2188  * sk_eat_skb - Release a skb if it is no longer needed
2189  * @sk: socket to eat this skb from
2190  * @skb: socket buffer to eat
2191  *
2192  * This routine must be called with interrupts disabled or with the socket
2193  * locked so that the sk_buff queue operation is ok.
2194 */
2195 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2196 {
2197 	__skb_unlink(skb, &sk->sk_receive_queue);
2198 	__kfree_skb(skb);
2199 }
2200 
2201 static inline
2202 struct net *sock_net(const struct sock *sk)
2203 {
2204 	return read_pnet(&sk->sk_net);
2205 }
2206 
2207 static inline
2208 void sock_net_set(struct sock *sk, struct net *net)
2209 {
2210 	write_pnet(&sk->sk_net, net);
2211 }
2212 
2213 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2214 {
2215 	if (skb->sk) {
2216 		struct sock *sk = skb->sk;
2217 
2218 		skb->destructor = NULL;
2219 		skb->sk = NULL;
2220 		return sk;
2221 	}
2222 	return NULL;
2223 }
2224 
2225 /* This helper checks if a socket is a full socket,
2226  * ie _not_ a timewait or request socket.
2227  */
2228 static inline bool sk_fullsock(const struct sock *sk)
2229 {
2230 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2231 }
2232 
2233 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2234  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2235  */
2236 static inline bool sk_listener(const struct sock *sk)
2237 {
2238 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2239 }
2240 
2241 /**
2242  * sk_state_load - read sk->sk_state for lockless contexts
2243  * @sk: socket pointer
2244  *
2245  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2246  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2247  */
2248 static inline int sk_state_load(const struct sock *sk)
2249 {
2250 	return smp_load_acquire(&sk->sk_state);
2251 }
2252 
2253 /**
2254  * sk_state_store - update sk->sk_state
2255  * @sk: socket pointer
2256  * @newstate: new state
2257  *
2258  * Paired with sk_state_load(). Should be used in contexts where
2259  * state change might impact lockless readers.
2260  */
2261 static inline void sk_state_store(struct sock *sk, int newstate)
2262 {
2263 	smp_store_release(&sk->sk_state, newstate);
2264 }
2265 
2266 void sock_enable_timestamp(struct sock *sk, int flag);
2267 int sock_get_timestamp(struct sock *, struct timeval __user *);
2268 int sock_get_timestampns(struct sock *, struct timespec __user *);
2269 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2270 		       int type);
2271 
2272 bool sk_ns_capable(const struct sock *sk,
2273 		   struct user_namespace *user_ns, int cap);
2274 bool sk_capable(const struct sock *sk, int cap);
2275 bool sk_net_capable(const struct sock *sk, int cap);
2276 
2277 extern __u32 sysctl_wmem_max;
2278 extern __u32 sysctl_rmem_max;
2279 
2280 extern int sysctl_tstamp_allow_data;
2281 extern int sysctl_optmem_max;
2282 
2283 extern __u32 sysctl_wmem_default;
2284 extern __u32 sysctl_rmem_default;
2285 
2286 #endif	/* _SOCK_H */
2287