xref: /openbmc/linux/include/net/sock.h (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
76 
77 /*
78  * This structure really needs to be cleaned up.
79  * Most of it is for TCP, and not used by any of
80  * the other protocols.
81  */
82 
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 					printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 {
93 }
94 #endif
95 
96 /* This is the per-socket lock.  The spinlock provides a synchronization
97  * between user contexts and software interrupt processing, whereas the
98  * mini-semaphore synchronizes multiple users amongst themselves.
99  */
100 typedef struct {
101 	spinlock_t		slock;
102 	int			owned;
103 	wait_queue_head_t	wq;
104 	/*
105 	 * We express the mutex-alike socket_lock semantics
106 	 * to the lock validator by explicitly managing
107 	 * the slock as a lock variant (in addition to
108 	 * the slock itself):
109 	 */
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 	struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
114 
115 struct sock;
116 struct proto;
117 struct net;
118 
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
121 
122 /**
123  *	struct sock_common - minimal network layer representation of sockets
124  *	@skc_daddr: Foreign IPv4 addr
125  *	@skc_rcv_saddr: Bound local IPv4 addr
126  *	@skc_hash: hash value used with various protocol lookup tables
127  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
128  *	@skc_dport: placeholder for inet_dport/tw_dport
129  *	@skc_num: placeholder for inet_num/tw_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_node: main hash linkage for various protocol lookup tables
140  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141  *	@skc_tx_queue_mapping: tx queue number for this connection
142  *	@skc_rx_queue_mapping: rx queue number for this connection
143  *	@skc_flags: place holder for sk_flags
144  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146  *	@skc_incoming_cpu: record/match cpu processing incoming packets
147  *	@skc_refcnt: reference count
148  *
149  *	This is the minimal network layer representation of sockets, the header
150  *	for struct sock and struct inet_timewait_sock.
151  */
152 struct sock_common {
153 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 	 * address on 64bit arches : cf INET_MATCH()
155 	 */
156 	union {
157 		__addrpair	skc_addrpair;
158 		struct {
159 			__be32	skc_daddr;
160 			__be32	skc_rcv_saddr;
161 		};
162 	};
163 	union  {
164 		unsigned int	skc_hash;
165 		__u16		skc_u16hashes[2];
166 	};
167 	/* skc_dport && skc_num must be grouped as well */
168 	union {
169 		__portpair	skc_portpair;
170 		struct {
171 			__be16	skc_dport;
172 			__u16	skc_num;
173 		};
174 	};
175 
176 	unsigned short		skc_family;
177 	volatile unsigned char	skc_state;
178 	unsigned char		skc_reuse:4;
179 	unsigned char		skc_reuseport:1;
180 	unsigned char		skc_ipv6only:1;
181 	unsigned char		skc_net_refcnt:1;
182 	int			skc_bound_dev_if;
183 	union {
184 		struct hlist_node	skc_bind_node;
185 		struct hlist_node	skc_portaddr_node;
186 	};
187 	struct proto		*skc_prot;
188 	possible_net_t		skc_net;
189 
190 #if IS_ENABLED(CONFIG_IPV6)
191 	struct in6_addr		skc_v6_daddr;
192 	struct in6_addr		skc_v6_rcv_saddr;
193 #endif
194 
195 	atomic64_t		skc_cookie;
196 
197 	/* following fields are padding to force
198 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 	 * assuming IPV6 is enabled. We use this padding differently
200 	 * for different kind of 'sockets'
201 	 */
202 	union {
203 		unsigned long	skc_flags;
204 		struct sock	*skc_listener; /* request_sock */
205 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 	};
207 	/*
208 	 * fields between dontcopy_begin/dontcopy_end
209 	 * are not copied in sock_copy()
210 	 */
211 	/* private: */
212 	int			skc_dontcopy_begin[0];
213 	/* public: */
214 	union {
215 		struct hlist_node	skc_node;
216 		struct hlist_nulls_node skc_nulls_node;
217 	};
218 	unsigned short		skc_tx_queue_mapping;
219 #ifdef CONFIG_XPS
220 	unsigned short		skc_rx_queue_mapping;
221 #endif
222 	union {
223 		int		skc_incoming_cpu;
224 		u32		skc_rcv_wnd;
225 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
226 	};
227 
228 	refcount_t		skc_refcnt;
229 	/* private: */
230 	int                     skc_dontcopy_end[0];
231 	union {
232 		u32		skc_rxhash;
233 		u32		skc_window_clamp;
234 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 	};
236 	/* public: */
237 };
238 
239 /**
240   *	struct sock - network layer representation of sockets
241   *	@__sk_common: shared layout with inet_timewait_sock
242   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244   *	@sk_lock:	synchronizer
245   *	@sk_kern_sock: True if sock is using kernel lock classes
246   *	@sk_rcvbuf: size of receive buffer in bytes
247   *	@sk_wq: sock wait queue and async head
248   *	@sk_rx_dst: receive input route used by early demux
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_napi_id: id of the last napi context to receive data for sk
260   *	@sk_ll_usec: usecs to busypoll when there is no data
261   *	@sk_allocation: allocation mode
262   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
264   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265   *	@sk_sndbuf: size of send buffer in bytes
266   *	@__sk_flags_offset: empty field used to determine location of bitfield
267   *	@sk_padding: unused element for alignment
268   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269   *	@sk_no_check_rx: allow zero checksum in RX packets
270   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273   *	@sk_gso_max_size: Maximum GSO segment size to build
274   *	@sk_gso_max_segs: Maximum number of GSO segments
275   *	@sk_pacing_shift: scaling factor for TCP Small Queues
276   *	@sk_lingertime: %SO_LINGER l_linger setting
277   *	@sk_backlog: always used with the per-socket spinlock held
278   *	@sk_callback_lock: used with the callbacks in the end of this struct
279   *	@sk_error_queue: rarely used
280   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281   *			  IPV6_ADDRFORM for instance)
282   *	@sk_err: last error
283   *	@sk_err_soft: errors that don't cause failure but are the cause of a
284   *		      persistent failure not just 'timed out'
285   *	@sk_drops: raw/udp drops counter
286   *	@sk_ack_backlog: current listen backlog
287   *	@sk_max_ack_backlog: listen backlog set in listen()
288   *	@sk_uid: user id of owner
289   *	@sk_priority: %SO_PRIORITY setting
290   *	@sk_type: socket type (%SOCK_STREAM, etc)
291   *	@sk_protocol: which protocol this socket belongs in this network family
292   *	@sk_peer_pid: &struct pid for this socket's peer
293   *	@sk_peer_cred: %SO_PEERCRED setting
294   *	@sk_rcvlowat: %SO_RCVLOWAT setting
295   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
296   *	@sk_sndtimeo: %SO_SNDTIMEO setting
297   *	@sk_txhash: computed flow hash for use on transmit
298   *	@sk_filter: socket filtering instructions
299   *	@sk_timer: sock cleanup timer
300   *	@sk_stamp: time stamp of last packet received
301   *	@sk_tsflags: SO_TIMESTAMPING socket options
302   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
303   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
304   *	@sk_socket: Identd and reporting IO signals
305   *	@sk_user_data: RPC layer private data
306   *	@sk_frag: cached page frag
307   *	@sk_peek_off: current peek_offset value
308   *	@sk_send_head: front of stuff to transmit
309   *	@sk_security: used by security modules
310   *	@sk_mark: generic packet mark
311   *	@sk_cgrp_data: cgroup data for this cgroup
312   *	@sk_memcg: this socket's memory cgroup association
313   *	@sk_write_pending: a write to stream socket waits to start
314   *	@sk_state_change: callback to indicate change in the state of the sock
315   *	@sk_data_ready: callback to indicate there is data to be processed
316   *	@sk_write_space: callback to indicate there is bf sending space available
317   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
318   *	@sk_backlog_rcv: callback to process the backlog
319   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
320   *	@sk_reuseport_cb: reuseport group container
321   *	@sk_rcu: used during RCU grace period
322   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
323   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
324   *	@sk_txtime_unused: unused txtime flags
325   */
326 struct sock {
327 	/*
328 	 * Now struct inet_timewait_sock also uses sock_common, so please just
329 	 * don't add nothing before this first member (__sk_common) --acme
330 	 */
331 	struct sock_common	__sk_common;
332 #define sk_node			__sk_common.skc_node
333 #define sk_nulls_node		__sk_common.skc_nulls_node
334 #define sk_refcnt		__sk_common.skc_refcnt
335 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
336 #ifdef CONFIG_XPS
337 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
338 #endif
339 
340 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
341 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
342 #define sk_hash			__sk_common.skc_hash
343 #define sk_portpair		__sk_common.skc_portpair
344 #define sk_num			__sk_common.skc_num
345 #define sk_dport		__sk_common.skc_dport
346 #define sk_addrpair		__sk_common.skc_addrpair
347 #define sk_daddr		__sk_common.skc_daddr
348 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
349 #define sk_family		__sk_common.skc_family
350 #define sk_state		__sk_common.skc_state
351 #define sk_reuse		__sk_common.skc_reuse
352 #define sk_reuseport		__sk_common.skc_reuseport
353 #define sk_ipv6only		__sk_common.skc_ipv6only
354 #define sk_net_refcnt		__sk_common.skc_net_refcnt
355 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
356 #define sk_bind_node		__sk_common.skc_bind_node
357 #define sk_prot			__sk_common.skc_prot
358 #define sk_net			__sk_common.skc_net
359 #define sk_v6_daddr		__sk_common.skc_v6_daddr
360 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
361 #define sk_cookie		__sk_common.skc_cookie
362 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
363 #define sk_flags		__sk_common.skc_flags
364 #define sk_rxhash		__sk_common.skc_rxhash
365 
366 	socket_lock_t		sk_lock;
367 	atomic_t		sk_drops;
368 	int			sk_rcvlowat;
369 	struct sk_buff_head	sk_error_queue;
370 	struct sk_buff_head	sk_receive_queue;
371 	/*
372 	 * The backlog queue is special, it is always used with
373 	 * the per-socket spinlock held and requires low latency
374 	 * access. Therefore we special case it's implementation.
375 	 * Note : rmem_alloc is in this structure to fill a hole
376 	 * on 64bit arches, not because its logically part of
377 	 * backlog.
378 	 */
379 	struct {
380 		atomic_t	rmem_alloc;
381 		int		len;
382 		struct sk_buff	*head;
383 		struct sk_buff	*tail;
384 	} sk_backlog;
385 #define sk_rmem_alloc sk_backlog.rmem_alloc
386 
387 	int			sk_forward_alloc;
388 #ifdef CONFIG_NET_RX_BUSY_POLL
389 	unsigned int		sk_ll_usec;
390 	/* ===== mostly read cache line ===== */
391 	unsigned int		sk_napi_id;
392 #endif
393 	int			sk_rcvbuf;
394 
395 	struct sk_filter __rcu	*sk_filter;
396 	union {
397 		struct socket_wq __rcu	*sk_wq;
398 		struct socket_wq	*sk_wq_raw;
399 	};
400 #ifdef CONFIG_XFRM
401 	struct xfrm_policy __rcu *sk_policy[2];
402 #endif
403 	struct dst_entry	*sk_rx_dst;
404 	struct dst_entry __rcu	*sk_dst_cache;
405 	atomic_t		sk_omem_alloc;
406 	int			sk_sndbuf;
407 
408 	/* ===== cache line for TX ===== */
409 	int			sk_wmem_queued;
410 	refcount_t		sk_wmem_alloc;
411 	unsigned long		sk_tsq_flags;
412 	union {
413 		struct sk_buff	*sk_send_head;
414 		struct rb_root	tcp_rtx_queue;
415 	};
416 	struct sk_buff_head	sk_write_queue;
417 	__s32			sk_peek_off;
418 	int			sk_write_pending;
419 	__u32			sk_dst_pending_confirm;
420 	u32			sk_pacing_status; /* see enum sk_pacing */
421 	long			sk_sndtimeo;
422 	struct timer_list	sk_timer;
423 	__u32			sk_priority;
424 	__u32			sk_mark;
425 	u32			sk_pacing_rate; /* bytes per second */
426 	u32			sk_max_pacing_rate;
427 	struct page_frag	sk_frag;
428 	netdev_features_t	sk_route_caps;
429 	netdev_features_t	sk_route_nocaps;
430 	netdev_features_t	sk_route_forced_caps;
431 	int			sk_gso_type;
432 	unsigned int		sk_gso_max_size;
433 	gfp_t			sk_allocation;
434 	__u32			sk_txhash;
435 
436 	/*
437 	 * Because of non atomicity rules, all
438 	 * changes are protected by socket lock.
439 	 */
440 	unsigned int		__sk_flags_offset[0];
441 #ifdef __BIG_ENDIAN_BITFIELD
442 #define SK_FL_PROTO_SHIFT  16
443 #define SK_FL_PROTO_MASK   0x00ff0000
444 
445 #define SK_FL_TYPE_SHIFT   0
446 #define SK_FL_TYPE_MASK    0x0000ffff
447 #else
448 #define SK_FL_PROTO_SHIFT  8
449 #define SK_FL_PROTO_MASK   0x0000ff00
450 
451 #define SK_FL_TYPE_SHIFT   16
452 #define SK_FL_TYPE_MASK    0xffff0000
453 #endif
454 
455 	unsigned int		sk_padding : 1,
456 				sk_kern_sock : 1,
457 				sk_no_check_tx : 1,
458 				sk_no_check_rx : 1,
459 				sk_userlocks : 4,
460 				sk_protocol  : 8,
461 				sk_type      : 16;
462 #define SK_PROTOCOL_MAX U8_MAX
463 	u16			sk_gso_max_segs;
464 	u8			sk_pacing_shift;
465 	unsigned long	        sk_lingertime;
466 	struct proto		*sk_prot_creator;
467 	rwlock_t		sk_callback_lock;
468 	int			sk_err,
469 				sk_err_soft;
470 	u32			sk_ack_backlog;
471 	u32			sk_max_ack_backlog;
472 	kuid_t			sk_uid;
473 	struct pid		*sk_peer_pid;
474 	const struct cred	*sk_peer_cred;
475 	long			sk_rcvtimeo;
476 	ktime_t			sk_stamp;
477 	u16			sk_tsflags;
478 	u8			sk_shutdown;
479 	u32			sk_tskey;
480 	atomic_t		sk_zckey;
481 
482 	u8			sk_clockid;
483 	u8			sk_txtime_deadline_mode : 1,
484 				sk_txtime_report_errors : 1,
485 				sk_txtime_unused : 6;
486 
487 	struct socket		*sk_socket;
488 	void			*sk_user_data;
489 #ifdef CONFIG_SECURITY
490 	void			*sk_security;
491 #endif
492 	struct sock_cgroup_data	sk_cgrp_data;
493 	struct mem_cgroup	*sk_memcg;
494 	void			(*sk_state_change)(struct sock *sk);
495 	void			(*sk_data_ready)(struct sock *sk);
496 	void			(*sk_write_space)(struct sock *sk);
497 	void			(*sk_error_report)(struct sock *sk);
498 	int			(*sk_backlog_rcv)(struct sock *sk,
499 						  struct sk_buff *skb);
500 #ifdef CONFIG_SOCK_VALIDATE_XMIT
501 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
502 							struct net_device *dev,
503 							struct sk_buff *skb);
504 #endif
505 	void                    (*sk_destruct)(struct sock *sk);
506 	struct sock_reuseport __rcu	*sk_reuseport_cb;
507 	struct rcu_head		sk_rcu;
508 };
509 
510 enum sk_pacing {
511 	SK_PACING_NONE		= 0,
512 	SK_PACING_NEEDED	= 1,
513 	SK_PACING_FQ		= 2,
514 };
515 
516 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
517 
518 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
519 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
520 
521 /*
522  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
523  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
524  * on a socket means that the socket will reuse everybody else's port
525  * without looking at the other's sk_reuse value.
526  */
527 
528 #define SK_NO_REUSE	0
529 #define SK_CAN_REUSE	1
530 #define SK_FORCE_REUSE	2
531 
532 int sk_set_peek_off(struct sock *sk, int val);
533 
534 static inline int sk_peek_offset(struct sock *sk, int flags)
535 {
536 	if (unlikely(flags & MSG_PEEK)) {
537 		return READ_ONCE(sk->sk_peek_off);
538 	}
539 
540 	return 0;
541 }
542 
543 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
544 {
545 	s32 off = READ_ONCE(sk->sk_peek_off);
546 
547 	if (unlikely(off >= 0)) {
548 		off = max_t(s32, off - val, 0);
549 		WRITE_ONCE(sk->sk_peek_off, off);
550 	}
551 }
552 
553 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
554 {
555 	sk_peek_offset_bwd(sk, -val);
556 }
557 
558 /*
559  * Hashed lists helper routines
560  */
561 static inline struct sock *sk_entry(const struct hlist_node *node)
562 {
563 	return hlist_entry(node, struct sock, sk_node);
564 }
565 
566 static inline struct sock *__sk_head(const struct hlist_head *head)
567 {
568 	return hlist_entry(head->first, struct sock, sk_node);
569 }
570 
571 static inline struct sock *sk_head(const struct hlist_head *head)
572 {
573 	return hlist_empty(head) ? NULL : __sk_head(head);
574 }
575 
576 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
577 {
578 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
579 }
580 
581 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
582 {
583 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
584 }
585 
586 static inline struct sock *sk_next(const struct sock *sk)
587 {
588 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
589 }
590 
591 static inline struct sock *sk_nulls_next(const struct sock *sk)
592 {
593 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
594 		hlist_nulls_entry(sk->sk_nulls_node.next,
595 				  struct sock, sk_nulls_node) :
596 		NULL;
597 }
598 
599 static inline bool sk_unhashed(const struct sock *sk)
600 {
601 	return hlist_unhashed(&sk->sk_node);
602 }
603 
604 static inline bool sk_hashed(const struct sock *sk)
605 {
606 	return !sk_unhashed(sk);
607 }
608 
609 static inline void sk_node_init(struct hlist_node *node)
610 {
611 	node->pprev = NULL;
612 }
613 
614 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
615 {
616 	node->pprev = NULL;
617 }
618 
619 static inline void __sk_del_node(struct sock *sk)
620 {
621 	__hlist_del(&sk->sk_node);
622 }
623 
624 /* NB: equivalent to hlist_del_init_rcu */
625 static inline bool __sk_del_node_init(struct sock *sk)
626 {
627 	if (sk_hashed(sk)) {
628 		__sk_del_node(sk);
629 		sk_node_init(&sk->sk_node);
630 		return true;
631 	}
632 	return false;
633 }
634 
635 /* Grab socket reference count. This operation is valid only
636    when sk is ALREADY grabbed f.e. it is found in hash table
637    or a list and the lookup is made under lock preventing hash table
638    modifications.
639  */
640 
641 static __always_inline void sock_hold(struct sock *sk)
642 {
643 	refcount_inc(&sk->sk_refcnt);
644 }
645 
646 /* Ungrab socket in the context, which assumes that socket refcnt
647    cannot hit zero, f.e. it is true in context of any socketcall.
648  */
649 static __always_inline void __sock_put(struct sock *sk)
650 {
651 	refcount_dec(&sk->sk_refcnt);
652 }
653 
654 static inline bool sk_del_node_init(struct sock *sk)
655 {
656 	bool rc = __sk_del_node_init(sk);
657 
658 	if (rc) {
659 		/* paranoid for a while -acme */
660 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
661 		__sock_put(sk);
662 	}
663 	return rc;
664 }
665 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
666 
667 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
668 {
669 	if (sk_hashed(sk)) {
670 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
671 		return true;
672 	}
673 	return false;
674 }
675 
676 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
677 {
678 	bool rc = __sk_nulls_del_node_init_rcu(sk);
679 
680 	if (rc) {
681 		/* paranoid for a while -acme */
682 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
683 		__sock_put(sk);
684 	}
685 	return rc;
686 }
687 
688 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
689 {
690 	hlist_add_head(&sk->sk_node, list);
691 }
692 
693 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
694 {
695 	sock_hold(sk);
696 	__sk_add_node(sk, list);
697 }
698 
699 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
700 {
701 	sock_hold(sk);
702 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
703 	    sk->sk_family == AF_INET6)
704 		hlist_add_tail_rcu(&sk->sk_node, list);
705 	else
706 		hlist_add_head_rcu(&sk->sk_node, list);
707 }
708 
709 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
710 {
711 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
712 }
713 
714 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
715 {
716 	sock_hold(sk);
717 	__sk_nulls_add_node_rcu(sk, list);
718 }
719 
720 static inline void __sk_del_bind_node(struct sock *sk)
721 {
722 	__hlist_del(&sk->sk_bind_node);
723 }
724 
725 static inline void sk_add_bind_node(struct sock *sk,
726 					struct hlist_head *list)
727 {
728 	hlist_add_head(&sk->sk_bind_node, list);
729 }
730 
731 #define sk_for_each(__sk, list) \
732 	hlist_for_each_entry(__sk, list, sk_node)
733 #define sk_for_each_rcu(__sk, list) \
734 	hlist_for_each_entry_rcu(__sk, list, sk_node)
735 #define sk_nulls_for_each(__sk, node, list) \
736 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
737 #define sk_nulls_for_each_rcu(__sk, node, list) \
738 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
739 #define sk_for_each_from(__sk) \
740 	hlist_for_each_entry_from(__sk, sk_node)
741 #define sk_nulls_for_each_from(__sk, node) \
742 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
743 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
744 #define sk_for_each_safe(__sk, tmp, list) \
745 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
746 #define sk_for_each_bound(__sk, list) \
747 	hlist_for_each_entry(__sk, list, sk_bind_node)
748 
749 /**
750  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
751  * @tpos:	the type * to use as a loop cursor.
752  * @pos:	the &struct hlist_node to use as a loop cursor.
753  * @head:	the head for your list.
754  * @offset:	offset of hlist_node within the struct.
755  *
756  */
757 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
758 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
759 	     pos != NULL &&						       \
760 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
761 	     pos = rcu_dereference(hlist_next_rcu(pos)))
762 
763 static inline struct user_namespace *sk_user_ns(struct sock *sk)
764 {
765 	/* Careful only use this in a context where these parameters
766 	 * can not change and must all be valid, such as recvmsg from
767 	 * userspace.
768 	 */
769 	return sk->sk_socket->file->f_cred->user_ns;
770 }
771 
772 /* Sock flags */
773 enum sock_flags {
774 	SOCK_DEAD,
775 	SOCK_DONE,
776 	SOCK_URGINLINE,
777 	SOCK_KEEPOPEN,
778 	SOCK_LINGER,
779 	SOCK_DESTROY,
780 	SOCK_BROADCAST,
781 	SOCK_TIMESTAMP,
782 	SOCK_ZAPPED,
783 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
784 	SOCK_DBG, /* %SO_DEBUG setting */
785 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
786 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
787 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
788 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
789 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
790 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
791 	SOCK_FASYNC, /* fasync() active */
792 	SOCK_RXQ_OVFL,
793 	SOCK_ZEROCOPY, /* buffers from userspace */
794 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
795 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
796 		     * Will use last 4 bytes of packet sent from
797 		     * user-space instead.
798 		     */
799 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
800 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
801 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
802 	SOCK_TXTIME,
803 	SOCK_XDP, /* XDP is attached */
804 };
805 
806 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
807 
808 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
809 {
810 	nsk->sk_flags = osk->sk_flags;
811 }
812 
813 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
814 {
815 	__set_bit(flag, &sk->sk_flags);
816 }
817 
818 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
819 {
820 	__clear_bit(flag, &sk->sk_flags);
821 }
822 
823 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
824 {
825 	return test_bit(flag, &sk->sk_flags);
826 }
827 
828 #ifdef CONFIG_NET
829 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
830 static inline int sk_memalloc_socks(void)
831 {
832 	return static_branch_unlikely(&memalloc_socks_key);
833 }
834 #else
835 
836 static inline int sk_memalloc_socks(void)
837 {
838 	return 0;
839 }
840 
841 #endif
842 
843 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
844 {
845 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
846 }
847 
848 static inline void sk_acceptq_removed(struct sock *sk)
849 {
850 	sk->sk_ack_backlog--;
851 }
852 
853 static inline void sk_acceptq_added(struct sock *sk)
854 {
855 	sk->sk_ack_backlog++;
856 }
857 
858 static inline bool sk_acceptq_is_full(const struct sock *sk)
859 {
860 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
861 }
862 
863 /*
864  * Compute minimal free write space needed to queue new packets.
865  */
866 static inline int sk_stream_min_wspace(const struct sock *sk)
867 {
868 	return sk->sk_wmem_queued >> 1;
869 }
870 
871 static inline int sk_stream_wspace(const struct sock *sk)
872 {
873 	return sk->sk_sndbuf - sk->sk_wmem_queued;
874 }
875 
876 void sk_stream_write_space(struct sock *sk);
877 
878 /* OOB backlog add */
879 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
880 {
881 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
882 	skb_dst_force(skb);
883 
884 	if (!sk->sk_backlog.tail)
885 		sk->sk_backlog.head = skb;
886 	else
887 		sk->sk_backlog.tail->next = skb;
888 
889 	sk->sk_backlog.tail = skb;
890 	skb->next = NULL;
891 }
892 
893 /*
894  * Take into account size of receive queue and backlog queue
895  * Do not take into account this skb truesize,
896  * to allow even a single big packet to come.
897  */
898 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
899 {
900 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
901 
902 	return qsize > limit;
903 }
904 
905 /* The per-socket spinlock must be held here. */
906 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
907 					      unsigned int limit)
908 {
909 	if (sk_rcvqueues_full(sk, limit))
910 		return -ENOBUFS;
911 
912 	/*
913 	 * If the skb was allocated from pfmemalloc reserves, only
914 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
915 	 * helping free memory
916 	 */
917 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
918 		return -ENOMEM;
919 
920 	__sk_add_backlog(sk, skb);
921 	sk->sk_backlog.len += skb->truesize;
922 	return 0;
923 }
924 
925 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
926 
927 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
928 {
929 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
930 		return __sk_backlog_rcv(sk, skb);
931 
932 	return sk->sk_backlog_rcv(sk, skb);
933 }
934 
935 static inline void sk_incoming_cpu_update(struct sock *sk)
936 {
937 	int cpu = raw_smp_processor_id();
938 
939 	if (unlikely(sk->sk_incoming_cpu != cpu))
940 		sk->sk_incoming_cpu = cpu;
941 }
942 
943 static inline void sock_rps_record_flow_hash(__u32 hash)
944 {
945 #ifdef CONFIG_RPS
946 	struct rps_sock_flow_table *sock_flow_table;
947 
948 	rcu_read_lock();
949 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
950 	rps_record_sock_flow(sock_flow_table, hash);
951 	rcu_read_unlock();
952 #endif
953 }
954 
955 static inline void sock_rps_record_flow(const struct sock *sk)
956 {
957 #ifdef CONFIG_RPS
958 	if (static_key_false(&rfs_needed)) {
959 		/* Reading sk->sk_rxhash might incur an expensive cache line
960 		 * miss.
961 		 *
962 		 * TCP_ESTABLISHED does cover almost all states where RFS
963 		 * might be useful, and is cheaper [1] than testing :
964 		 *	IPv4: inet_sk(sk)->inet_daddr
965 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
966 		 * OR	an additional socket flag
967 		 * [1] : sk_state and sk_prot are in the same cache line.
968 		 */
969 		if (sk->sk_state == TCP_ESTABLISHED)
970 			sock_rps_record_flow_hash(sk->sk_rxhash);
971 	}
972 #endif
973 }
974 
975 static inline void sock_rps_save_rxhash(struct sock *sk,
976 					const struct sk_buff *skb)
977 {
978 #ifdef CONFIG_RPS
979 	if (unlikely(sk->sk_rxhash != skb->hash))
980 		sk->sk_rxhash = skb->hash;
981 #endif
982 }
983 
984 static inline void sock_rps_reset_rxhash(struct sock *sk)
985 {
986 #ifdef CONFIG_RPS
987 	sk->sk_rxhash = 0;
988 #endif
989 }
990 
991 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
992 	({	int __rc;						\
993 		release_sock(__sk);					\
994 		__rc = __condition;					\
995 		if (!__rc) {						\
996 			*(__timeo) = wait_woken(__wait,			\
997 						TASK_INTERRUPTIBLE,	\
998 						*(__timeo));		\
999 		}							\
1000 		sched_annotate_sleep();					\
1001 		lock_sock(__sk);					\
1002 		__rc = __condition;					\
1003 		__rc;							\
1004 	})
1005 
1006 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1007 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1008 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1009 int sk_stream_error(struct sock *sk, int flags, int err);
1010 void sk_stream_kill_queues(struct sock *sk);
1011 void sk_set_memalloc(struct sock *sk);
1012 void sk_clear_memalloc(struct sock *sk);
1013 
1014 void __sk_flush_backlog(struct sock *sk);
1015 
1016 static inline bool sk_flush_backlog(struct sock *sk)
1017 {
1018 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1019 		__sk_flush_backlog(sk);
1020 		return true;
1021 	}
1022 	return false;
1023 }
1024 
1025 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1026 
1027 struct request_sock_ops;
1028 struct timewait_sock_ops;
1029 struct inet_hashinfo;
1030 struct raw_hashinfo;
1031 struct smc_hashinfo;
1032 struct module;
1033 
1034 /*
1035  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1036  * un-modified. Special care is taken when initializing object to zero.
1037  */
1038 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1039 {
1040 	if (offsetof(struct sock, sk_node.next) != 0)
1041 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1042 	memset(&sk->sk_node.pprev, 0,
1043 	       size - offsetof(struct sock, sk_node.pprev));
1044 }
1045 
1046 /* Networking protocol blocks we attach to sockets.
1047  * socket layer -> transport layer interface
1048  */
1049 struct proto {
1050 	void			(*close)(struct sock *sk,
1051 					long timeout);
1052 	int			(*pre_connect)(struct sock *sk,
1053 					struct sockaddr *uaddr,
1054 					int addr_len);
1055 	int			(*connect)(struct sock *sk,
1056 					struct sockaddr *uaddr,
1057 					int addr_len);
1058 	int			(*disconnect)(struct sock *sk, int flags);
1059 
1060 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1061 					  bool kern);
1062 
1063 	int			(*ioctl)(struct sock *sk, int cmd,
1064 					 unsigned long arg);
1065 	int			(*init)(struct sock *sk);
1066 	void			(*destroy)(struct sock *sk);
1067 	void			(*shutdown)(struct sock *sk, int how);
1068 	int			(*setsockopt)(struct sock *sk, int level,
1069 					int optname, char __user *optval,
1070 					unsigned int optlen);
1071 	int			(*getsockopt)(struct sock *sk, int level,
1072 					int optname, char __user *optval,
1073 					int __user *option);
1074 	void			(*keepalive)(struct sock *sk, int valbool);
1075 #ifdef CONFIG_COMPAT
1076 	int			(*compat_setsockopt)(struct sock *sk,
1077 					int level,
1078 					int optname, char __user *optval,
1079 					unsigned int optlen);
1080 	int			(*compat_getsockopt)(struct sock *sk,
1081 					int level,
1082 					int optname, char __user *optval,
1083 					int __user *option);
1084 	int			(*compat_ioctl)(struct sock *sk,
1085 					unsigned int cmd, unsigned long arg);
1086 #endif
1087 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1088 					   size_t len);
1089 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1090 					   size_t len, int noblock, int flags,
1091 					   int *addr_len);
1092 	int			(*sendpage)(struct sock *sk, struct page *page,
1093 					int offset, size_t size, int flags);
1094 	int			(*bind)(struct sock *sk,
1095 					struct sockaddr *uaddr, int addr_len);
1096 
1097 	int			(*backlog_rcv) (struct sock *sk,
1098 						struct sk_buff *skb);
1099 
1100 	void		(*release_cb)(struct sock *sk);
1101 
1102 	/* Keeping track of sk's, looking them up, and port selection methods. */
1103 	int			(*hash)(struct sock *sk);
1104 	void			(*unhash)(struct sock *sk);
1105 	void			(*rehash)(struct sock *sk);
1106 	int			(*get_port)(struct sock *sk, unsigned short snum);
1107 
1108 	/* Keeping track of sockets in use */
1109 #ifdef CONFIG_PROC_FS
1110 	unsigned int		inuse_idx;
1111 #endif
1112 
1113 	bool			(*stream_memory_free)(const struct sock *sk);
1114 	bool			(*stream_memory_read)(const struct sock *sk);
1115 	/* Memory pressure */
1116 	void			(*enter_memory_pressure)(struct sock *sk);
1117 	void			(*leave_memory_pressure)(struct sock *sk);
1118 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1119 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1120 	/*
1121 	 * Pressure flag: try to collapse.
1122 	 * Technical note: it is used by multiple contexts non atomically.
1123 	 * All the __sk_mem_schedule() is of this nature: accounting
1124 	 * is strict, actions are advisory and have some latency.
1125 	 */
1126 	unsigned long		*memory_pressure;
1127 	long			*sysctl_mem;
1128 
1129 	int			*sysctl_wmem;
1130 	int			*sysctl_rmem;
1131 	u32			sysctl_wmem_offset;
1132 	u32			sysctl_rmem_offset;
1133 
1134 	int			max_header;
1135 	bool			no_autobind;
1136 
1137 	struct kmem_cache	*slab;
1138 	unsigned int		obj_size;
1139 	slab_flags_t		slab_flags;
1140 	unsigned int		useroffset;	/* Usercopy region offset */
1141 	unsigned int		usersize;	/* Usercopy region size */
1142 
1143 	struct percpu_counter	*orphan_count;
1144 
1145 	struct request_sock_ops	*rsk_prot;
1146 	struct timewait_sock_ops *twsk_prot;
1147 
1148 	union {
1149 		struct inet_hashinfo	*hashinfo;
1150 		struct udp_table	*udp_table;
1151 		struct raw_hashinfo	*raw_hash;
1152 		struct smc_hashinfo	*smc_hash;
1153 	} h;
1154 
1155 	struct module		*owner;
1156 
1157 	char			name[32];
1158 
1159 	struct list_head	node;
1160 #ifdef SOCK_REFCNT_DEBUG
1161 	atomic_t		socks;
1162 #endif
1163 	int			(*diag_destroy)(struct sock *sk, int err);
1164 } __randomize_layout;
1165 
1166 int proto_register(struct proto *prot, int alloc_slab);
1167 void proto_unregister(struct proto *prot);
1168 int sock_load_diag_module(int family, int protocol);
1169 
1170 #ifdef SOCK_REFCNT_DEBUG
1171 static inline void sk_refcnt_debug_inc(struct sock *sk)
1172 {
1173 	atomic_inc(&sk->sk_prot->socks);
1174 }
1175 
1176 static inline void sk_refcnt_debug_dec(struct sock *sk)
1177 {
1178 	atomic_dec(&sk->sk_prot->socks);
1179 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1180 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1181 }
1182 
1183 static inline void sk_refcnt_debug_release(const struct sock *sk)
1184 {
1185 	if (refcount_read(&sk->sk_refcnt) != 1)
1186 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1187 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1188 }
1189 #else /* SOCK_REFCNT_DEBUG */
1190 #define sk_refcnt_debug_inc(sk) do { } while (0)
1191 #define sk_refcnt_debug_dec(sk) do { } while (0)
1192 #define sk_refcnt_debug_release(sk) do { } while (0)
1193 #endif /* SOCK_REFCNT_DEBUG */
1194 
1195 static inline bool sk_stream_memory_free(const struct sock *sk)
1196 {
1197 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1198 		return false;
1199 
1200 	return sk->sk_prot->stream_memory_free ?
1201 		sk->sk_prot->stream_memory_free(sk) : true;
1202 }
1203 
1204 static inline bool sk_stream_is_writeable(const struct sock *sk)
1205 {
1206 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1207 	       sk_stream_memory_free(sk);
1208 }
1209 
1210 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1211 					    struct cgroup *ancestor)
1212 {
1213 #ifdef CONFIG_SOCK_CGROUP_DATA
1214 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1215 				    ancestor);
1216 #else
1217 	return -ENOTSUPP;
1218 #endif
1219 }
1220 
1221 static inline bool sk_has_memory_pressure(const struct sock *sk)
1222 {
1223 	return sk->sk_prot->memory_pressure != NULL;
1224 }
1225 
1226 static inline bool sk_under_memory_pressure(const struct sock *sk)
1227 {
1228 	if (!sk->sk_prot->memory_pressure)
1229 		return false;
1230 
1231 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1232 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1233 		return true;
1234 
1235 	return !!*sk->sk_prot->memory_pressure;
1236 }
1237 
1238 static inline long
1239 sk_memory_allocated(const struct sock *sk)
1240 {
1241 	return atomic_long_read(sk->sk_prot->memory_allocated);
1242 }
1243 
1244 static inline long
1245 sk_memory_allocated_add(struct sock *sk, int amt)
1246 {
1247 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1248 }
1249 
1250 static inline void
1251 sk_memory_allocated_sub(struct sock *sk, int amt)
1252 {
1253 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1254 }
1255 
1256 static inline void sk_sockets_allocated_dec(struct sock *sk)
1257 {
1258 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1259 }
1260 
1261 static inline void sk_sockets_allocated_inc(struct sock *sk)
1262 {
1263 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1264 }
1265 
1266 static inline int
1267 sk_sockets_allocated_read_positive(struct sock *sk)
1268 {
1269 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1270 }
1271 
1272 static inline int
1273 proto_sockets_allocated_sum_positive(struct proto *prot)
1274 {
1275 	return percpu_counter_sum_positive(prot->sockets_allocated);
1276 }
1277 
1278 static inline long
1279 proto_memory_allocated(struct proto *prot)
1280 {
1281 	return atomic_long_read(prot->memory_allocated);
1282 }
1283 
1284 static inline bool
1285 proto_memory_pressure(struct proto *prot)
1286 {
1287 	if (!prot->memory_pressure)
1288 		return false;
1289 	return !!*prot->memory_pressure;
1290 }
1291 
1292 
1293 #ifdef CONFIG_PROC_FS
1294 /* Called with local bh disabled */
1295 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1296 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1297 int sock_inuse_get(struct net *net);
1298 #else
1299 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1300 		int inc)
1301 {
1302 }
1303 #endif
1304 
1305 
1306 /* With per-bucket locks this operation is not-atomic, so that
1307  * this version is not worse.
1308  */
1309 static inline int __sk_prot_rehash(struct sock *sk)
1310 {
1311 	sk->sk_prot->unhash(sk);
1312 	return sk->sk_prot->hash(sk);
1313 }
1314 
1315 /* About 10 seconds */
1316 #define SOCK_DESTROY_TIME (10*HZ)
1317 
1318 /* Sockets 0-1023 can't be bound to unless you are superuser */
1319 #define PROT_SOCK	1024
1320 
1321 #define SHUTDOWN_MASK	3
1322 #define RCV_SHUTDOWN	1
1323 #define SEND_SHUTDOWN	2
1324 
1325 #define SOCK_SNDBUF_LOCK	1
1326 #define SOCK_RCVBUF_LOCK	2
1327 #define SOCK_BINDADDR_LOCK	4
1328 #define SOCK_BINDPORT_LOCK	8
1329 
1330 struct socket_alloc {
1331 	struct socket socket;
1332 	struct inode vfs_inode;
1333 };
1334 
1335 static inline struct socket *SOCKET_I(struct inode *inode)
1336 {
1337 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1338 }
1339 
1340 static inline struct inode *SOCK_INODE(struct socket *socket)
1341 {
1342 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1343 }
1344 
1345 /*
1346  * Functions for memory accounting
1347  */
1348 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1349 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1350 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1351 void __sk_mem_reclaim(struct sock *sk, int amount);
1352 
1353 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1354  * do not necessarily have 16x time more memory than 4KB ones.
1355  */
1356 #define SK_MEM_QUANTUM 4096
1357 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1358 #define SK_MEM_SEND	0
1359 #define SK_MEM_RECV	1
1360 
1361 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1362 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1363 {
1364 	long val = sk->sk_prot->sysctl_mem[index];
1365 
1366 #if PAGE_SIZE > SK_MEM_QUANTUM
1367 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1368 #elif PAGE_SIZE < SK_MEM_QUANTUM
1369 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1370 #endif
1371 	return val;
1372 }
1373 
1374 static inline int sk_mem_pages(int amt)
1375 {
1376 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1377 }
1378 
1379 static inline bool sk_has_account(struct sock *sk)
1380 {
1381 	/* return true if protocol supports memory accounting */
1382 	return !!sk->sk_prot->memory_allocated;
1383 }
1384 
1385 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1386 {
1387 	if (!sk_has_account(sk))
1388 		return true;
1389 	return size <= sk->sk_forward_alloc ||
1390 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1391 }
1392 
1393 static inline bool
1394 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1395 {
1396 	if (!sk_has_account(sk))
1397 		return true;
1398 	return size<= sk->sk_forward_alloc ||
1399 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1400 		skb_pfmemalloc(skb);
1401 }
1402 
1403 static inline void sk_mem_reclaim(struct sock *sk)
1404 {
1405 	if (!sk_has_account(sk))
1406 		return;
1407 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1408 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1409 }
1410 
1411 static inline void sk_mem_reclaim_partial(struct sock *sk)
1412 {
1413 	if (!sk_has_account(sk))
1414 		return;
1415 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1416 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1417 }
1418 
1419 static inline void sk_mem_charge(struct sock *sk, int size)
1420 {
1421 	if (!sk_has_account(sk))
1422 		return;
1423 	sk->sk_forward_alloc -= size;
1424 }
1425 
1426 static inline void sk_mem_uncharge(struct sock *sk, int size)
1427 {
1428 	if (!sk_has_account(sk))
1429 		return;
1430 	sk->sk_forward_alloc += size;
1431 
1432 	/* Avoid a possible overflow.
1433 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1434 	 * is not called and more than 2 GBytes are released at once.
1435 	 *
1436 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1437 	 * no need to hold that much forward allocation anyway.
1438 	 */
1439 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1440 		__sk_mem_reclaim(sk, 1 << 20);
1441 }
1442 
1443 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1444 {
1445 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1446 	sk->sk_wmem_queued -= skb->truesize;
1447 	sk_mem_uncharge(sk, skb->truesize);
1448 	__kfree_skb(skb);
1449 }
1450 
1451 static inline void sock_release_ownership(struct sock *sk)
1452 {
1453 	if (sk->sk_lock.owned) {
1454 		sk->sk_lock.owned = 0;
1455 
1456 		/* The sk_lock has mutex_unlock() semantics: */
1457 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1458 	}
1459 }
1460 
1461 /*
1462  * Macro so as to not evaluate some arguments when
1463  * lockdep is not enabled.
1464  *
1465  * Mark both the sk_lock and the sk_lock.slock as a
1466  * per-address-family lock class.
1467  */
1468 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1469 do {									\
1470 	sk->sk_lock.owned = 0;						\
1471 	init_waitqueue_head(&sk->sk_lock.wq);				\
1472 	spin_lock_init(&(sk)->sk_lock.slock);				\
1473 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1474 			sizeof((sk)->sk_lock));				\
1475 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1476 				(skey), (sname));				\
1477 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1478 } while (0)
1479 
1480 #ifdef CONFIG_LOCKDEP
1481 static inline bool lockdep_sock_is_held(const struct sock *sk)
1482 {
1483 	return lockdep_is_held(&sk->sk_lock) ||
1484 	       lockdep_is_held(&sk->sk_lock.slock);
1485 }
1486 #endif
1487 
1488 void lock_sock_nested(struct sock *sk, int subclass);
1489 
1490 static inline void lock_sock(struct sock *sk)
1491 {
1492 	lock_sock_nested(sk, 0);
1493 }
1494 
1495 void release_sock(struct sock *sk);
1496 
1497 /* BH context may only use the following locking interface. */
1498 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1499 #define bh_lock_sock_nested(__sk) \
1500 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1501 				SINGLE_DEPTH_NESTING)
1502 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1503 
1504 bool lock_sock_fast(struct sock *sk);
1505 /**
1506  * unlock_sock_fast - complement of lock_sock_fast
1507  * @sk: socket
1508  * @slow: slow mode
1509  *
1510  * fast unlock socket for user context.
1511  * If slow mode is on, we call regular release_sock()
1512  */
1513 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1514 {
1515 	if (slow)
1516 		release_sock(sk);
1517 	else
1518 		spin_unlock_bh(&sk->sk_lock.slock);
1519 }
1520 
1521 /* Used by processes to "lock" a socket state, so that
1522  * interrupts and bottom half handlers won't change it
1523  * from under us. It essentially blocks any incoming
1524  * packets, so that we won't get any new data or any
1525  * packets that change the state of the socket.
1526  *
1527  * While locked, BH processing will add new packets to
1528  * the backlog queue.  This queue is processed by the
1529  * owner of the socket lock right before it is released.
1530  *
1531  * Since ~2.3.5 it is also exclusive sleep lock serializing
1532  * accesses from user process context.
1533  */
1534 
1535 static inline void sock_owned_by_me(const struct sock *sk)
1536 {
1537 #ifdef CONFIG_LOCKDEP
1538 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1539 #endif
1540 }
1541 
1542 static inline bool sock_owned_by_user(const struct sock *sk)
1543 {
1544 	sock_owned_by_me(sk);
1545 	return sk->sk_lock.owned;
1546 }
1547 
1548 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1549 {
1550 	return sk->sk_lock.owned;
1551 }
1552 
1553 /* no reclassification while locks are held */
1554 static inline bool sock_allow_reclassification(const struct sock *csk)
1555 {
1556 	struct sock *sk = (struct sock *)csk;
1557 
1558 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1559 }
1560 
1561 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1562 		      struct proto *prot, int kern);
1563 void sk_free(struct sock *sk);
1564 void sk_destruct(struct sock *sk);
1565 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1566 void sk_free_unlock_clone(struct sock *sk);
1567 
1568 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1569 			     gfp_t priority);
1570 void __sock_wfree(struct sk_buff *skb);
1571 void sock_wfree(struct sk_buff *skb);
1572 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1573 			     gfp_t priority);
1574 void skb_orphan_partial(struct sk_buff *skb);
1575 void sock_rfree(struct sk_buff *skb);
1576 void sock_efree(struct sk_buff *skb);
1577 #ifdef CONFIG_INET
1578 void sock_edemux(struct sk_buff *skb);
1579 #else
1580 #define sock_edemux sock_efree
1581 #endif
1582 
1583 int sock_setsockopt(struct socket *sock, int level, int op,
1584 		    char __user *optval, unsigned int optlen);
1585 
1586 int sock_getsockopt(struct socket *sock, int level, int op,
1587 		    char __user *optval, int __user *optlen);
1588 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1589 				    int noblock, int *errcode);
1590 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1591 				     unsigned long data_len, int noblock,
1592 				     int *errcode, int max_page_order);
1593 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1594 void sock_kfree_s(struct sock *sk, void *mem, int size);
1595 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1596 void sk_send_sigurg(struct sock *sk);
1597 
1598 struct sockcm_cookie {
1599 	u64 transmit_time;
1600 	u32 mark;
1601 	u16 tsflags;
1602 };
1603 
1604 static inline void sockcm_init(struct sockcm_cookie *sockc,
1605 			       const struct sock *sk)
1606 {
1607 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1608 }
1609 
1610 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1611 		     struct sockcm_cookie *sockc);
1612 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1613 		   struct sockcm_cookie *sockc);
1614 
1615 /*
1616  * Functions to fill in entries in struct proto_ops when a protocol
1617  * does not implement a particular function.
1618  */
1619 int sock_no_bind(struct socket *, struct sockaddr *, int);
1620 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1621 int sock_no_socketpair(struct socket *, struct socket *);
1622 int sock_no_accept(struct socket *, struct socket *, int, bool);
1623 int sock_no_getname(struct socket *, struct sockaddr *, int);
1624 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1625 int sock_no_listen(struct socket *, int);
1626 int sock_no_shutdown(struct socket *, int);
1627 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1628 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1629 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1630 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1631 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1632 int sock_no_mmap(struct file *file, struct socket *sock,
1633 		 struct vm_area_struct *vma);
1634 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1635 			 size_t size, int flags);
1636 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1637 				int offset, size_t size, int flags);
1638 
1639 /*
1640  * Functions to fill in entries in struct proto_ops when a protocol
1641  * uses the inet style.
1642  */
1643 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1644 				  char __user *optval, int __user *optlen);
1645 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1646 			int flags);
1647 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1648 				  char __user *optval, unsigned int optlen);
1649 int compat_sock_common_getsockopt(struct socket *sock, int level,
1650 		int optname, char __user *optval, int __user *optlen);
1651 int compat_sock_common_setsockopt(struct socket *sock, int level,
1652 		int optname, char __user *optval, unsigned int optlen);
1653 
1654 void sk_common_release(struct sock *sk);
1655 
1656 /*
1657  *	Default socket callbacks and setup code
1658  */
1659 
1660 /* Initialise core socket variables */
1661 void sock_init_data(struct socket *sock, struct sock *sk);
1662 
1663 /*
1664  * Socket reference counting postulates.
1665  *
1666  * * Each user of socket SHOULD hold a reference count.
1667  * * Each access point to socket (an hash table bucket, reference from a list,
1668  *   running timer, skb in flight MUST hold a reference count.
1669  * * When reference count hits 0, it means it will never increase back.
1670  * * When reference count hits 0, it means that no references from
1671  *   outside exist to this socket and current process on current CPU
1672  *   is last user and may/should destroy this socket.
1673  * * sk_free is called from any context: process, BH, IRQ. When
1674  *   it is called, socket has no references from outside -> sk_free
1675  *   may release descendant resources allocated by the socket, but
1676  *   to the time when it is called, socket is NOT referenced by any
1677  *   hash tables, lists etc.
1678  * * Packets, delivered from outside (from network or from another process)
1679  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1680  *   when they sit in queue. Otherwise, packets will leak to hole, when
1681  *   socket is looked up by one cpu and unhasing is made by another CPU.
1682  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1683  *   (leak to backlog). Packet socket does all the processing inside
1684  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1685  *   use separate SMP lock, so that they are prone too.
1686  */
1687 
1688 /* Ungrab socket and destroy it, if it was the last reference. */
1689 static inline void sock_put(struct sock *sk)
1690 {
1691 	if (refcount_dec_and_test(&sk->sk_refcnt))
1692 		sk_free(sk);
1693 }
1694 /* Generic version of sock_put(), dealing with all sockets
1695  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1696  */
1697 void sock_gen_put(struct sock *sk);
1698 
1699 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1700 		     unsigned int trim_cap, bool refcounted);
1701 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1702 				 const int nested)
1703 {
1704 	return __sk_receive_skb(sk, skb, nested, 1, true);
1705 }
1706 
1707 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1708 {
1709 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1710 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1711 		return;
1712 	sk->sk_tx_queue_mapping = tx_queue;
1713 }
1714 
1715 #define NO_QUEUE_MAPPING	USHRT_MAX
1716 
1717 static inline void sk_tx_queue_clear(struct sock *sk)
1718 {
1719 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1720 }
1721 
1722 static inline int sk_tx_queue_get(const struct sock *sk)
1723 {
1724 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1725 		return sk->sk_tx_queue_mapping;
1726 
1727 	return -1;
1728 }
1729 
1730 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1731 {
1732 #ifdef CONFIG_XPS
1733 	if (skb_rx_queue_recorded(skb)) {
1734 		u16 rx_queue = skb_get_rx_queue(skb);
1735 
1736 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1737 			return;
1738 
1739 		sk->sk_rx_queue_mapping = rx_queue;
1740 	}
1741 #endif
1742 }
1743 
1744 static inline void sk_rx_queue_clear(struct sock *sk)
1745 {
1746 #ifdef CONFIG_XPS
1747 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1748 #endif
1749 }
1750 
1751 #ifdef CONFIG_XPS
1752 static inline int sk_rx_queue_get(const struct sock *sk)
1753 {
1754 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1755 		return sk->sk_rx_queue_mapping;
1756 
1757 	return -1;
1758 }
1759 #endif
1760 
1761 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1762 {
1763 	sk_tx_queue_clear(sk);
1764 	sk->sk_socket = sock;
1765 }
1766 
1767 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1768 {
1769 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1770 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1771 }
1772 /* Detach socket from process context.
1773  * Announce socket dead, detach it from wait queue and inode.
1774  * Note that parent inode held reference count on this struct sock,
1775  * we do not release it in this function, because protocol
1776  * probably wants some additional cleanups or even continuing
1777  * to work with this socket (TCP).
1778  */
1779 static inline void sock_orphan(struct sock *sk)
1780 {
1781 	write_lock_bh(&sk->sk_callback_lock);
1782 	sock_set_flag(sk, SOCK_DEAD);
1783 	sk_set_socket(sk, NULL);
1784 	sk->sk_wq  = NULL;
1785 	write_unlock_bh(&sk->sk_callback_lock);
1786 }
1787 
1788 static inline void sock_graft(struct sock *sk, struct socket *parent)
1789 {
1790 	WARN_ON(parent->sk);
1791 	write_lock_bh(&sk->sk_callback_lock);
1792 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1793 	parent->sk = sk;
1794 	sk_set_socket(sk, parent);
1795 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1796 	security_sock_graft(sk, parent);
1797 	write_unlock_bh(&sk->sk_callback_lock);
1798 }
1799 
1800 kuid_t sock_i_uid(struct sock *sk);
1801 unsigned long sock_i_ino(struct sock *sk);
1802 
1803 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1804 {
1805 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1806 }
1807 
1808 static inline u32 net_tx_rndhash(void)
1809 {
1810 	u32 v = prandom_u32();
1811 
1812 	return v ?: 1;
1813 }
1814 
1815 static inline void sk_set_txhash(struct sock *sk)
1816 {
1817 	sk->sk_txhash = net_tx_rndhash();
1818 }
1819 
1820 static inline void sk_rethink_txhash(struct sock *sk)
1821 {
1822 	if (sk->sk_txhash)
1823 		sk_set_txhash(sk);
1824 }
1825 
1826 static inline struct dst_entry *
1827 __sk_dst_get(struct sock *sk)
1828 {
1829 	return rcu_dereference_check(sk->sk_dst_cache,
1830 				     lockdep_sock_is_held(sk));
1831 }
1832 
1833 static inline struct dst_entry *
1834 sk_dst_get(struct sock *sk)
1835 {
1836 	struct dst_entry *dst;
1837 
1838 	rcu_read_lock();
1839 	dst = rcu_dereference(sk->sk_dst_cache);
1840 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1841 		dst = NULL;
1842 	rcu_read_unlock();
1843 	return dst;
1844 }
1845 
1846 static inline void dst_negative_advice(struct sock *sk)
1847 {
1848 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1849 
1850 	sk_rethink_txhash(sk);
1851 
1852 	if (dst && dst->ops->negative_advice) {
1853 		ndst = dst->ops->negative_advice(dst);
1854 
1855 		if (ndst != dst) {
1856 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1857 			sk_tx_queue_clear(sk);
1858 			sk->sk_dst_pending_confirm = 0;
1859 		}
1860 	}
1861 }
1862 
1863 static inline void
1864 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1865 {
1866 	struct dst_entry *old_dst;
1867 
1868 	sk_tx_queue_clear(sk);
1869 	sk->sk_dst_pending_confirm = 0;
1870 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1871 					    lockdep_sock_is_held(sk));
1872 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1873 	dst_release(old_dst);
1874 }
1875 
1876 static inline void
1877 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1878 {
1879 	struct dst_entry *old_dst;
1880 
1881 	sk_tx_queue_clear(sk);
1882 	sk->sk_dst_pending_confirm = 0;
1883 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1884 	dst_release(old_dst);
1885 }
1886 
1887 static inline void
1888 __sk_dst_reset(struct sock *sk)
1889 {
1890 	__sk_dst_set(sk, NULL);
1891 }
1892 
1893 static inline void
1894 sk_dst_reset(struct sock *sk)
1895 {
1896 	sk_dst_set(sk, NULL);
1897 }
1898 
1899 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1900 
1901 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1902 
1903 static inline void sk_dst_confirm(struct sock *sk)
1904 {
1905 	if (!sk->sk_dst_pending_confirm)
1906 		sk->sk_dst_pending_confirm = 1;
1907 }
1908 
1909 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1910 {
1911 	if (skb_get_dst_pending_confirm(skb)) {
1912 		struct sock *sk = skb->sk;
1913 		unsigned long now = jiffies;
1914 
1915 		/* avoid dirtying neighbour */
1916 		if (n->confirmed != now)
1917 			n->confirmed = now;
1918 		if (sk && sk->sk_dst_pending_confirm)
1919 			sk->sk_dst_pending_confirm = 0;
1920 	}
1921 }
1922 
1923 bool sk_mc_loop(struct sock *sk);
1924 
1925 static inline bool sk_can_gso(const struct sock *sk)
1926 {
1927 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1928 }
1929 
1930 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1931 
1932 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1933 {
1934 	sk->sk_route_nocaps |= flags;
1935 	sk->sk_route_caps &= ~flags;
1936 }
1937 
1938 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1939 					   struct iov_iter *from, char *to,
1940 					   int copy, int offset)
1941 {
1942 	if (skb->ip_summed == CHECKSUM_NONE) {
1943 		__wsum csum = 0;
1944 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1945 			return -EFAULT;
1946 		skb->csum = csum_block_add(skb->csum, csum, offset);
1947 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1948 		if (!copy_from_iter_full_nocache(to, copy, from))
1949 			return -EFAULT;
1950 	} else if (!copy_from_iter_full(to, copy, from))
1951 		return -EFAULT;
1952 
1953 	return 0;
1954 }
1955 
1956 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1957 				       struct iov_iter *from, int copy)
1958 {
1959 	int err, offset = skb->len;
1960 
1961 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1962 				       copy, offset);
1963 	if (err)
1964 		__skb_trim(skb, offset);
1965 
1966 	return err;
1967 }
1968 
1969 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1970 					   struct sk_buff *skb,
1971 					   struct page *page,
1972 					   int off, int copy)
1973 {
1974 	int err;
1975 
1976 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1977 				       copy, skb->len);
1978 	if (err)
1979 		return err;
1980 
1981 	skb->len	     += copy;
1982 	skb->data_len	     += copy;
1983 	skb->truesize	     += copy;
1984 	sk->sk_wmem_queued   += copy;
1985 	sk_mem_charge(sk, copy);
1986 	return 0;
1987 }
1988 
1989 /**
1990  * sk_wmem_alloc_get - returns write allocations
1991  * @sk: socket
1992  *
1993  * Returns sk_wmem_alloc minus initial offset of one
1994  */
1995 static inline int sk_wmem_alloc_get(const struct sock *sk)
1996 {
1997 	return refcount_read(&sk->sk_wmem_alloc) - 1;
1998 }
1999 
2000 /**
2001  * sk_rmem_alloc_get - returns read allocations
2002  * @sk: socket
2003  *
2004  * Returns sk_rmem_alloc
2005  */
2006 static inline int sk_rmem_alloc_get(const struct sock *sk)
2007 {
2008 	return atomic_read(&sk->sk_rmem_alloc);
2009 }
2010 
2011 /**
2012  * sk_has_allocations - check if allocations are outstanding
2013  * @sk: socket
2014  *
2015  * Returns true if socket has write or read allocations
2016  */
2017 static inline bool sk_has_allocations(const struct sock *sk)
2018 {
2019 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2020 }
2021 
2022 /**
2023  * skwq_has_sleeper - check if there are any waiting processes
2024  * @wq: struct socket_wq
2025  *
2026  * Returns true if socket_wq has waiting processes
2027  *
2028  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2029  * barrier call. They were added due to the race found within the tcp code.
2030  *
2031  * Consider following tcp code paths::
2032  *
2033  *   CPU1                CPU2
2034  *   sys_select          receive packet
2035  *   ...                 ...
2036  *   __add_wait_queue    update tp->rcv_nxt
2037  *   ...                 ...
2038  *   tp->rcv_nxt check   sock_def_readable
2039  *   ...                 {
2040  *   schedule               rcu_read_lock();
2041  *                          wq = rcu_dereference(sk->sk_wq);
2042  *                          if (wq && waitqueue_active(&wq->wait))
2043  *                              wake_up_interruptible(&wq->wait)
2044  *                          ...
2045  *                       }
2046  *
2047  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2048  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2049  * could then endup calling schedule and sleep forever if there are no more
2050  * data on the socket.
2051  *
2052  */
2053 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2054 {
2055 	return wq && wq_has_sleeper(&wq->wait);
2056 }
2057 
2058 /**
2059  * sock_poll_wait - place memory barrier behind the poll_wait call.
2060  * @filp:           file
2061  * @p:              poll_table
2062  *
2063  * See the comments in the wq_has_sleeper function.
2064  */
2065 static inline void sock_poll_wait(struct file *filp, poll_table *p)
2066 {
2067 	struct socket *sock = filp->private_data;
2068 
2069 	if (!poll_does_not_wait(p)) {
2070 		poll_wait(filp, &sock->wq->wait, p);
2071 		/* We need to be sure we are in sync with the
2072 		 * socket flags modification.
2073 		 *
2074 		 * This memory barrier is paired in the wq_has_sleeper.
2075 		 */
2076 		smp_mb();
2077 	}
2078 }
2079 
2080 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2081 {
2082 	if (sk->sk_txhash) {
2083 		skb->l4_hash = 1;
2084 		skb->hash = sk->sk_txhash;
2085 	}
2086 }
2087 
2088 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2089 
2090 /*
2091  *	Queue a received datagram if it will fit. Stream and sequenced
2092  *	protocols can't normally use this as they need to fit buffers in
2093  *	and play with them.
2094  *
2095  *	Inlined as it's very short and called for pretty much every
2096  *	packet ever received.
2097  */
2098 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2099 {
2100 	skb_orphan(skb);
2101 	skb->sk = sk;
2102 	skb->destructor = sock_rfree;
2103 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2104 	sk_mem_charge(sk, skb->truesize);
2105 }
2106 
2107 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2108 		    unsigned long expires);
2109 
2110 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2111 
2112 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2113 			struct sk_buff *skb, unsigned int flags,
2114 			void (*destructor)(struct sock *sk,
2115 					   struct sk_buff *skb));
2116 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2117 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2118 
2119 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2120 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2121 
2122 /*
2123  *	Recover an error report and clear atomically
2124  */
2125 
2126 static inline int sock_error(struct sock *sk)
2127 {
2128 	int err;
2129 	if (likely(!sk->sk_err))
2130 		return 0;
2131 	err = xchg(&sk->sk_err, 0);
2132 	return -err;
2133 }
2134 
2135 static inline unsigned long sock_wspace(struct sock *sk)
2136 {
2137 	int amt = 0;
2138 
2139 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2140 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2141 		if (amt < 0)
2142 			amt = 0;
2143 	}
2144 	return amt;
2145 }
2146 
2147 /* Note:
2148  *  We use sk->sk_wq_raw, from contexts knowing this
2149  *  pointer is not NULL and cannot disappear/change.
2150  */
2151 static inline void sk_set_bit(int nr, struct sock *sk)
2152 {
2153 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2154 	    !sock_flag(sk, SOCK_FASYNC))
2155 		return;
2156 
2157 	set_bit(nr, &sk->sk_wq_raw->flags);
2158 }
2159 
2160 static inline void sk_clear_bit(int nr, struct sock *sk)
2161 {
2162 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2163 	    !sock_flag(sk, SOCK_FASYNC))
2164 		return;
2165 
2166 	clear_bit(nr, &sk->sk_wq_raw->flags);
2167 }
2168 
2169 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2170 {
2171 	if (sock_flag(sk, SOCK_FASYNC)) {
2172 		rcu_read_lock();
2173 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2174 		rcu_read_unlock();
2175 	}
2176 }
2177 
2178 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2179  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2180  * Note: for send buffers, TCP works better if we can build two skbs at
2181  * minimum.
2182  */
2183 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2184 
2185 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2186 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2187 
2188 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2189 {
2190 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2191 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2192 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2193 	}
2194 }
2195 
2196 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2197 				    bool force_schedule);
2198 
2199 /**
2200  * sk_page_frag - return an appropriate page_frag
2201  * @sk: socket
2202  *
2203  * If socket allocation mode allows current thread to sleep, it means its
2204  * safe to use the per task page_frag instead of the per socket one.
2205  */
2206 static inline struct page_frag *sk_page_frag(struct sock *sk)
2207 {
2208 	if (gfpflags_allow_blocking(sk->sk_allocation))
2209 		return &current->task_frag;
2210 
2211 	return &sk->sk_frag;
2212 }
2213 
2214 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2215 
2216 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2217 		int sg_start, int *sg_curr, unsigned int *sg_size,
2218 		int first_coalesce);
2219 
2220 /*
2221  *	Default write policy as shown to user space via poll/select/SIGIO
2222  */
2223 static inline bool sock_writeable(const struct sock *sk)
2224 {
2225 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2226 }
2227 
2228 static inline gfp_t gfp_any(void)
2229 {
2230 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2231 }
2232 
2233 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2234 {
2235 	return noblock ? 0 : sk->sk_rcvtimeo;
2236 }
2237 
2238 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2239 {
2240 	return noblock ? 0 : sk->sk_sndtimeo;
2241 }
2242 
2243 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2244 {
2245 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2246 }
2247 
2248 /* Alas, with timeout socket operations are not restartable.
2249  * Compare this to poll().
2250  */
2251 static inline int sock_intr_errno(long timeo)
2252 {
2253 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2254 }
2255 
2256 struct sock_skb_cb {
2257 	u32 dropcount;
2258 };
2259 
2260 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2261  * using skb->cb[] would keep using it directly and utilize its
2262  * alignement guarantee.
2263  */
2264 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2265 			    sizeof(struct sock_skb_cb)))
2266 
2267 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2268 			    SOCK_SKB_CB_OFFSET))
2269 
2270 #define sock_skb_cb_check_size(size) \
2271 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2272 
2273 static inline void
2274 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2275 {
2276 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2277 						atomic_read(&sk->sk_drops) : 0;
2278 }
2279 
2280 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2281 {
2282 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2283 
2284 	atomic_add(segs, &sk->sk_drops);
2285 }
2286 
2287 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2288 			   struct sk_buff *skb);
2289 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2290 			     struct sk_buff *skb);
2291 
2292 static inline void
2293 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2294 {
2295 	ktime_t kt = skb->tstamp;
2296 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2297 
2298 	/*
2299 	 * generate control messages if
2300 	 * - receive time stamping in software requested
2301 	 * - software time stamp available and wanted
2302 	 * - hardware time stamps available and wanted
2303 	 */
2304 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2305 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2306 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2307 	    (hwtstamps->hwtstamp &&
2308 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2309 		__sock_recv_timestamp(msg, sk, skb);
2310 	else
2311 		sk->sk_stamp = kt;
2312 
2313 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2314 		__sock_recv_wifi_status(msg, sk, skb);
2315 }
2316 
2317 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2318 			      struct sk_buff *skb);
2319 
2320 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2321 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2322 					  struct sk_buff *skb)
2323 {
2324 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2325 			   (1UL << SOCK_RCVTSTAMP))
2326 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2327 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2328 
2329 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2330 		__sock_recv_ts_and_drops(msg, sk, skb);
2331 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2332 		sk->sk_stamp = skb->tstamp;
2333 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2334 		sk->sk_stamp = 0;
2335 }
2336 
2337 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2338 
2339 /**
2340  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2341  * @sk:		socket sending this packet
2342  * @tsflags:	timestamping flags to use
2343  * @tx_flags:	completed with instructions for time stamping
2344  *
2345  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2346  */
2347 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2348 				     __u8 *tx_flags)
2349 {
2350 	if (unlikely(tsflags))
2351 		__sock_tx_timestamp(tsflags, tx_flags);
2352 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2353 		*tx_flags |= SKBTX_WIFI_STATUS;
2354 }
2355 
2356 /**
2357  * sk_eat_skb - Release a skb if it is no longer needed
2358  * @sk: socket to eat this skb from
2359  * @skb: socket buffer to eat
2360  *
2361  * This routine must be called with interrupts disabled or with the socket
2362  * locked so that the sk_buff queue operation is ok.
2363 */
2364 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2365 {
2366 	__skb_unlink(skb, &sk->sk_receive_queue);
2367 	__kfree_skb(skb);
2368 }
2369 
2370 static inline
2371 struct net *sock_net(const struct sock *sk)
2372 {
2373 	return read_pnet(&sk->sk_net);
2374 }
2375 
2376 static inline
2377 void sock_net_set(struct sock *sk, struct net *net)
2378 {
2379 	write_pnet(&sk->sk_net, net);
2380 }
2381 
2382 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2383 {
2384 	if (skb->sk) {
2385 		struct sock *sk = skb->sk;
2386 
2387 		skb->destructor = NULL;
2388 		skb->sk = NULL;
2389 		return sk;
2390 	}
2391 	return NULL;
2392 }
2393 
2394 /* This helper checks if a socket is a full socket,
2395  * ie _not_ a timewait or request socket.
2396  */
2397 static inline bool sk_fullsock(const struct sock *sk)
2398 {
2399 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2400 }
2401 
2402 /* Checks if this SKB belongs to an HW offloaded socket
2403  * and whether any SW fallbacks are required based on dev.
2404  */
2405 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2406 						   struct net_device *dev)
2407 {
2408 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2409 	struct sock *sk = skb->sk;
2410 
2411 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2412 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2413 #endif
2414 
2415 	return skb;
2416 }
2417 
2418 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2419  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2420  */
2421 static inline bool sk_listener(const struct sock *sk)
2422 {
2423 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2424 }
2425 
2426 void sock_enable_timestamp(struct sock *sk, int flag);
2427 int sock_get_timestamp(struct sock *, struct timeval __user *);
2428 int sock_get_timestampns(struct sock *, struct timespec __user *);
2429 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2430 		       int type);
2431 
2432 bool sk_ns_capable(const struct sock *sk,
2433 		   struct user_namespace *user_ns, int cap);
2434 bool sk_capable(const struct sock *sk, int cap);
2435 bool sk_net_capable(const struct sock *sk, int cap);
2436 
2437 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2438 
2439 /* Take into consideration the size of the struct sk_buff overhead in the
2440  * determination of these values, since that is non-constant across
2441  * platforms.  This makes socket queueing behavior and performance
2442  * not depend upon such differences.
2443  */
2444 #define _SK_MEM_PACKETS		256
2445 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2446 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2447 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2448 
2449 extern __u32 sysctl_wmem_max;
2450 extern __u32 sysctl_rmem_max;
2451 
2452 extern int sysctl_tstamp_allow_data;
2453 extern int sysctl_optmem_max;
2454 
2455 extern __u32 sysctl_wmem_default;
2456 extern __u32 sysctl_rmem_default;
2457 
2458 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2459 {
2460 	/* Does this proto have per netns sysctl_wmem ? */
2461 	if (proto->sysctl_wmem_offset)
2462 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2463 
2464 	return *proto->sysctl_wmem;
2465 }
2466 
2467 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2468 {
2469 	/* Does this proto have per netns sysctl_rmem ? */
2470 	if (proto->sysctl_rmem_offset)
2471 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2472 
2473 	return *proto->sysctl_rmem;
2474 }
2475 
2476 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2477  * Some wifi drivers need to tweak it to get more chunks.
2478  * They can use this helper from their ndo_start_xmit()
2479  */
2480 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2481 {
2482 	if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2483 		return;
2484 	sk->sk_pacing_shift = val;
2485 }
2486 
2487 /* if a socket is bound to a device, check that the given device
2488  * index is either the same or that the socket is bound to an L3
2489  * master device and the given device index is also enslaved to
2490  * that L3 master
2491  */
2492 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2493 {
2494 	int mdif;
2495 
2496 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2497 		return true;
2498 
2499 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2500 	if (mdif && mdif == sk->sk_bound_dev_if)
2501 		return true;
2502 
2503 	return false;
2504 }
2505 
2506 #endif	/* _SOCK_H */
2507