xref: /openbmc/linux/include/net/sock.h (revision dd5e5554)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	union {
165 		__addrpair	skc_addrpair;
166 		struct {
167 			__be32	skc_daddr;
168 			__be32	skc_rcv_saddr;
169 		};
170 	};
171 	union  {
172 		unsigned int	skc_hash;
173 		__u16		skc_u16hashes[2];
174 	};
175 	/* skc_dport && skc_num must be grouped as well */
176 	union {
177 		__portpair	skc_portpair;
178 		struct {
179 			__be16	skc_dport;
180 			__u16	skc_num;
181 		};
182 	};
183 
184 	unsigned short		skc_family;
185 	volatile unsigned char	skc_state;
186 	unsigned char		skc_reuse:4;
187 	unsigned char		skc_reuseport:1;
188 	unsigned char		skc_ipv6only:1;
189 	unsigned char		skc_net_refcnt:1;
190 	int			skc_bound_dev_if;
191 	union {
192 		struct hlist_node	skc_bind_node;
193 		struct hlist_node	skc_portaddr_node;
194 	};
195 	struct proto		*skc_prot;
196 	possible_net_t		skc_net;
197 
198 #if IS_ENABLED(CONFIG_IPV6)
199 	struct in6_addr		skc_v6_daddr;
200 	struct in6_addr		skc_v6_rcv_saddr;
201 #endif
202 
203 	atomic64_t		skc_cookie;
204 
205 	/* following fields are padding to force
206 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 	 * assuming IPV6 is enabled. We use this padding differently
208 	 * for different kind of 'sockets'
209 	 */
210 	union {
211 		unsigned long	skc_flags;
212 		struct sock	*skc_listener; /* request_sock */
213 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 	};
215 	/*
216 	 * fields between dontcopy_begin/dontcopy_end
217 	 * are not copied in sock_copy()
218 	 */
219 	/* private: */
220 	int			skc_dontcopy_begin[0];
221 	/* public: */
222 	union {
223 		struct hlist_node	skc_node;
224 		struct hlist_nulls_node skc_nulls_node;
225 	};
226 	unsigned short		skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 	unsigned short		skc_rx_queue_mapping;
229 #endif
230 	union {
231 		int		skc_incoming_cpu;
232 		u32		skc_rcv_wnd;
233 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
234 	};
235 
236 	refcount_t		skc_refcnt;
237 	/* private: */
238 	int                     skc_dontcopy_end[0];
239 	union {
240 		u32		skc_rxhash;
241 		u32		skc_window_clamp;
242 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 	};
244 	/* public: */
245 };
246 
247 struct bpf_local_storage;
248 struct sk_filter;
249 
250 /**
251   *	struct sock - network layer representation of sockets
252   *	@__sk_common: shared layout with inet_timewait_sock
253   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255   *	@sk_lock:	synchronizer
256   *	@sk_kern_sock: True if sock is using kernel lock classes
257   *	@sk_rcvbuf: size of receive buffer in bytes
258   *	@sk_wq: sock wait queue and async head
259   *	@sk_rx_dst: receive input route used by early demux
260   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
262   *	@sk_dst_cache: destination cache
263   *	@sk_dst_pending_confirm: need to confirm neighbour
264   *	@sk_policy: flow policy
265   *	@sk_receive_queue: incoming packets
266   *	@sk_wmem_alloc: transmit queue bytes committed
267   *	@sk_tsq_flags: TCP Small Queues flags
268   *	@sk_write_queue: Packet sending queue
269   *	@sk_omem_alloc: "o" is "option" or "other"
270   *	@sk_wmem_queued: persistent queue size
271   *	@sk_forward_alloc: space allocated forward
272   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
273   *	@sk_napi_id: id of the last napi context to receive data for sk
274   *	@sk_ll_usec: usecs to busypoll when there is no data
275   *	@sk_allocation: allocation mode
276   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
278   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279   *	@sk_sndbuf: size of send buffer in bytes
280   *	@__sk_flags_offset: empty field used to determine location of bitfield
281   *	@sk_padding: unused element for alignment
282   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283   *	@sk_no_check_rx: allow zero checksum in RX packets
284   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287   *	@sk_gso_max_size: Maximum GSO segment size to build
288   *	@sk_gso_max_segs: Maximum number of GSO segments
289   *	@sk_pacing_shift: scaling factor for TCP Small Queues
290   *	@sk_lingertime: %SO_LINGER l_linger setting
291   *	@sk_backlog: always used with the per-socket spinlock held
292   *	@sk_callback_lock: used with the callbacks in the end of this struct
293   *	@sk_error_queue: rarely used
294   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295   *			  IPV6_ADDRFORM for instance)
296   *	@sk_err: last error
297   *	@sk_err_soft: errors that don't cause failure but are the cause of a
298   *		      persistent failure not just 'timed out'
299   *	@sk_drops: raw/udp drops counter
300   *	@sk_ack_backlog: current listen backlog
301   *	@sk_max_ack_backlog: listen backlog set in listen()
302   *	@sk_uid: user id of owner
303   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
304   *	@sk_busy_poll_budget: napi processing budget when busypolling
305   *	@sk_priority: %SO_PRIORITY setting
306   *	@sk_type: socket type (%SOCK_STREAM, etc)
307   *	@sk_protocol: which protocol this socket belongs in this network family
308   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309   *	@sk_peer_pid: &struct pid for this socket's peer
310   *	@sk_peer_cred: %SO_PEERCRED setting
311   *	@sk_rcvlowat: %SO_RCVLOWAT setting
312   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
313   *	@sk_sndtimeo: %SO_SNDTIMEO setting
314   *	@sk_txhash: computed flow hash for use on transmit
315   *	@sk_txrehash: enable TX hash rethink
316   *	@sk_filter: socket filtering instructions
317   *	@sk_timer: sock cleanup timer
318   *	@sk_stamp: time stamp of last packet received
319   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320   *	@sk_tsflags: SO_TIMESTAMPING flags
321   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
322   *	              for timestamping
323   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
324   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
325   *	@sk_socket: Identd and reporting IO signals
326   *	@sk_user_data: RPC layer private data
327   *	@sk_frag: cached page frag
328   *	@sk_peek_off: current peek_offset value
329   *	@sk_send_head: front of stuff to transmit
330   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331   *	@sk_security: used by security modules
332   *	@sk_mark: generic packet mark
333   *	@sk_cgrp_data: cgroup data for this cgroup
334   *	@sk_memcg: this socket's memory cgroup association
335   *	@sk_write_pending: a write to stream socket waits to start
336   *	@sk_state_change: callback to indicate change in the state of the sock
337   *	@sk_data_ready: callback to indicate there is data to be processed
338   *	@sk_write_space: callback to indicate there is bf sending space available
339   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
340   *	@sk_backlog_rcv: callback to process the backlog
341   *	@sk_validate_xmit_skb: ptr to an optional validate function
342   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
343   *	@sk_reuseport_cb: reuseport group container
344   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
345   *	@sk_rcu: used during RCU grace period
346   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
347   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
348   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
349   *	@sk_txtime_unused: unused txtime flags
350   *	@ns_tracker: tracker for netns reference
351   */
352 struct sock {
353 	/*
354 	 * Now struct inet_timewait_sock also uses sock_common, so please just
355 	 * don't add nothing before this first member (__sk_common) --acme
356 	 */
357 	struct sock_common	__sk_common;
358 #define sk_node			__sk_common.skc_node
359 #define sk_nulls_node		__sk_common.skc_nulls_node
360 #define sk_refcnt		__sk_common.skc_refcnt
361 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
363 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
364 #endif
365 
366 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
367 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
368 #define sk_hash			__sk_common.skc_hash
369 #define sk_portpair		__sk_common.skc_portpair
370 #define sk_num			__sk_common.skc_num
371 #define sk_dport		__sk_common.skc_dport
372 #define sk_addrpair		__sk_common.skc_addrpair
373 #define sk_daddr		__sk_common.skc_daddr
374 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
375 #define sk_family		__sk_common.skc_family
376 #define sk_state		__sk_common.skc_state
377 #define sk_reuse		__sk_common.skc_reuse
378 #define sk_reuseport		__sk_common.skc_reuseport
379 #define sk_ipv6only		__sk_common.skc_ipv6only
380 #define sk_net_refcnt		__sk_common.skc_net_refcnt
381 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
382 #define sk_bind_node		__sk_common.skc_bind_node
383 #define sk_prot			__sk_common.skc_prot
384 #define sk_net			__sk_common.skc_net
385 #define sk_v6_daddr		__sk_common.skc_v6_daddr
386 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
387 #define sk_cookie		__sk_common.skc_cookie
388 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
389 #define sk_flags		__sk_common.skc_flags
390 #define sk_rxhash		__sk_common.skc_rxhash
391 
392 	/* early demux fields */
393 	struct dst_entry __rcu	*sk_rx_dst;
394 	int			sk_rx_dst_ifindex;
395 	u32			sk_rx_dst_cookie;
396 
397 	socket_lock_t		sk_lock;
398 	atomic_t		sk_drops;
399 	int			sk_rcvlowat;
400 	struct sk_buff_head	sk_error_queue;
401 	struct sk_buff_head	sk_receive_queue;
402 	/*
403 	 * The backlog queue is special, it is always used with
404 	 * the per-socket spinlock held and requires low latency
405 	 * access. Therefore we special case it's implementation.
406 	 * Note : rmem_alloc is in this structure to fill a hole
407 	 * on 64bit arches, not because its logically part of
408 	 * backlog.
409 	 */
410 	struct {
411 		atomic_t	rmem_alloc;
412 		int		len;
413 		struct sk_buff	*head;
414 		struct sk_buff	*tail;
415 	} sk_backlog;
416 
417 #define sk_rmem_alloc sk_backlog.rmem_alloc
418 
419 	int			sk_forward_alloc;
420 	u32			sk_reserved_mem;
421 #ifdef CONFIG_NET_RX_BUSY_POLL
422 	unsigned int		sk_ll_usec;
423 	/* ===== mostly read cache line ===== */
424 	unsigned int		sk_napi_id;
425 #endif
426 	int			sk_rcvbuf;
427 
428 	struct sk_filter __rcu	*sk_filter;
429 	union {
430 		struct socket_wq __rcu	*sk_wq;
431 		/* private: */
432 		struct socket_wq	*sk_wq_raw;
433 		/* public: */
434 	};
435 #ifdef CONFIG_XFRM
436 	struct xfrm_policy __rcu *sk_policy[2];
437 #endif
438 
439 	struct dst_entry __rcu	*sk_dst_cache;
440 	atomic_t		sk_omem_alloc;
441 	int			sk_sndbuf;
442 
443 	/* ===== cache line for TX ===== */
444 	int			sk_wmem_queued;
445 	refcount_t		sk_wmem_alloc;
446 	unsigned long		sk_tsq_flags;
447 	union {
448 		struct sk_buff	*sk_send_head;
449 		struct rb_root	tcp_rtx_queue;
450 	};
451 	struct sk_buff_head	sk_write_queue;
452 	__s32			sk_peek_off;
453 	int			sk_write_pending;
454 	__u32			sk_dst_pending_confirm;
455 	u32			sk_pacing_status; /* see enum sk_pacing */
456 	long			sk_sndtimeo;
457 	struct timer_list	sk_timer;
458 	__u32			sk_priority;
459 	__u32			sk_mark;
460 	unsigned long		sk_pacing_rate; /* bytes per second */
461 	unsigned long		sk_max_pacing_rate;
462 	struct page_frag	sk_frag;
463 	netdev_features_t	sk_route_caps;
464 	int			sk_gso_type;
465 	unsigned int		sk_gso_max_size;
466 	gfp_t			sk_allocation;
467 	__u32			sk_txhash;
468 
469 	/*
470 	 * Because of non atomicity rules, all
471 	 * changes are protected by socket lock.
472 	 */
473 	u8			sk_gso_disabled : 1,
474 				sk_kern_sock : 1,
475 				sk_no_check_tx : 1,
476 				sk_no_check_rx : 1,
477 				sk_userlocks : 4;
478 	u8			sk_pacing_shift;
479 	u16			sk_type;
480 	u16			sk_protocol;
481 	u16			sk_gso_max_segs;
482 	unsigned long	        sk_lingertime;
483 	struct proto		*sk_prot_creator;
484 	rwlock_t		sk_callback_lock;
485 	int			sk_err,
486 				sk_err_soft;
487 	u32			sk_ack_backlog;
488 	u32			sk_max_ack_backlog;
489 	kuid_t			sk_uid;
490 	u8			sk_txrehash;
491 #ifdef CONFIG_NET_RX_BUSY_POLL
492 	u8			sk_prefer_busy_poll;
493 	u16			sk_busy_poll_budget;
494 #endif
495 	spinlock_t		sk_peer_lock;
496 	int			sk_bind_phc;
497 	struct pid		*sk_peer_pid;
498 	const struct cred	*sk_peer_cred;
499 
500 	long			sk_rcvtimeo;
501 	ktime_t			sk_stamp;
502 #if BITS_PER_LONG==32
503 	seqlock_t		sk_stamp_seq;
504 #endif
505 	u16			sk_tsflags;
506 	u8			sk_shutdown;
507 	atomic_t		sk_tskey;
508 	atomic_t		sk_zckey;
509 
510 	u8			sk_clockid;
511 	u8			sk_txtime_deadline_mode : 1,
512 				sk_txtime_report_errors : 1,
513 				sk_txtime_unused : 6;
514 
515 	struct socket		*sk_socket;
516 	void			*sk_user_data;
517 #ifdef CONFIG_SECURITY
518 	void			*sk_security;
519 #endif
520 	struct sock_cgroup_data	sk_cgrp_data;
521 	struct mem_cgroup	*sk_memcg;
522 	void			(*sk_state_change)(struct sock *sk);
523 	void			(*sk_data_ready)(struct sock *sk);
524 	void			(*sk_write_space)(struct sock *sk);
525 	void			(*sk_error_report)(struct sock *sk);
526 	int			(*sk_backlog_rcv)(struct sock *sk,
527 						  struct sk_buff *skb);
528 #ifdef CONFIG_SOCK_VALIDATE_XMIT
529 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
530 							struct net_device *dev,
531 							struct sk_buff *skb);
532 #endif
533 	void                    (*sk_destruct)(struct sock *sk);
534 	struct sock_reuseport __rcu	*sk_reuseport_cb;
535 #ifdef CONFIG_BPF_SYSCALL
536 	struct bpf_local_storage __rcu	*sk_bpf_storage;
537 #endif
538 	struct rcu_head		sk_rcu;
539 	netns_tracker		ns_tracker;
540 };
541 
542 enum sk_pacing {
543 	SK_PACING_NONE		= 0,
544 	SK_PACING_NEEDED	= 1,
545 	SK_PACING_FQ		= 2,
546 };
547 
548 /* Pointer stored in sk_user_data might not be suitable for copying
549  * when cloning the socket. For instance, it can point to a reference
550  * counted object. sk_user_data bottom bit is set if pointer must not
551  * be copied.
552  */
553 #define SK_USER_DATA_NOCOPY	1UL
554 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
555 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
556 
557 /**
558  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
559  * @sk: socket
560  */
561 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
562 {
563 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
564 }
565 
566 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
567 
568 #define rcu_dereference_sk_user_data(sk)				\
569 ({									\
570 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
571 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
572 })
573 #define rcu_assign_sk_user_data(sk, ptr)				\
574 ({									\
575 	uintptr_t __tmp = (uintptr_t)(ptr);				\
576 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
577 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
578 })
579 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
580 ({									\
581 	uintptr_t __tmp = (uintptr_t)(ptr);				\
582 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
583 	rcu_assign_pointer(__sk_user_data((sk)),			\
584 			   __tmp | SK_USER_DATA_NOCOPY);		\
585 })
586 
587 static inline
588 struct net *sock_net(const struct sock *sk)
589 {
590 	return read_pnet(&sk->sk_net);
591 }
592 
593 static inline
594 void sock_net_set(struct sock *sk, struct net *net)
595 {
596 	write_pnet(&sk->sk_net, net);
597 }
598 
599 /*
600  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
601  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
602  * on a socket means that the socket will reuse everybody else's port
603  * without looking at the other's sk_reuse value.
604  */
605 
606 #define SK_NO_REUSE	0
607 #define SK_CAN_REUSE	1
608 #define SK_FORCE_REUSE	2
609 
610 int sk_set_peek_off(struct sock *sk, int val);
611 
612 static inline int sk_peek_offset(struct sock *sk, int flags)
613 {
614 	if (unlikely(flags & MSG_PEEK)) {
615 		return READ_ONCE(sk->sk_peek_off);
616 	}
617 
618 	return 0;
619 }
620 
621 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
622 {
623 	s32 off = READ_ONCE(sk->sk_peek_off);
624 
625 	if (unlikely(off >= 0)) {
626 		off = max_t(s32, off - val, 0);
627 		WRITE_ONCE(sk->sk_peek_off, off);
628 	}
629 }
630 
631 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
632 {
633 	sk_peek_offset_bwd(sk, -val);
634 }
635 
636 /*
637  * Hashed lists helper routines
638  */
639 static inline struct sock *sk_entry(const struct hlist_node *node)
640 {
641 	return hlist_entry(node, struct sock, sk_node);
642 }
643 
644 static inline struct sock *__sk_head(const struct hlist_head *head)
645 {
646 	return hlist_entry(head->first, struct sock, sk_node);
647 }
648 
649 static inline struct sock *sk_head(const struct hlist_head *head)
650 {
651 	return hlist_empty(head) ? NULL : __sk_head(head);
652 }
653 
654 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
655 {
656 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
657 }
658 
659 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
660 {
661 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
662 }
663 
664 static inline struct sock *sk_next(const struct sock *sk)
665 {
666 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
667 }
668 
669 static inline struct sock *sk_nulls_next(const struct sock *sk)
670 {
671 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
672 		hlist_nulls_entry(sk->sk_nulls_node.next,
673 				  struct sock, sk_nulls_node) :
674 		NULL;
675 }
676 
677 static inline bool sk_unhashed(const struct sock *sk)
678 {
679 	return hlist_unhashed(&sk->sk_node);
680 }
681 
682 static inline bool sk_hashed(const struct sock *sk)
683 {
684 	return !sk_unhashed(sk);
685 }
686 
687 static inline void sk_node_init(struct hlist_node *node)
688 {
689 	node->pprev = NULL;
690 }
691 
692 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
693 {
694 	node->pprev = NULL;
695 }
696 
697 static inline void __sk_del_node(struct sock *sk)
698 {
699 	__hlist_del(&sk->sk_node);
700 }
701 
702 /* NB: equivalent to hlist_del_init_rcu */
703 static inline bool __sk_del_node_init(struct sock *sk)
704 {
705 	if (sk_hashed(sk)) {
706 		__sk_del_node(sk);
707 		sk_node_init(&sk->sk_node);
708 		return true;
709 	}
710 	return false;
711 }
712 
713 /* Grab socket reference count. This operation is valid only
714    when sk is ALREADY grabbed f.e. it is found in hash table
715    or a list and the lookup is made under lock preventing hash table
716    modifications.
717  */
718 
719 static __always_inline void sock_hold(struct sock *sk)
720 {
721 	refcount_inc(&sk->sk_refcnt);
722 }
723 
724 /* Ungrab socket in the context, which assumes that socket refcnt
725    cannot hit zero, f.e. it is true in context of any socketcall.
726  */
727 static __always_inline void __sock_put(struct sock *sk)
728 {
729 	refcount_dec(&sk->sk_refcnt);
730 }
731 
732 static inline bool sk_del_node_init(struct sock *sk)
733 {
734 	bool rc = __sk_del_node_init(sk);
735 
736 	if (rc) {
737 		/* paranoid for a while -acme */
738 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
739 		__sock_put(sk);
740 	}
741 	return rc;
742 }
743 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
744 
745 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
746 {
747 	if (sk_hashed(sk)) {
748 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
749 		return true;
750 	}
751 	return false;
752 }
753 
754 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
755 {
756 	bool rc = __sk_nulls_del_node_init_rcu(sk);
757 
758 	if (rc) {
759 		/* paranoid for a while -acme */
760 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
761 		__sock_put(sk);
762 	}
763 	return rc;
764 }
765 
766 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
767 {
768 	hlist_add_head(&sk->sk_node, list);
769 }
770 
771 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
772 {
773 	sock_hold(sk);
774 	__sk_add_node(sk, list);
775 }
776 
777 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
778 {
779 	sock_hold(sk);
780 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
781 	    sk->sk_family == AF_INET6)
782 		hlist_add_tail_rcu(&sk->sk_node, list);
783 	else
784 		hlist_add_head_rcu(&sk->sk_node, list);
785 }
786 
787 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
788 {
789 	sock_hold(sk);
790 	hlist_add_tail_rcu(&sk->sk_node, list);
791 }
792 
793 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
794 {
795 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
796 }
797 
798 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
799 {
800 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
801 }
802 
803 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
804 {
805 	sock_hold(sk);
806 	__sk_nulls_add_node_rcu(sk, list);
807 }
808 
809 static inline void __sk_del_bind_node(struct sock *sk)
810 {
811 	__hlist_del(&sk->sk_bind_node);
812 }
813 
814 static inline void sk_add_bind_node(struct sock *sk,
815 					struct hlist_head *list)
816 {
817 	hlist_add_head(&sk->sk_bind_node, list);
818 }
819 
820 #define sk_for_each(__sk, list) \
821 	hlist_for_each_entry(__sk, list, sk_node)
822 #define sk_for_each_rcu(__sk, list) \
823 	hlist_for_each_entry_rcu(__sk, list, sk_node)
824 #define sk_nulls_for_each(__sk, node, list) \
825 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
826 #define sk_nulls_for_each_rcu(__sk, node, list) \
827 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
828 #define sk_for_each_from(__sk) \
829 	hlist_for_each_entry_from(__sk, sk_node)
830 #define sk_nulls_for_each_from(__sk, node) \
831 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
832 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
833 #define sk_for_each_safe(__sk, tmp, list) \
834 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
835 #define sk_for_each_bound(__sk, list) \
836 	hlist_for_each_entry(__sk, list, sk_bind_node)
837 
838 /**
839  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
840  * @tpos:	the type * to use as a loop cursor.
841  * @pos:	the &struct hlist_node to use as a loop cursor.
842  * @head:	the head for your list.
843  * @offset:	offset of hlist_node within the struct.
844  *
845  */
846 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
847 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
848 	     pos != NULL &&						       \
849 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
850 	     pos = rcu_dereference(hlist_next_rcu(pos)))
851 
852 static inline struct user_namespace *sk_user_ns(struct sock *sk)
853 {
854 	/* Careful only use this in a context where these parameters
855 	 * can not change and must all be valid, such as recvmsg from
856 	 * userspace.
857 	 */
858 	return sk->sk_socket->file->f_cred->user_ns;
859 }
860 
861 /* Sock flags */
862 enum sock_flags {
863 	SOCK_DEAD,
864 	SOCK_DONE,
865 	SOCK_URGINLINE,
866 	SOCK_KEEPOPEN,
867 	SOCK_LINGER,
868 	SOCK_DESTROY,
869 	SOCK_BROADCAST,
870 	SOCK_TIMESTAMP,
871 	SOCK_ZAPPED,
872 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
873 	SOCK_DBG, /* %SO_DEBUG setting */
874 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
875 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
876 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
877 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
878 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
879 	SOCK_FASYNC, /* fasync() active */
880 	SOCK_RXQ_OVFL,
881 	SOCK_ZEROCOPY, /* buffers from userspace */
882 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
883 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
884 		     * Will use last 4 bytes of packet sent from
885 		     * user-space instead.
886 		     */
887 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
888 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
889 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
890 	SOCK_TXTIME,
891 	SOCK_XDP, /* XDP is attached */
892 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
893 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
894 };
895 
896 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
897 
898 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
899 {
900 	nsk->sk_flags = osk->sk_flags;
901 }
902 
903 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
904 {
905 	__set_bit(flag, &sk->sk_flags);
906 }
907 
908 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
909 {
910 	__clear_bit(flag, &sk->sk_flags);
911 }
912 
913 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
914 				     int valbool)
915 {
916 	if (valbool)
917 		sock_set_flag(sk, bit);
918 	else
919 		sock_reset_flag(sk, bit);
920 }
921 
922 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
923 {
924 	return test_bit(flag, &sk->sk_flags);
925 }
926 
927 #ifdef CONFIG_NET
928 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
929 static inline int sk_memalloc_socks(void)
930 {
931 	return static_branch_unlikely(&memalloc_socks_key);
932 }
933 
934 void __receive_sock(struct file *file);
935 #else
936 
937 static inline int sk_memalloc_socks(void)
938 {
939 	return 0;
940 }
941 
942 static inline void __receive_sock(struct file *file)
943 { }
944 #endif
945 
946 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
947 {
948 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
949 }
950 
951 static inline void sk_acceptq_removed(struct sock *sk)
952 {
953 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
954 }
955 
956 static inline void sk_acceptq_added(struct sock *sk)
957 {
958 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
959 }
960 
961 /* Note: If you think the test should be:
962  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
963  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
964  */
965 static inline bool sk_acceptq_is_full(const struct sock *sk)
966 {
967 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
968 }
969 
970 /*
971  * Compute minimal free write space needed to queue new packets.
972  */
973 static inline int sk_stream_min_wspace(const struct sock *sk)
974 {
975 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
976 }
977 
978 static inline int sk_stream_wspace(const struct sock *sk)
979 {
980 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
981 }
982 
983 static inline void sk_wmem_queued_add(struct sock *sk, int val)
984 {
985 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
986 }
987 
988 void sk_stream_write_space(struct sock *sk);
989 
990 /* OOB backlog add */
991 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
992 {
993 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
994 	skb_dst_force(skb);
995 
996 	if (!sk->sk_backlog.tail)
997 		WRITE_ONCE(sk->sk_backlog.head, skb);
998 	else
999 		sk->sk_backlog.tail->next = skb;
1000 
1001 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1002 	skb->next = NULL;
1003 }
1004 
1005 /*
1006  * Take into account size of receive queue and backlog queue
1007  * Do not take into account this skb truesize,
1008  * to allow even a single big packet to come.
1009  */
1010 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1011 {
1012 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1013 
1014 	return qsize > limit;
1015 }
1016 
1017 /* The per-socket spinlock must be held here. */
1018 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1019 					      unsigned int limit)
1020 {
1021 	if (sk_rcvqueues_full(sk, limit))
1022 		return -ENOBUFS;
1023 
1024 	/*
1025 	 * If the skb was allocated from pfmemalloc reserves, only
1026 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1027 	 * helping free memory
1028 	 */
1029 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1030 		return -ENOMEM;
1031 
1032 	__sk_add_backlog(sk, skb);
1033 	sk->sk_backlog.len += skb->truesize;
1034 	return 0;
1035 }
1036 
1037 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1038 
1039 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1040 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1041 
1042 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1043 {
1044 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1045 		return __sk_backlog_rcv(sk, skb);
1046 
1047 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1048 				  tcp_v6_do_rcv,
1049 				  tcp_v4_do_rcv,
1050 				  sk, skb);
1051 }
1052 
1053 static inline void sk_incoming_cpu_update(struct sock *sk)
1054 {
1055 	int cpu = raw_smp_processor_id();
1056 
1057 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1058 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1059 }
1060 
1061 static inline void sock_rps_record_flow_hash(__u32 hash)
1062 {
1063 #ifdef CONFIG_RPS
1064 	struct rps_sock_flow_table *sock_flow_table;
1065 
1066 	rcu_read_lock();
1067 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1068 	rps_record_sock_flow(sock_flow_table, hash);
1069 	rcu_read_unlock();
1070 #endif
1071 }
1072 
1073 static inline void sock_rps_record_flow(const struct sock *sk)
1074 {
1075 #ifdef CONFIG_RPS
1076 	if (static_branch_unlikely(&rfs_needed)) {
1077 		/* Reading sk->sk_rxhash might incur an expensive cache line
1078 		 * miss.
1079 		 *
1080 		 * TCP_ESTABLISHED does cover almost all states where RFS
1081 		 * might be useful, and is cheaper [1] than testing :
1082 		 *	IPv4: inet_sk(sk)->inet_daddr
1083 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1084 		 * OR	an additional socket flag
1085 		 * [1] : sk_state and sk_prot are in the same cache line.
1086 		 */
1087 		if (sk->sk_state == TCP_ESTABLISHED)
1088 			sock_rps_record_flow_hash(sk->sk_rxhash);
1089 	}
1090 #endif
1091 }
1092 
1093 static inline void sock_rps_save_rxhash(struct sock *sk,
1094 					const struct sk_buff *skb)
1095 {
1096 #ifdef CONFIG_RPS
1097 	if (unlikely(sk->sk_rxhash != skb->hash))
1098 		sk->sk_rxhash = skb->hash;
1099 #endif
1100 }
1101 
1102 static inline void sock_rps_reset_rxhash(struct sock *sk)
1103 {
1104 #ifdef CONFIG_RPS
1105 	sk->sk_rxhash = 0;
1106 #endif
1107 }
1108 
1109 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1110 	({	int __rc;						\
1111 		release_sock(__sk);					\
1112 		__rc = __condition;					\
1113 		if (!__rc) {						\
1114 			*(__timeo) = wait_woken(__wait,			\
1115 						TASK_INTERRUPTIBLE,	\
1116 						*(__timeo));		\
1117 		}							\
1118 		sched_annotate_sleep();					\
1119 		lock_sock(__sk);					\
1120 		__rc = __condition;					\
1121 		__rc;							\
1122 	})
1123 
1124 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1125 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1126 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1127 int sk_stream_error(struct sock *sk, int flags, int err);
1128 void sk_stream_kill_queues(struct sock *sk);
1129 void sk_set_memalloc(struct sock *sk);
1130 void sk_clear_memalloc(struct sock *sk);
1131 
1132 void __sk_flush_backlog(struct sock *sk);
1133 
1134 static inline bool sk_flush_backlog(struct sock *sk)
1135 {
1136 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1137 		__sk_flush_backlog(sk);
1138 		return true;
1139 	}
1140 	return false;
1141 }
1142 
1143 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1144 
1145 struct request_sock_ops;
1146 struct timewait_sock_ops;
1147 struct inet_hashinfo;
1148 struct raw_hashinfo;
1149 struct smc_hashinfo;
1150 struct module;
1151 struct sk_psock;
1152 
1153 /*
1154  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1155  * un-modified. Special care is taken when initializing object to zero.
1156  */
1157 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1158 {
1159 	if (offsetof(struct sock, sk_node.next) != 0)
1160 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1161 	memset(&sk->sk_node.pprev, 0,
1162 	       size - offsetof(struct sock, sk_node.pprev));
1163 }
1164 
1165 /* Networking protocol blocks we attach to sockets.
1166  * socket layer -> transport layer interface
1167  */
1168 struct proto {
1169 	void			(*close)(struct sock *sk,
1170 					long timeout);
1171 	int			(*pre_connect)(struct sock *sk,
1172 					struct sockaddr *uaddr,
1173 					int addr_len);
1174 	int			(*connect)(struct sock *sk,
1175 					struct sockaddr *uaddr,
1176 					int addr_len);
1177 	int			(*disconnect)(struct sock *sk, int flags);
1178 
1179 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1180 					  bool kern);
1181 
1182 	int			(*ioctl)(struct sock *sk, int cmd,
1183 					 unsigned long arg);
1184 	int			(*init)(struct sock *sk);
1185 	void			(*destroy)(struct sock *sk);
1186 	void			(*shutdown)(struct sock *sk, int how);
1187 	int			(*setsockopt)(struct sock *sk, int level,
1188 					int optname, sockptr_t optval,
1189 					unsigned int optlen);
1190 	int			(*getsockopt)(struct sock *sk, int level,
1191 					int optname, char __user *optval,
1192 					int __user *option);
1193 	void			(*keepalive)(struct sock *sk, int valbool);
1194 #ifdef CONFIG_COMPAT
1195 	int			(*compat_ioctl)(struct sock *sk,
1196 					unsigned int cmd, unsigned long arg);
1197 #endif
1198 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1199 					   size_t len);
1200 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1201 					   size_t len, int flags, int *addr_len);
1202 	int			(*sendpage)(struct sock *sk, struct page *page,
1203 					int offset, size_t size, int flags);
1204 	int			(*bind)(struct sock *sk,
1205 					struct sockaddr *addr, int addr_len);
1206 	int			(*bind_add)(struct sock *sk,
1207 					struct sockaddr *addr, int addr_len);
1208 
1209 	int			(*backlog_rcv) (struct sock *sk,
1210 						struct sk_buff *skb);
1211 	bool			(*bpf_bypass_getsockopt)(int level,
1212 							 int optname);
1213 
1214 	void		(*release_cb)(struct sock *sk);
1215 
1216 	/* Keeping track of sk's, looking them up, and port selection methods. */
1217 	int			(*hash)(struct sock *sk);
1218 	void			(*unhash)(struct sock *sk);
1219 	void			(*rehash)(struct sock *sk);
1220 	int			(*get_port)(struct sock *sk, unsigned short snum);
1221 	void			(*put_port)(struct sock *sk);
1222 #ifdef CONFIG_BPF_SYSCALL
1223 	int			(*psock_update_sk_prot)(struct sock *sk,
1224 							struct sk_psock *psock,
1225 							bool restore);
1226 #endif
1227 
1228 	/* Keeping track of sockets in use */
1229 #ifdef CONFIG_PROC_FS
1230 	unsigned int		inuse_idx;
1231 #endif
1232 
1233 #if IS_ENABLED(CONFIG_MPTCP)
1234 	int			(*forward_alloc_get)(const struct sock *sk);
1235 #endif
1236 
1237 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1238 	bool			(*sock_is_readable)(struct sock *sk);
1239 	/* Memory pressure */
1240 	void			(*enter_memory_pressure)(struct sock *sk);
1241 	void			(*leave_memory_pressure)(struct sock *sk);
1242 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1243 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1244 
1245 	/*
1246 	 * Pressure flag: try to collapse.
1247 	 * Technical note: it is used by multiple contexts non atomically.
1248 	 * All the __sk_mem_schedule() is of this nature: accounting
1249 	 * is strict, actions are advisory and have some latency.
1250 	 */
1251 	unsigned long		*memory_pressure;
1252 	long			*sysctl_mem;
1253 
1254 	int			*sysctl_wmem;
1255 	int			*sysctl_rmem;
1256 	u32			sysctl_wmem_offset;
1257 	u32			sysctl_rmem_offset;
1258 
1259 	int			max_header;
1260 	bool			no_autobind;
1261 
1262 	struct kmem_cache	*slab;
1263 	unsigned int		obj_size;
1264 	slab_flags_t		slab_flags;
1265 	unsigned int		useroffset;	/* Usercopy region offset */
1266 	unsigned int		usersize;	/* Usercopy region size */
1267 
1268 	unsigned int __percpu	*orphan_count;
1269 
1270 	struct request_sock_ops	*rsk_prot;
1271 	struct timewait_sock_ops *twsk_prot;
1272 
1273 	union {
1274 		struct inet_hashinfo	*hashinfo;
1275 		struct udp_table	*udp_table;
1276 		struct raw_hashinfo	*raw_hash;
1277 		struct smc_hashinfo	*smc_hash;
1278 	} h;
1279 
1280 	struct module		*owner;
1281 
1282 	char			name[32];
1283 
1284 	struct list_head	node;
1285 #ifdef SOCK_REFCNT_DEBUG
1286 	atomic_t		socks;
1287 #endif
1288 	int			(*diag_destroy)(struct sock *sk, int err);
1289 } __randomize_layout;
1290 
1291 int proto_register(struct proto *prot, int alloc_slab);
1292 void proto_unregister(struct proto *prot);
1293 int sock_load_diag_module(int family, int protocol);
1294 
1295 #ifdef SOCK_REFCNT_DEBUG
1296 static inline void sk_refcnt_debug_inc(struct sock *sk)
1297 {
1298 	atomic_inc(&sk->sk_prot->socks);
1299 }
1300 
1301 static inline void sk_refcnt_debug_dec(struct sock *sk)
1302 {
1303 	atomic_dec(&sk->sk_prot->socks);
1304 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1305 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1306 }
1307 
1308 static inline void sk_refcnt_debug_release(const struct sock *sk)
1309 {
1310 	if (refcount_read(&sk->sk_refcnt) != 1)
1311 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1312 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1313 }
1314 #else /* SOCK_REFCNT_DEBUG */
1315 #define sk_refcnt_debug_inc(sk) do { } while (0)
1316 #define sk_refcnt_debug_dec(sk) do { } while (0)
1317 #define sk_refcnt_debug_release(sk) do { } while (0)
1318 #endif /* SOCK_REFCNT_DEBUG */
1319 
1320 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1321 
1322 static inline int sk_forward_alloc_get(const struct sock *sk)
1323 {
1324 #if IS_ENABLED(CONFIG_MPTCP)
1325 	if (sk->sk_prot->forward_alloc_get)
1326 		return sk->sk_prot->forward_alloc_get(sk);
1327 #endif
1328 	return sk->sk_forward_alloc;
1329 }
1330 
1331 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1332 {
1333 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1334 		return false;
1335 
1336 	return sk->sk_prot->stream_memory_free ?
1337 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1338 				     tcp_stream_memory_free, sk, wake) : true;
1339 }
1340 
1341 static inline bool sk_stream_memory_free(const struct sock *sk)
1342 {
1343 	return __sk_stream_memory_free(sk, 0);
1344 }
1345 
1346 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1347 {
1348 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1349 	       __sk_stream_memory_free(sk, wake);
1350 }
1351 
1352 static inline bool sk_stream_is_writeable(const struct sock *sk)
1353 {
1354 	return __sk_stream_is_writeable(sk, 0);
1355 }
1356 
1357 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1358 					    struct cgroup *ancestor)
1359 {
1360 #ifdef CONFIG_SOCK_CGROUP_DATA
1361 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1362 				    ancestor);
1363 #else
1364 	return -ENOTSUPP;
1365 #endif
1366 }
1367 
1368 static inline bool sk_has_memory_pressure(const struct sock *sk)
1369 {
1370 	return sk->sk_prot->memory_pressure != NULL;
1371 }
1372 
1373 static inline bool sk_under_memory_pressure(const struct sock *sk)
1374 {
1375 	if (!sk->sk_prot->memory_pressure)
1376 		return false;
1377 
1378 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1379 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1380 		return true;
1381 
1382 	return !!*sk->sk_prot->memory_pressure;
1383 }
1384 
1385 static inline long
1386 sk_memory_allocated(const struct sock *sk)
1387 {
1388 	return atomic_long_read(sk->sk_prot->memory_allocated);
1389 }
1390 
1391 static inline long
1392 sk_memory_allocated_add(struct sock *sk, int amt)
1393 {
1394 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1395 }
1396 
1397 static inline void
1398 sk_memory_allocated_sub(struct sock *sk, int amt)
1399 {
1400 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1401 }
1402 
1403 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1404 
1405 static inline void sk_sockets_allocated_dec(struct sock *sk)
1406 {
1407 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1408 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1409 }
1410 
1411 static inline void sk_sockets_allocated_inc(struct sock *sk)
1412 {
1413 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1414 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1415 }
1416 
1417 static inline u64
1418 sk_sockets_allocated_read_positive(struct sock *sk)
1419 {
1420 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1421 }
1422 
1423 static inline int
1424 proto_sockets_allocated_sum_positive(struct proto *prot)
1425 {
1426 	return percpu_counter_sum_positive(prot->sockets_allocated);
1427 }
1428 
1429 static inline long
1430 proto_memory_allocated(struct proto *prot)
1431 {
1432 	return atomic_long_read(prot->memory_allocated);
1433 }
1434 
1435 static inline bool
1436 proto_memory_pressure(struct proto *prot)
1437 {
1438 	if (!prot->memory_pressure)
1439 		return false;
1440 	return !!*prot->memory_pressure;
1441 }
1442 
1443 
1444 #ifdef CONFIG_PROC_FS
1445 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1446 struct prot_inuse {
1447 	int all;
1448 	int val[PROTO_INUSE_NR];
1449 };
1450 
1451 static inline void sock_prot_inuse_add(const struct net *net,
1452 				       const struct proto *prot, int val)
1453 {
1454 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1455 }
1456 
1457 static inline void sock_inuse_add(const struct net *net, int val)
1458 {
1459 	this_cpu_add(net->core.prot_inuse->all, val);
1460 }
1461 
1462 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1463 int sock_inuse_get(struct net *net);
1464 #else
1465 static inline void sock_prot_inuse_add(const struct net *net,
1466 				       const struct proto *prot, int val)
1467 {
1468 }
1469 
1470 static inline void sock_inuse_add(const struct net *net, int val)
1471 {
1472 }
1473 #endif
1474 
1475 
1476 /* With per-bucket locks this operation is not-atomic, so that
1477  * this version is not worse.
1478  */
1479 static inline int __sk_prot_rehash(struct sock *sk)
1480 {
1481 	sk->sk_prot->unhash(sk);
1482 	return sk->sk_prot->hash(sk);
1483 }
1484 
1485 /* About 10 seconds */
1486 #define SOCK_DESTROY_TIME (10*HZ)
1487 
1488 /* Sockets 0-1023 can't be bound to unless you are superuser */
1489 #define PROT_SOCK	1024
1490 
1491 #define SHUTDOWN_MASK	3
1492 #define RCV_SHUTDOWN	1
1493 #define SEND_SHUTDOWN	2
1494 
1495 #define SOCK_BINDADDR_LOCK	4
1496 #define SOCK_BINDPORT_LOCK	8
1497 
1498 struct socket_alloc {
1499 	struct socket socket;
1500 	struct inode vfs_inode;
1501 };
1502 
1503 static inline struct socket *SOCKET_I(struct inode *inode)
1504 {
1505 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1506 }
1507 
1508 static inline struct inode *SOCK_INODE(struct socket *socket)
1509 {
1510 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1511 }
1512 
1513 /*
1514  * Functions for memory accounting
1515  */
1516 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1517 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1518 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1519 void __sk_mem_reclaim(struct sock *sk, int amount);
1520 
1521 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1522  * do not necessarily have 16x time more memory than 4KB ones.
1523  */
1524 #define SK_MEM_QUANTUM 4096
1525 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1526 #define SK_MEM_SEND	0
1527 #define SK_MEM_RECV	1
1528 
1529 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1530 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1531 {
1532 	long val = sk->sk_prot->sysctl_mem[index];
1533 
1534 #if PAGE_SIZE > SK_MEM_QUANTUM
1535 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1536 #elif PAGE_SIZE < SK_MEM_QUANTUM
1537 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1538 #endif
1539 	return val;
1540 }
1541 
1542 static inline int sk_mem_pages(int amt)
1543 {
1544 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1545 }
1546 
1547 static inline bool sk_has_account(struct sock *sk)
1548 {
1549 	/* return true if protocol supports memory accounting */
1550 	return !!sk->sk_prot->memory_allocated;
1551 }
1552 
1553 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1554 {
1555 	if (!sk_has_account(sk))
1556 		return true;
1557 	return size <= sk->sk_forward_alloc ||
1558 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1559 }
1560 
1561 static inline bool
1562 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1563 {
1564 	if (!sk_has_account(sk))
1565 		return true;
1566 	return size <= sk->sk_forward_alloc ||
1567 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1568 		skb_pfmemalloc(skb);
1569 }
1570 
1571 static inline int sk_unused_reserved_mem(const struct sock *sk)
1572 {
1573 	int unused_mem;
1574 
1575 	if (likely(!sk->sk_reserved_mem))
1576 		return 0;
1577 
1578 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1579 			atomic_read(&sk->sk_rmem_alloc);
1580 
1581 	return unused_mem > 0 ? unused_mem : 0;
1582 }
1583 
1584 static inline void sk_mem_reclaim(struct sock *sk)
1585 {
1586 	int reclaimable;
1587 
1588 	if (!sk_has_account(sk))
1589 		return;
1590 
1591 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1592 
1593 	if (reclaimable >= SK_MEM_QUANTUM)
1594 		__sk_mem_reclaim(sk, reclaimable);
1595 }
1596 
1597 static inline void sk_mem_reclaim_final(struct sock *sk)
1598 {
1599 	sk->sk_reserved_mem = 0;
1600 	sk_mem_reclaim(sk);
1601 }
1602 
1603 static inline void sk_mem_reclaim_partial(struct sock *sk)
1604 {
1605 	int reclaimable;
1606 
1607 	if (!sk_has_account(sk))
1608 		return;
1609 
1610 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1611 
1612 	if (reclaimable > SK_MEM_QUANTUM)
1613 		__sk_mem_reclaim(sk, reclaimable - 1);
1614 }
1615 
1616 static inline void sk_mem_charge(struct sock *sk, int size)
1617 {
1618 	if (!sk_has_account(sk))
1619 		return;
1620 	sk->sk_forward_alloc -= size;
1621 }
1622 
1623 /* the following macros control memory reclaiming in sk_mem_uncharge()
1624  */
1625 #define SK_RECLAIM_THRESHOLD	(1 << 21)
1626 #define SK_RECLAIM_CHUNK	(1 << 20)
1627 
1628 static inline void sk_mem_uncharge(struct sock *sk, int size)
1629 {
1630 	int reclaimable;
1631 
1632 	if (!sk_has_account(sk))
1633 		return;
1634 	sk->sk_forward_alloc += size;
1635 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1636 
1637 	/* Avoid a possible overflow.
1638 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1639 	 * is not called and more than 2 GBytes are released at once.
1640 	 *
1641 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1642 	 * no need to hold that much forward allocation anyway.
1643 	 */
1644 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1645 		__sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1646 }
1647 
1648 /*
1649  * Macro so as to not evaluate some arguments when
1650  * lockdep is not enabled.
1651  *
1652  * Mark both the sk_lock and the sk_lock.slock as a
1653  * per-address-family lock class.
1654  */
1655 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1656 do {									\
1657 	sk->sk_lock.owned = 0;						\
1658 	init_waitqueue_head(&sk->sk_lock.wq);				\
1659 	spin_lock_init(&(sk)->sk_lock.slock);				\
1660 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1661 			sizeof((sk)->sk_lock));				\
1662 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1663 				(skey), (sname));				\
1664 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1665 } while (0)
1666 
1667 static inline bool lockdep_sock_is_held(const struct sock *sk)
1668 {
1669 	return lockdep_is_held(&sk->sk_lock) ||
1670 	       lockdep_is_held(&sk->sk_lock.slock);
1671 }
1672 
1673 void lock_sock_nested(struct sock *sk, int subclass);
1674 
1675 static inline void lock_sock(struct sock *sk)
1676 {
1677 	lock_sock_nested(sk, 0);
1678 }
1679 
1680 void __lock_sock(struct sock *sk);
1681 void __release_sock(struct sock *sk);
1682 void release_sock(struct sock *sk);
1683 
1684 /* BH context may only use the following locking interface. */
1685 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1686 #define bh_lock_sock_nested(__sk) \
1687 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1688 				SINGLE_DEPTH_NESTING)
1689 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1690 
1691 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1692 
1693 /**
1694  * lock_sock_fast - fast version of lock_sock
1695  * @sk: socket
1696  *
1697  * This version should be used for very small section, where process wont block
1698  * return false if fast path is taken:
1699  *
1700  *   sk_lock.slock locked, owned = 0, BH disabled
1701  *
1702  * return true if slow path is taken:
1703  *
1704  *   sk_lock.slock unlocked, owned = 1, BH enabled
1705  */
1706 static inline bool lock_sock_fast(struct sock *sk)
1707 {
1708 	/* The sk_lock has mutex_lock() semantics here. */
1709 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1710 
1711 	return __lock_sock_fast(sk);
1712 }
1713 
1714 /* fast socket lock variant for caller already holding a [different] socket lock */
1715 static inline bool lock_sock_fast_nested(struct sock *sk)
1716 {
1717 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1718 
1719 	return __lock_sock_fast(sk);
1720 }
1721 
1722 /**
1723  * unlock_sock_fast - complement of lock_sock_fast
1724  * @sk: socket
1725  * @slow: slow mode
1726  *
1727  * fast unlock socket for user context.
1728  * If slow mode is on, we call regular release_sock()
1729  */
1730 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1731 	__releases(&sk->sk_lock.slock)
1732 {
1733 	if (slow) {
1734 		release_sock(sk);
1735 		__release(&sk->sk_lock.slock);
1736 	} else {
1737 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1738 		spin_unlock_bh(&sk->sk_lock.slock);
1739 	}
1740 }
1741 
1742 /* Used by processes to "lock" a socket state, so that
1743  * interrupts and bottom half handlers won't change it
1744  * from under us. It essentially blocks any incoming
1745  * packets, so that we won't get any new data or any
1746  * packets that change the state of the socket.
1747  *
1748  * While locked, BH processing will add new packets to
1749  * the backlog queue.  This queue is processed by the
1750  * owner of the socket lock right before it is released.
1751  *
1752  * Since ~2.3.5 it is also exclusive sleep lock serializing
1753  * accesses from user process context.
1754  */
1755 
1756 static inline void sock_owned_by_me(const struct sock *sk)
1757 {
1758 #ifdef CONFIG_LOCKDEP
1759 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1760 #endif
1761 }
1762 
1763 static inline bool sock_owned_by_user(const struct sock *sk)
1764 {
1765 	sock_owned_by_me(sk);
1766 	return sk->sk_lock.owned;
1767 }
1768 
1769 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1770 {
1771 	return sk->sk_lock.owned;
1772 }
1773 
1774 static inline void sock_release_ownership(struct sock *sk)
1775 {
1776 	if (sock_owned_by_user_nocheck(sk)) {
1777 		sk->sk_lock.owned = 0;
1778 
1779 		/* The sk_lock has mutex_unlock() semantics: */
1780 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1781 	}
1782 }
1783 
1784 /* no reclassification while locks are held */
1785 static inline bool sock_allow_reclassification(const struct sock *csk)
1786 {
1787 	struct sock *sk = (struct sock *)csk;
1788 
1789 	return !sock_owned_by_user_nocheck(sk) &&
1790 		!spin_is_locked(&sk->sk_lock.slock);
1791 }
1792 
1793 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1794 		      struct proto *prot, int kern);
1795 void sk_free(struct sock *sk);
1796 void sk_destruct(struct sock *sk);
1797 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1798 void sk_free_unlock_clone(struct sock *sk);
1799 
1800 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1801 			     gfp_t priority);
1802 void __sock_wfree(struct sk_buff *skb);
1803 void sock_wfree(struct sk_buff *skb);
1804 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1805 			     gfp_t priority);
1806 void skb_orphan_partial(struct sk_buff *skb);
1807 void sock_rfree(struct sk_buff *skb);
1808 void sock_efree(struct sk_buff *skb);
1809 #ifdef CONFIG_INET
1810 void sock_edemux(struct sk_buff *skb);
1811 void sock_pfree(struct sk_buff *skb);
1812 #else
1813 #define sock_edemux sock_efree
1814 #endif
1815 
1816 int sock_setsockopt(struct socket *sock, int level, int op,
1817 		    sockptr_t optval, unsigned int optlen);
1818 
1819 int sock_getsockopt(struct socket *sock, int level, int op,
1820 		    char __user *optval, int __user *optlen);
1821 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1822 		   bool timeval, bool time32);
1823 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1824 				     unsigned long data_len, int noblock,
1825 				     int *errcode, int max_page_order);
1826 
1827 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1828 						  unsigned long size,
1829 						  int noblock, int *errcode)
1830 {
1831 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1832 }
1833 
1834 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1835 void sock_kfree_s(struct sock *sk, void *mem, int size);
1836 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1837 void sk_send_sigurg(struct sock *sk);
1838 
1839 struct sockcm_cookie {
1840 	u64 transmit_time;
1841 	u32 mark;
1842 	u16 tsflags;
1843 };
1844 
1845 static inline void sockcm_init(struct sockcm_cookie *sockc,
1846 			       const struct sock *sk)
1847 {
1848 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1849 }
1850 
1851 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1852 		     struct sockcm_cookie *sockc);
1853 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1854 		   struct sockcm_cookie *sockc);
1855 
1856 /*
1857  * Functions to fill in entries in struct proto_ops when a protocol
1858  * does not implement a particular function.
1859  */
1860 int sock_no_bind(struct socket *, struct sockaddr *, int);
1861 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1862 int sock_no_socketpair(struct socket *, struct socket *);
1863 int sock_no_accept(struct socket *, struct socket *, int, bool);
1864 int sock_no_getname(struct socket *, struct sockaddr *, int);
1865 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1866 int sock_no_listen(struct socket *, int);
1867 int sock_no_shutdown(struct socket *, int);
1868 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1869 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1870 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1871 int sock_no_mmap(struct file *file, struct socket *sock,
1872 		 struct vm_area_struct *vma);
1873 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1874 			 size_t size, int flags);
1875 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1876 				int offset, size_t size, int flags);
1877 
1878 /*
1879  * Functions to fill in entries in struct proto_ops when a protocol
1880  * uses the inet style.
1881  */
1882 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1883 				  char __user *optval, int __user *optlen);
1884 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1885 			int flags);
1886 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1887 			   sockptr_t optval, unsigned int optlen);
1888 
1889 void sk_common_release(struct sock *sk);
1890 
1891 /*
1892  *	Default socket callbacks and setup code
1893  */
1894 
1895 /* Initialise core socket variables */
1896 void sock_init_data(struct socket *sock, struct sock *sk);
1897 
1898 /*
1899  * Socket reference counting postulates.
1900  *
1901  * * Each user of socket SHOULD hold a reference count.
1902  * * Each access point to socket (an hash table bucket, reference from a list,
1903  *   running timer, skb in flight MUST hold a reference count.
1904  * * When reference count hits 0, it means it will never increase back.
1905  * * When reference count hits 0, it means that no references from
1906  *   outside exist to this socket and current process on current CPU
1907  *   is last user and may/should destroy this socket.
1908  * * sk_free is called from any context: process, BH, IRQ. When
1909  *   it is called, socket has no references from outside -> sk_free
1910  *   may release descendant resources allocated by the socket, but
1911  *   to the time when it is called, socket is NOT referenced by any
1912  *   hash tables, lists etc.
1913  * * Packets, delivered from outside (from network or from another process)
1914  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1915  *   when they sit in queue. Otherwise, packets will leak to hole, when
1916  *   socket is looked up by one cpu and unhasing is made by another CPU.
1917  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1918  *   (leak to backlog). Packet socket does all the processing inside
1919  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1920  *   use separate SMP lock, so that they are prone too.
1921  */
1922 
1923 /* Ungrab socket and destroy it, if it was the last reference. */
1924 static inline void sock_put(struct sock *sk)
1925 {
1926 	if (refcount_dec_and_test(&sk->sk_refcnt))
1927 		sk_free(sk);
1928 }
1929 /* Generic version of sock_put(), dealing with all sockets
1930  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1931  */
1932 void sock_gen_put(struct sock *sk);
1933 
1934 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1935 		     unsigned int trim_cap, bool refcounted);
1936 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1937 				 const int nested)
1938 {
1939 	return __sk_receive_skb(sk, skb, nested, 1, true);
1940 }
1941 
1942 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1943 {
1944 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1945 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1946 		return;
1947 	sk->sk_tx_queue_mapping = tx_queue;
1948 }
1949 
1950 #define NO_QUEUE_MAPPING	USHRT_MAX
1951 
1952 static inline void sk_tx_queue_clear(struct sock *sk)
1953 {
1954 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1955 }
1956 
1957 static inline int sk_tx_queue_get(const struct sock *sk)
1958 {
1959 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1960 		return sk->sk_tx_queue_mapping;
1961 
1962 	return -1;
1963 }
1964 
1965 static inline void __sk_rx_queue_set(struct sock *sk,
1966 				     const struct sk_buff *skb,
1967 				     bool force_set)
1968 {
1969 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1970 	if (skb_rx_queue_recorded(skb)) {
1971 		u16 rx_queue = skb_get_rx_queue(skb);
1972 
1973 		if (force_set ||
1974 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1975 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1976 	}
1977 #endif
1978 }
1979 
1980 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1981 {
1982 	__sk_rx_queue_set(sk, skb, true);
1983 }
1984 
1985 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1986 {
1987 	__sk_rx_queue_set(sk, skb, false);
1988 }
1989 
1990 static inline void sk_rx_queue_clear(struct sock *sk)
1991 {
1992 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1993 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1994 #endif
1995 }
1996 
1997 static inline int sk_rx_queue_get(const struct sock *sk)
1998 {
1999 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2000 	if (sk) {
2001 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2002 
2003 		if (res != NO_QUEUE_MAPPING)
2004 			return res;
2005 	}
2006 #endif
2007 
2008 	return -1;
2009 }
2010 
2011 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2012 {
2013 	sk->sk_socket = sock;
2014 }
2015 
2016 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2017 {
2018 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2019 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2020 }
2021 /* Detach socket from process context.
2022  * Announce socket dead, detach it from wait queue and inode.
2023  * Note that parent inode held reference count on this struct sock,
2024  * we do not release it in this function, because protocol
2025  * probably wants some additional cleanups or even continuing
2026  * to work with this socket (TCP).
2027  */
2028 static inline void sock_orphan(struct sock *sk)
2029 {
2030 	write_lock_bh(&sk->sk_callback_lock);
2031 	sock_set_flag(sk, SOCK_DEAD);
2032 	sk_set_socket(sk, NULL);
2033 	sk->sk_wq  = NULL;
2034 	write_unlock_bh(&sk->sk_callback_lock);
2035 }
2036 
2037 static inline void sock_graft(struct sock *sk, struct socket *parent)
2038 {
2039 	WARN_ON(parent->sk);
2040 	write_lock_bh(&sk->sk_callback_lock);
2041 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2042 	parent->sk = sk;
2043 	sk_set_socket(sk, parent);
2044 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2045 	security_sock_graft(sk, parent);
2046 	write_unlock_bh(&sk->sk_callback_lock);
2047 }
2048 
2049 kuid_t sock_i_uid(struct sock *sk);
2050 unsigned long sock_i_ino(struct sock *sk);
2051 
2052 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2053 {
2054 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2055 }
2056 
2057 static inline u32 net_tx_rndhash(void)
2058 {
2059 	u32 v = prandom_u32();
2060 
2061 	return v ?: 1;
2062 }
2063 
2064 static inline void sk_set_txhash(struct sock *sk)
2065 {
2066 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2067 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2068 }
2069 
2070 static inline bool sk_rethink_txhash(struct sock *sk)
2071 {
2072 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2073 		sk_set_txhash(sk);
2074 		return true;
2075 	}
2076 	return false;
2077 }
2078 
2079 static inline struct dst_entry *
2080 __sk_dst_get(struct sock *sk)
2081 {
2082 	return rcu_dereference_check(sk->sk_dst_cache,
2083 				     lockdep_sock_is_held(sk));
2084 }
2085 
2086 static inline struct dst_entry *
2087 sk_dst_get(struct sock *sk)
2088 {
2089 	struct dst_entry *dst;
2090 
2091 	rcu_read_lock();
2092 	dst = rcu_dereference(sk->sk_dst_cache);
2093 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2094 		dst = NULL;
2095 	rcu_read_unlock();
2096 	return dst;
2097 }
2098 
2099 static inline void __dst_negative_advice(struct sock *sk)
2100 {
2101 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2102 
2103 	if (dst && dst->ops->negative_advice) {
2104 		ndst = dst->ops->negative_advice(dst);
2105 
2106 		if (ndst != dst) {
2107 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2108 			sk_tx_queue_clear(sk);
2109 			sk->sk_dst_pending_confirm = 0;
2110 		}
2111 	}
2112 }
2113 
2114 static inline void dst_negative_advice(struct sock *sk)
2115 {
2116 	sk_rethink_txhash(sk);
2117 	__dst_negative_advice(sk);
2118 }
2119 
2120 static inline void
2121 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2122 {
2123 	struct dst_entry *old_dst;
2124 
2125 	sk_tx_queue_clear(sk);
2126 	sk->sk_dst_pending_confirm = 0;
2127 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2128 					    lockdep_sock_is_held(sk));
2129 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2130 	dst_release(old_dst);
2131 }
2132 
2133 static inline void
2134 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2135 {
2136 	struct dst_entry *old_dst;
2137 
2138 	sk_tx_queue_clear(sk);
2139 	sk->sk_dst_pending_confirm = 0;
2140 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2141 	dst_release(old_dst);
2142 }
2143 
2144 static inline void
2145 __sk_dst_reset(struct sock *sk)
2146 {
2147 	__sk_dst_set(sk, NULL);
2148 }
2149 
2150 static inline void
2151 sk_dst_reset(struct sock *sk)
2152 {
2153 	sk_dst_set(sk, NULL);
2154 }
2155 
2156 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2157 
2158 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2159 
2160 static inline void sk_dst_confirm(struct sock *sk)
2161 {
2162 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2163 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2164 }
2165 
2166 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2167 {
2168 	if (skb_get_dst_pending_confirm(skb)) {
2169 		struct sock *sk = skb->sk;
2170 
2171 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2172 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2173 		neigh_confirm(n);
2174 	}
2175 }
2176 
2177 bool sk_mc_loop(struct sock *sk);
2178 
2179 static inline bool sk_can_gso(const struct sock *sk)
2180 {
2181 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2182 }
2183 
2184 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2185 
2186 static inline void sk_gso_disable(struct sock *sk)
2187 {
2188 	sk->sk_gso_disabled = 1;
2189 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2190 }
2191 
2192 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2193 					   struct iov_iter *from, char *to,
2194 					   int copy, int offset)
2195 {
2196 	if (skb->ip_summed == CHECKSUM_NONE) {
2197 		__wsum csum = 0;
2198 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2199 			return -EFAULT;
2200 		skb->csum = csum_block_add(skb->csum, csum, offset);
2201 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2202 		if (!copy_from_iter_full_nocache(to, copy, from))
2203 			return -EFAULT;
2204 	} else if (!copy_from_iter_full(to, copy, from))
2205 		return -EFAULT;
2206 
2207 	return 0;
2208 }
2209 
2210 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2211 				       struct iov_iter *from, int copy)
2212 {
2213 	int err, offset = skb->len;
2214 
2215 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2216 				       copy, offset);
2217 	if (err)
2218 		__skb_trim(skb, offset);
2219 
2220 	return err;
2221 }
2222 
2223 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2224 					   struct sk_buff *skb,
2225 					   struct page *page,
2226 					   int off, int copy)
2227 {
2228 	int err;
2229 
2230 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2231 				       copy, skb->len);
2232 	if (err)
2233 		return err;
2234 
2235 	skb->len	     += copy;
2236 	skb->data_len	     += copy;
2237 	skb->truesize	     += copy;
2238 	sk_wmem_queued_add(sk, copy);
2239 	sk_mem_charge(sk, copy);
2240 	return 0;
2241 }
2242 
2243 /**
2244  * sk_wmem_alloc_get - returns write allocations
2245  * @sk: socket
2246  *
2247  * Return: sk_wmem_alloc minus initial offset of one
2248  */
2249 static inline int sk_wmem_alloc_get(const struct sock *sk)
2250 {
2251 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2252 }
2253 
2254 /**
2255  * sk_rmem_alloc_get - returns read allocations
2256  * @sk: socket
2257  *
2258  * Return: sk_rmem_alloc
2259  */
2260 static inline int sk_rmem_alloc_get(const struct sock *sk)
2261 {
2262 	return atomic_read(&sk->sk_rmem_alloc);
2263 }
2264 
2265 /**
2266  * sk_has_allocations - check if allocations are outstanding
2267  * @sk: socket
2268  *
2269  * Return: true if socket has write or read allocations
2270  */
2271 static inline bool sk_has_allocations(const struct sock *sk)
2272 {
2273 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2274 }
2275 
2276 /**
2277  * skwq_has_sleeper - check if there are any waiting processes
2278  * @wq: struct socket_wq
2279  *
2280  * Return: true if socket_wq has waiting processes
2281  *
2282  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2283  * barrier call. They were added due to the race found within the tcp code.
2284  *
2285  * Consider following tcp code paths::
2286  *
2287  *   CPU1                CPU2
2288  *   sys_select          receive packet
2289  *   ...                 ...
2290  *   __add_wait_queue    update tp->rcv_nxt
2291  *   ...                 ...
2292  *   tp->rcv_nxt check   sock_def_readable
2293  *   ...                 {
2294  *   schedule               rcu_read_lock();
2295  *                          wq = rcu_dereference(sk->sk_wq);
2296  *                          if (wq && waitqueue_active(&wq->wait))
2297  *                              wake_up_interruptible(&wq->wait)
2298  *                          ...
2299  *                       }
2300  *
2301  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2302  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2303  * could then endup calling schedule and sleep forever if there are no more
2304  * data on the socket.
2305  *
2306  */
2307 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2308 {
2309 	return wq && wq_has_sleeper(&wq->wait);
2310 }
2311 
2312 /**
2313  * sock_poll_wait - place memory barrier behind the poll_wait call.
2314  * @filp:           file
2315  * @sock:           socket to wait on
2316  * @p:              poll_table
2317  *
2318  * See the comments in the wq_has_sleeper function.
2319  */
2320 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2321 				  poll_table *p)
2322 {
2323 	if (!poll_does_not_wait(p)) {
2324 		poll_wait(filp, &sock->wq.wait, p);
2325 		/* We need to be sure we are in sync with the
2326 		 * socket flags modification.
2327 		 *
2328 		 * This memory barrier is paired in the wq_has_sleeper.
2329 		 */
2330 		smp_mb();
2331 	}
2332 }
2333 
2334 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2335 {
2336 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2337 	u32 txhash = READ_ONCE(sk->sk_txhash);
2338 
2339 	if (txhash) {
2340 		skb->l4_hash = 1;
2341 		skb->hash = txhash;
2342 	}
2343 }
2344 
2345 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2346 
2347 /*
2348  *	Queue a received datagram if it will fit. Stream and sequenced
2349  *	protocols can't normally use this as they need to fit buffers in
2350  *	and play with them.
2351  *
2352  *	Inlined as it's very short and called for pretty much every
2353  *	packet ever received.
2354  */
2355 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2356 {
2357 	skb_orphan(skb);
2358 	skb->sk = sk;
2359 	skb->destructor = sock_rfree;
2360 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2361 	sk_mem_charge(sk, skb->truesize);
2362 }
2363 
2364 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2365 {
2366 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2367 		skb_orphan(skb);
2368 		skb->destructor = sock_efree;
2369 		skb->sk = sk;
2370 		return true;
2371 	}
2372 	return false;
2373 }
2374 
2375 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2376 {
2377 	if (skb->destructor != sock_wfree) {
2378 		skb_orphan(skb);
2379 		return;
2380 	}
2381 	skb->slow_gro = 1;
2382 }
2383 
2384 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2385 		    unsigned long expires);
2386 
2387 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2388 
2389 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2390 
2391 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2392 			struct sk_buff *skb, unsigned int flags,
2393 			void (*destructor)(struct sock *sk,
2394 					   struct sk_buff *skb));
2395 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2396 
2397 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2398 			      enum skb_drop_reason *reason);
2399 
2400 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2401 {
2402 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2403 }
2404 
2405 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2406 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2407 
2408 /*
2409  *	Recover an error report and clear atomically
2410  */
2411 
2412 static inline int sock_error(struct sock *sk)
2413 {
2414 	int err;
2415 
2416 	/* Avoid an atomic operation for the common case.
2417 	 * This is racy since another cpu/thread can change sk_err under us.
2418 	 */
2419 	if (likely(data_race(!sk->sk_err)))
2420 		return 0;
2421 
2422 	err = xchg(&sk->sk_err, 0);
2423 	return -err;
2424 }
2425 
2426 void sk_error_report(struct sock *sk);
2427 
2428 static inline unsigned long sock_wspace(struct sock *sk)
2429 {
2430 	int amt = 0;
2431 
2432 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2433 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2434 		if (amt < 0)
2435 			amt = 0;
2436 	}
2437 	return amt;
2438 }
2439 
2440 /* Note:
2441  *  We use sk->sk_wq_raw, from contexts knowing this
2442  *  pointer is not NULL and cannot disappear/change.
2443  */
2444 static inline void sk_set_bit(int nr, struct sock *sk)
2445 {
2446 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2447 	    !sock_flag(sk, SOCK_FASYNC))
2448 		return;
2449 
2450 	set_bit(nr, &sk->sk_wq_raw->flags);
2451 }
2452 
2453 static inline void sk_clear_bit(int nr, struct sock *sk)
2454 {
2455 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2456 	    !sock_flag(sk, SOCK_FASYNC))
2457 		return;
2458 
2459 	clear_bit(nr, &sk->sk_wq_raw->flags);
2460 }
2461 
2462 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2463 {
2464 	if (sock_flag(sk, SOCK_FASYNC)) {
2465 		rcu_read_lock();
2466 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2467 		rcu_read_unlock();
2468 	}
2469 }
2470 
2471 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2472  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2473  * Note: for send buffers, TCP works better if we can build two skbs at
2474  * minimum.
2475  */
2476 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2477 
2478 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2479 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2480 
2481 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2482 {
2483 	u32 val;
2484 
2485 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2486 		return;
2487 
2488 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2489 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2490 
2491 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2492 }
2493 
2494 /**
2495  * sk_page_frag - return an appropriate page_frag
2496  * @sk: socket
2497  *
2498  * Use the per task page_frag instead of the per socket one for
2499  * optimization when we know that we're in process context and own
2500  * everything that's associated with %current.
2501  *
2502  * Both direct reclaim and page faults can nest inside other
2503  * socket operations and end up recursing into sk_page_frag()
2504  * while it's already in use: explicitly avoid task page_frag
2505  * usage if the caller is potentially doing any of them.
2506  * This assumes that page fault handlers use the GFP_NOFS flags.
2507  *
2508  * Return: a per task page_frag if context allows that,
2509  * otherwise a per socket one.
2510  */
2511 static inline struct page_frag *sk_page_frag(struct sock *sk)
2512 {
2513 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2514 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2515 		return &current->task_frag;
2516 
2517 	return &sk->sk_frag;
2518 }
2519 
2520 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2521 
2522 /*
2523  *	Default write policy as shown to user space via poll/select/SIGIO
2524  */
2525 static inline bool sock_writeable(const struct sock *sk)
2526 {
2527 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2528 }
2529 
2530 static inline gfp_t gfp_any(void)
2531 {
2532 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2533 }
2534 
2535 static inline gfp_t gfp_memcg_charge(void)
2536 {
2537 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2538 }
2539 
2540 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2541 {
2542 	return noblock ? 0 : sk->sk_rcvtimeo;
2543 }
2544 
2545 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2546 {
2547 	return noblock ? 0 : sk->sk_sndtimeo;
2548 }
2549 
2550 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2551 {
2552 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2553 
2554 	return v ?: 1;
2555 }
2556 
2557 /* Alas, with timeout socket operations are not restartable.
2558  * Compare this to poll().
2559  */
2560 static inline int sock_intr_errno(long timeo)
2561 {
2562 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2563 }
2564 
2565 struct sock_skb_cb {
2566 	u32 dropcount;
2567 };
2568 
2569 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2570  * using skb->cb[] would keep using it directly and utilize its
2571  * alignement guarantee.
2572  */
2573 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2574 			    sizeof(struct sock_skb_cb)))
2575 
2576 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2577 			    SOCK_SKB_CB_OFFSET))
2578 
2579 #define sock_skb_cb_check_size(size) \
2580 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2581 
2582 static inline void
2583 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2584 {
2585 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2586 						atomic_read(&sk->sk_drops) : 0;
2587 }
2588 
2589 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2590 {
2591 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2592 
2593 	atomic_add(segs, &sk->sk_drops);
2594 }
2595 
2596 static inline ktime_t sock_read_timestamp(struct sock *sk)
2597 {
2598 #if BITS_PER_LONG==32
2599 	unsigned int seq;
2600 	ktime_t kt;
2601 
2602 	do {
2603 		seq = read_seqbegin(&sk->sk_stamp_seq);
2604 		kt = sk->sk_stamp;
2605 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2606 
2607 	return kt;
2608 #else
2609 	return READ_ONCE(sk->sk_stamp);
2610 #endif
2611 }
2612 
2613 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2614 {
2615 #if BITS_PER_LONG==32
2616 	write_seqlock(&sk->sk_stamp_seq);
2617 	sk->sk_stamp = kt;
2618 	write_sequnlock(&sk->sk_stamp_seq);
2619 #else
2620 	WRITE_ONCE(sk->sk_stamp, kt);
2621 #endif
2622 }
2623 
2624 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2625 			   struct sk_buff *skb);
2626 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2627 			     struct sk_buff *skb);
2628 
2629 static inline void
2630 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2631 {
2632 	ktime_t kt = skb->tstamp;
2633 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2634 
2635 	/*
2636 	 * generate control messages if
2637 	 * - receive time stamping in software requested
2638 	 * - software time stamp available and wanted
2639 	 * - hardware time stamps available and wanted
2640 	 */
2641 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2642 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2643 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2644 	    (hwtstamps->hwtstamp &&
2645 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2646 		__sock_recv_timestamp(msg, sk, skb);
2647 	else
2648 		sock_write_timestamp(sk, kt);
2649 
2650 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2651 		__sock_recv_wifi_status(msg, sk, skb);
2652 }
2653 
2654 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2655 		       struct sk_buff *skb);
2656 
2657 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2658 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2659 				   struct sk_buff *skb)
2660 {
2661 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2662 			   (1UL << SOCK_RCVTSTAMP)			| \
2663 			   (1UL << SOCK_RCVMARK))
2664 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2665 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2666 
2667 	if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2668 		__sock_recv_cmsgs(msg, sk, skb);
2669 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2670 		sock_write_timestamp(sk, skb->tstamp);
2671 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2672 		sock_write_timestamp(sk, 0);
2673 }
2674 
2675 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2676 
2677 /**
2678  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2679  * @sk:		socket sending this packet
2680  * @tsflags:	timestamping flags to use
2681  * @tx_flags:	completed with instructions for time stamping
2682  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2683  *
2684  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2685  */
2686 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2687 				      __u8 *tx_flags, __u32 *tskey)
2688 {
2689 	if (unlikely(tsflags)) {
2690 		__sock_tx_timestamp(tsflags, tx_flags);
2691 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2692 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2693 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2694 	}
2695 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2696 		*tx_flags |= SKBTX_WIFI_STATUS;
2697 }
2698 
2699 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2700 				     __u8 *tx_flags)
2701 {
2702 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2703 }
2704 
2705 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2706 {
2707 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2708 			   &skb_shinfo(skb)->tskey);
2709 }
2710 
2711 static inline bool sk_is_tcp(const struct sock *sk)
2712 {
2713 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2714 }
2715 
2716 /**
2717  * sk_eat_skb - Release a skb if it is no longer needed
2718  * @sk: socket to eat this skb from
2719  * @skb: socket buffer to eat
2720  *
2721  * This routine must be called with interrupts disabled or with the socket
2722  * locked so that the sk_buff queue operation is ok.
2723 */
2724 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2725 {
2726 	__skb_unlink(skb, &sk->sk_receive_queue);
2727 	__kfree_skb(skb);
2728 }
2729 
2730 static inline bool
2731 skb_sk_is_prefetched(struct sk_buff *skb)
2732 {
2733 #ifdef CONFIG_INET
2734 	return skb->destructor == sock_pfree;
2735 #else
2736 	return false;
2737 #endif /* CONFIG_INET */
2738 }
2739 
2740 /* This helper checks if a socket is a full socket,
2741  * ie _not_ a timewait or request socket.
2742  */
2743 static inline bool sk_fullsock(const struct sock *sk)
2744 {
2745 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2746 }
2747 
2748 static inline bool
2749 sk_is_refcounted(struct sock *sk)
2750 {
2751 	/* Only full sockets have sk->sk_flags. */
2752 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2753 }
2754 
2755 /**
2756  * skb_steal_sock - steal a socket from an sk_buff
2757  * @skb: sk_buff to steal the socket from
2758  * @refcounted: is set to true if the socket is reference-counted
2759  */
2760 static inline struct sock *
2761 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2762 {
2763 	if (skb->sk) {
2764 		struct sock *sk = skb->sk;
2765 
2766 		*refcounted = true;
2767 		if (skb_sk_is_prefetched(skb))
2768 			*refcounted = sk_is_refcounted(sk);
2769 		skb->destructor = NULL;
2770 		skb->sk = NULL;
2771 		return sk;
2772 	}
2773 	*refcounted = false;
2774 	return NULL;
2775 }
2776 
2777 /* Checks if this SKB belongs to an HW offloaded socket
2778  * and whether any SW fallbacks are required based on dev.
2779  * Check decrypted mark in case skb_orphan() cleared socket.
2780  */
2781 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2782 						   struct net_device *dev)
2783 {
2784 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2785 	struct sock *sk = skb->sk;
2786 
2787 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2788 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2789 #ifdef CONFIG_TLS_DEVICE
2790 	} else if (unlikely(skb->decrypted)) {
2791 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2792 		kfree_skb(skb);
2793 		skb = NULL;
2794 #endif
2795 	}
2796 #endif
2797 
2798 	return skb;
2799 }
2800 
2801 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2802  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2803  */
2804 static inline bool sk_listener(const struct sock *sk)
2805 {
2806 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2807 }
2808 
2809 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2810 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2811 		       int type);
2812 
2813 bool sk_ns_capable(const struct sock *sk,
2814 		   struct user_namespace *user_ns, int cap);
2815 bool sk_capable(const struct sock *sk, int cap);
2816 bool sk_net_capable(const struct sock *sk, int cap);
2817 
2818 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2819 
2820 /* Take into consideration the size of the struct sk_buff overhead in the
2821  * determination of these values, since that is non-constant across
2822  * platforms.  This makes socket queueing behavior and performance
2823  * not depend upon such differences.
2824  */
2825 #define _SK_MEM_PACKETS		256
2826 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2827 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2828 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2829 
2830 extern __u32 sysctl_wmem_max;
2831 extern __u32 sysctl_rmem_max;
2832 
2833 extern int sysctl_tstamp_allow_data;
2834 extern int sysctl_optmem_max;
2835 
2836 extern __u32 sysctl_wmem_default;
2837 extern __u32 sysctl_rmem_default;
2838 
2839 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2840 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2841 
2842 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2843 {
2844 	/* Does this proto have per netns sysctl_wmem ? */
2845 	if (proto->sysctl_wmem_offset)
2846 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2847 
2848 	return *proto->sysctl_wmem;
2849 }
2850 
2851 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2852 {
2853 	/* Does this proto have per netns sysctl_rmem ? */
2854 	if (proto->sysctl_rmem_offset)
2855 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2856 
2857 	return *proto->sysctl_rmem;
2858 }
2859 
2860 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2861  * Some wifi drivers need to tweak it to get more chunks.
2862  * They can use this helper from their ndo_start_xmit()
2863  */
2864 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2865 {
2866 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2867 		return;
2868 	WRITE_ONCE(sk->sk_pacing_shift, val);
2869 }
2870 
2871 /* if a socket is bound to a device, check that the given device
2872  * index is either the same or that the socket is bound to an L3
2873  * master device and the given device index is also enslaved to
2874  * that L3 master
2875  */
2876 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2877 {
2878 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2879 	int mdif;
2880 
2881 	if (!bound_dev_if || bound_dev_if == dif)
2882 		return true;
2883 
2884 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2885 	if (mdif && mdif == bound_dev_if)
2886 		return true;
2887 
2888 	return false;
2889 }
2890 
2891 void sock_def_readable(struct sock *sk);
2892 
2893 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2894 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2895 int sock_set_timestamping(struct sock *sk, int optname,
2896 			  struct so_timestamping timestamping);
2897 
2898 void sock_enable_timestamps(struct sock *sk);
2899 void sock_no_linger(struct sock *sk);
2900 void sock_set_keepalive(struct sock *sk);
2901 void sock_set_priority(struct sock *sk, u32 priority);
2902 void sock_set_rcvbuf(struct sock *sk, int val);
2903 void sock_set_mark(struct sock *sk, u32 val);
2904 void sock_set_reuseaddr(struct sock *sk);
2905 void sock_set_reuseport(struct sock *sk);
2906 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2907 
2908 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2909 
2910 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2911 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2912 			   sockptr_t optval, int optlen, bool old_timeval);
2913 
2914 static inline bool sk_is_readable(struct sock *sk)
2915 {
2916 	if (sk->sk_prot->sock_is_readable)
2917 		return sk->sk_prot->sock_is_readable(sk);
2918 	return false;
2919 }
2920 #endif	/* _SOCK_H */
2921