xref: /openbmc/linux/include/net/sock.h (revision cfd6ed45)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 #include <net/smc.h>
74 
75 /*
76  * This structure really needs to be cleaned up.
77  * Most of it is for TCP, and not used by any of
78  * the other protocols.
79  */
80 
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 					printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93 
94 /* This is the per-socket lock.  The spinlock provides a synchronization
95  * between user contexts and software interrupt processing, whereas the
96  * mini-semaphore synchronizes multiple users amongst themselves.
97  */
98 typedef struct {
99 	spinlock_t		slock;
100 	int			owned;
101 	wait_queue_head_t	wq;
102 	/*
103 	 * We express the mutex-alike socket_lock semantics
104 	 * to the lock validator by explicitly managing
105 	 * the slock as a lock variant (in addition to
106 	 * the slock itself):
107 	 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 	struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112 
113 struct sock;
114 struct proto;
115 struct net;
116 
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119 
120 /**
121  *	struct sock_common - minimal network layer representation of sockets
122  *	@skc_daddr: Foreign IPv4 addr
123  *	@skc_rcv_saddr: Bound local IPv4 addr
124  *	@skc_hash: hash value used with various protocol lookup tables
125  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
126  *	@skc_dport: placeholder for inet_dport/tw_dport
127  *	@skc_num: placeholder for inet_num/tw_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_bound_dev_if: bound device index if != 0
133  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
134  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
135  *	@skc_prot: protocol handlers inside a network family
136  *	@skc_net: reference to the network namespace of this socket
137  *	@skc_node: main hash linkage for various protocol lookup tables
138  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
139  *	@skc_tx_queue_mapping: tx queue number for this connection
140  *	@skc_flags: place holder for sk_flags
141  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
142  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
143  *	@skc_incoming_cpu: record/match cpu processing incoming packets
144  *	@skc_refcnt: reference count
145  *
146  *	This is the minimal network layer representation of sockets, the header
147  *	for struct sock and struct inet_timewait_sock.
148  */
149 struct sock_common {
150 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
151 	 * address on 64bit arches : cf INET_MATCH()
152 	 */
153 	union {
154 		__addrpair	skc_addrpair;
155 		struct {
156 			__be32	skc_daddr;
157 			__be32	skc_rcv_saddr;
158 		};
159 	};
160 	union  {
161 		unsigned int	skc_hash;
162 		__u16		skc_u16hashes[2];
163 	};
164 	/* skc_dport && skc_num must be grouped as well */
165 	union {
166 		__portpair	skc_portpair;
167 		struct {
168 			__be16	skc_dport;
169 			__u16	skc_num;
170 		};
171 	};
172 
173 	unsigned short		skc_family;
174 	volatile unsigned char	skc_state;
175 	unsigned char		skc_reuse:4;
176 	unsigned char		skc_reuseport:1;
177 	unsigned char		skc_ipv6only:1;
178 	unsigned char		skc_net_refcnt:1;
179 	int			skc_bound_dev_if;
180 	union {
181 		struct hlist_node	skc_bind_node;
182 		struct hlist_node	skc_portaddr_node;
183 	};
184 	struct proto		*skc_prot;
185 	possible_net_t		skc_net;
186 
187 #if IS_ENABLED(CONFIG_IPV6)
188 	struct in6_addr		skc_v6_daddr;
189 	struct in6_addr		skc_v6_rcv_saddr;
190 #endif
191 
192 	atomic64_t		skc_cookie;
193 
194 	/* following fields are padding to force
195 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
196 	 * assuming IPV6 is enabled. We use this padding differently
197 	 * for different kind of 'sockets'
198 	 */
199 	union {
200 		unsigned long	skc_flags;
201 		struct sock	*skc_listener; /* request_sock */
202 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
203 	};
204 	/*
205 	 * fields between dontcopy_begin/dontcopy_end
206 	 * are not copied in sock_copy()
207 	 */
208 	/* private: */
209 	int			skc_dontcopy_begin[0];
210 	/* public: */
211 	union {
212 		struct hlist_node	skc_node;
213 		struct hlist_nulls_node skc_nulls_node;
214 	};
215 	int			skc_tx_queue_mapping;
216 	union {
217 		int		skc_incoming_cpu;
218 		u32		skc_rcv_wnd;
219 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
220 	};
221 
222 	atomic_t		skc_refcnt;
223 	/* private: */
224 	int                     skc_dontcopy_end[0];
225 	union {
226 		u32		skc_rxhash;
227 		u32		skc_window_clamp;
228 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
229 	};
230 	/* public: */
231 };
232 
233 /**
234   *	struct sock - network layer representation of sockets
235   *	@__sk_common: shared layout with inet_timewait_sock
236   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
237   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
238   *	@sk_lock:	synchronizer
239   *	@sk_rcvbuf: size of receive buffer in bytes
240   *	@sk_wq: sock wait queue and async head
241   *	@sk_rx_dst: receive input route used by early demux
242   *	@sk_dst_cache: destination cache
243   *	@sk_dst_pending_confirm: need to confirm neighbour
244   *	@sk_policy: flow policy
245   *	@sk_receive_queue: incoming packets
246   *	@sk_wmem_alloc: transmit queue bytes committed
247   *	@sk_write_queue: Packet sending queue
248   *	@sk_omem_alloc: "o" is "option" or "other"
249   *	@sk_wmem_queued: persistent queue size
250   *	@sk_forward_alloc: space allocated forward
251   *	@sk_napi_id: id of the last napi context to receive data for sk
252   *	@sk_ll_usec: usecs to busypoll when there is no data
253   *	@sk_allocation: allocation mode
254   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
255   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
256   *	@sk_sndbuf: size of send buffer in bytes
257   *	@sk_padding: unused element for alignment
258   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
259   *	@sk_no_check_rx: allow zero checksum in RX packets
260   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
261   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
262   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
263   *	@sk_gso_max_size: Maximum GSO segment size to build
264   *	@sk_gso_max_segs: Maximum number of GSO segments
265   *	@sk_lingertime: %SO_LINGER l_linger setting
266   *	@sk_backlog: always used with the per-socket spinlock held
267   *	@sk_callback_lock: used with the callbacks in the end of this struct
268   *	@sk_error_queue: rarely used
269   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
270   *			  IPV6_ADDRFORM for instance)
271   *	@sk_err: last error
272   *	@sk_err_soft: errors that don't cause failure but are the cause of a
273   *		      persistent failure not just 'timed out'
274   *	@sk_drops: raw/udp drops counter
275   *	@sk_ack_backlog: current listen backlog
276   *	@sk_max_ack_backlog: listen backlog set in listen()
277   *	@sk_priority: %SO_PRIORITY setting
278   *	@sk_type: socket type (%SOCK_STREAM, etc)
279   *	@sk_protocol: which protocol this socket belongs in this network family
280   *	@sk_peer_pid: &struct pid for this socket's peer
281   *	@sk_peer_cred: %SO_PEERCRED setting
282   *	@sk_rcvlowat: %SO_RCVLOWAT setting
283   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
284   *	@sk_sndtimeo: %SO_SNDTIMEO setting
285   *	@sk_txhash: computed flow hash for use on transmit
286   *	@sk_filter: socket filtering instructions
287   *	@sk_timer: sock cleanup timer
288   *	@sk_stamp: time stamp of last packet received
289   *	@sk_tsflags: SO_TIMESTAMPING socket options
290   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
291   *	@sk_socket: Identd and reporting IO signals
292   *	@sk_user_data: RPC layer private data
293   *	@sk_frag: cached page frag
294   *	@sk_peek_off: current peek_offset value
295   *	@sk_send_head: front of stuff to transmit
296   *	@sk_security: used by security modules
297   *	@sk_mark: generic packet mark
298   *	@sk_cgrp_data: cgroup data for this cgroup
299   *	@sk_memcg: this socket's memory cgroup association
300   *	@sk_write_pending: a write to stream socket waits to start
301   *	@sk_state_change: callback to indicate change in the state of the sock
302   *	@sk_data_ready: callback to indicate there is data to be processed
303   *	@sk_write_space: callback to indicate there is bf sending space available
304   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
305   *	@sk_backlog_rcv: callback to process the backlog
306   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
307   *	@sk_reuseport_cb: reuseport group container
308   *	@sk_rcu: used during RCU grace period
309   */
310 struct sock {
311 	/*
312 	 * Now struct inet_timewait_sock also uses sock_common, so please just
313 	 * don't add nothing before this first member (__sk_common) --acme
314 	 */
315 	struct sock_common	__sk_common;
316 #define sk_node			__sk_common.skc_node
317 #define sk_nulls_node		__sk_common.skc_nulls_node
318 #define sk_refcnt		__sk_common.skc_refcnt
319 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
320 
321 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
322 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
323 #define sk_hash			__sk_common.skc_hash
324 #define sk_portpair		__sk_common.skc_portpair
325 #define sk_num			__sk_common.skc_num
326 #define sk_dport		__sk_common.skc_dport
327 #define sk_addrpair		__sk_common.skc_addrpair
328 #define sk_daddr		__sk_common.skc_daddr
329 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
330 #define sk_family		__sk_common.skc_family
331 #define sk_state		__sk_common.skc_state
332 #define sk_reuse		__sk_common.skc_reuse
333 #define sk_reuseport		__sk_common.skc_reuseport
334 #define sk_ipv6only		__sk_common.skc_ipv6only
335 #define sk_net_refcnt		__sk_common.skc_net_refcnt
336 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
337 #define sk_bind_node		__sk_common.skc_bind_node
338 #define sk_prot			__sk_common.skc_prot
339 #define sk_net			__sk_common.skc_net
340 #define sk_v6_daddr		__sk_common.skc_v6_daddr
341 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
342 #define sk_cookie		__sk_common.skc_cookie
343 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
344 #define sk_flags		__sk_common.skc_flags
345 #define sk_rxhash		__sk_common.skc_rxhash
346 
347 	socket_lock_t		sk_lock;
348 	atomic_t		sk_drops;
349 	int			sk_rcvlowat;
350 	struct sk_buff_head	sk_error_queue;
351 	struct sk_buff_head	sk_receive_queue;
352 	/*
353 	 * The backlog queue is special, it is always used with
354 	 * the per-socket spinlock held and requires low latency
355 	 * access. Therefore we special case it's implementation.
356 	 * Note : rmem_alloc is in this structure to fill a hole
357 	 * on 64bit arches, not because its logically part of
358 	 * backlog.
359 	 */
360 	struct {
361 		atomic_t	rmem_alloc;
362 		int		len;
363 		struct sk_buff	*head;
364 		struct sk_buff	*tail;
365 	} sk_backlog;
366 #define sk_rmem_alloc sk_backlog.rmem_alloc
367 
368 	int			sk_forward_alloc;
369 #ifdef CONFIG_NET_RX_BUSY_POLL
370 	unsigned int		sk_ll_usec;
371 	/* ===== mostly read cache line ===== */
372 	unsigned int		sk_napi_id;
373 #endif
374 	int			sk_rcvbuf;
375 
376 	struct sk_filter __rcu	*sk_filter;
377 	union {
378 		struct socket_wq __rcu	*sk_wq;
379 		struct socket_wq	*sk_wq_raw;
380 	};
381 #ifdef CONFIG_XFRM
382 	struct xfrm_policy __rcu *sk_policy[2];
383 #endif
384 	struct dst_entry	*sk_rx_dst;
385 	struct dst_entry __rcu	*sk_dst_cache;
386 	atomic_t		sk_omem_alloc;
387 	int			sk_sndbuf;
388 
389 	/* ===== cache line for TX ===== */
390 	int			sk_wmem_queued;
391 	atomic_t		sk_wmem_alloc;
392 	unsigned long		sk_tsq_flags;
393 	struct sk_buff		*sk_send_head;
394 	struct sk_buff_head	sk_write_queue;
395 	__s32			sk_peek_off;
396 	int			sk_write_pending;
397 	__u32			sk_dst_pending_confirm;
398 	/* Note: 32bit hole on 64bit arches */
399 	long			sk_sndtimeo;
400 	struct timer_list	sk_timer;
401 	__u32			sk_priority;
402 	__u32			sk_mark;
403 	u32			sk_pacing_rate; /* bytes per second */
404 	u32			sk_max_pacing_rate;
405 	struct page_frag	sk_frag;
406 	netdev_features_t	sk_route_caps;
407 	netdev_features_t	sk_route_nocaps;
408 	int			sk_gso_type;
409 	unsigned int		sk_gso_max_size;
410 	gfp_t			sk_allocation;
411 	__u32			sk_txhash;
412 
413 	/*
414 	 * Because of non atomicity rules, all
415 	 * changes are protected by socket lock.
416 	 */
417 	unsigned int		__sk_flags_offset[0];
418 #ifdef __BIG_ENDIAN_BITFIELD
419 #define SK_FL_PROTO_SHIFT  16
420 #define SK_FL_PROTO_MASK   0x00ff0000
421 
422 #define SK_FL_TYPE_SHIFT   0
423 #define SK_FL_TYPE_MASK    0x0000ffff
424 #else
425 #define SK_FL_PROTO_SHIFT  8
426 #define SK_FL_PROTO_MASK   0x0000ff00
427 
428 #define SK_FL_TYPE_SHIFT   16
429 #define SK_FL_TYPE_MASK    0xffff0000
430 #endif
431 
432 	kmemcheck_bitfield_begin(flags);
433 	unsigned int		sk_padding : 2,
434 				sk_no_check_tx : 1,
435 				sk_no_check_rx : 1,
436 				sk_userlocks : 4,
437 				sk_protocol  : 8,
438 				sk_type      : 16;
439 #define SK_PROTOCOL_MAX U8_MAX
440 	kmemcheck_bitfield_end(flags);
441 
442 	u16			sk_gso_max_segs;
443 	unsigned long	        sk_lingertime;
444 	struct proto		*sk_prot_creator;
445 	rwlock_t		sk_callback_lock;
446 	int			sk_err,
447 				sk_err_soft;
448 	u32			sk_ack_backlog;
449 	u32			sk_max_ack_backlog;
450 	kuid_t			sk_uid;
451 	struct pid		*sk_peer_pid;
452 	const struct cred	*sk_peer_cred;
453 	long			sk_rcvtimeo;
454 	ktime_t			sk_stamp;
455 	u16			sk_tsflags;
456 	u8			sk_shutdown;
457 	u32			sk_tskey;
458 	struct socket		*sk_socket;
459 	void			*sk_user_data;
460 #ifdef CONFIG_SECURITY
461 	void			*sk_security;
462 #endif
463 	struct sock_cgroup_data	sk_cgrp_data;
464 	struct mem_cgroup	*sk_memcg;
465 	void			(*sk_state_change)(struct sock *sk);
466 	void			(*sk_data_ready)(struct sock *sk);
467 	void			(*sk_write_space)(struct sock *sk);
468 	void			(*sk_error_report)(struct sock *sk);
469 	int			(*sk_backlog_rcv)(struct sock *sk,
470 						  struct sk_buff *skb);
471 	void                    (*sk_destruct)(struct sock *sk);
472 	struct sock_reuseport __rcu	*sk_reuseport_cb;
473 	struct rcu_head		sk_rcu;
474 };
475 
476 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
477 
478 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
479 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
480 
481 /*
482  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
483  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
484  * on a socket means that the socket will reuse everybody else's port
485  * without looking at the other's sk_reuse value.
486  */
487 
488 #define SK_NO_REUSE	0
489 #define SK_CAN_REUSE	1
490 #define SK_FORCE_REUSE	2
491 
492 int sk_set_peek_off(struct sock *sk, int val);
493 
494 static inline int sk_peek_offset(struct sock *sk, int flags)
495 {
496 	if (unlikely(flags & MSG_PEEK)) {
497 		s32 off = READ_ONCE(sk->sk_peek_off);
498 		if (off >= 0)
499 			return off;
500 	}
501 
502 	return 0;
503 }
504 
505 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
506 {
507 	s32 off = READ_ONCE(sk->sk_peek_off);
508 
509 	if (unlikely(off >= 0)) {
510 		off = max_t(s32, off - val, 0);
511 		WRITE_ONCE(sk->sk_peek_off, off);
512 	}
513 }
514 
515 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
516 {
517 	sk_peek_offset_bwd(sk, -val);
518 }
519 
520 /*
521  * Hashed lists helper routines
522  */
523 static inline struct sock *sk_entry(const struct hlist_node *node)
524 {
525 	return hlist_entry(node, struct sock, sk_node);
526 }
527 
528 static inline struct sock *__sk_head(const struct hlist_head *head)
529 {
530 	return hlist_entry(head->first, struct sock, sk_node);
531 }
532 
533 static inline struct sock *sk_head(const struct hlist_head *head)
534 {
535 	return hlist_empty(head) ? NULL : __sk_head(head);
536 }
537 
538 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
539 {
540 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
541 }
542 
543 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
544 {
545 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
546 }
547 
548 static inline struct sock *sk_next(const struct sock *sk)
549 {
550 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
551 }
552 
553 static inline struct sock *sk_nulls_next(const struct sock *sk)
554 {
555 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
556 		hlist_nulls_entry(sk->sk_nulls_node.next,
557 				  struct sock, sk_nulls_node) :
558 		NULL;
559 }
560 
561 static inline bool sk_unhashed(const struct sock *sk)
562 {
563 	return hlist_unhashed(&sk->sk_node);
564 }
565 
566 static inline bool sk_hashed(const struct sock *sk)
567 {
568 	return !sk_unhashed(sk);
569 }
570 
571 static inline void sk_node_init(struct hlist_node *node)
572 {
573 	node->pprev = NULL;
574 }
575 
576 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
577 {
578 	node->pprev = NULL;
579 }
580 
581 static inline void __sk_del_node(struct sock *sk)
582 {
583 	__hlist_del(&sk->sk_node);
584 }
585 
586 /* NB: equivalent to hlist_del_init_rcu */
587 static inline bool __sk_del_node_init(struct sock *sk)
588 {
589 	if (sk_hashed(sk)) {
590 		__sk_del_node(sk);
591 		sk_node_init(&sk->sk_node);
592 		return true;
593 	}
594 	return false;
595 }
596 
597 /* Grab socket reference count. This operation is valid only
598    when sk is ALREADY grabbed f.e. it is found in hash table
599    or a list and the lookup is made under lock preventing hash table
600    modifications.
601  */
602 
603 static __always_inline void sock_hold(struct sock *sk)
604 {
605 	atomic_inc(&sk->sk_refcnt);
606 }
607 
608 /* Ungrab socket in the context, which assumes that socket refcnt
609    cannot hit zero, f.e. it is true in context of any socketcall.
610  */
611 static __always_inline void __sock_put(struct sock *sk)
612 {
613 	atomic_dec(&sk->sk_refcnt);
614 }
615 
616 static inline bool sk_del_node_init(struct sock *sk)
617 {
618 	bool rc = __sk_del_node_init(sk);
619 
620 	if (rc) {
621 		/* paranoid for a while -acme */
622 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
623 		__sock_put(sk);
624 	}
625 	return rc;
626 }
627 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
628 
629 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
630 {
631 	if (sk_hashed(sk)) {
632 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
633 		return true;
634 	}
635 	return false;
636 }
637 
638 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
639 {
640 	bool rc = __sk_nulls_del_node_init_rcu(sk);
641 
642 	if (rc) {
643 		/* paranoid for a while -acme */
644 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
645 		__sock_put(sk);
646 	}
647 	return rc;
648 }
649 
650 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
651 {
652 	hlist_add_head(&sk->sk_node, list);
653 }
654 
655 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
656 {
657 	sock_hold(sk);
658 	__sk_add_node(sk, list);
659 }
660 
661 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
662 {
663 	sock_hold(sk);
664 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
665 	    sk->sk_family == AF_INET6)
666 		hlist_add_tail_rcu(&sk->sk_node, list);
667 	else
668 		hlist_add_head_rcu(&sk->sk_node, list);
669 }
670 
671 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
672 {
673 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
674 	    sk->sk_family == AF_INET6)
675 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
676 	else
677 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
678 }
679 
680 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
681 {
682 	sock_hold(sk);
683 	__sk_nulls_add_node_rcu(sk, list);
684 }
685 
686 static inline void __sk_del_bind_node(struct sock *sk)
687 {
688 	__hlist_del(&sk->sk_bind_node);
689 }
690 
691 static inline void sk_add_bind_node(struct sock *sk,
692 					struct hlist_head *list)
693 {
694 	hlist_add_head(&sk->sk_bind_node, list);
695 }
696 
697 #define sk_for_each(__sk, list) \
698 	hlist_for_each_entry(__sk, list, sk_node)
699 #define sk_for_each_rcu(__sk, list) \
700 	hlist_for_each_entry_rcu(__sk, list, sk_node)
701 #define sk_nulls_for_each(__sk, node, list) \
702 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
703 #define sk_nulls_for_each_rcu(__sk, node, list) \
704 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
705 #define sk_for_each_from(__sk) \
706 	hlist_for_each_entry_from(__sk, sk_node)
707 #define sk_nulls_for_each_from(__sk, node) \
708 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
709 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
710 #define sk_for_each_safe(__sk, tmp, list) \
711 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
712 #define sk_for_each_bound(__sk, list) \
713 	hlist_for_each_entry(__sk, list, sk_bind_node)
714 
715 /**
716  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
717  * @tpos:	the type * to use as a loop cursor.
718  * @pos:	the &struct hlist_node to use as a loop cursor.
719  * @head:	the head for your list.
720  * @offset:	offset of hlist_node within the struct.
721  *
722  */
723 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
724 	for (pos = rcu_dereference((head)->first);			       \
725 	     pos != NULL &&						       \
726 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
727 	     pos = rcu_dereference(pos->next))
728 
729 static inline struct user_namespace *sk_user_ns(struct sock *sk)
730 {
731 	/* Careful only use this in a context where these parameters
732 	 * can not change and must all be valid, such as recvmsg from
733 	 * userspace.
734 	 */
735 	return sk->sk_socket->file->f_cred->user_ns;
736 }
737 
738 /* Sock flags */
739 enum sock_flags {
740 	SOCK_DEAD,
741 	SOCK_DONE,
742 	SOCK_URGINLINE,
743 	SOCK_KEEPOPEN,
744 	SOCK_LINGER,
745 	SOCK_DESTROY,
746 	SOCK_BROADCAST,
747 	SOCK_TIMESTAMP,
748 	SOCK_ZAPPED,
749 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
750 	SOCK_DBG, /* %SO_DEBUG setting */
751 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
752 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
753 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
754 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
755 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
756 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
757 	SOCK_FASYNC, /* fasync() active */
758 	SOCK_RXQ_OVFL,
759 	SOCK_ZEROCOPY, /* buffers from userspace */
760 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
761 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
762 		     * Will use last 4 bytes of packet sent from
763 		     * user-space instead.
764 		     */
765 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
766 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
767 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
768 };
769 
770 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
771 
772 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
773 {
774 	nsk->sk_flags = osk->sk_flags;
775 }
776 
777 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
778 {
779 	__set_bit(flag, &sk->sk_flags);
780 }
781 
782 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
783 {
784 	__clear_bit(flag, &sk->sk_flags);
785 }
786 
787 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
788 {
789 	return test_bit(flag, &sk->sk_flags);
790 }
791 
792 #ifdef CONFIG_NET
793 extern struct static_key memalloc_socks;
794 static inline int sk_memalloc_socks(void)
795 {
796 	return static_key_false(&memalloc_socks);
797 }
798 #else
799 
800 static inline int sk_memalloc_socks(void)
801 {
802 	return 0;
803 }
804 
805 #endif
806 
807 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
808 {
809 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
810 }
811 
812 static inline void sk_acceptq_removed(struct sock *sk)
813 {
814 	sk->sk_ack_backlog--;
815 }
816 
817 static inline void sk_acceptq_added(struct sock *sk)
818 {
819 	sk->sk_ack_backlog++;
820 }
821 
822 static inline bool sk_acceptq_is_full(const struct sock *sk)
823 {
824 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
825 }
826 
827 /*
828  * Compute minimal free write space needed to queue new packets.
829  */
830 static inline int sk_stream_min_wspace(const struct sock *sk)
831 {
832 	return sk->sk_wmem_queued >> 1;
833 }
834 
835 static inline int sk_stream_wspace(const struct sock *sk)
836 {
837 	return sk->sk_sndbuf - sk->sk_wmem_queued;
838 }
839 
840 void sk_stream_write_space(struct sock *sk);
841 
842 /* OOB backlog add */
843 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
844 {
845 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
846 	skb_dst_force_safe(skb);
847 
848 	if (!sk->sk_backlog.tail)
849 		sk->sk_backlog.head = skb;
850 	else
851 		sk->sk_backlog.tail->next = skb;
852 
853 	sk->sk_backlog.tail = skb;
854 	skb->next = NULL;
855 }
856 
857 /*
858  * Take into account size of receive queue and backlog queue
859  * Do not take into account this skb truesize,
860  * to allow even a single big packet to come.
861  */
862 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
863 {
864 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
865 
866 	return qsize > limit;
867 }
868 
869 /* The per-socket spinlock must be held here. */
870 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
871 					      unsigned int limit)
872 {
873 	if (sk_rcvqueues_full(sk, limit))
874 		return -ENOBUFS;
875 
876 	/*
877 	 * If the skb was allocated from pfmemalloc reserves, only
878 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
879 	 * helping free memory
880 	 */
881 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
882 		return -ENOMEM;
883 
884 	__sk_add_backlog(sk, skb);
885 	sk->sk_backlog.len += skb->truesize;
886 	return 0;
887 }
888 
889 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
890 
891 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
892 {
893 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
894 		return __sk_backlog_rcv(sk, skb);
895 
896 	return sk->sk_backlog_rcv(sk, skb);
897 }
898 
899 static inline void sk_incoming_cpu_update(struct sock *sk)
900 {
901 	sk->sk_incoming_cpu = raw_smp_processor_id();
902 }
903 
904 static inline void sock_rps_record_flow_hash(__u32 hash)
905 {
906 #ifdef CONFIG_RPS
907 	struct rps_sock_flow_table *sock_flow_table;
908 
909 	rcu_read_lock();
910 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
911 	rps_record_sock_flow(sock_flow_table, hash);
912 	rcu_read_unlock();
913 #endif
914 }
915 
916 static inline void sock_rps_record_flow(const struct sock *sk)
917 {
918 #ifdef CONFIG_RPS
919 	if (static_key_false(&rfs_needed)) {
920 		/* Reading sk->sk_rxhash might incur an expensive cache line
921 		 * miss.
922 		 *
923 		 * TCP_ESTABLISHED does cover almost all states where RFS
924 		 * might be useful, and is cheaper [1] than testing :
925 		 *	IPv4: inet_sk(sk)->inet_daddr
926 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
927 		 * OR	an additional socket flag
928 		 * [1] : sk_state and sk_prot are in the same cache line.
929 		 */
930 		if (sk->sk_state == TCP_ESTABLISHED)
931 			sock_rps_record_flow_hash(sk->sk_rxhash);
932 	}
933 #endif
934 }
935 
936 static inline void sock_rps_save_rxhash(struct sock *sk,
937 					const struct sk_buff *skb)
938 {
939 #ifdef CONFIG_RPS
940 	if (unlikely(sk->sk_rxhash != skb->hash))
941 		sk->sk_rxhash = skb->hash;
942 #endif
943 }
944 
945 static inline void sock_rps_reset_rxhash(struct sock *sk)
946 {
947 #ifdef CONFIG_RPS
948 	sk->sk_rxhash = 0;
949 #endif
950 }
951 
952 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
953 	({	int __rc;						\
954 		release_sock(__sk);					\
955 		__rc = __condition;					\
956 		if (!__rc) {						\
957 			*(__timeo) = wait_woken(__wait,			\
958 						TASK_INTERRUPTIBLE,	\
959 						*(__timeo));		\
960 		}							\
961 		sched_annotate_sleep();					\
962 		lock_sock(__sk);					\
963 		__rc = __condition;					\
964 		__rc;							\
965 	})
966 
967 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
968 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
969 void sk_stream_wait_close(struct sock *sk, long timeo_p);
970 int sk_stream_error(struct sock *sk, int flags, int err);
971 void sk_stream_kill_queues(struct sock *sk);
972 void sk_set_memalloc(struct sock *sk);
973 void sk_clear_memalloc(struct sock *sk);
974 
975 void __sk_flush_backlog(struct sock *sk);
976 
977 static inline bool sk_flush_backlog(struct sock *sk)
978 {
979 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
980 		__sk_flush_backlog(sk);
981 		return true;
982 	}
983 	return false;
984 }
985 
986 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
987 
988 struct request_sock_ops;
989 struct timewait_sock_ops;
990 struct inet_hashinfo;
991 struct raw_hashinfo;
992 struct smc_hashinfo;
993 struct module;
994 
995 /*
996  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
997  * un-modified. Special care is taken when initializing object to zero.
998  */
999 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1000 {
1001 	if (offsetof(struct sock, sk_node.next) != 0)
1002 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1003 	memset(&sk->sk_node.pprev, 0,
1004 	       size - offsetof(struct sock, sk_node.pprev));
1005 }
1006 
1007 /* Networking protocol blocks we attach to sockets.
1008  * socket layer -> transport layer interface
1009  */
1010 struct proto {
1011 	void			(*close)(struct sock *sk,
1012 					long timeout);
1013 	int			(*connect)(struct sock *sk,
1014 					struct sockaddr *uaddr,
1015 					int addr_len);
1016 	int			(*disconnect)(struct sock *sk, int flags);
1017 
1018 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
1019 
1020 	int			(*ioctl)(struct sock *sk, int cmd,
1021 					 unsigned long arg);
1022 	int			(*init)(struct sock *sk);
1023 	void			(*destroy)(struct sock *sk);
1024 	void			(*shutdown)(struct sock *sk, int how);
1025 	int			(*setsockopt)(struct sock *sk, int level,
1026 					int optname, char __user *optval,
1027 					unsigned int optlen);
1028 	int			(*getsockopt)(struct sock *sk, int level,
1029 					int optname, char __user *optval,
1030 					int __user *option);
1031 	void			(*keepalive)(struct sock *sk, int valbool);
1032 #ifdef CONFIG_COMPAT
1033 	int			(*compat_setsockopt)(struct sock *sk,
1034 					int level,
1035 					int optname, char __user *optval,
1036 					unsigned int optlen);
1037 	int			(*compat_getsockopt)(struct sock *sk,
1038 					int level,
1039 					int optname, char __user *optval,
1040 					int __user *option);
1041 	int			(*compat_ioctl)(struct sock *sk,
1042 					unsigned int cmd, unsigned long arg);
1043 #endif
1044 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1045 					   size_t len);
1046 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1047 					   size_t len, int noblock, int flags,
1048 					   int *addr_len);
1049 	int			(*sendpage)(struct sock *sk, struct page *page,
1050 					int offset, size_t size, int flags);
1051 	int			(*bind)(struct sock *sk,
1052 					struct sockaddr *uaddr, int addr_len);
1053 
1054 	int			(*backlog_rcv) (struct sock *sk,
1055 						struct sk_buff *skb);
1056 
1057 	void		(*release_cb)(struct sock *sk);
1058 
1059 	/* Keeping track of sk's, looking them up, and port selection methods. */
1060 	int			(*hash)(struct sock *sk);
1061 	void			(*unhash)(struct sock *sk);
1062 	void			(*rehash)(struct sock *sk);
1063 	int			(*get_port)(struct sock *sk, unsigned short snum);
1064 
1065 	/* Keeping track of sockets in use */
1066 #ifdef CONFIG_PROC_FS
1067 	unsigned int		inuse_idx;
1068 #endif
1069 
1070 	bool			(*stream_memory_free)(const struct sock *sk);
1071 	/* Memory pressure */
1072 	void			(*enter_memory_pressure)(struct sock *sk);
1073 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1074 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1075 	/*
1076 	 * Pressure flag: try to collapse.
1077 	 * Technical note: it is used by multiple contexts non atomically.
1078 	 * All the __sk_mem_schedule() is of this nature: accounting
1079 	 * is strict, actions are advisory and have some latency.
1080 	 */
1081 	int			*memory_pressure;
1082 	long			*sysctl_mem;
1083 	int			*sysctl_wmem;
1084 	int			*sysctl_rmem;
1085 	int			max_header;
1086 	bool			no_autobind;
1087 
1088 	struct kmem_cache	*slab;
1089 	unsigned int		obj_size;
1090 	int			slab_flags;
1091 
1092 	struct percpu_counter	*orphan_count;
1093 
1094 	struct request_sock_ops	*rsk_prot;
1095 	struct timewait_sock_ops *twsk_prot;
1096 
1097 	union {
1098 		struct inet_hashinfo	*hashinfo;
1099 		struct udp_table	*udp_table;
1100 		struct raw_hashinfo	*raw_hash;
1101 		struct smc_hashinfo	*smc_hash;
1102 	} h;
1103 
1104 	struct module		*owner;
1105 
1106 	char			name[32];
1107 
1108 	struct list_head	node;
1109 #ifdef SOCK_REFCNT_DEBUG
1110 	atomic_t		socks;
1111 #endif
1112 	int			(*diag_destroy)(struct sock *sk, int err);
1113 };
1114 
1115 int proto_register(struct proto *prot, int alloc_slab);
1116 void proto_unregister(struct proto *prot);
1117 
1118 #ifdef SOCK_REFCNT_DEBUG
1119 static inline void sk_refcnt_debug_inc(struct sock *sk)
1120 {
1121 	atomic_inc(&sk->sk_prot->socks);
1122 }
1123 
1124 static inline void sk_refcnt_debug_dec(struct sock *sk)
1125 {
1126 	atomic_dec(&sk->sk_prot->socks);
1127 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1128 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1129 }
1130 
1131 static inline void sk_refcnt_debug_release(const struct sock *sk)
1132 {
1133 	if (atomic_read(&sk->sk_refcnt) != 1)
1134 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1135 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1136 }
1137 #else /* SOCK_REFCNT_DEBUG */
1138 #define sk_refcnt_debug_inc(sk) do { } while (0)
1139 #define sk_refcnt_debug_dec(sk) do { } while (0)
1140 #define sk_refcnt_debug_release(sk) do { } while (0)
1141 #endif /* SOCK_REFCNT_DEBUG */
1142 
1143 static inline bool sk_stream_memory_free(const struct sock *sk)
1144 {
1145 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1146 		return false;
1147 
1148 	return sk->sk_prot->stream_memory_free ?
1149 		sk->sk_prot->stream_memory_free(sk) : true;
1150 }
1151 
1152 static inline bool sk_stream_is_writeable(const struct sock *sk)
1153 {
1154 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1155 	       sk_stream_memory_free(sk);
1156 }
1157 
1158 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1159 					    struct cgroup *ancestor)
1160 {
1161 #ifdef CONFIG_SOCK_CGROUP_DATA
1162 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1163 				    ancestor);
1164 #else
1165 	return -ENOTSUPP;
1166 #endif
1167 }
1168 
1169 static inline bool sk_has_memory_pressure(const struct sock *sk)
1170 {
1171 	return sk->sk_prot->memory_pressure != NULL;
1172 }
1173 
1174 static inline bool sk_under_memory_pressure(const struct sock *sk)
1175 {
1176 	if (!sk->sk_prot->memory_pressure)
1177 		return false;
1178 
1179 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1180 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1181 		return true;
1182 
1183 	return !!*sk->sk_prot->memory_pressure;
1184 }
1185 
1186 static inline void sk_leave_memory_pressure(struct sock *sk)
1187 {
1188 	int *memory_pressure = sk->sk_prot->memory_pressure;
1189 
1190 	if (!memory_pressure)
1191 		return;
1192 
1193 	if (*memory_pressure)
1194 		*memory_pressure = 0;
1195 }
1196 
1197 static inline void sk_enter_memory_pressure(struct sock *sk)
1198 {
1199 	if (!sk->sk_prot->enter_memory_pressure)
1200 		return;
1201 
1202 	sk->sk_prot->enter_memory_pressure(sk);
1203 }
1204 
1205 static inline long
1206 sk_memory_allocated(const struct sock *sk)
1207 {
1208 	return atomic_long_read(sk->sk_prot->memory_allocated);
1209 }
1210 
1211 static inline long
1212 sk_memory_allocated_add(struct sock *sk, int amt)
1213 {
1214 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1215 }
1216 
1217 static inline void
1218 sk_memory_allocated_sub(struct sock *sk, int amt)
1219 {
1220 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1221 }
1222 
1223 static inline void sk_sockets_allocated_dec(struct sock *sk)
1224 {
1225 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1226 }
1227 
1228 static inline void sk_sockets_allocated_inc(struct sock *sk)
1229 {
1230 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1231 }
1232 
1233 static inline int
1234 sk_sockets_allocated_read_positive(struct sock *sk)
1235 {
1236 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1237 }
1238 
1239 static inline int
1240 proto_sockets_allocated_sum_positive(struct proto *prot)
1241 {
1242 	return percpu_counter_sum_positive(prot->sockets_allocated);
1243 }
1244 
1245 static inline long
1246 proto_memory_allocated(struct proto *prot)
1247 {
1248 	return atomic_long_read(prot->memory_allocated);
1249 }
1250 
1251 static inline bool
1252 proto_memory_pressure(struct proto *prot)
1253 {
1254 	if (!prot->memory_pressure)
1255 		return false;
1256 	return !!*prot->memory_pressure;
1257 }
1258 
1259 
1260 #ifdef CONFIG_PROC_FS
1261 /* Called with local bh disabled */
1262 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1263 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1264 #else
1265 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1266 		int inc)
1267 {
1268 }
1269 #endif
1270 
1271 
1272 /* With per-bucket locks this operation is not-atomic, so that
1273  * this version is not worse.
1274  */
1275 static inline int __sk_prot_rehash(struct sock *sk)
1276 {
1277 	sk->sk_prot->unhash(sk);
1278 	return sk->sk_prot->hash(sk);
1279 }
1280 
1281 /* About 10 seconds */
1282 #define SOCK_DESTROY_TIME (10*HZ)
1283 
1284 /* Sockets 0-1023 can't be bound to unless you are superuser */
1285 #define PROT_SOCK	1024
1286 
1287 #define SHUTDOWN_MASK	3
1288 #define RCV_SHUTDOWN	1
1289 #define SEND_SHUTDOWN	2
1290 
1291 #define SOCK_SNDBUF_LOCK	1
1292 #define SOCK_RCVBUF_LOCK	2
1293 #define SOCK_BINDADDR_LOCK	4
1294 #define SOCK_BINDPORT_LOCK	8
1295 
1296 struct socket_alloc {
1297 	struct socket socket;
1298 	struct inode vfs_inode;
1299 };
1300 
1301 static inline struct socket *SOCKET_I(struct inode *inode)
1302 {
1303 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1304 }
1305 
1306 static inline struct inode *SOCK_INODE(struct socket *socket)
1307 {
1308 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1309 }
1310 
1311 /*
1312  * Functions for memory accounting
1313  */
1314 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1315 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1316 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1317 void __sk_mem_reclaim(struct sock *sk, int amount);
1318 
1319 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1320  * do not necessarily have 16x time more memory than 4KB ones.
1321  */
1322 #define SK_MEM_QUANTUM 4096
1323 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1324 #define SK_MEM_SEND	0
1325 #define SK_MEM_RECV	1
1326 
1327 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1328 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1329 {
1330 	long val = sk->sk_prot->sysctl_mem[index];
1331 
1332 #if PAGE_SIZE > SK_MEM_QUANTUM
1333 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1334 #elif PAGE_SIZE < SK_MEM_QUANTUM
1335 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1336 #endif
1337 	return val;
1338 }
1339 
1340 static inline int sk_mem_pages(int amt)
1341 {
1342 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1343 }
1344 
1345 static inline bool sk_has_account(struct sock *sk)
1346 {
1347 	/* return true if protocol supports memory accounting */
1348 	return !!sk->sk_prot->memory_allocated;
1349 }
1350 
1351 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1352 {
1353 	if (!sk_has_account(sk))
1354 		return true;
1355 	return size <= sk->sk_forward_alloc ||
1356 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1357 }
1358 
1359 static inline bool
1360 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1361 {
1362 	if (!sk_has_account(sk))
1363 		return true;
1364 	return size<= sk->sk_forward_alloc ||
1365 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1366 		skb_pfmemalloc(skb);
1367 }
1368 
1369 static inline void sk_mem_reclaim(struct sock *sk)
1370 {
1371 	if (!sk_has_account(sk))
1372 		return;
1373 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1374 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1375 }
1376 
1377 static inline void sk_mem_reclaim_partial(struct sock *sk)
1378 {
1379 	if (!sk_has_account(sk))
1380 		return;
1381 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1382 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1383 }
1384 
1385 static inline void sk_mem_charge(struct sock *sk, int size)
1386 {
1387 	if (!sk_has_account(sk))
1388 		return;
1389 	sk->sk_forward_alloc -= size;
1390 }
1391 
1392 static inline void sk_mem_uncharge(struct sock *sk, int size)
1393 {
1394 	if (!sk_has_account(sk))
1395 		return;
1396 	sk->sk_forward_alloc += size;
1397 
1398 	/* Avoid a possible overflow.
1399 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1400 	 * is not called and more than 2 GBytes are released at once.
1401 	 *
1402 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1403 	 * no need to hold that much forward allocation anyway.
1404 	 */
1405 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1406 		__sk_mem_reclaim(sk, 1 << 20);
1407 }
1408 
1409 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1410 {
1411 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1412 	sk->sk_wmem_queued -= skb->truesize;
1413 	sk_mem_uncharge(sk, skb->truesize);
1414 	__kfree_skb(skb);
1415 }
1416 
1417 static inline void sock_release_ownership(struct sock *sk)
1418 {
1419 	if (sk->sk_lock.owned) {
1420 		sk->sk_lock.owned = 0;
1421 
1422 		/* The sk_lock has mutex_unlock() semantics: */
1423 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1424 	}
1425 }
1426 
1427 /*
1428  * Macro so as to not evaluate some arguments when
1429  * lockdep is not enabled.
1430  *
1431  * Mark both the sk_lock and the sk_lock.slock as a
1432  * per-address-family lock class.
1433  */
1434 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1435 do {									\
1436 	sk->sk_lock.owned = 0;						\
1437 	init_waitqueue_head(&sk->sk_lock.wq);				\
1438 	spin_lock_init(&(sk)->sk_lock.slock);				\
1439 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1440 			sizeof((sk)->sk_lock));				\
1441 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1442 				(skey), (sname));				\
1443 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1444 } while (0)
1445 
1446 #ifdef CONFIG_LOCKDEP
1447 static inline bool lockdep_sock_is_held(const struct sock *csk)
1448 {
1449 	struct sock *sk = (struct sock *)csk;
1450 
1451 	return lockdep_is_held(&sk->sk_lock) ||
1452 	       lockdep_is_held(&sk->sk_lock.slock);
1453 }
1454 #endif
1455 
1456 void lock_sock_nested(struct sock *sk, int subclass);
1457 
1458 static inline void lock_sock(struct sock *sk)
1459 {
1460 	lock_sock_nested(sk, 0);
1461 }
1462 
1463 void release_sock(struct sock *sk);
1464 
1465 /* BH context may only use the following locking interface. */
1466 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1467 #define bh_lock_sock_nested(__sk) \
1468 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1469 				SINGLE_DEPTH_NESTING)
1470 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1471 
1472 bool lock_sock_fast(struct sock *sk);
1473 /**
1474  * unlock_sock_fast - complement of lock_sock_fast
1475  * @sk: socket
1476  * @slow: slow mode
1477  *
1478  * fast unlock socket for user context.
1479  * If slow mode is on, we call regular release_sock()
1480  */
1481 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1482 {
1483 	if (slow)
1484 		release_sock(sk);
1485 	else
1486 		spin_unlock_bh(&sk->sk_lock.slock);
1487 }
1488 
1489 /* Used by processes to "lock" a socket state, so that
1490  * interrupts and bottom half handlers won't change it
1491  * from under us. It essentially blocks any incoming
1492  * packets, so that we won't get any new data or any
1493  * packets that change the state of the socket.
1494  *
1495  * While locked, BH processing will add new packets to
1496  * the backlog queue.  This queue is processed by the
1497  * owner of the socket lock right before it is released.
1498  *
1499  * Since ~2.3.5 it is also exclusive sleep lock serializing
1500  * accesses from user process context.
1501  */
1502 
1503 static inline void sock_owned_by_me(const struct sock *sk)
1504 {
1505 #ifdef CONFIG_LOCKDEP
1506 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1507 #endif
1508 }
1509 
1510 static inline bool sock_owned_by_user(const struct sock *sk)
1511 {
1512 	sock_owned_by_me(sk);
1513 	return sk->sk_lock.owned;
1514 }
1515 
1516 /* no reclassification while locks are held */
1517 static inline bool sock_allow_reclassification(const struct sock *csk)
1518 {
1519 	struct sock *sk = (struct sock *)csk;
1520 
1521 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1522 }
1523 
1524 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1525 		      struct proto *prot, int kern);
1526 void sk_free(struct sock *sk);
1527 void sk_destruct(struct sock *sk);
1528 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1529 void sk_free_unlock_clone(struct sock *sk);
1530 
1531 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1532 			     gfp_t priority);
1533 void __sock_wfree(struct sk_buff *skb);
1534 void sock_wfree(struct sk_buff *skb);
1535 void skb_orphan_partial(struct sk_buff *skb);
1536 void sock_rfree(struct sk_buff *skb);
1537 void sock_efree(struct sk_buff *skb);
1538 #ifdef CONFIG_INET
1539 void sock_edemux(struct sk_buff *skb);
1540 #else
1541 #define sock_edemux sock_efree
1542 #endif
1543 
1544 int sock_setsockopt(struct socket *sock, int level, int op,
1545 		    char __user *optval, unsigned int optlen);
1546 
1547 int sock_getsockopt(struct socket *sock, int level, int op,
1548 		    char __user *optval, int __user *optlen);
1549 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1550 				    int noblock, int *errcode);
1551 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1552 				     unsigned long data_len, int noblock,
1553 				     int *errcode, int max_page_order);
1554 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1555 void sock_kfree_s(struct sock *sk, void *mem, int size);
1556 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1557 void sk_send_sigurg(struct sock *sk);
1558 
1559 struct sockcm_cookie {
1560 	u32 mark;
1561 	u16 tsflags;
1562 };
1563 
1564 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1565 		     struct sockcm_cookie *sockc);
1566 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1567 		   struct sockcm_cookie *sockc);
1568 
1569 /*
1570  * Functions to fill in entries in struct proto_ops when a protocol
1571  * does not implement a particular function.
1572  */
1573 int sock_no_bind(struct socket *, struct sockaddr *, int);
1574 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1575 int sock_no_socketpair(struct socket *, struct socket *);
1576 int sock_no_accept(struct socket *, struct socket *, int);
1577 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1578 unsigned int sock_no_poll(struct file *, struct socket *,
1579 			  struct poll_table_struct *);
1580 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1581 int sock_no_listen(struct socket *, int);
1582 int sock_no_shutdown(struct socket *, int);
1583 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1584 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1585 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1586 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1587 int sock_no_mmap(struct file *file, struct socket *sock,
1588 		 struct vm_area_struct *vma);
1589 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1590 			 size_t size, int flags);
1591 
1592 /*
1593  * Functions to fill in entries in struct proto_ops when a protocol
1594  * uses the inet style.
1595  */
1596 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1597 				  char __user *optval, int __user *optlen);
1598 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1599 			int flags);
1600 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1601 				  char __user *optval, unsigned int optlen);
1602 int compat_sock_common_getsockopt(struct socket *sock, int level,
1603 		int optname, char __user *optval, int __user *optlen);
1604 int compat_sock_common_setsockopt(struct socket *sock, int level,
1605 		int optname, char __user *optval, unsigned int optlen);
1606 
1607 void sk_common_release(struct sock *sk);
1608 
1609 /*
1610  *	Default socket callbacks and setup code
1611  */
1612 
1613 /* Initialise core socket variables */
1614 void sock_init_data(struct socket *sock, struct sock *sk);
1615 
1616 /*
1617  * Socket reference counting postulates.
1618  *
1619  * * Each user of socket SHOULD hold a reference count.
1620  * * Each access point to socket (an hash table bucket, reference from a list,
1621  *   running timer, skb in flight MUST hold a reference count.
1622  * * When reference count hits 0, it means it will never increase back.
1623  * * When reference count hits 0, it means that no references from
1624  *   outside exist to this socket and current process on current CPU
1625  *   is last user and may/should destroy this socket.
1626  * * sk_free is called from any context: process, BH, IRQ. When
1627  *   it is called, socket has no references from outside -> sk_free
1628  *   may release descendant resources allocated by the socket, but
1629  *   to the time when it is called, socket is NOT referenced by any
1630  *   hash tables, lists etc.
1631  * * Packets, delivered from outside (from network or from another process)
1632  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1633  *   when they sit in queue. Otherwise, packets will leak to hole, when
1634  *   socket is looked up by one cpu and unhasing is made by another CPU.
1635  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1636  *   (leak to backlog). Packet socket does all the processing inside
1637  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1638  *   use separate SMP lock, so that they are prone too.
1639  */
1640 
1641 /* Ungrab socket and destroy it, if it was the last reference. */
1642 static inline void sock_put(struct sock *sk)
1643 {
1644 	if (atomic_dec_and_test(&sk->sk_refcnt))
1645 		sk_free(sk);
1646 }
1647 /* Generic version of sock_put(), dealing with all sockets
1648  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1649  */
1650 void sock_gen_put(struct sock *sk);
1651 
1652 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1653 		     unsigned int trim_cap, bool refcounted);
1654 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1655 				 const int nested)
1656 {
1657 	return __sk_receive_skb(sk, skb, nested, 1, true);
1658 }
1659 
1660 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1661 {
1662 	sk->sk_tx_queue_mapping = tx_queue;
1663 }
1664 
1665 static inline void sk_tx_queue_clear(struct sock *sk)
1666 {
1667 	sk->sk_tx_queue_mapping = -1;
1668 }
1669 
1670 static inline int sk_tx_queue_get(const struct sock *sk)
1671 {
1672 	return sk ? sk->sk_tx_queue_mapping : -1;
1673 }
1674 
1675 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1676 {
1677 	sk_tx_queue_clear(sk);
1678 	sk->sk_socket = sock;
1679 }
1680 
1681 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1682 {
1683 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1684 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1685 }
1686 /* Detach socket from process context.
1687  * Announce socket dead, detach it from wait queue and inode.
1688  * Note that parent inode held reference count on this struct sock,
1689  * we do not release it in this function, because protocol
1690  * probably wants some additional cleanups or even continuing
1691  * to work with this socket (TCP).
1692  */
1693 static inline void sock_orphan(struct sock *sk)
1694 {
1695 	write_lock_bh(&sk->sk_callback_lock);
1696 	sock_set_flag(sk, SOCK_DEAD);
1697 	sk_set_socket(sk, NULL);
1698 	sk->sk_wq  = NULL;
1699 	write_unlock_bh(&sk->sk_callback_lock);
1700 }
1701 
1702 static inline void sock_graft(struct sock *sk, struct socket *parent)
1703 {
1704 	write_lock_bh(&sk->sk_callback_lock);
1705 	sk->sk_wq = parent->wq;
1706 	parent->sk = sk;
1707 	sk_set_socket(sk, parent);
1708 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1709 	security_sock_graft(sk, parent);
1710 	write_unlock_bh(&sk->sk_callback_lock);
1711 }
1712 
1713 kuid_t sock_i_uid(struct sock *sk);
1714 unsigned long sock_i_ino(struct sock *sk);
1715 
1716 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1717 {
1718 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1719 }
1720 
1721 static inline u32 net_tx_rndhash(void)
1722 {
1723 	u32 v = prandom_u32();
1724 
1725 	return v ?: 1;
1726 }
1727 
1728 static inline void sk_set_txhash(struct sock *sk)
1729 {
1730 	sk->sk_txhash = net_tx_rndhash();
1731 }
1732 
1733 static inline void sk_rethink_txhash(struct sock *sk)
1734 {
1735 	if (sk->sk_txhash)
1736 		sk_set_txhash(sk);
1737 }
1738 
1739 static inline struct dst_entry *
1740 __sk_dst_get(struct sock *sk)
1741 {
1742 	return rcu_dereference_check(sk->sk_dst_cache,
1743 				     lockdep_sock_is_held(sk));
1744 }
1745 
1746 static inline struct dst_entry *
1747 sk_dst_get(struct sock *sk)
1748 {
1749 	struct dst_entry *dst;
1750 
1751 	rcu_read_lock();
1752 	dst = rcu_dereference(sk->sk_dst_cache);
1753 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1754 		dst = NULL;
1755 	rcu_read_unlock();
1756 	return dst;
1757 }
1758 
1759 static inline void dst_negative_advice(struct sock *sk)
1760 {
1761 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1762 
1763 	sk_rethink_txhash(sk);
1764 
1765 	if (dst && dst->ops->negative_advice) {
1766 		ndst = dst->ops->negative_advice(dst);
1767 
1768 		if (ndst != dst) {
1769 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1770 			sk_tx_queue_clear(sk);
1771 			sk->sk_dst_pending_confirm = 0;
1772 		}
1773 	}
1774 }
1775 
1776 static inline void
1777 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1778 {
1779 	struct dst_entry *old_dst;
1780 
1781 	sk_tx_queue_clear(sk);
1782 	sk->sk_dst_pending_confirm = 0;
1783 	/*
1784 	 * This can be called while sk is owned by the caller only,
1785 	 * with no state that can be checked in a rcu_dereference_check() cond
1786 	 */
1787 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1788 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1789 	dst_release(old_dst);
1790 }
1791 
1792 static inline void
1793 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1794 {
1795 	struct dst_entry *old_dst;
1796 
1797 	sk_tx_queue_clear(sk);
1798 	sk->sk_dst_pending_confirm = 0;
1799 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1800 	dst_release(old_dst);
1801 }
1802 
1803 static inline void
1804 __sk_dst_reset(struct sock *sk)
1805 {
1806 	__sk_dst_set(sk, NULL);
1807 }
1808 
1809 static inline void
1810 sk_dst_reset(struct sock *sk)
1811 {
1812 	sk_dst_set(sk, NULL);
1813 }
1814 
1815 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1816 
1817 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1818 
1819 static inline void sk_dst_confirm(struct sock *sk)
1820 {
1821 	if (!sk->sk_dst_pending_confirm)
1822 		sk->sk_dst_pending_confirm = 1;
1823 }
1824 
1825 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1826 {
1827 	if (skb_get_dst_pending_confirm(skb)) {
1828 		struct sock *sk = skb->sk;
1829 		unsigned long now = jiffies;
1830 
1831 		/* avoid dirtying neighbour */
1832 		if (n->confirmed != now)
1833 			n->confirmed = now;
1834 		if (sk && sk->sk_dst_pending_confirm)
1835 			sk->sk_dst_pending_confirm = 0;
1836 	}
1837 }
1838 
1839 bool sk_mc_loop(struct sock *sk);
1840 
1841 static inline bool sk_can_gso(const struct sock *sk)
1842 {
1843 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1844 }
1845 
1846 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1847 
1848 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1849 {
1850 	sk->sk_route_nocaps |= flags;
1851 	sk->sk_route_caps &= ~flags;
1852 }
1853 
1854 static inline bool sk_check_csum_caps(struct sock *sk)
1855 {
1856 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1857 	       (sk->sk_family == PF_INET &&
1858 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1859 	       (sk->sk_family == PF_INET6 &&
1860 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1861 }
1862 
1863 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1864 					   struct iov_iter *from, char *to,
1865 					   int copy, int offset)
1866 {
1867 	if (skb->ip_summed == CHECKSUM_NONE) {
1868 		__wsum csum = 0;
1869 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1870 			return -EFAULT;
1871 		skb->csum = csum_block_add(skb->csum, csum, offset);
1872 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1873 		if (!copy_from_iter_full_nocache(to, copy, from))
1874 			return -EFAULT;
1875 	} else if (!copy_from_iter_full(to, copy, from))
1876 		return -EFAULT;
1877 
1878 	return 0;
1879 }
1880 
1881 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1882 				       struct iov_iter *from, int copy)
1883 {
1884 	int err, offset = skb->len;
1885 
1886 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1887 				       copy, offset);
1888 	if (err)
1889 		__skb_trim(skb, offset);
1890 
1891 	return err;
1892 }
1893 
1894 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1895 					   struct sk_buff *skb,
1896 					   struct page *page,
1897 					   int off, int copy)
1898 {
1899 	int err;
1900 
1901 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1902 				       copy, skb->len);
1903 	if (err)
1904 		return err;
1905 
1906 	skb->len	     += copy;
1907 	skb->data_len	     += copy;
1908 	skb->truesize	     += copy;
1909 	sk->sk_wmem_queued   += copy;
1910 	sk_mem_charge(sk, copy);
1911 	return 0;
1912 }
1913 
1914 /**
1915  * sk_wmem_alloc_get - returns write allocations
1916  * @sk: socket
1917  *
1918  * Returns sk_wmem_alloc minus initial offset of one
1919  */
1920 static inline int sk_wmem_alloc_get(const struct sock *sk)
1921 {
1922 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1923 }
1924 
1925 /**
1926  * sk_rmem_alloc_get - returns read allocations
1927  * @sk: socket
1928  *
1929  * Returns sk_rmem_alloc
1930  */
1931 static inline int sk_rmem_alloc_get(const struct sock *sk)
1932 {
1933 	return atomic_read(&sk->sk_rmem_alloc);
1934 }
1935 
1936 /**
1937  * sk_has_allocations - check if allocations are outstanding
1938  * @sk: socket
1939  *
1940  * Returns true if socket has write or read allocations
1941  */
1942 static inline bool sk_has_allocations(const struct sock *sk)
1943 {
1944 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1945 }
1946 
1947 /**
1948  * skwq_has_sleeper - check if there are any waiting processes
1949  * @wq: struct socket_wq
1950  *
1951  * Returns true if socket_wq has waiting processes
1952  *
1953  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1954  * barrier call. They were added due to the race found within the tcp code.
1955  *
1956  * Consider following tcp code paths:
1957  *
1958  * CPU1                  CPU2
1959  *
1960  * sys_select            receive packet
1961  *   ...                 ...
1962  *   __add_wait_queue    update tp->rcv_nxt
1963  *   ...                 ...
1964  *   tp->rcv_nxt check   sock_def_readable
1965  *   ...                 {
1966  *   schedule               rcu_read_lock();
1967  *                          wq = rcu_dereference(sk->sk_wq);
1968  *                          if (wq && waitqueue_active(&wq->wait))
1969  *                              wake_up_interruptible(&wq->wait)
1970  *                          ...
1971  *                       }
1972  *
1973  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1974  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1975  * could then endup calling schedule and sleep forever if there are no more
1976  * data on the socket.
1977  *
1978  */
1979 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1980 {
1981 	return wq && wq_has_sleeper(&wq->wait);
1982 }
1983 
1984 /**
1985  * sock_poll_wait - place memory barrier behind the poll_wait call.
1986  * @filp:           file
1987  * @wait_address:   socket wait queue
1988  * @p:              poll_table
1989  *
1990  * See the comments in the wq_has_sleeper function.
1991  */
1992 static inline void sock_poll_wait(struct file *filp,
1993 		wait_queue_head_t *wait_address, poll_table *p)
1994 {
1995 	if (!poll_does_not_wait(p) && wait_address) {
1996 		poll_wait(filp, wait_address, p);
1997 		/* We need to be sure we are in sync with the
1998 		 * socket flags modification.
1999 		 *
2000 		 * This memory barrier is paired in the wq_has_sleeper.
2001 		 */
2002 		smp_mb();
2003 	}
2004 }
2005 
2006 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2007 {
2008 	if (sk->sk_txhash) {
2009 		skb->l4_hash = 1;
2010 		skb->hash = sk->sk_txhash;
2011 	}
2012 }
2013 
2014 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2015 
2016 /*
2017  *	Queue a received datagram if it will fit. Stream and sequenced
2018  *	protocols can't normally use this as they need to fit buffers in
2019  *	and play with them.
2020  *
2021  *	Inlined as it's very short and called for pretty much every
2022  *	packet ever received.
2023  */
2024 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2025 {
2026 	skb_orphan(skb);
2027 	skb->sk = sk;
2028 	skb->destructor = sock_rfree;
2029 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2030 	sk_mem_charge(sk, skb->truesize);
2031 }
2032 
2033 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2034 		    unsigned long expires);
2035 
2036 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2037 
2038 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
2039 			unsigned int flags,
2040 			void (*destructor)(struct sock *sk,
2041 					   struct sk_buff *skb));
2042 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2043 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2044 
2045 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2046 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2047 
2048 /*
2049  *	Recover an error report and clear atomically
2050  */
2051 
2052 static inline int sock_error(struct sock *sk)
2053 {
2054 	int err;
2055 	if (likely(!sk->sk_err))
2056 		return 0;
2057 	err = xchg(&sk->sk_err, 0);
2058 	return -err;
2059 }
2060 
2061 static inline unsigned long sock_wspace(struct sock *sk)
2062 {
2063 	int amt = 0;
2064 
2065 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2066 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2067 		if (amt < 0)
2068 			amt = 0;
2069 	}
2070 	return amt;
2071 }
2072 
2073 /* Note:
2074  *  We use sk->sk_wq_raw, from contexts knowing this
2075  *  pointer is not NULL and cannot disappear/change.
2076  */
2077 static inline void sk_set_bit(int nr, struct sock *sk)
2078 {
2079 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2080 	    !sock_flag(sk, SOCK_FASYNC))
2081 		return;
2082 
2083 	set_bit(nr, &sk->sk_wq_raw->flags);
2084 }
2085 
2086 static inline void sk_clear_bit(int nr, struct sock *sk)
2087 {
2088 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2089 	    !sock_flag(sk, SOCK_FASYNC))
2090 		return;
2091 
2092 	clear_bit(nr, &sk->sk_wq_raw->flags);
2093 }
2094 
2095 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2096 {
2097 	if (sock_flag(sk, SOCK_FASYNC)) {
2098 		rcu_read_lock();
2099 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2100 		rcu_read_unlock();
2101 	}
2102 }
2103 
2104 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2105  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2106  * Note: for send buffers, TCP works better if we can build two skbs at
2107  * minimum.
2108  */
2109 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2110 
2111 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2112 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2113 
2114 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2115 {
2116 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2117 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2118 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2119 	}
2120 }
2121 
2122 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2123 				    bool force_schedule);
2124 
2125 /**
2126  * sk_page_frag - return an appropriate page_frag
2127  * @sk: socket
2128  *
2129  * If socket allocation mode allows current thread to sleep, it means its
2130  * safe to use the per task page_frag instead of the per socket one.
2131  */
2132 static inline struct page_frag *sk_page_frag(struct sock *sk)
2133 {
2134 	if (gfpflags_allow_blocking(sk->sk_allocation))
2135 		return &current->task_frag;
2136 
2137 	return &sk->sk_frag;
2138 }
2139 
2140 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2141 
2142 /*
2143  *	Default write policy as shown to user space via poll/select/SIGIO
2144  */
2145 static inline bool sock_writeable(const struct sock *sk)
2146 {
2147 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2148 }
2149 
2150 static inline gfp_t gfp_any(void)
2151 {
2152 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2153 }
2154 
2155 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2156 {
2157 	return noblock ? 0 : sk->sk_rcvtimeo;
2158 }
2159 
2160 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2161 {
2162 	return noblock ? 0 : sk->sk_sndtimeo;
2163 }
2164 
2165 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2166 {
2167 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2168 }
2169 
2170 /* Alas, with timeout socket operations are not restartable.
2171  * Compare this to poll().
2172  */
2173 static inline int sock_intr_errno(long timeo)
2174 {
2175 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2176 }
2177 
2178 struct sock_skb_cb {
2179 	u32 dropcount;
2180 };
2181 
2182 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2183  * using skb->cb[] would keep using it directly and utilize its
2184  * alignement guarantee.
2185  */
2186 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2187 			    sizeof(struct sock_skb_cb)))
2188 
2189 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2190 			    SOCK_SKB_CB_OFFSET))
2191 
2192 #define sock_skb_cb_check_size(size) \
2193 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2194 
2195 static inline void
2196 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2197 {
2198 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2199 						atomic_read(&sk->sk_drops) : 0;
2200 }
2201 
2202 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2203 {
2204 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2205 
2206 	atomic_add(segs, &sk->sk_drops);
2207 }
2208 
2209 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2210 			   struct sk_buff *skb);
2211 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2212 			     struct sk_buff *skb);
2213 
2214 static inline void
2215 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2216 {
2217 	ktime_t kt = skb->tstamp;
2218 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2219 
2220 	/*
2221 	 * generate control messages if
2222 	 * - receive time stamping in software requested
2223 	 * - software time stamp available and wanted
2224 	 * - hardware time stamps available and wanted
2225 	 */
2226 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2227 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2228 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2229 	    (hwtstamps->hwtstamp &&
2230 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2231 		__sock_recv_timestamp(msg, sk, skb);
2232 	else
2233 		sk->sk_stamp = kt;
2234 
2235 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2236 		__sock_recv_wifi_status(msg, sk, skb);
2237 }
2238 
2239 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2240 			      struct sk_buff *skb);
2241 
2242 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2243 					  struct sk_buff *skb)
2244 {
2245 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2246 			   (1UL << SOCK_RCVTSTAMP))
2247 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2248 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2249 
2250 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2251 		__sock_recv_ts_and_drops(msg, sk, skb);
2252 	else
2253 		sk->sk_stamp = skb->tstamp;
2254 }
2255 
2256 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2257 
2258 /**
2259  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2260  * @sk:		socket sending this packet
2261  * @tsflags:	timestamping flags to use
2262  * @tx_flags:	completed with instructions for time stamping
2263  *
2264  * Note : callers should take care of initial *tx_flags value (usually 0)
2265  */
2266 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2267 				     __u8 *tx_flags)
2268 {
2269 	if (unlikely(tsflags))
2270 		__sock_tx_timestamp(tsflags, tx_flags);
2271 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2272 		*tx_flags |= SKBTX_WIFI_STATUS;
2273 }
2274 
2275 /**
2276  * sk_eat_skb - Release a skb if it is no longer needed
2277  * @sk: socket to eat this skb from
2278  * @skb: socket buffer to eat
2279  *
2280  * This routine must be called with interrupts disabled or with the socket
2281  * locked so that the sk_buff queue operation is ok.
2282 */
2283 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2284 {
2285 	__skb_unlink(skb, &sk->sk_receive_queue);
2286 	__kfree_skb(skb);
2287 }
2288 
2289 static inline
2290 struct net *sock_net(const struct sock *sk)
2291 {
2292 	return read_pnet(&sk->sk_net);
2293 }
2294 
2295 static inline
2296 void sock_net_set(struct sock *sk, struct net *net)
2297 {
2298 	write_pnet(&sk->sk_net, net);
2299 }
2300 
2301 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2302 {
2303 	if (skb->sk) {
2304 		struct sock *sk = skb->sk;
2305 
2306 		skb->destructor = NULL;
2307 		skb->sk = NULL;
2308 		return sk;
2309 	}
2310 	return NULL;
2311 }
2312 
2313 /* This helper checks if a socket is a full socket,
2314  * ie _not_ a timewait or request socket.
2315  */
2316 static inline bool sk_fullsock(const struct sock *sk)
2317 {
2318 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2319 }
2320 
2321 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2322  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2323  */
2324 static inline bool sk_listener(const struct sock *sk)
2325 {
2326 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2327 }
2328 
2329 /**
2330  * sk_state_load - read sk->sk_state for lockless contexts
2331  * @sk: socket pointer
2332  *
2333  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2334  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2335  */
2336 static inline int sk_state_load(const struct sock *sk)
2337 {
2338 	return smp_load_acquire(&sk->sk_state);
2339 }
2340 
2341 /**
2342  * sk_state_store - update sk->sk_state
2343  * @sk: socket pointer
2344  * @newstate: new state
2345  *
2346  * Paired with sk_state_load(). Should be used in contexts where
2347  * state change might impact lockless readers.
2348  */
2349 static inline void sk_state_store(struct sock *sk, int newstate)
2350 {
2351 	smp_store_release(&sk->sk_state, newstate);
2352 }
2353 
2354 void sock_enable_timestamp(struct sock *sk, int flag);
2355 int sock_get_timestamp(struct sock *, struct timeval __user *);
2356 int sock_get_timestampns(struct sock *, struct timespec __user *);
2357 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2358 		       int type);
2359 
2360 bool sk_ns_capable(const struct sock *sk,
2361 		   struct user_namespace *user_ns, int cap);
2362 bool sk_capable(const struct sock *sk, int cap);
2363 bool sk_net_capable(const struct sock *sk, int cap);
2364 
2365 extern __u32 sysctl_wmem_max;
2366 extern __u32 sysctl_rmem_max;
2367 
2368 extern int sysctl_tstamp_allow_data;
2369 extern int sysctl_optmem_max;
2370 
2371 extern __u32 sysctl_wmem_default;
2372 extern __u32 sysctl_rmem_default;
2373 
2374 #endif	/* _SOCK_H */
2375