xref: /openbmc/linux/include/net/sock.h (revision cdfce539)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 	return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88  * This structure really needs to be cleaned up.
89  * Most of it is for TCP, and not used by any of
90  * the other protocols.
91  */
92 
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 					printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105 
106 /* This is the per-socket lock.  The spinlock provides a synchronization
107  * between user contexts and software interrupt processing, whereas the
108  * mini-semaphore synchronizes multiple users amongst themselves.
109  */
110 typedef struct {
111 	spinlock_t		slock;
112 	int			owned;
113 	wait_queue_head_t	wq;
114 	/*
115 	 * We express the mutex-alike socket_lock semantics
116 	 * to the lock validator by explicitly managing
117 	 * the slock as a lock variant (in addition to
118 	 * the slock itself):
119 	 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 	struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124 
125 struct sock;
126 struct proto;
127 struct net;
128 
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131 
132 /**
133  *	struct sock_common - minimal network layer representation of sockets
134  *	@skc_daddr: Foreign IPv4 addr
135  *	@skc_rcv_saddr: Bound local IPv4 addr
136  *	@skc_hash: hash value used with various protocol lookup tables
137  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
138  *	@skc_dport: placeholder for inet_dport/tw_dport
139  *	@skc_num: placeholder for inet_num/tw_num
140  *	@skc_family: network address family
141  *	@skc_state: Connection state
142  *	@skc_reuse: %SO_REUSEADDR setting
143  *	@skc_reuseport: %SO_REUSEPORT setting
144  *	@skc_bound_dev_if: bound device index if != 0
145  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
146  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147  *	@skc_prot: protocol handlers inside a network family
148  *	@skc_net: reference to the network namespace of this socket
149  *	@skc_node: main hash linkage for various protocol lookup tables
150  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151  *	@skc_tx_queue_mapping: tx queue number for this connection
152  *	@skc_refcnt: reference count
153  *
154  *	This is the minimal network layer representation of sockets, the header
155  *	for struct sock and struct inet_timewait_sock.
156  */
157 struct sock_common {
158 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 	 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
160 	 */
161 	union {
162 		__addrpair	skc_addrpair;
163 		struct {
164 			__be32	skc_daddr;
165 			__be32	skc_rcv_saddr;
166 		};
167 	};
168 	union  {
169 		unsigned int	skc_hash;
170 		__u16		skc_u16hashes[2];
171 	};
172 	/* skc_dport && skc_num must be grouped as well */
173 	union {
174 		__portpair	skc_portpair;
175 		struct {
176 			__be16	skc_dport;
177 			__u16	skc_num;
178 		};
179 	};
180 
181 	unsigned short		skc_family;
182 	volatile unsigned char	skc_state;
183 	unsigned char		skc_reuse:4;
184 	unsigned char		skc_reuseport:4;
185 	int			skc_bound_dev_if;
186 	union {
187 		struct hlist_node	skc_bind_node;
188 		struct hlist_nulls_node skc_portaddr_node;
189 	};
190 	struct proto		*skc_prot;
191 #ifdef CONFIG_NET_NS
192 	struct net	 	*skc_net;
193 #endif
194 	/*
195 	 * fields between dontcopy_begin/dontcopy_end
196 	 * are not copied in sock_copy()
197 	 */
198 	/* private: */
199 	int			skc_dontcopy_begin[0];
200 	/* public: */
201 	union {
202 		struct hlist_node	skc_node;
203 		struct hlist_nulls_node skc_nulls_node;
204 	};
205 	int			skc_tx_queue_mapping;
206 	atomic_t		skc_refcnt;
207 	/* private: */
208 	int                     skc_dontcopy_end[0];
209 	/* public: */
210 };
211 
212 struct cg_proto;
213 /**
214   *	struct sock - network layer representation of sockets
215   *	@__sk_common: shared layout with inet_timewait_sock
216   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
217   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
218   *	@sk_lock:	synchronizer
219   *	@sk_rcvbuf: size of receive buffer in bytes
220   *	@sk_wq: sock wait queue and async head
221   *	@sk_rx_dst: receive input route used by early tcp demux
222   *	@sk_dst_cache: destination cache
223   *	@sk_dst_lock: destination cache lock
224   *	@sk_policy: flow policy
225   *	@sk_receive_queue: incoming packets
226   *	@sk_wmem_alloc: transmit queue bytes committed
227   *	@sk_write_queue: Packet sending queue
228   *	@sk_async_wait_queue: DMA copied packets
229   *	@sk_omem_alloc: "o" is "option" or "other"
230   *	@sk_wmem_queued: persistent queue size
231   *	@sk_forward_alloc: space allocated forward
232   *	@sk_allocation: allocation mode
233   *	@sk_sndbuf: size of send buffer in bytes
234   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
235   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
236   *	@sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
237   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
238   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
239   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
240   *	@sk_gso_max_size: Maximum GSO segment size to build
241   *	@sk_gso_max_segs: Maximum number of GSO segments
242   *	@sk_lingertime: %SO_LINGER l_linger setting
243   *	@sk_backlog: always used with the per-socket spinlock held
244   *	@sk_callback_lock: used with the callbacks in the end of this struct
245   *	@sk_error_queue: rarely used
246   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
247   *			  IPV6_ADDRFORM for instance)
248   *	@sk_err: last error
249   *	@sk_err_soft: errors that don't cause failure but are the cause of a
250   *		      persistent failure not just 'timed out'
251   *	@sk_drops: raw/udp drops counter
252   *	@sk_ack_backlog: current listen backlog
253   *	@sk_max_ack_backlog: listen backlog set in listen()
254   *	@sk_priority: %SO_PRIORITY setting
255   *	@sk_cgrp_prioidx: socket group's priority map index
256   *	@sk_type: socket type (%SOCK_STREAM, etc)
257   *	@sk_protocol: which protocol this socket belongs in this network family
258   *	@sk_peer_pid: &struct pid for this socket's peer
259   *	@sk_peer_cred: %SO_PEERCRED setting
260   *	@sk_rcvlowat: %SO_RCVLOWAT setting
261   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
262   *	@sk_sndtimeo: %SO_SNDTIMEO setting
263   *	@sk_rxhash: flow hash received from netif layer
264   *	@sk_filter: socket filtering instructions
265   *	@sk_protinfo: private area, net family specific, when not using slab
266   *	@sk_timer: sock cleanup timer
267   *	@sk_stamp: time stamp of last packet received
268   *	@sk_socket: Identd and reporting IO signals
269   *	@sk_user_data: RPC layer private data
270   *	@sk_frag: cached page frag
271   *	@sk_peek_off: current peek_offset value
272   *	@sk_send_head: front of stuff to transmit
273   *	@sk_security: used by security modules
274   *	@sk_mark: generic packet mark
275   *	@sk_classid: this socket's cgroup classid
276   *	@sk_cgrp: this socket's cgroup-specific proto data
277   *	@sk_write_pending: a write to stream socket waits to start
278   *	@sk_state_change: callback to indicate change in the state of the sock
279   *	@sk_data_ready: callback to indicate there is data to be processed
280   *	@sk_write_space: callback to indicate there is bf sending space available
281   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
282   *	@sk_backlog_rcv: callback to process the backlog
283   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
284  */
285 struct sock {
286 	/*
287 	 * Now struct inet_timewait_sock also uses sock_common, so please just
288 	 * don't add nothing before this first member (__sk_common) --acme
289 	 */
290 	struct sock_common	__sk_common;
291 #define sk_node			__sk_common.skc_node
292 #define sk_nulls_node		__sk_common.skc_nulls_node
293 #define sk_refcnt		__sk_common.skc_refcnt
294 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
295 
296 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
297 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
298 #define sk_hash			__sk_common.skc_hash
299 #define sk_family		__sk_common.skc_family
300 #define sk_state		__sk_common.skc_state
301 #define sk_reuse		__sk_common.skc_reuse
302 #define sk_reuseport		__sk_common.skc_reuseport
303 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
304 #define sk_bind_node		__sk_common.skc_bind_node
305 #define sk_prot			__sk_common.skc_prot
306 #define sk_net			__sk_common.skc_net
307 	socket_lock_t		sk_lock;
308 	struct sk_buff_head	sk_receive_queue;
309 	/*
310 	 * The backlog queue is special, it is always used with
311 	 * the per-socket spinlock held and requires low latency
312 	 * access. Therefore we special case it's implementation.
313 	 * Note : rmem_alloc is in this structure to fill a hole
314 	 * on 64bit arches, not because its logically part of
315 	 * backlog.
316 	 */
317 	struct {
318 		atomic_t	rmem_alloc;
319 		int		len;
320 		struct sk_buff	*head;
321 		struct sk_buff	*tail;
322 	} sk_backlog;
323 #define sk_rmem_alloc sk_backlog.rmem_alloc
324 	int			sk_forward_alloc;
325 #ifdef CONFIG_RPS
326 	__u32			sk_rxhash;
327 #endif
328 	atomic_t		sk_drops;
329 	int			sk_rcvbuf;
330 
331 	struct sk_filter __rcu	*sk_filter;
332 	struct socket_wq __rcu	*sk_wq;
333 
334 #ifdef CONFIG_NET_DMA
335 	struct sk_buff_head	sk_async_wait_queue;
336 #endif
337 
338 #ifdef CONFIG_XFRM
339 	struct xfrm_policy	*sk_policy[2];
340 #endif
341 	unsigned long 		sk_flags;
342 	struct dst_entry	*sk_rx_dst;
343 	struct dst_entry __rcu	*sk_dst_cache;
344 	spinlock_t		sk_dst_lock;
345 	atomic_t		sk_wmem_alloc;
346 	atomic_t		sk_omem_alloc;
347 	int			sk_sndbuf;
348 	struct sk_buff_head	sk_write_queue;
349 	kmemcheck_bitfield_begin(flags);
350 	unsigned int		sk_shutdown  : 2,
351 				sk_no_check  : 2,
352 				sk_userlocks : 4,
353 				sk_protocol  : 8,
354 				sk_type      : 16;
355 	kmemcheck_bitfield_end(flags);
356 	int			sk_wmem_queued;
357 	gfp_t			sk_allocation;
358 	netdev_features_t	sk_route_caps;
359 	netdev_features_t	sk_route_nocaps;
360 	int			sk_gso_type;
361 	unsigned int		sk_gso_max_size;
362 	u16			sk_gso_max_segs;
363 	int			sk_rcvlowat;
364 	unsigned long	        sk_lingertime;
365 	struct sk_buff_head	sk_error_queue;
366 	struct proto		*sk_prot_creator;
367 	rwlock_t		sk_callback_lock;
368 	int			sk_err,
369 				sk_err_soft;
370 	unsigned short		sk_ack_backlog;
371 	unsigned short		sk_max_ack_backlog;
372 	__u32			sk_priority;
373 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
374 	__u32			sk_cgrp_prioidx;
375 #endif
376 	struct pid		*sk_peer_pid;
377 	const struct cred	*sk_peer_cred;
378 	long			sk_rcvtimeo;
379 	long			sk_sndtimeo;
380 	void			*sk_protinfo;
381 	struct timer_list	sk_timer;
382 	ktime_t			sk_stamp;
383 	struct socket		*sk_socket;
384 	void			*sk_user_data;
385 	struct page_frag	sk_frag;
386 	struct sk_buff		*sk_send_head;
387 	__s32			sk_peek_off;
388 	int			sk_write_pending;
389 #ifdef CONFIG_SECURITY
390 	void			*sk_security;
391 #endif
392 	__u32			sk_mark;
393 	u32			sk_classid;
394 	struct cg_proto		*sk_cgrp;
395 	void			(*sk_state_change)(struct sock *sk);
396 	void			(*sk_data_ready)(struct sock *sk, int bytes);
397 	void			(*sk_write_space)(struct sock *sk);
398 	void			(*sk_error_report)(struct sock *sk);
399 	int			(*sk_backlog_rcv)(struct sock *sk,
400 						  struct sk_buff *skb);
401 	void                    (*sk_destruct)(struct sock *sk);
402 };
403 
404 /*
405  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
406  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
407  * on a socket means that the socket will reuse everybody else's port
408  * without looking at the other's sk_reuse value.
409  */
410 
411 #define SK_NO_REUSE	0
412 #define SK_CAN_REUSE	1
413 #define SK_FORCE_REUSE	2
414 
415 static inline int sk_peek_offset(struct sock *sk, int flags)
416 {
417 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
418 		return sk->sk_peek_off;
419 	else
420 		return 0;
421 }
422 
423 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
424 {
425 	if (sk->sk_peek_off >= 0) {
426 		if (sk->sk_peek_off >= val)
427 			sk->sk_peek_off -= val;
428 		else
429 			sk->sk_peek_off = 0;
430 	}
431 }
432 
433 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
434 {
435 	if (sk->sk_peek_off >= 0)
436 		sk->sk_peek_off += val;
437 }
438 
439 /*
440  * Hashed lists helper routines
441  */
442 static inline struct sock *sk_entry(const struct hlist_node *node)
443 {
444 	return hlist_entry(node, struct sock, sk_node);
445 }
446 
447 static inline struct sock *__sk_head(const struct hlist_head *head)
448 {
449 	return hlist_entry(head->first, struct sock, sk_node);
450 }
451 
452 static inline struct sock *sk_head(const struct hlist_head *head)
453 {
454 	return hlist_empty(head) ? NULL : __sk_head(head);
455 }
456 
457 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
458 {
459 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
460 }
461 
462 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
463 {
464 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
465 }
466 
467 static inline struct sock *sk_next(const struct sock *sk)
468 {
469 	return sk->sk_node.next ?
470 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
471 }
472 
473 static inline struct sock *sk_nulls_next(const struct sock *sk)
474 {
475 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
476 		hlist_nulls_entry(sk->sk_nulls_node.next,
477 				  struct sock, sk_nulls_node) :
478 		NULL;
479 }
480 
481 static inline bool sk_unhashed(const struct sock *sk)
482 {
483 	return hlist_unhashed(&sk->sk_node);
484 }
485 
486 static inline bool sk_hashed(const struct sock *sk)
487 {
488 	return !sk_unhashed(sk);
489 }
490 
491 static inline void sk_node_init(struct hlist_node *node)
492 {
493 	node->pprev = NULL;
494 }
495 
496 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
497 {
498 	node->pprev = NULL;
499 }
500 
501 static inline void __sk_del_node(struct sock *sk)
502 {
503 	__hlist_del(&sk->sk_node);
504 }
505 
506 /* NB: equivalent to hlist_del_init_rcu */
507 static inline bool __sk_del_node_init(struct sock *sk)
508 {
509 	if (sk_hashed(sk)) {
510 		__sk_del_node(sk);
511 		sk_node_init(&sk->sk_node);
512 		return true;
513 	}
514 	return false;
515 }
516 
517 /* Grab socket reference count. This operation is valid only
518    when sk is ALREADY grabbed f.e. it is found in hash table
519    or a list and the lookup is made under lock preventing hash table
520    modifications.
521  */
522 
523 static inline void sock_hold(struct sock *sk)
524 {
525 	atomic_inc(&sk->sk_refcnt);
526 }
527 
528 /* Ungrab socket in the context, which assumes that socket refcnt
529    cannot hit zero, f.e. it is true in context of any socketcall.
530  */
531 static inline void __sock_put(struct sock *sk)
532 {
533 	atomic_dec(&sk->sk_refcnt);
534 }
535 
536 static inline bool sk_del_node_init(struct sock *sk)
537 {
538 	bool rc = __sk_del_node_init(sk);
539 
540 	if (rc) {
541 		/* paranoid for a while -acme */
542 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
543 		__sock_put(sk);
544 	}
545 	return rc;
546 }
547 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
548 
549 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
550 {
551 	if (sk_hashed(sk)) {
552 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
553 		return true;
554 	}
555 	return false;
556 }
557 
558 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
559 {
560 	bool rc = __sk_nulls_del_node_init_rcu(sk);
561 
562 	if (rc) {
563 		/* paranoid for a while -acme */
564 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
565 		__sock_put(sk);
566 	}
567 	return rc;
568 }
569 
570 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
571 {
572 	hlist_add_head(&sk->sk_node, list);
573 }
574 
575 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
576 {
577 	sock_hold(sk);
578 	__sk_add_node(sk, list);
579 }
580 
581 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
582 {
583 	sock_hold(sk);
584 	hlist_add_head_rcu(&sk->sk_node, list);
585 }
586 
587 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
588 {
589 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
590 }
591 
592 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
593 {
594 	sock_hold(sk);
595 	__sk_nulls_add_node_rcu(sk, list);
596 }
597 
598 static inline void __sk_del_bind_node(struct sock *sk)
599 {
600 	__hlist_del(&sk->sk_bind_node);
601 }
602 
603 static inline void sk_add_bind_node(struct sock *sk,
604 					struct hlist_head *list)
605 {
606 	hlist_add_head(&sk->sk_bind_node, list);
607 }
608 
609 #define sk_for_each(__sk, list) \
610 	hlist_for_each_entry(__sk, list, sk_node)
611 #define sk_for_each_rcu(__sk, list) \
612 	hlist_for_each_entry_rcu(__sk, list, sk_node)
613 #define sk_nulls_for_each(__sk, node, list) \
614 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
615 #define sk_nulls_for_each_rcu(__sk, node, list) \
616 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
617 #define sk_for_each_from(__sk) \
618 	hlist_for_each_entry_from(__sk, sk_node)
619 #define sk_nulls_for_each_from(__sk, node) \
620 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
621 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
622 #define sk_for_each_safe(__sk, tmp, list) \
623 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
624 #define sk_for_each_bound(__sk, list) \
625 	hlist_for_each_entry(__sk, list, sk_bind_node)
626 
627 static inline struct user_namespace *sk_user_ns(struct sock *sk)
628 {
629 	/* Careful only use this in a context where these parameters
630 	 * can not change and must all be valid, such as recvmsg from
631 	 * userspace.
632 	 */
633 	return sk->sk_socket->file->f_cred->user_ns;
634 }
635 
636 /* Sock flags */
637 enum sock_flags {
638 	SOCK_DEAD,
639 	SOCK_DONE,
640 	SOCK_URGINLINE,
641 	SOCK_KEEPOPEN,
642 	SOCK_LINGER,
643 	SOCK_DESTROY,
644 	SOCK_BROADCAST,
645 	SOCK_TIMESTAMP,
646 	SOCK_ZAPPED,
647 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
648 	SOCK_DBG, /* %SO_DEBUG setting */
649 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
650 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
651 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
652 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
653 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
654 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
655 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
656 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
657 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
658 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
659 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
660 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
661 	SOCK_FASYNC, /* fasync() active */
662 	SOCK_RXQ_OVFL,
663 	SOCK_ZEROCOPY, /* buffers from userspace */
664 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
665 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
666 		     * Will use last 4 bytes of packet sent from
667 		     * user-space instead.
668 		     */
669 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
670 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
671 };
672 
673 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
674 {
675 	nsk->sk_flags = osk->sk_flags;
676 }
677 
678 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
679 {
680 	__set_bit(flag, &sk->sk_flags);
681 }
682 
683 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
684 {
685 	__clear_bit(flag, &sk->sk_flags);
686 }
687 
688 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
689 {
690 	return test_bit(flag, &sk->sk_flags);
691 }
692 
693 #ifdef CONFIG_NET
694 extern struct static_key memalloc_socks;
695 static inline int sk_memalloc_socks(void)
696 {
697 	return static_key_false(&memalloc_socks);
698 }
699 #else
700 
701 static inline int sk_memalloc_socks(void)
702 {
703 	return 0;
704 }
705 
706 #endif
707 
708 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
709 {
710 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
711 }
712 
713 static inline void sk_acceptq_removed(struct sock *sk)
714 {
715 	sk->sk_ack_backlog--;
716 }
717 
718 static inline void sk_acceptq_added(struct sock *sk)
719 {
720 	sk->sk_ack_backlog++;
721 }
722 
723 static inline bool sk_acceptq_is_full(const struct sock *sk)
724 {
725 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
726 }
727 
728 /*
729  * Compute minimal free write space needed to queue new packets.
730  */
731 static inline int sk_stream_min_wspace(const struct sock *sk)
732 {
733 	return sk->sk_wmem_queued >> 1;
734 }
735 
736 static inline int sk_stream_wspace(const struct sock *sk)
737 {
738 	return sk->sk_sndbuf - sk->sk_wmem_queued;
739 }
740 
741 extern void sk_stream_write_space(struct sock *sk);
742 
743 static inline bool sk_stream_memory_free(const struct sock *sk)
744 {
745 	return sk->sk_wmem_queued < sk->sk_sndbuf;
746 }
747 
748 /* OOB backlog add */
749 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
750 {
751 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
752 	skb_dst_force(skb);
753 
754 	if (!sk->sk_backlog.tail)
755 		sk->sk_backlog.head = skb;
756 	else
757 		sk->sk_backlog.tail->next = skb;
758 
759 	sk->sk_backlog.tail = skb;
760 	skb->next = NULL;
761 }
762 
763 /*
764  * Take into account size of receive queue and backlog queue
765  * Do not take into account this skb truesize,
766  * to allow even a single big packet to come.
767  */
768 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
769 				     unsigned int limit)
770 {
771 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
772 
773 	return qsize > limit;
774 }
775 
776 /* The per-socket spinlock must be held here. */
777 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
778 					      unsigned int limit)
779 {
780 	if (sk_rcvqueues_full(sk, skb, limit))
781 		return -ENOBUFS;
782 
783 	__sk_add_backlog(sk, skb);
784 	sk->sk_backlog.len += skb->truesize;
785 	return 0;
786 }
787 
788 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
789 
790 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
791 {
792 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
793 		return __sk_backlog_rcv(sk, skb);
794 
795 	return sk->sk_backlog_rcv(sk, skb);
796 }
797 
798 static inline void sock_rps_record_flow(const struct sock *sk)
799 {
800 #ifdef CONFIG_RPS
801 	struct rps_sock_flow_table *sock_flow_table;
802 
803 	rcu_read_lock();
804 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
805 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
806 	rcu_read_unlock();
807 #endif
808 }
809 
810 static inline void sock_rps_reset_flow(const struct sock *sk)
811 {
812 #ifdef CONFIG_RPS
813 	struct rps_sock_flow_table *sock_flow_table;
814 
815 	rcu_read_lock();
816 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
817 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
818 	rcu_read_unlock();
819 #endif
820 }
821 
822 static inline void sock_rps_save_rxhash(struct sock *sk,
823 					const struct sk_buff *skb)
824 {
825 #ifdef CONFIG_RPS
826 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
827 		sock_rps_reset_flow(sk);
828 		sk->sk_rxhash = skb->rxhash;
829 	}
830 #endif
831 }
832 
833 static inline void sock_rps_reset_rxhash(struct sock *sk)
834 {
835 #ifdef CONFIG_RPS
836 	sock_rps_reset_flow(sk);
837 	sk->sk_rxhash = 0;
838 #endif
839 }
840 
841 #define sk_wait_event(__sk, __timeo, __condition)			\
842 	({	int __rc;						\
843 		release_sock(__sk);					\
844 		__rc = __condition;					\
845 		if (!__rc) {						\
846 			*(__timeo) = schedule_timeout(*(__timeo));	\
847 		}							\
848 		lock_sock(__sk);					\
849 		__rc = __condition;					\
850 		__rc;							\
851 	})
852 
853 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
854 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
855 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
856 extern int sk_stream_error(struct sock *sk, int flags, int err);
857 extern void sk_stream_kill_queues(struct sock *sk);
858 extern void sk_set_memalloc(struct sock *sk);
859 extern void sk_clear_memalloc(struct sock *sk);
860 
861 extern int sk_wait_data(struct sock *sk, long *timeo);
862 
863 struct request_sock_ops;
864 struct timewait_sock_ops;
865 struct inet_hashinfo;
866 struct raw_hashinfo;
867 struct module;
868 
869 /*
870  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
871  * un-modified. Special care is taken when initializing object to zero.
872  */
873 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
874 {
875 	if (offsetof(struct sock, sk_node.next) != 0)
876 		memset(sk, 0, offsetof(struct sock, sk_node.next));
877 	memset(&sk->sk_node.pprev, 0,
878 	       size - offsetof(struct sock, sk_node.pprev));
879 }
880 
881 /* Networking protocol blocks we attach to sockets.
882  * socket layer -> transport layer interface
883  * transport -> network interface is defined by struct inet_proto
884  */
885 struct proto {
886 	void			(*close)(struct sock *sk,
887 					long timeout);
888 	int			(*connect)(struct sock *sk,
889 					struct sockaddr *uaddr,
890 					int addr_len);
891 	int			(*disconnect)(struct sock *sk, int flags);
892 
893 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
894 
895 	int			(*ioctl)(struct sock *sk, int cmd,
896 					 unsigned long arg);
897 	int			(*init)(struct sock *sk);
898 	void			(*destroy)(struct sock *sk);
899 	void			(*shutdown)(struct sock *sk, int how);
900 	int			(*setsockopt)(struct sock *sk, int level,
901 					int optname, char __user *optval,
902 					unsigned int optlen);
903 	int			(*getsockopt)(struct sock *sk, int level,
904 					int optname, char __user *optval,
905 					int __user *option);
906 #ifdef CONFIG_COMPAT
907 	int			(*compat_setsockopt)(struct sock *sk,
908 					int level,
909 					int optname, char __user *optval,
910 					unsigned int optlen);
911 	int			(*compat_getsockopt)(struct sock *sk,
912 					int level,
913 					int optname, char __user *optval,
914 					int __user *option);
915 	int			(*compat_ioctl)(struct sock *sk,
916 					unsigned int cmd, unsigned long arg);
917 #endif
918 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
919 					   struct msghdr *msg, size_t len);
920 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
921 					   struct msghdr *msg,
922 					   size_t len, int noblock, int flags,
923 					   int *addr_len);
924 	int			(*sendpage)(struct sock *sk, struct page *page,
925 					int offset, size_t size, int flags);
926 	int			(*bind)(struct sock *sk,
927 					struct sockaddr *uaddr, int addr_len);
928 
929 	int			(*backlog_rcv) (struct sock *sk,
930 						struct sk_buff *skb);
931 
932 	void		(*release_cb)(struct sock *sk);
933 	void		(*mtu_reduced)(struct sock *sk);
934 
935 	/* Keeping track of sk's, looking them up, and port selection methods. */
936 	void			(*hash)(struct sock *sk);
937 	void			(*unhash)(struct sock *sk);
938 	void			(*rehash)(struct sock *sk);
939 	int			(*get_port)(struct sock *sk, unsigned short snum);
940 	void			(*clear_sk)(struct sock *sk, int size);
941 
942 	/* Keeping track of sockets in use */
943 #ifdef CONFIG_PROC_FS
944 	unsigned int		inuse_idx;
945 #endif
946 
947 	/* Memory pressure */
948 	void			(*enter_memory_pressure)(struct sock *sk);
949 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
950 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
951 	/*
952 	 * Pressure flag: try to collapse.
953 	 * Technical note: it is used by multiple contexts non atomically.
954 	 * All the __sk_mem_schedule() is of this nature: accounting
955 	 * is strict, actions are advisory and have some latency.
956 	 */
957 	int			*memory_pressure;
958 	long			*sysctl_mem;
959 	int			*sysctl_wmem;
960 	int			*sysctl_rmem;
961 	int			max_header;
962 	bool			no_autobind;
963 
964 	struct kmem_cache	*slab;
965 	unsigned int		obj_size;
966 	int			slab_flags;
967 
968 	struct percpu_counter	*orphan_count;
969 
970 	struct request_sock_ops	*rsk_prot;
971 	struct timewait_sock_ops *twsk_prot;
972 
973 	union {
974 		struct inet_hashinfo	*hashinfo;
975 		struct udp_table	*udp_table;
976 		struct raw_hashinfo	*raw_hash;
977 	} h;
978 
979 	struct module		*owner;
980 
981 	char			name[32];
982 
983 	struct list_head	node;
984 #ifdef SOCK_REFCNT_DEBUG
985 	atomic_t		socks;
986 #endif
987 #ifdef CONFIG_MEMCG_KMEM
988 	/*
989 	 * cgroup specific init/deinit functions. Called once for all
990 	 * protocols that implement it, from cgroups populate function.
991 	 * This function has to setup any files the protocol want to
992 	 * appear in the kmem cgroup filesystem.
993 	 */
994 	int			(*init_cgroup)(struct mem_cgroup *memcg,
995 					       struct cgroup_subsys *ss);
996 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
997 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
998 #endif
999 };
1000 
1001 /*
1002  * Bits in struct cg_proto.flags
1003  */
1004 enum cg_proto_flags {
1005 	/* Currently active and new sockets should be assigned to cgroups */
1006 	MEMCG_SOCK_ACTIVE,
1007 	/* It was ever activated; we must disarm static keys on destruction */
1008 	MEMCG_SOCK_ACTIVATED,
1009 };
1010 
1011 struct cg_proto {
1012 	void			(*enter_memory_pressure)(struct sock *sk);
1013 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
1014 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1015 	int			*memory_pressure;
1016 	long			*sysctl_mem;
1017 	unsigned long		flags;
1018 	/*
1019 	 * memcg field is used to find which memcg we belong directly
1020 	 * Each memcg struct can hold more than one cg_proto, so container_of
1021 	 * won't really cut.
1022 	 *
1023 	 * The elegant solution would be having an inverse function to
1024 	 * proto_cgroup in struct proto, but that means polluting the structure
1025 	 * for everybody, instead of just for memcg users.
1026 	 */
1027 	struct mem_cgroup	*memcg;
1028 };
1029 
1030 extern int proto_register(struct proto *prot, int alloc_slab);
1031 extern void proto_unregister(struct proto *prot);
1032 
1033 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1034 {
1035 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1036 }
1037 
1038 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1039 {
1040 	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1041 }
1042 
1043 #ifdef SOCK_REFCNT_DEBUG
1044 static inline void sk_refcnt_debug_inc(struct sock *sk)
1045 {
1046 	atomic_inc(&sk->sk_prot->socks);
1047 }
1048 
1049 static inline void sk_refcnt_debug_dec(struct sock *sk)
1050 {
1051 	atomic_dec(&sk->sk_prot->socks);
1052 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1053 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1054 }
1055 
1056 static inline void sk_refcnt_debug_release(const struct sock *sk)
1057 {
1058 	if (atomic_read(&sk->sk_refcnt) != 1)
1059 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1060 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1061 }
1062 #else /* SOCK_REFCNT_DEBUG */
1063 #define sk_refcnt_debug_inc(sk) do { } while (0)
1064 #define sk_refcnt_debug_dec(sk) do { } while (0)
1065 #define sk_refcnt_debug_release(sk) do { } while (0)
1066 #endif /* SOCK_REFCNT_DEBUG */
1067 
1068 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1069 extern struct static_key memcg_socket_limit_enabled;
1070 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1071 					       struct cg_proto *cg_proto)
1072 {
1073 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1074 }
1075 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1076 #else
1077 #define mem_cgroup_sockets_enabled 0
1078 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1079 					       struct cg_proto *cg_proto)
1080 {
1081 	return NULL;
1082 }
1083 #endif
1084 
1085 
1086 static inline bool sk_has_memory_pressure(const struct sock *sk)
1087 {
1088 	return sk->sk_prot->memory_pressure != NULL;
1089 }
1090 
1091 static inline bool sk_under_memory_pressure(const struct sock *sk)
1092 {
1093 	if (!sk->sk_prot->memory_pressure)
1094 		return false;
1095 
1096 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1097 		return !!*sk->sk_cgrp->memory_pressure;
1098 
1099 	return !!*sk->sk_prot->memory_pressure;
1100 }
1101 
1102 static inline void sk_leave_memory_pressure(struct sock *sk)
1103 {
1104 	int *memory_pressure = sk->sk_prot->memory_pressure;
1105 
1106 	if (!memory_pressure)
1107 		return;
1108 
1109 	if (*memory_pressure)
1110 		*memory_pressure = 0;
1111 
1112 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1113 		struct cg_proto *cg_proto = sk->sk_cgrp;
1114 		struct proto *prot = sk->sk_prot;
1115 
1116 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1117 			if (*cg_proto->memory_pressure)
1118 				*cg_proto->memory_pressure = 0;
1119 	}
1120 
1121 }
1122 
1123 static inline void sk_enter_memory_pressure(struct sock *sk)
1124 {
1125 	if (!sk->sk_prot->enter_memory_pressure)
1126 		return;
1127 
1128 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1129 		struct cg_proto *cg_proto = sk->sk_cgrp;
1130 		struct proto *prot = sk->sk_prot;
1131 
1132 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1133 			cg_proto->enter_memory_pressure(sk);
1134 	}
1135 
1136 	sk->sk_prot->enter_memory_pressure(sk);
1137 }
1138 
1139 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1140 {
1141 	long *prot = sk->sk_prot->sysctl_mem;
1142 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1143 		prot = sk->sk_cgrp->sysctl_mem;
1144 	return prot[index];
1145 }
1146 
1147 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1148 					      unsigned long amt,
1149 					      int *parent_status)
1150 {
1151 	struct res_counter *fail;
1152 	int ret;
1153 
1154 	ret = res_counter_charge_nofail(prot->memory_allocated,
1155 					amt << PAGE_SHIFT, &fail);
1156 	if (ret < 0)
1157 		*parent_status = OVER_LIMIT;
1158 }
1159 
1160 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1161 					      unsigned long amt)
1162 {
1163 	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1164 }
1165 
1166 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1167 {
1168 	u64 ret;
1169 	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1170 	return ret >> PAGE_SHIFT;
1171 }
1172 
1173 static inline long
1174 sk_memory_allocated(const struct sock *sk)
1175 {
1176 	struct proto *prot = sk->sk_prot;
1177 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1178 		return memcg_memory_allocated_read(sk->sk_cgrp);
1179 
1180 	return atomic_long_read(prot->memory_allocated);
1181 }
1182 
1183 static inline long
1184 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1185 {
1186 	struct proto *prot = sk->sk_prot;
1187 
1188 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1189 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1190 		/* update the root cgroup regardless */
1191 		atomic_long_add_return(amt, prot->memory_allocated);
1192 		return memcg_memory_allocated_read(sk->sk_cgrp);
1193 	}
1194 
1195 	return atomic_long_add_return(amt, prot->memory_allocated);
1196 }
1197 
1198 static inline void
1199 sk_memory_allocated_sub(struct sock *sk, int amt)
1200 {
1201 	struct proto *prot = sk->sk_prot;
1202 
1203 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1204 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1205 
1206 	atomic_long_sub(amt, prot->memory_allocated);
1207 }
1208 
1209 static inline void sk_sockets_allocated_dec(struct sock *sk)
1210 {
1211 	struct proto *prot = sk->sk_prot;
1212 
1213 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1214 		struct cg_proto *cg_proto = sk->sk_cgrp;
1215 
1216 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1217 			percpu_counter_dec(cg_proto->sockets_allocated);
1218 	}
1219 
1220 	percpu_counter_dec(prot->sockets_allocated);
1221 }
1222 
1223 static inline void sk_sockets_allocated_inc(struct sock *sk)
1224 {
1225 	struct proto *prot = sk->sk_prot;
1226 
1227 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1228 		struct cg_proto *cg_proto = sk->sk_cgrp;
1229 
1230 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1231 			percpu_counter_inc(cg_proto->sockets_allocated);
1232 	}
1233 
1234 	percpu_counter_inc(prot->sockets_allocated);
1235 }
1236 
1237 static inline int
1238 sk_sockets_allocated_read_positive(struct sock *sk)
1239 {
1240 	struct proto *prot = sk->sk_prot;
1241 
1242 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1243 		return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1244 
1245 	return percpu_counter_read_positive(prot->sockets_allocated);
1246 }
1247 
1248 static inline int
1249 proto_sockets_allocated_sum_positive(struct proto *prot)
1250 {
1251 	return percpu_counter_sum_positive(prot->sockets_allocated);
1252 }
1253 
1254 static inline long
1255 proto_memory_allocated(struct proto *prot)
1256 {
1257 	return atomic_long_read(prot->memory_allocated);
1258 }
1259 
1260 static inline bool
1261 proto_memory_pressure(struct proto *prot)
1262 {
1263 	if (!prot->memory_pressure)
1264 		return false;
1265 	return !!*prot->memory_pressure;
1266 }
1267 
1268 
1269 #ifdef CONFIG_PROC_FS
1270 /* Called with local bh disabled */
1271 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1272 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1273 #else
1274 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1275 		int inc)
1276 {
1277 }
1278 #endif
1279 
1280 
1281 /* With per-bucket locks this operation is not-atomic, so that
1282  * this version is not worse.
1283  */
1284 static inline void __sk_prot_rehash(struct sock *sk)
1285 {
1286 	sk->sk_prot->unhash(sk);
1287 	sk->sk_prot->hash(sk);
1288 }
1289 
1290 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1291 
1292 /* About 10 seconds */
1293 #define SOCK_DESTROY_TIME (10*HZ)
1294 
1295 /* Sockets 0-1023 can't be bound to unless you are superuser */
1296 #define PROT_SOCK	1024
1297 
1298 #define SHUTDOWN_MASK	3
1299 #define RCV_SHUTDOWN	1
1300 #define SEND_SHUTDOWN	2
1301 
1302 #define SOCK_SNDBUF_LOCK	1
1303 #define SOCK_RCVBUF_LOCK	2
1304 #define SOCK_BINDADDR_LOCK	4
1305 #define SOCK_BINDPORT_LOCK	8
1306 
1307 /* sock_iocb: used to kick off async processing of socket ios */
1308 struct sock_iocb {
1309 	struct list_head	list;
1310 
1311 	int			flags;
1312 	int			size;
1313 	struct socket		*sock;
1314 	struct sock		*sk;
1315 	struct scm_cookie	*scm;
1316 	struct msghdr		*msg, async_msg;
1317 	struct kiocb		*kiocb;
1318 };
1319 
1320 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1321 {
1322 	return (struct sock_iocb *)iocb->private;
1323 }
1324 
1325 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1326 {
1327 	return si->kiocb;
1328 }
1329 
1330 struct socket_alloc {
1331 	struct socket socket;
1332 	struct inode vfs_inode;
1333 };
1334 
1335 static inline struct socket *SOCKET_I(struct inode *inode)
1336 {
1337 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1338 }
1339 
1340 static inline struct inode *SOCK_INODE(struct socket *socket)
1341 {
1342 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1343 }
1344 
1345 /*
1346  * Functions for memory accounting
1347  */
1348 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1349 extern void __sk_mem_reclaim(struct sock *sk);
1350 
1351 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1352 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1353 #define SK_MEM_SEND	0
1354 #define SK_MEM_RECV	1
1355 
1356 static inline int sk_mem_pages(int amt)
1357 {
1358 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1359 }
1360 
1361 static inline bool sk_has_account(struct sock *sk)
1362 {
1363 	/* return true if protocol supports memory accounting */
1364 	return !!sk->sk_prot->memory_allocated;
1365 }
1366 
1367 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1368 {
1369 	if (!sk_has_account(sk))
1370 		return true;
1371 	return size <= sk->sk_forward_alloc ||
1372 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1373 }
1374 
1375 static inline bool
1376 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1377 {
1378 	if (!sk_has_account(sk))
1379 		return true;
1380 	return size<= sk->sk_forward_alloc ||
1381 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1382 		skb_pfmemalloc(skb);
1383 }
1384 
1385 static inline void sk_mem_reclaim(struct sock *sk)
1386 {
1387 	if (!sk_has_account(sk))
1388 		return;
1389 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1390 		__sk_mem_reclaim(sk);
1391 }
1392 
1393 static inline void sk_mem_reclaim_partial(struct sock *sk)
1394 {
1395 	if (!sk_has_account(sk))
1396 		return;
1397 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1398 		__sk_mem_reclaim(sk);
1399 }
1400 
1401 static inline void sk_mem_charge(struct sock *sk, int size)
1402 {
1403 	if (!sk_has_account(sk))
1404 		return;
1405 	sk->sk_forward_alloc -= size;
1406 }
1407 
1408 static inline void sk_mem_uncharge(struct sock *sk, int size)
1409 {
1410 	if (!sk_has_account(sk))
1411 		return;
1412 	sk->sk_forward_alloc += size;
1413 }
1414 
1415 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1416 {
1417 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1418 	sk->sk_wmem_queued -= skb->truesize;
1419 	sk_mem_uncharge(sk, skb->truesize);
1420 	__kfree_skb(skb);
1421 }
1422 
1423 /* Used by processes to "lock" a socket state, so that
1424  * interrupts and bottom half handlers won't change it
1425  * from under us. It essentially blocks any incoming
1426  * packets, so that we won't get any new data or any
1427  * packets that change the state of the socket.
1428  *
1429  * While locked, BH processing will add new packets to
1430  * the backlog queue.  This queue is processed by the
1431  * owner of the socket lock right before it is released.
1432  *
1433  * Since ~2.3.5 it is also exclusive sleep lock serializing
1434  * accesses from user process context.
1435  */
1436 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1437 
1438 /*
1439  * Macro so as to not evaluate some arguments when
1440  * lockdep is not enabled.
1441  *
1442  * Mark both the sk_lock and the sk_lock.slock as a
1443  * per-address-family lock class.
1444  */
1445 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1446 do {									\
1447 	sk->sk_lock.owned = 0;						\
1448 	init_waitqueue_head(&sk->sk_lock.wq);				\
1449 	spin_lock_init(&(sk)->sk_lock.slock);				\
1450 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1451 			sizeof((sk)->sk_lock));				\
1452 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1453 				(skey), (sname));				\
1454 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1455 } while (0)
1456 
1457 extern void lock_sock_nested(struct sock *sk, int subclass);
1458 
1459 static inline void lock_sock(struct sock *sk)
1460 {
1461 	lock_sock_nested(sk, 0);
1462 }
1463 
1464 extern void release_sock(struct sock *sk);
1465 
1466 /* BH context may only use the following locking interface. */
1467 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1468 #define bh_lock_sock_nested(__sk) \
1469 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1470 				SINGLE_DEPTH_NESTING)
1471 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1472 
1473 extern bool lock_sock_fast(struct sock *sk);
1474 /**
1475  * unlock_sock_fast - complement of lock_sock_fast
1476  * @sk: socket
1477  * @slow: slow mode
1478  *
1479  * fast unlock socket for user context.
1480  * If slow mode is on, we call regular release_sock()
1481  */
1482 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1483 {
1484 	if (slow)
1485 		release_sock(sk);
1486 	else
1487 		spin_unlock_bh(&sk->sk_lock.slock);
1488 }
1489 
1490 
1491 extern struct sock		*sk_alloc(struct net *net, int family,
1492 					  gfp_t priority,
1493 					  struct proto *prot);
1494 extern void			sk_free(struct sock *sk);
1495 extern void			sk_release_kernel(struct sock *sk);
1496 extern struct sock		*sk_clone_lock(const struct sock *sk,
1497 					       const gfp_t priority);
1498 
1499 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1500 					      unsigned long size, int force,
1501 					      gfp_t priority);
1502 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1503 					      unsigned long size, int force,
1504 					      gfp_t priority);
1505 extern void			sock_wfree(struct sk_buff *skb);
1506 extern void			sock_rfree(struct sk_buff *skb);
1507 extern void			sock_edemux(struct sk_buff *skb);
1508 
1509 extern int			sock_setsockopt(struct socket *sock, int level,
1510 						int op, char __user *optval,
1511 						unsigned int optlen);
1512 
1513 extern int			sock_getsockopt(struct socket *sock, int level,
1514 						int op, char __user *optval,
1515 						int __user *optlen);
1516 extern struct sk_buff		*sock_alloc_send_skb(struct sock *sk,
1517 						     unsigned long size,
1518 						     int noblock,
1519 						     int *errcode);
1520 extern struct sk_buff		*sock_alloc_send_pskb(struct sock *sk,
1521 						      unsigned long header_len,
1522 						      unsigned long data_len,
1523 						      int noblock,
1524 						      int *errcode);
1525 extern void *sock_kmalloc(struct sock *sk, int size,
1526 			  gfp_t priority);
1527 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1528 extern void sk_send_sigurg(struct sock *sk);
1529 
1530 /*
1531  * Functions to fill in entries in struct proto_ops when a protocol
1532  * does not implement a particular function.
1533  */
1534 extern int                      sock_no_bind(struct socket *,
1535 					     struct sockaddr *, int);
1536 extern int                      sock_no_connect(struct socket *,
1537 						struct sockaddr *, int, int);
1538 extern int                      sock_no_socketpair(struct socket *,
1539 						   struct socket *);
1540 extern int                      sock_no_accept(struct socket *,
1541 					       struct socket *, int);
1542 extern int                      sock_no_getname(struct socket *,
1543 						struct sockaddr *, int *, int);
1544 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1545 					     struct poll_table_struct *);
1546 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1547 					      unsigned long);
1548 extern int			sock_no_listen(struct socket *, int);
1549 extern int                      sock_no_shutdown(struct socket *, int);
1550 extern int			sock_no_getsockopt(struct socket *, int , int,
1551 						   char __user *, int __user *);
1552 extern int			sock_no_setsockopt(struct socket *, int, int,
1553 						   char __user *, unsigned int);
1554 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1555 						struct msghdr *, size_t);
1556 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1557 						struct msghdr *, size_t, int);
1558 extern int			sock_no_mmap(struct file *file,
1559 					     struct socket *sock,
1560 					     struct vm_area_struct *vma);
1561 extern ssize_t			sock_no_sendpage(struct socket *sock,
1562 						struct page *page,
1563 						int offset, size_t size,
1564 						int flags);
1565 
1566 /*
1567  * Functions to fill in entries in struct proto_ops when a protocol
1568  * uses the inet style.
1569  */
1570 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1571 				  char __user *optval, int __user *optlen);
1572 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1573 			       struct msghdr *msg, size_t size, int flags);
1574 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1575 				  char __user *optval, unsigned int optlen);
1576 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1577 		int optname, char __user *optval, int __user *optlen);
1578 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1579 		int optname, char __user *optval, unsigned int optlen);
1580 
1581 extern void sk_common_release(struct sock *sk);
1582 
1583 /*
1584  *	Default socket callbacks and setup code
1585  */
1586 
1587 /* Initialise core socket variables */
1588 extern void sock_init_data(struct socket *sock, struct sock *sk);
1589 
1590 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1591 
1592 /**
1593  *	sk_filter_release - release a socket filter
1594  *	@fp: filter to remove
1595  *
1596  *	Remove a filter from a socket and release its resources.
1597  */
1598 
1599 static inline void sk_filter_release(struct sk_filter *fp)
1600 {
1601 	if (atomic_dec_and_test(&fp->refcnt))
1602 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1603 }
1604 
1605 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1606 {
1607 	unsigned int size = sk_filter_len(fp);
1608 
1609 	atomic_sub(size, &sk->sk_omem_alloc);
1610 	sk_filter_release(fp);
1611 }
1612 
1613 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1614 {
1615 	atomic_inc(&fp->refcnt);
1616 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1617 }
1618 
1619 /*
1620  * Socket reference counting postulates.
1621  *
1622  * * Each user of socket SHOULD hold a reference count.
1623  * * Each access point to socket (an hash table bucket, reference from a list,
1624  *   running timer, skb in flight MUST hold a reference count.
1625  * * When reference count hits 0, it means it will never increase back.
1626  * * When reference count hits 0, it means that no references from
1627  *   outside exist to this socket and current process on current CPU
1628  *   is last user and may/should destroy this socket.
1629  * * sk_free is called from any context: process, BH, IRQ. When
1630  *   it is called, socket has no references from outside -> sk_free
1631  *   may release descendant resources allocated by the socket, but
1632  *   to the time when it is called, socket is NOT referenced by any
1633  *   hash tables, lists etc.
1634  * * Packets, delivered from outside (from network or from another process)
1635  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1636  *   when they sit in queue. Otherwise, packets will leak to hole, when
1637  *   socket is looked up by one cpu and unhasing is made by another CPU.
1638  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1639  *   (leak to backlog). Packet socket does all the processing inside
1640  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1641  *   use separate SMP lock, so that they are prone too.
1642  */
1643 
1644 /* Ungrab socket and destroy it, if it was the last reference. */
1645 static inline void sock_put(struct sock *sk)
1646 {
1647 	if (atomic_dec_and_test(&sk->sk_refcnt))
1648 		sk_free(sk);
1649 }
1650 
1651 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1652 			  const int nested);
1653 
1654 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1655 {
1656 	sk->sk_tx_queue_mapping = tx_queue;
1657 }
1658 
1659 static inline void sk_tx_queue_clear(struct sock *sk)
1660 {
1661 	sk->sk_tx_queue_mapping = -1;
1662 }
1663 
1664 static inline int sk_tx_queue_get(const struct sock *sk)
1665 {
1666 	return sk ? sk->sk_tx_queue_mapping : -1;
1667 }
1668 
1669 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1670 {
1671 	sk_tx_queue_clear(sk);
1672 	sk->sk_socket = sock;
1673 }
1674 
1675 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1676 {
1677 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1678 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1679 }
1680 /* Detach socket from process context.
1681  * Announce socket dead, detach it from wait queue and inode.
1682  * Note that parent inode held reference count on this struct sock,
1683  * we do not release it in this function, because protocol
1684  * probably wants some additional cleanups or even continuing
1685  * to work with this socket (TCP).
1686  */
1687 static inline void sock_orphan(struct sock *sk)
1688 {
1689 	write_lock_bh(&sk->sk_callback_lock);
1690 	sock_set_flag(sk, SOCK_DEAD);
1691 	sk_set_socket(sk, NULL);
1692 	sk->sk_wq  = NULL;
1693 	write_unlock_bh(&sk->sk_callback_lock);
1694 }
1695 
1696 static inline void sock_graft(struct sock *sk, struct socket *parent)
1697 {
1698 	write_lock_bh(&sk->sk_callback_lock);
1699 	sk->sk_wq = parent->wq;
1700 	parent->sk = sk;
1701 	sk_set_socket(sk, parent);
1702 	security_sock_graft(sk, parent);
1703 	write_unlock_bh(&sk->sk_callback_lock);
1704 }
1705 
1706 extern kuid_t sock_i_uid(struct sock *sk);
1707 extern unsigned long sock_i_ino(struct sock *sk);
1708 
1709 static inline struct dst_entry *
1710 __sk_dst_get(struct sock *sk)
1711 {
1712 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1713 						       lockdep_is_held(&sk->sk_lock.slock));
1714 }
1715 
1716 static inline struct dst_entry *
1717 sk_dst_get(struct sock *sk)
1718 {
1719 	struct dst_entry *dst;
1720 
1721 	rcu_read_lock();
1722 	dst = rcu_dereference(sk->sk_dst_cache);
1723 	if (dst)
1724 		dst_hold(dst);
1725 	rcu_read_unlock();
1726 	return dst;
1727 }
1728 
1729 extern void sk_reset_txq(struct sock *sk);
1730 
1731 static inline void dst_negative_advice(struct sock *sk)
1732 {
1733 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1734 
1735 	if (dst && dst->ops->negative_advice) {
1736 		ndst = dst->ops->negative_advice(dst);
1737 
1738 		if (ndst != dst) {
1739 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1740 			sk_reset_txq(sk);
1741 		}
1742 	}
1743 }
1744 
1745 static inline void
1746 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1747 {
1748 	struct dst_entry *old_dst;
1749 
1750 	sk_tx_queue_clear(sk);
1751 	/*
1752 	 * This can be called while sk is owned by the caller only,
1753 	 * with no state that can be checked in a rcu_dereference_check() cond
1754 	 */
1755 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1756 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1757 	dst_release(old_dst);
1758 }
1759 
1760 static inline void
1761 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1762 {
1763 	spin_lock(&sk->sk_dst_lock);
1764 	__sk_dst_set(sk, dst);
1765 	spin_unlock(&sk->sk_dst_lock);
1766 }
1767 
1768 static inline void
1769 __sk_dst_reset(struct sock *sk)
1770 {
1771 	__sk_dst_set(sk, NULL);
1772 }
1773 
1774 static inline void
1775 sk_dst_reset(struct sock *sk)
1776 {
1777 	spin_lock(&sk->sk_dst_lock);
1778 	__sk_dst_reset(sk);
1779 	spin_unlock(&sk->sk_dst_lock);
1780 }
1781 
1782 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1783 
1784 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1785 
1786 static inline bool sk_can_gso(const struct sock *sk)
1787 {
1788 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1789 }
1790 
1791 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1792 
1793 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1794 {
1795 	sk->sk_route_nocaps |= flags;
1796 	sk->sk_route_caps &= ~flags;
1797 }
1798 
1799 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1800 					   char __user *from, char *to,
1801 					   int copy, int offset)
1802 {
1803 	if (skb->ip_summed == CHECKSUM_NONE) {
1804 		int err = 0;
1805 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1806 		if (err)
1807 			return err;
1808 		skb->csum = csum_block_add(skb->csum, csum, offset);
1809 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1810 		if (!access_ok(VERIFY_READ, from, copy) ||
1811 		    __copy_from_user_nocache(to, from, copy))
1812 			return -EFAULT;
1813 	} else if (copy_from_user(to, from, copy))
1814 		return -EFAULT;
1815 
1816 	return 0;
1817 }
1818 
1819 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1820 				       char __user *from, int copy)
1821 {
1822 	int err, offset = skb->len;
1823 
1824 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1825 				       copy, offset);
1826 	if (err)
1827 		__skb_trim(skb, offset);
1828 
1829 	return err;
1830 }
1831 
1832 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1833 					   struct sk_buff *skb,
1834 					   struct page *page,
1835 					   int off, int copy)
1836 {
1837 	int err;
1838 
1839 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1840 				       copy, skb->len);
1841 	if (err)
1842 		return err;
1843 
1844 	skb->len	     += copy;
1845 	skb->data_len	     += copy;
1846 	skb->truesize	     += copy;
1847 	sk->sk_wmem_queued   += copy;
1848 	sk_mem_charge(sk, copy);
1849 	return 0;
1850 }
1851 
1852 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1853 				   struct sk_buff *skb, struct page *page,
1854 				   int off, int copy)
1855 {
1856 	if (skb->ip_summed == CHECKSUM_NONE) {
1857 		int err = 0;
1858 		__wsum csum = csum_and_copy_from_user(from,
1859 						     page_address(page) + off,
1860 							    copy, 0, &err);
1861 		if (err)
1862 			return err;
1863 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1864 	} else if (copy_from_user(page_address(page) + off, from, copy))
1865 		return -EFAULT;
1866 
1867 	skb->len	     += copy;
1868 	skb->data_len	     += copy;
1869 	skb->truesize	     += copy;
1870 	sk->sk_wmem_queued   += copy;
1871 	sk_mem_charge(sk, copy);
1872 	return 0;
1873 }
1874 
1875 /**
1876  * sk_wmem_alloc_get - returns write allocations
1877  * @sk: socket
1878  *
1879  * Returns sk_wmem_alloc minus initial offset of one
1880  */
1881 static inline int sk_wmem_alloc_get(const struct sock *sk)
1882 {
1883 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1884 }
1885 
1886 /**
1887  * sk_rmem_alloc_get - returns read allocations
1888  * @sk: socket
1889  *
1890  * Returns sk_rmem_alloc
1891  */
1892 static inline int sk_rmem_alloc_get(const struct sock *sk)
1893 {
1894 	return atomic_read(&sk->sk_rmem_alloc);
1895 }
1896 
1897 /**
1898  * sk_has_allocations - check if allocations are outstanding
1899  * @sk: socket
1900  *
1901  * Returns true if socket has write or read allocations
1902  */
1903 static inline bool sk_has_allocations(const struct sock *sk)
1904 {
1905 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1906 }
1907 
1908 /**
1909  * wq_has_sleeper - check if there are any waiting processes
1910  * @wq: struct socket_wq
1911  *
1912  * Returns true if socket_wq has waiting processes
1913  *
1914  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1915  * barrier call. They were added due to the race found within the tcp code.
1916  *
1917  * Consider following tcp code paths:
1918  *
1919  * CPU1                  CPU2
1920  *
1921  * sys_select            receive packet
1922  *   ...                 ...
1923  *   __add_wait_queue    update tp->rcv_nxt
1924  *   ...                 ...
1925  *   tp->rcv_nxt check   sock_def_readable
1926  *   ...                 {
1927  *   schedule               rcu_read_lock();
1928  *                          wq = rcu_dereference(sk->sk_wq);
1929  *                          if (wq && waitqueue_active(&wq->wait))
1930  *                              wake_up_interruptible(&wq->wait)
1931  *                          ...
1932  *                       }
1933  *
1934  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1935  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1936  * could then endup calling schedule and sleep forever if there are no more
1937  * data on the socket.
1938  *
1939  */
1940 static inline bool wq_has_sleeper(struct socket_wq *wq)
1941 {
1942 	/* We need to be sure we are in sync with the
1943 	 * add_wait_queue modifications to the wait queue.
1944 	 *
1945 	 * This memory barrier is paired in the sock_poll_wait.
1946 	 */
1947 	smp_mb();
1948 	return wq && waitqueue_active(&wq->wait);
1949 }
1950 
1951 /**
1952  * sock_poll_wait - place memory barrier behind the poll_wait call.
1953  * @filp:           file
1954  * @wait_address:   socket wait queue
1955  * @p:              poll_table
1956  *
1957  * See the comments in the wq_has_sleeper function.
1958  */
1959 static inline void sock_poll_wait(struct file *filp,
1960 		wait_queue_head_t *wait_address, poll_table *p)
1961 {
1962 	if (!poll_does_not_wait(p) && wait_address) {
1963 		poll_wait(filp, wait_address, p);
1964 		/* We need to be sure we are in sync with the
1965 		 * socket flags modification.
1966 		 *
1967 		 * This memory barrier is paired in the wq_has_sleeper.
1968 		 */
1969 		smp_mb();
1970 	}
1971 }
1972 
1973 /*
1974  *	Queue a received datagram if it will fit. Stream and sequenced
1975  *	protocols can't normally use this as they need to fit buffers in
1976  *	and play with them.
1977  *
1978  *	Inlined as it's very short and called for pretty much every
1979  *	packet ever received.
1980  */
1981 
1982 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1983 {
1984 	skb_orphan(skb);
1985 	skb->sk = sk;
1986 	skb->destructor = sock_wfree;
1987 	/*
1988 	 * We used to take a refcount on sk, but following operation
1989 	 * is enough to guarantee sk_free() wont free this sock until
1990 	 * all in-flight packets are completed
1991 	 */
1992 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1993 }
1994 
1995 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1996 {
1997 	skb_orphan(skb);
1998 	skb->sk = sk;
1999 	skb->destructor = sock_rfree;
2000 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2001 	sk_mem_charge(sk, skb->truesize);
2002 }
2003 
2004 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2005 			   unsigned long expires);
2006 
2007 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2008 
2009 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2010 
2011 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2012 
2013 /*
2014  *	Recover an error report and clear atomically
2015  */
2016 
2017 static inline int sock_error(struct sock *sk)
2018 {
2019 	int err;
2020 	if (likely(!sk->sk_err))
2021 		return 0;
2022 	err = xchg(&sk->sk_err, 0);
2023 	return -err;
2024 }
2025 
2026 static inline unsigned long sock_wspace(struct sock *sk)
2027 {
2028 	int amt = 0;
2029 
2030 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2031 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2032 		if (amt < 0)
2033 			amt = 0;
2034 	}
2035 	return amt;
2036 }
2037 
2038 static inline void sk_wake_async(struct sock *sk, int how, int band)
2039 {
2040 	if (sock_flag(sk, SOCK_FASYNC))
2041 		sock_wake_async(sk->sk_socket, how, band);
2042 }
2043 
2044 #define SOCK_MIN_SNDBUF 2048
2045 /*
2046  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2047  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2048  */
2049 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2050 
2051 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2052 {
2053 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2054 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2055 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2056 	}
2057 }
2058 
2059 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2060 
2061 /**
2062  * sk_page_frag - return an appropriate page_frag
2063  * @sk: socket
2064  *
2065  * If socket allocation mode allows current thread to sleep, it means its
2066  * safe to use the per task page_frag instead of the per socket one.
2067  */
2068 static inline struct page_frag *sk_page_frag(struct sock *sk)
2069 {
2070 	if (sk->sk_allocation & __GFP_WAIT)
2071 		return &current->task_frag;
2072 
2073 	return &sk->sk_frag;
2074 }
2075 
2076 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2077 
2078 /*
2079  *	Default write policy as shown to user space via poll/select/SIGIO
2080  */
2081 static inline bool sock_writeable(const struct sock *sk)
2082 {
2083 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2084 }
2085 
2086 static inline gfp_t gfp_any(void)
2087 {
2088 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2089 }
2090 
2091 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2092 {
2093 	return noblock ? 0 : sk->sk_rcvtimeo;
2094 }
2095 
2096 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2097 {
2098 	return noblock ? 0 : sk->sk_sndtimeo;
2099 }
2100 
2101 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2102 {
2103 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2104 }
2105 
2106 /* Alas, with timeout socket operations are not restartable.
2107  * Compare this to poll().
2108  */
2109 static inline int sock_intr_errno(long timeo)
2110 {
2111 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2112 }
2113 
2114 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2115 	struct sk_buff *skb);
2116 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2117 	struct sk_buff *skb);
2118 
2119 static inline void
2120 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2121 {
2122 	ktime_t kt = skb->tstamp;
2123 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2124 
2125 	/*
2126 	 * generate control messages if
2127 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2128 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2129 	 * - software time stamp available and wanted
2130 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2131 	 * - hardware time stamps available and wanted
2132 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2133 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2134 	 */
2135 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2136 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2137 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2138 	    (hwtstamps->hwtstamp.tv64 &&
2139 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2140 	    (hwtstamps->syststamp.tv64 &&
2141 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2142 		__sock_recv_timestamp(msg, sk, skb);
2143 	else
2144 		sk->sk_stamp = kt;
2145 
2146 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2147 		__sock_recv_wifi_status(msg, sk, skb);
2148 }
2149 
2150 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2151 				     struct sk_buff *skb);
2152 
2153 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2154 					  struct sk_buff *skb)
2155 {
2156 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2157 			   (1UL << SOCK_RCVTSTAMP)			| \
2158 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2159 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2160 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)	| \
2161 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2162 
2163 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2164 		__sock_recv_ts_and_drops(msg, sk, skb);
2165 	else
2166 		sk->sk_stamp = skb->tstamp;
2167 }
2168 
2169 /**
2170  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2171  * @sk:		socket sending this packet
2172  * @tx_flags:	filled with instructions for time stamping
2173  *
2174  * Currently only depends on SOCK_TIMESTAMPING* flags.
2175  */
2176 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2177 
2178 /**
2179  * sk_eat_skb - Release a skb if it is no longer needed
2180  * @sk: socket to eat this skb from
2181  * @skb: socket buffer to eat
2182  * @copied_early: flag indicating whether DMA operations copied this data early
2183  *
2184  * This routine must be called with interrupts disabled or with the socket
2185  * locked so that the sk_buff queue operation is ok.
2186 */
2187 #ifdef CONFIG_NET_DMA
2188 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2189 {
2190 	__skb_unlink(skb, &sk->sk_receive_queue);
2191 	if (!copied_early)
2192 		__kfree_skb(skb);
2193 	else
2194 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2195 }
2196 #else
2197 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2198 {
2199 	__skb_unlink(skb, &sk->sk_receive_queue);
2200 	__kfree_skb(skb);
2201 }
2202 #endif
2203 
2204 static inline
2205 struct net *sock_net(const struct sock *sk)
2206 {
2207 	return read_pnet(&sk->sk_net);
2208 }
2209 
2210 static inline
2211 void sock_net_set(struct sock *sk, struct net *net)
2212 {
2213 	write_pnet(&sk->sk_net, net);
2214 }
2215 
2216 /*
2217  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2218  * They should not hold a reference to a namespace in order to allow
2219  * to stop it.
2220  * Sockets after sk_change_net should be released using sk_release_kernel
2221  */
2222 static inline void sk_change_net(struct sock *sk, struct net *net)
2223 {
2224 	put_net(sock_net(sk));
2225 	sock_net_set(sk, hold_net(net));
2226 }
2227 
2228 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2229 {
2230 	if (skb->sk) {
2231 		struct sock *sk = skb->sk;
2232 
2233 		skb->destructor = NULL;
2234 		skb->sk = NULL;
2235 		return sk;
2236 	}
2237 	return NULL;
2238 }
2239 
2240 extern void sock_enable_timestamp(struct sock *sk, int flag);
2241 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2242 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2243 
2244 /*
2245  *	Enable debug/info messages
2246  */
2247 extern int net_msg_warn;
2248 #define NETDEBUG(fmt, args...) \
2249 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2250 
2251 #define LIMIT_NETDEBUG(fmt, args...) \
2252 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2253 
2254 extern __u32 sysctl_wmem_max;
2255 extern __u32 sysctl_rmem_max;
2256 
2257 extern int sysctl_optmem_max;
2258 
2259 extern __u32 sysctl_wmem_default;
2260 extern __u32 sysctl_rmem_default;
2261 
2262 #endif	/* _SOCK_H */
2263