1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 62 #include <linux/filter.h> 63 #include <linux/rculist_nulls.h> 64 #include <linux/poll.h> 65 66 #include <linux/atomic.h> 67 #include <net/dst.h> 68 #include <net/checksum.h> 69 #include <net/tcp_states.h> 70 #include <linux/net_tstamp.h> 71 72 struct cgroup; 73 struct cgroup_subsys; 74 #ifdef CONFIG_NET 75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 77 #else 78 static inline 79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 80 { 81 return 0; 82 } 83 static inline 84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 85 { 86 } 87 #endif 88 /* 89 * This structure really needs to be cleaned up. 90 * Most of it is for TCP, and not used by any of 91 * the other protocols. 92 */ 93 94 /* Define this to get the SOCK_DBG debugging facility. */ 95 #define SOCK_DEBUGGING 96 #ifdef SOCK_DEBUGGING 97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 98 printk(KERN_DEBUG msg); } while (0) 99 #else 100 /* Validate arguments and do nothing */ 101 static inline __printf(2, 3) 102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 103 { 104 } 105 #endif 106 107 /* This is the per-socket lock. The spinlock provides a synchronization 108 * between user contexts and software interrupt processing, whereas the 109 * mini-semaphore synchronizes multiple users amongst themselves. 110 */ 111 typedef struct { 112 spinlock_t slock; 113 int owned; 114 wait_queue_head_t wq; 115 /* 116 * We express the mutex-alike socket_lock semantics 117 * to the lock validator by explicitly managing 118 * the slock as a lock variant (in addition to 119 * the slock itself): 120 */ 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 struct lockdep_map dep_map; 123 #endif 124 } socket_lock_t; 125 126 struct sock; 127 struct proto; 128 struct net; 129 130 typedef __u32 __bitwise __portpair; 131 typedef __u64 __bitwise __addrpair; 132 133 /** 134 * struct sock_common - minimal network layer representation of sockets 135 * @skc_daddr: Foreign IPv4 addr 136 * @skc_rcv_saddr: Bound local IPv4 addr 137 * @skc_hash: hash value used with various protocol lookup tables 138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 139 * @skc_dport: placeholder for inet_dport/tw_dport 140 * @skc_num: placeholder for inet_num/tw_num 141 * @skc_family: network address family 142 * @skc_state: Connection state 143 * @skc_reuse: %SO_REUSEADDR setting 144 * @skc_reuseport: %SO_REUSEPORT setting 145 * @skc_bound_dev_if: bound device index if != 0 146 * @skc_bind_node: bind hash linkage for various protocol lookup tables 147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 148 * @skc_prot: protocol handlers inside a network family 149 * @skc_net: reference to the network namespace of this socket 150 * @skc_node: main hash linkage for various protocol lookup tables 151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 152 * @skc_tx_queue_mapping: tx queue number for this connection 153 * @skc_refcnt: reference count 154 * 155 * This is the minimal network layer representation of sockets, the header 156 * for struct sock and struct inet_timewait_sock. 157 */ 158 struct sock_common { 159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 160 * address on 64bit arches : cf INET_MATCH() 161 */ 162 union { 163 __addrpair skc_addrpair; 164 struct { 165 __be32 skc_daddr; 166 __be32 skc_rcv_saddr; 167 }; 168 }; 169 union { 170 unsigned int skc_hash; 171 __u16 skc_u16hashes[2]; 172 }; 173 /* skc_dport && skc_num must be grouped as well */ 174 union { 175 __portpair skc_portpair; 176 struct { 177 __be16 skc_dport; 178 __u16 skc_num; 179 }; 180 }; 181 182 unsigned short skc_family; 183 volatile unsigned char skc_state; 184 unsigned char skc_reuse:4; 185 unsigned char skc_reuseport:1; 186 unsigned char skc_ipv6only:1; 187 unsigned char skc_net_refcnt:1; 188 int skc_bound_dev_if; 189 union { 190 struct hlist_node skc_bind_node; 191 struct hlist_nulls_node skc_portaddr_node; 192 }; 193 struct proto *skc_prot; 194 possible_net_t skc_net; 195 196 #if IS_ENABLED(CONFIG_IPV6) 197 struct in6_addr skc_v6_daddr; 198 struct in6_addr skc_v6_rcv_saddr; 199 #endif 200 201 atomic64_t skc_cookie; 202 203 /* 204 * fields between dontcopy_begin/dontcopy_end 205 * are not copied in sock_copy() 206 */ 207 /* private: */ 208 int skc_dontcopy_begin[0]; 209 /* public: */ 210 union { 211 struct hlist_node skc_node; 212 struct hlist_nulls_node skc_nulls_node; 213 }; 214 int skc_tx_queue_mapping; 215 atomic_t skc_refcnt; 216 /* private: */ 217 int skc_dontcopy_end[0]; 218 /* public: */ 219 }; 220 221 struct cg_proto; 222 /** 223 * struct sock - network layer representation of sockets 224 * @__sk_common: shared layout with inet_timewait_sock 225 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 226 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 227 * @sk_lock: synchronizer 228 * @sk_rcvbuf: size of receive buffer in bytes 229 * @sk_wq: sock wait queue and async head 230 * @sk_rx_dst: receive input route used by early demux 231 * @sk_dst_cache: destination cache 232 * @sk_dst_lock: destination cache lock 233 * @sk_policy: flow policy 234 * @sk_receive_queue: incoming packets 235 * @sk_wmem_alloc: transmit queue bytes committed 236 * @sk_write_queue: Packet sending queue 237 * @sk_omem_alloc: "o" is "option" or "other" 238 * @sk_wmem_queued: persistent queue size 239 * @sk_forward_alloc: space allocated forward 240 * @sk_napi_id: id of the last napi context to receive data for sk 241 * @sk_ll_usec: usecs to busypoll when there is no data 242 * @sk_allocation: allocation mode 243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 245 * @sk_sndbuf: size of send buffer in bytes 246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 249 * @sk_no_check_rx: allow zero checksum in RX packets 250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 253 * @sk_gso_max_size: Maximum GSO segment size to build 254 * @sk_gso_max_segs: Maximum number of GSO segments 255 * @sk_lingertime: %SO_LINGER l_linger setting 256 * @sk_backlog: always used with the per-socket spinlock held 257 * @sk_callback_lock: used with the callbacks in the end of this struct 258 * @sk_error_queue: rarely used 259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 260 * IPV6_ADDRFORM for instance) 261 * @sk_err: last error 262 * @sk_err_soft: errors that don't cause failure but are the cause of a 263 * persistent failure not just 'timed out' 264 * @sk_drops: raw/udp drops counter 265 * @sk_ack_backlog: current listen backlog 266 * @sk_max_ack_backlog: listen backlog set in listen() 267 * @sk_priority: %SO_PRIORITY setting 268 * @sk_cgrp_prioidx: socket group's priority map index 269 * @sk_type: socket type (%SOCK_STREAM, etc) 270 * @sk_protocol: which protocol this socket belongs in this network family 271 * @sk_peer_pid: &struct pid for this socket's peer 272 * @sk_peer_cred: %SO_PEERCRED setting 273 * @sk_rcvlowat: %SO_RCVLOWAT setting 274 * @sk_rcvtimeo: %SO_RCVTIMEO setting 275 * @sk_sndtimeo: %SO_SNDTIMEO setting 276 * @sk_rxhash: flow hash received from netif layer 277 * @sk_incoming_cpu: record cpu processing incoming packets 278 * @sk_txhash: computed flow hash for use on transmit 279 * @sk_filter: socket filtering instructions 280 * @sk_timer: sock cleanup timer 281 * @sk_stamp: time stamp of last packet received 282 * @sk_tsflags: SO_TIMESTAMPING socket options 283 * @sk_tskey: counter to disambiguate concurrent tstamp requests 284 * @sk_socket: Identd and reporting IO signals 285 * @sk_user_data: RPC layer private data 286 * @sk_frag: cached page frag 287 * @sk_peek_off: current peek_offset value 288 * @sk_send_head: front of stuff to transmit 289 * @sk_security: used by security modules 290 * @sk_mark: generic packet mark 291 * @sk_classid: this socket's cgroup classid 292 * @sk_cgrp: this socket's cgroup-specific proto data 293 * @sk_write_pending: a write to stream socket waits to start 294 * @sk_state_change: callback to indicate change in the state of the sock 295 * @sk_data_ready: callback to indicate there is data to be processed 296 * @sk_write_space: callback to indicate there is bf sending space available 297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 298 * @sk_backlog_rcv: callback to process the backlog 299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 300 */ 301 struct sock { 302 /* 303 * Now struct inet_timewait_sock also uses sock_common, so please just 304 * don't add nothing before this first member (__sk_common) --acme 305 */ 306 struct sock_common __sk_common; 307 #define sk_node __sk_common.skc_node 308 #define sk_nulls_node __sk_common.skc_nulls_node 309 #define sk_refcnt __sk_common.skc_refcnt 310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 311 312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 314 #define sk_hash __sk_common.skc_hash 315 #define sk_portpair __sk_common.skc_portpair 316 #define sk_num __sk_common.skc_num 317 #define sk_dport __sk_common.skc_dport 318 #define sk_addrpair __sk_common.skc_addrpair 319 #define sk_daddr __sk_common.skc_daddr 320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 321 #define sk_family __sk_common.skc_family 322 #define sk_state __sk_common.skc_state 323 #define sk_reuse __sk_common.skc_reuse 324 #define sk_reuseport __sk_common.skc_reuseport 325 #define sk_ipv6only __sk_common.skc_ipv6only 326 #define sk_net_refcnt __sk_common.skc_net_refcnt 327 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 328 #define sk_bind_node __sk_common.skc_bind_node 329 #define sk_prot __sk_common.skc_prot 330 #define sk_net __sk_common.skc_net 331 #define sk_v6_daddr __sk_common.skc_v6_daddr 332 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 333 #define sk_cookie __sk_common.skc_cookie 334 335 socket_lock_t sk_lock; 336 struct sk_buff_head sk_receive_queue; 337 /* 338 * The backlog queue is special, it is always used with 339 * the per-socket spinlock held and requires low latency 340 * access. Therefore we special case it's implementation. 341 * Note : rmem_alloc is in this structure to fill a hole 342 * on 64bit arches, not because its logically part of 343 * backlog. 344 */ 345 struct { 346 atomic_t rmem_alloc; 347 int len; 348 struct sk_buff *head; 349 struct sk_buff *tail; 350 } sk_backlog; 351 #define sk_rmem_alloc sk_backlog.rmem_alloc 352 int sk_forward_alloc; 353 #ifdef CONFIG_RPS 354 __u32 sk_rxhash; 355 #endif 356 u16 sk_incoming_cpu; 357 /* 16bit hole 358 * Warned : sk_incoming_cpu can be set from softirq, 359 * Do not use this hole without fully understanding possible issues. 360 */ 361 362 __u32 sk_txhash; 363 #ifdef CONFIG_NET_RX_BUSY_POLL 364 unsigned int sk_napi_id; 365 unsigned int sk_ll_usec; 366 #endif 367 atomic_t sk_drops; 368 int sk_rcvbuf; 369 370 struct sk_filter __rcu *sk_filter; 371 struct socket_wq __rcu *sk_wq; 372 373 #ifdef CONFIG_XFRM 374 struct xfrm_policy *sk_policy[2]; 375 #endif 376 unsigned long sk_flags; 377 struct dst_entry *sk_rx_dst; 378 struct dst_entry __rcu *sk_dst_cache; 379 spinlock_t sk_dst_lock; 380 atomic_t sk_wmem_alloc; 381 atomic_t sk_omem_alloc; 382 int sk_sndbuf; 383 struct sk_buff_head sk_write_queue; 384 kmemcheck_bitfield_begin(flags); 385 unsigned int sk_shutdown : 2, 386 sk_no_check_tx : 1, 387 sk_no_check_rx : 1, 388 sk_userlocks : 4, 389 sk_protocol : 8, 390 sk_type : 16; 391 kmemcheck_bitfield_end(flags); 392 int sk_wmem_queued; 393 gfp_t sk_allocation; 394 u32 sk_pacing_rate; /* bytes per second */ 395 u32 sk_max_pacing_rate; 396 netdev_features_t sk_route_caps; 397 netdev_features_t sk_route_nocaps; 398 int sk_gso_type; 399 unsigned int sk_gso_max_size; 400 u16 sk_gso_max_segs; 401 int sk_rcvlowat; 402 unsigned long sk_lingertime; 403 struct sk_buff_head sk_error_queue; 404 struct proto *sk_prot_creator; 405 rwlock_t sk_callback_lock; 406 int sk_err, 407 sk_err_soft; 408 u32 sk_ack_backlog; 409 u32 sk_max_ack_backlog; 410 __u32 sk_priority; 411 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 412 __u32 sk_cgrp_prioidx; 413 #endif 414 struct pid *sk_peer_pid; 415 const struct cred *sk_peer_cred; 416 long sk_rcvtimeo; 417 long sk_sndtimeo; 418 struct timer_list sk_timer; 419 ktime_t sk_stamp; 420 u16 sk_tsflags; 421 u32 sk_tskey; 422 struct socket *sk_socket; 423 void *sk_user_data; 424 struct page_frag sk_frag; 425 struct sk_buff *sk_send_head; 426 __s32 sk_peek_off; 427 int sk_write_pending; 428 #ifdef CONFIG_SECURITY 429 void *sk_security; 430 #endif 431 __u32 sk_mark; 432 #ifdef CONFIG_CGROUP_NET_CLASSID 433 u32 sk_classid; 434 #endif 435 struct cg_proto *sk_cgrp; 436 void (*sk_state_change)(struct sock *sk); 437 void (*sk_data_ready)(struct sock *sk); 438 void (*sk_write_space)(struct sock *sk); 439 void (*sk_error_report)(struct sock *sk); 440 int (*sk_backlog_rcv)(struct sock *sk, 441 struct sk_buff *skb); 442 void (*sk_destruct)(struct sock *sk); 443 }; 444 445 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 446 447 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 448 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 449 450 /* 451 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 452 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 453 * on a socket means that the socket will reuse everybody else's port 454 * without looking at the other's sk_reuse value. 455 */ 456 457 #define SK_NO_REUSE 0 458 #define SK_CAN_REUSE 1 459 #define SK_FORCE_REUSE 2 460 461 static inline int sk_peek_offset(struct sock *sk, int flags) 462 { 463 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 464 return sk->sk_peek_off; 465 else 466 return 0; 467 } 468 469 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 470 { 471 if (sk->sk_peek_off >= 0) { 472 if (sk->sk_peek_off >= val) 473 sk->sk_peek_off -= val; 474 else 475 sk->sk_peek_off = 0; 476 } 477 } 478 479 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 480 { 481 if (sk->sk_peek_off >= 0) 482 sk->sk_peek_off += val; 483 } 484 485 /* 486 * Hashed lists helper routines 487 */ 488 static inline struct sock *sk_entry(const struct hlist_node *node) 489 { 490 return hlist_entry(node, struct sock, sk_node); 491 } 492 493 static inline struct sock *__sk_head(const struct hlist_head *head) 494 { 495 return hlist_entry(head->first, struct sock, sk_node); 496 } 497 498 static inline struct sock *sk_head(const struct hlist_head *head) 499 { 500 return hlist_empty(head) ? NULL : __sk_head(head); 501 } 502 503 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 504 { 505 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 506 } 507 508 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 509 { 510 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 511 } 512 513 static inline struct sock *sk_next(const struct sock *sk) 514 { 515 return sk->sk_node.next ? 516 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 517 } 518 519 static inline struct sock *sk_nulls_next(const struct sock *sk) 520 { 521 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 522 hlist_nulls_entry(sk->sk_nulls_node.next, 523 struct sock, sk_nulls_node) : 524 NULL; 525 } 526 527 static inline bool sk_unhashed(const struct sock *sk) 528 { 529 return hlist_unhashed(&sk->sk_node); 530 } 531 532 static inline bool sk_hashed(const struct sock *sk) 533 { 534 return !sk_unhashed(sk); 535 } 536 537 static inline void sk_node_init(struct hlist_node *node) 538 { 539 node->pprev = NULL; 540 } 541 542 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 543 { 544 node->pprev = NULL; 545 } 546 547 static inline void __sk_del_node(struct sock *sk) 548 { 549 __hlist_del(&sk->sk_node); 550 } 551 552 /* NB: equivalent to hlist_del_init_rcu */ 553 static inline bool __sk_del_node_init(struct sock *sk) 554 { 555 if (sk_hashed(sk)) { 556 __sk_del_node(sk); 557 sk_node_init(&sk->sk_node); 558 return true; 559 } 560 return false; 561 } 562 563 /* Grab socket reference count. This operation is valid only 564 when sk is ALREADY grabbed f.e. it is found in hash table 565 or a list and the lookup is made under lock preventing hash table 566 modifications. 567 */ 568 569 static inline void sock_hold(struct sock *sk) 570 { 571 atomic_inc(&sk->sk_refcnt); 572 } 573 574 /* Ungrab socket in the context, which assumes that socket refcnt 575 cannot hit zero, f.e. it is true in context of any socketcall. 576 */ 577 static inline void __sock_put(struct sock *sk) 578 { 579 atomic_dec(&sk->sk_refcnt); 580 } 581 582 static inline bool sk_del_node_init(struct sock *sk) 583 { 584 bool rc = __sk_del_node_init(sk); 585 586 if (rc) { 587 /* paranoid for a while -acme */ 588 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 589 __sock_put(sk); 590 } 591 return rc; 592 } 593 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 594 595 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 596 { 597 if (sk_hashed(sk)) { 598 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 599 return true; 600 } 601 return false; 602 } 603 604 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 605 { 606 bool rc = __sk_nulls_del_node_init_rcu(sk); 607 608 if (rc) { 609 /* paranoid for a while -acme */ 610 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 611 __sock_put(sk); 612 } 613 return rc; 614 } 615 616 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 617 { 618 hlist_add_head(&sk->sk_node, list); 619 } 620 621 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 622 { 623 sock_hold(sk); 624 __sk_add_node(sk, list); 625 } 626 627 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 628 { 629 sock_hold(sk); 630 hlist_add_head_rcu(&sk->sk_node, list); 631 } 632 633 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 634 { 635 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 636 } 637 638 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 639 { 640 sock_hold(sk); 641 __sk_nulls_add_node_rcu(sk, list); 642 } 643 644 static inline void __sk_del_bind_node(struct sock *sk) 645 { 646 __hlist_del(&sk->sk_bind_node); 647 } 648 649 static inline void sk_add_bind_node(struct sock *sk, 650 struct hlist_head *list) 651 { 652 hlist_add_head(&sk->sk_bind_node, list); 653 } 654 655 #define sk_for_each(__sk, list) \ 656 hlist_for_each_entry(__sk, list, sk_node) 657 #define sk_for_each_rcu(__sk, list) \ 658 hlist_for_each_entry_rcu(__sk, list, sk_node) 659 #define sk_nulls_for_each(__sk, node, list) \ 660 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 661 #define sk_nulls_for_each_rcu(__sk, node, list) \ 662 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 663 #define sk_for_each_from(__sk) \ 664 hlist_for_each_entry_from(__sk, sk_node) 665 #define sk_nulls_for_each_from(__sk, node) \ 666 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 667 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 668 #define sk_for_each_safe(__sk, tmp, list) \ 669 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 670 #define sk_for_each_bound(__sk, list) \ 671 hlist_for_each_entry(__sk, list, sk_bind_node) 672 673 /** 674 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 675 * @tpos: the type * to use as a loop cursor. 676 * @pos: the &struct hlist_node to use as a loop cursor. 677 * @head: the head for your list. 678 * @offset: offset of hlist_node within the struct. 679 * 680 */ 681 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 682 for (pos = (head)->first; \ 683 (!is_a_nulls(pos)) && \ 684 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 685 pos = pos->next) 686 687 static inline struct user_namespace *sk_user_ns(struct sock *sk) 688 { 689 /* Careful only use this in a context where these parameters 690 * can not change and must all be valid, such as recvmsg from 691 * userspace. 692 */ 693 return sk->sk_socket->file->f_cred->user_ns; 694 } 695 696 /* Sock flags */ 697 enum sock_flags { 698 SOCK_DEAD, 699 SOCK_DONE, 700 SOCK_URGINLINE, 701 SOCK_KEEPOPEN, 702 SOCK_LINGER, 703 SOCK_DESTROY, 704 SOCK_BROADCAST, 705 SOCK_TIMESTAMP, 706 SOCK_ZAPPED, 707 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 708 SOCK_DBG, /* %SO_DEBUG setting */ 709 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 710 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 711 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 712 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 713 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 714 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 715 SOCK_FASYNC, /* fasync() active */ 716 SOCK_RXQ_OVFL, 717 SOCK_ZEROCOPY, /* buffers from userspace */ 718 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 719 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 720 * Will use last 4 bytes of packet sent from 721 * user-space instead. 722 */ 723 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 724 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 725 }; 726 727 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 728 { 729 nsk->sk_flags = osk->sk_flags; 730 } 731 732 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 733 { 734 __set_bit(flag, &sk->sk_flags); 735 } 736 737 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 738 { 739 __clear_bit(flag, &sk->sk_flags); 740 } 741 742 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 743 { 744 return test_bit(flag, &sk->sk_flags); 745 } 746 747 #ifdef CONFIG_NET 748 extern struct static_key memalloc_socks; 749 static inline int sk_memalloc_socks(void) 750 { 751 return static_key_false(&memalloc_socks); 752 } 753 #else 754 755 static inline int sk_memalloc_socks(void) 756 { 757 return 0; 758 } 759 760 #endif 761 762 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 763 { 764 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 765 } 766 767 static inline void sk_acceptq_removed(struct sock *sk) 768 { 769 sk->sk_ack_backlog--; 770 } 771 772 static inline void sk_acceptq_added(struct sock *sk) 773 { 774 sk->sk_ack_backlog++; 775 } 776 777 static inline bool sk_acceptq_is_full(const struct sock *sk) 778 { 779 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 780 } 781 782 /* 783 * Compute minimal free write space needed to queue new packets. 784 */ 785 static inline int sk_stream_min_wspace(const struct sock *sk) 786 { 787 return sk->sk_wmem_queued >> 1; 788 } 789 790 static inline int sk_stream_wspace(const struct sock *sk) 791 { 792 return sk->sk_sndbuf - sk->sk_wmem_queued; 793 } 794 795 void sk_stream_write_space(struct sock *sk); 796 797 /* OOB backlog add */ 798 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 799 { 800 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 801 skb_dst_force(skb); 802 803 if (!sk->sk_backlog.tail) 804 sk->sk_backlog.head = skb; 805 else 806 sk->sk_backlog.tail->next = skb; 807 808 sk->sk_backlog.tail = skb; 809 skb->next = NULL; 810 } 811 812 /* 813 * Take into account size of receive queue and backlog queue 814 * Do not take into account this skb truesize, 815 * to allow even a single big packet to come. 816 */ 817 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 818 { 819 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 820 821 return qsize > limit; 822 } 823 824 /* The per-socket spinlock must be held here. */ 825 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 826 unsigned int limit) 827 { 828 if (sk_rcvqueues_full(sk, limit)) 829 return -ENOBUFS; 830 831 /* 832 * If the skb was allocated from pfmemalloc reserves, only 833 * allow SOCK_MEMALLOC sockets to use it as this socket is 834 * helping free memory 835 */ 836 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 837 return -ENOMEM; 838 839 __sk_add_backlog(sk, skb); 840 sk->sk_backlog.len += skb->truesize; 841 return 0; 842 } 843 844 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 845 846 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 847 { 848 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 849 return __sk_backlog_rcv(sk, skb); 850 851 return sk->sk_backlog_rcv(sk, skb); 852 } 853 854 static inline void sk_incoming_cpu_update(struct sock *sk) 855 { 856 sk->sk_incoming_cpu = raw_smp_processor_id(); 857 } 858 859 static inline void sock_rps_record_flow_hash(__u32 hash) 860 { 861 #ifdef CONFIG_RPS 862 struct rps_sock_flow_table *sock_flow_table; 863 864 rcu_read_lock(); 865 sock_flow_table = rcu_dereference(rps_sock_flow_table); 866 rps_record_sock_flow(sock_flow_table, hash); 867 rcu_read_unlock(); 868 #endif 869 } 870 871 static inline void sock_rps_record_flow(const struct sock *sk) 872 { 873 #ifdef CONFIG_RPS 874 sock_rps_record_flow_hash(sk->sk_rxhash); 875 #endif 876 } 877 878 static inline void sock_rps_save_rxhash(struct sock *sk, 879 const struct sk_buff *skb) 880 { 881 #ifdef CONFIG_RPS 882 if (unlikely(sk->sk_rxhash != skb->hash)) 883 sk->sk_rxhash = skb->hash; 884 #endif 885 } 886 887 static inline void sock_rps_reset_rxhash(struct sock *sk) 888 { 889 #ifdef CONFIG_RPS 890 sk->sk_rxhash = 0; 891 #endif 892 } 893 894 #define sk_wait_event(__sk, __timeo, __condition) \ 895 ({ int __rc; \ 896 release_sock(__sk); \ 897 __rc = __condition; \ 898 if (!__rc) { \ 899 *(__timeo) = schedule_timeout(*(__timeo)); \ 900 } \ 901 sched_annotate_sleep(); \ 902 lock_sock(__sk); \ 903 __rc = __condition; \ 904 __rc; \ 905 }) 906 907 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 908 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 909 void sk_stream_wait_close(struct sock *sk, long timeo_p); 910 int sk_stream_error(struct sock *sk, int flags, int err); 911 void sk_stream_kill_queues(struct sock *sk); 912 void sk_set_memalloc(struct sock *sk); 913 void sk_clear_memalloc(struct sock *sk); 914 915 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 916 917 struct request_sock_ops; 918 struct timewait_sock_ops; 919 struct inet_hashinfo; 920 struct raw_hashinfo; 921 struct module; 922 923 /* 924 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 925 * un-modified. Special care is taken when initializing object to zero. 926 */ 927 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 928 { 929 if (offsetof(struct sock, sk_node.next) != 0) 930 memset(sk, 0, offsetof(struct sock, sk_node.next)); 931 memset(&sk->sk_node.pprev, 0, 932 size - offsetof(struct sock, sk_node.pprev)); 933 } 934 935 /* Networking protocol blocks we attach to sockets. 936 * socket layer -> transport layer interface 937 */ 938 struct proto { 939 void (*close)(struct sock *sk, 940 long timeout); 941 int (*connect)(struct sock *sk, 942 struct sockaddr *uaddr, 943 int addr_len); 944 int (*disconnect)(struct sock *sk, int flags); 945 946 struct sock * (*accept)(struct sock *sk, int flags, int *err); 947 948 int (*ioctl)(struct sock *sk, int cmd, 949 unsigned long arg); 950 int (*init)(struct sock *sk); 951 void (*destroy)(struct sock *sk); 952 void (*shutdown)(struct sock *sk, int how); 953 int (*setsockopt)(struct sock *sk, int level, 954 int optname, char __user *optval, 955 unsigned int optlen); 956 int (*getsockopt)(struct sock *sk, int level, 957 int optname, char __user *optval, 958 int __user *option); 959 #ifdef CONFIG_COMPAT 960 int (*compat_setsockopt)(struct sock *sk, 961 int level, 962 int optname, char __user *optval, 963 unsigned int optlen); 964 int (*compat_getsockopt)(struct sock *sk, 965 int level, 966 int optname, char __user *optval, 967 int __user *option); 968 int (*compat_ioctl)(struct sock *sk, 969 unsigned int cmd, unsigned long arg); 970 #endif 971 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 972 size_t len); 973 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 974 size_t len, int noblock, int flags, 975 int *addr_len); 976 int (*sendpage)(struct sock *sk, struct page *page, 977 int offset, size_t size, int flags); 978 int (*bind)(struct sock *sk, 979 struct sockaddr *uaddr, int addr_len); 980 981 int (*backlog_rcv) (struct sock *sk, 982 struct sk_buff *skb); 983 984 void (*release_cb)(struct sock *sk); 985 986 /* Keeping track of sk's, looking them up, and port selection methods. */ 987 void (*hash)(struct sock *sk); 988 void (*unhash)(struct sock *sk); 989 void (*rehash)(struct sock *sk); 990 int (*get_port)(struct sock *sk, unsigned short snum); 991 void (*clear_sk)(struct sock *sk, int size); 992 993 /* Keeping track of sockets in use */ 994 #ifdef CONFIG_PROC_FS 995 unsigned int inuse_idx; 996 #endif 997 998 bool (*stream_memory_free)(const struct sock *sk); 999 /* Memory pressure */ 1000 void (*enter_memory_pressure)(struct sock *sk); 1001 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1002 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1003 /* 1004 * Pressure flag: try to collapse. 1005 * Technical note: it is used by multiple contexts non atomically. 1006 * All the __sk_mem_schedule() is of this nature: accounting 1007 * is strict, actions are advisory and have some latency. 1008 */ 1009 int *memory_pressure; 1010 long *sysctl_mem; 1011 int *sysctl_wmem; 1012 int *sysctl_rmem; 1013 int max_header; 1014 bool no_autobind; 1015 1016 struct kmem_cache *slab; 1017 unsigned int obj_size; 1018 int slab_flags; 1019 1020 struct percpu_counter *orphan_count; 1021 1022 struct request_sock_ops *rsk_prot; 1023 struct timewait_sock_ops *twsk_prot; 1024 1025 union { 1026 struct inet_hashinfo *hashinfo; 1027 struct udp_table *udp_table; 1028 struct raw_hashinfo *raw_hash; 1029 } h; 1030 1031 struct module *owner; 1032 1033 char name[32]; 1034 1035 struct list_head node; 1036 #ifdef SOCK_REFCNT_DEBUG 1037 atomic_t socks; 1038 #endif 1039 #ifdef CONFIG_MEMCG_KMEM 1040 /* 1041 * cgroup specific init/deinit functions. Called once for all 1042 * protocols that implement it, from cgroups populate function. 1043 * This function has to setup any files the protocol want to 1044 * appear in the kmem cgroup filesystem. 1045 */ 1046 int (*init_cgroup)(struct mem_cgroup *memcg, 1047 struct cgroup_subsys *ss); 1048 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1049 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1050 #endif 1051 }; 1052 1053 int proto_register(struct proto *prot, int alloc_slab); 1054 void proto_unregister(struct proto *prot); 1055 1056 #ifdef SOCK_REFCNT_DEBUG 1057 static inline void sk_refcnt_debug_inc(struct sock *sk) 1058 { 1059 atomic_inc(&sk->sk_prot->socks); 1060 } 1061 1062 static inline void sk_refcnt_debug_dec(struct sock *sk) 1063 { 1064 atomic_dec(&sk->sk_prot->socks); 1065 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1066 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1067 } 1068 1069 static inline void sk_refcnt_debug_release(const struct sock *sk) 1070 { 1071 if (atomic_read(&sk->sk_refcnt) != 1) 1072 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1073 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1074 } 1075 #else /* SOCK_REFCNT_DEBUG */ 1076 #define sk_refcnt_debug_inc(sk) do { } while (0) 1077 #define sk_refcnt_debug_dec(sk) do { } while (0) 1078 #define sk_refcnt_debug_release(sk) do { } while (0) 1079 #endif /* SOCK_REFCNT_DEBUG */ 1080 1081 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1082 extern struct static_key memcg_socket_limit_enabled; 1083 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1084 struct cg_proto *cg_proto) 1085 { 1086 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1087 } 1088 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1089 #else 1090 #define mem_cgroup_sockets_enabled 0 1091 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1092 struct cg_proto *cg_proto) 1093 { 1094 return NULL; 1095 } 1096 #endif 1097 1098 static inline bool sk_stream_memory_free(const struct sock *sk) 1099 { 1100 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1101 return false; 1102 1103 return sk->sk_prot->stream_memory_free ? 1104 sk->sk_prot->stream_memory_free(sk) : true; 1105 } 1106 1107 static inline bool sk_stream_is_writeable(const struct sock *sk) 1108 { 1109 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1110 sk_stream_memory_free(sk); 1111 } 1112 1113 1114 static inline bool sk_has_memory_pressure(const struct sock *sk) 1115 { 1116 return sk->sk_prot->memory_pressure != NULL; 1117 } 1118 1119 static inline bool sk_under_memory_pressure(const struct sock *sk) 1120 { 1121 if (!sk->sk_prot->memory_pressure) 1122 return false; 1123 1124 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1125 return !!sk->sk_cgrp->memory_pressure; 1126 1127 return !!*sk->sk_prot->memory_pressure; 1128 } 1129 1130 static inline void sk_leave_memory_pressure(struct sock *sk) 1131 { 1132 int *memory_pressure = sk->sk_prot->memory_pressure; 1133 1134 if (!memory_pressure) 1135 return; 1136 1137 if (*memory_pressure) 1138 *memory_pressure = 0; 1139 1140 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1141 struct cg_proto *cg_proto = sk->sk_cgrp; 1142 struct proto *prot = sk->sk_prot; 1143 1144 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1145 cg_proto->memory_pressure = 0; 1146 } 1147 1148 } 1149 1150 static inline void sk_enter_memory_pressure(struct sock *sk) 1151 { 1152 if (!sk->sk_prot->enter_memory_pressure) 1153 return; 1154 1155 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1156 struct cg_proto *cg_proto = sk->sk_cgrp; 1157 struct proto *prot = sk->sk_prot; 1158 1159 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1160 cg_proto->memory_pressure = 1; 1161 } 1162 1163 sk->sk_prot->enter_memory_pressure(sk); 1164 } 1165 1166 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1167 { 1168 long *prot = sk->sk_prot->sysctl_mem; 1169 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1170 prot = sk->sk_cgrp->sysctl_mem; 1171 return prot[index]; 1172 } 1173 1174 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1175 unsigned long amt, 1176 int *parent_status) 1177 { 1178 page_counter_charge(&prot->memory_allocated, amt); 1179 1180 if (page_counter_read(&prot->memory_allocated) > 1181 prot->memory_allocated.limit) 1182 *parent_status = OVER_LIMIT; 1183 } 1184 1185 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1186 unsigned long amt) 1187 { 1188 page_counter_uncharge(&prot->memory_allocated, amt); 1189 } 1190 1191 static inline long 1192 sk_memory_allocated(const struct sock *sk) 1193 { 1194 struct proto *prot = sk->sk_prot; 1195 1196 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1197 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1198 1199 return atomic_long_read(prot->memory_allocated); 1200 } 1201 1202 static inline long 1203 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1204 { 1205 struct proto *prot = sk->sk_prot; 1206 1207 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1208 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1209 /* update the root cgroup regardless */ 1210 atomic_long_add_return(amt, prot->memory_allocated); 1211 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1212 } 1213 1214 return atomic_long_add_return(amt, prot->memory_allocated); 1215 } 1216 1217 static inline void 1218 sk_memory_allocated_sub(struct sock *sk, int amt) 1219 { 1220 struct proto *prot = sk->sk_prot; 1221 1222 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1223 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1224 1225 atomic_long_sub(amt, prot->memory_allocated); 1226 } 1227 1228 static inline void sk_sockets_allocated_dec(struct sock *sk) 1229 { 1230 struct proto *prot = sk->sk_prot; 1231 1232 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1233 struct cg_proto *cg_proto = sk->sk_cgrp; 1234 1235 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1236 percpu_counter_dec(&cg_proto->sockets_allocated); 1237 } 1238 1239 percpu_counter_dec(prot->sockets_allocated); 1240 } 1241 1242 static inline void sk_sockets_allocated_inc(struct sock *sk) 1243 { 1244 struct proto *prot = sk->sk_prot; 1245 1246 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1247 struct cg_proto *cg_proto = sk->sk_cgrp; 1248 1249 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1250 percpu_counter_inc(&cg_proto->sockets_allocated); 1251 } 1252 1253 percpu_counter_inc(prot->sockets_allocated); 1254 } 1255 1256 static inline int 1257 sk_sockets_allocated_read_positive(struct sock *sk) 1258 { 1259 struct proto *prot = sk->sk_prot; 1260 1261 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1262 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1263 1264 return percpu_counter_read_positive(prot->sockets_allocated); 1265 } 1266 1267 static inline int 1268 proto_sockets_allocated_sum_positive(struct proto *prot) 1269 { 1270 return percpu_counter_sum_positive(prot->sockets_allocated); 1271 } 1272 1273 static inline long 1274 proto_memory_allocated(struct proto *prot) 1275 { 1276 return atomic_long_read(prot->memory_allocated); 1277 } 1278 1279 static inline bool 1280 proto_memory_pressure(struct proto *prot) 1281 { 1282 if (!prot->memory_pressure) 1283 return false; 1284 return !!*prot->memory_pressure; 1285 } 1286 1287 1288 #ifdef CONFIG_PROC_FS 1289 /* Called with local bh disabled */ 1290 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1291 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1292 #else 1293 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1294 int inc) 1295 { 1296 } 1297 #endif 1298 1299 1300 /* With per-bucket locks this operation is not-atomic, so that 1301 * this version is not worse. 1302 */ 1303 static inline void __sk_prot_rehash(struct sock *sk) 1304 { 1305 sk->sk_prot->unhash(sk); 1306 sk->sk_prot->hash(sk); 1307 } 1308 1309 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1310 1311 /* About 10 seconds */ 1312 #define SOCK_DESTROY_TIME (10*HZ) 1313 1314 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1315 #define PROT_SOCK 1024 1316 1317 #define SHUTDOWN_MASK 3 1318 #define RCV_SHUTDOWN 1 1319 #define SEND_SHUTDOWN 2 1320 1321 #define SOCK_SNDBUF_LOCK 1 1322 #define SOCK_RCVBUF_LOCK 2 1323 #define SOCK_BINDADDR_LOCK 4 1324 #define SOCK_BINDPORT_LOCK 8 1325 1326 struct socket_alloc { 1327 struct socket socket; 1328 struct inode vfs_inode; 1329 }; 1330 1331 static inline struct socket *SOCKET_I(struct inode *inode) 1332 { 1333 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1334 } 1335 1336 static inline struct inode *SOCK_INODE(struct socket *socket) 1337 { 1338 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1339 } 1340 1341 /* 1342 * Functions for memory accounting 1343 */ 1344 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1345 void __sk_mem_reclaim(struct sock *sk, int amount); 1346 1347 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1348 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1349 #define SK_MEM_SEND 0 1350 #define SK_MEM_RECV 1 1351 1352 static inline int sk_mem_pages(int amt) 1353 { 1354 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1355 } 1356 1357 static inline bool sk_has_account(struct sock *sk) 1358 { 1359 /* return true if protocol supports memory accounting */ 1360 return !!sk->sk_prot->memory_allocated; 1361 } 1362 1363 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1364 { 1365 if (!sk_has_account(sk)) 1366 return true; 1367 return size <= sk->sk_forward_alloc || 1368 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1369 } 1370 1371 static inline bool 1372 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1373 { 1374 if (!sk_has_account(sk)) 1375 return true; 1376 return size<= sk->sk_forward_alloc || 1377 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1378 skb_pfmemalloc(skb); 1379 } 1380 1381 static inline void sk_mem_reclaim(struct sock *sk) 1382 { 1383 if (!sk_has_account(sk)) 1384 return; 1385 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1386 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1387 } 1388 1389 static inline void sk_mem_reclaim_partial(struct sock *sk) 1390 { 1391 if (!sk_has_account(sk)) 1392 return; 1393 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1394 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1395 } 1396 1397 static inline void sk_mem_charge(struct sock *sk, int size) 1398 { 1399 if (!sk_has_account(sk)) 1400 return; 1401 sk->sk_forward_alloc -= size; 1402 } 1403 1404 static inline void sk_mem_uncharge(struct sock *sk, int size) 1405 { 1406 if (!sk_has_account(sk)) 1407 return; 1408 sk->sk_forward_alloc += size; 1409 } 1410 1411 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1412 { 1413 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1414 sk->sk_wmem_queued -= skb->truesize; 1415 sk_mem_uncharge(sk, skb->truesize); 1416 __kfree_skb(skb); 1417 } 1418 1419 /* Used by processes to "lock" a socket state, so that 1420 * interrupts and bottom half handlers won't change it 1421 * from under us. It essentially blocks any incoming 1422 * packets, so that we won't get any new data or any 1423 * packets that change the state of the socket. 1424 * 1425 * While locked, BH processing will add new packets to 1426 * the backlog queue. This queue is processed by the 1427 * owner of the socket lock right before it is released. 1428 * 1429 * Since ~2.3.5 it is also exclusive sleep lock serializing 1430 * accesses from user process context. 1431 */ 1432 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1433 1434 static inline void sock_release_ownership(struct sock *sk) 1435 { 1436 sk->sk_lock.owned = 0; 1437 } 1438 1439 /* 1440 * Macro so as to not evaluate some arguments when 1441 * lockdep is not enabled. 1442 * 1443 * Mark both the sk_lock and the sk_lock.slock as a 1444 * per-address-family lock class. 1445 */ 1446 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1447 do { \ 1448 sk->sk_lock.owned = 0; \ 1449 init_waitqueue_head(&sk->sk_lock.wq); \ 1450 spin_lock_init(&(sk)->sk_lock.slock); \ 1451 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1452 sizeof((sk)->sk_lock)); \ 1453 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1454 (skey), (sname)); \ 1455 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1456 } while (0) 1457 1458 void lock_sock_nested(struct sock *sk, int subclass); 1459 1460 static inline void lock_sock(struct sock *sk) 1461 { 1462 lock_sock_nested(sk, 0); 1463 } 1464 1465 void release_sock(struct sock *sk); 1466 1467 /* BH context may only use the following locking interface. */ 1468 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1469 #define bh_lock_sock_nested(__sk) \ 1470 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1471 SINGLE_DEPTH_NESTING) 1472 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1473 1474 bool lock_sock_fast(struct sock *sk); 1475 /** 1476 * unlock_sock_fast - complement of lock_sock_fast 1477 * @sk: socket 1478 * @slow: slow mode 1479 * 1480 * fast unlock socket for user context. 1481 * If slow mode is on, we call regular release_sock() 1482 */ 1483 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1484 { 1485 if (slow) 1486 release_sock(sk); 1487 else 1488 spin_unlock_bh(&sk->sk_lock.slock); 1489 } 1490 1491 1492 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1493 struct proto *prot, int kern); 1494 void sk_free(struct sock *sk); 1495 void sk_destruct(struct sock *sk); 1496 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1497 1498 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1499 gfp_t priority); 1500 void sock_wfree(struct sk_buff *skb); 1501 void skb_orphan_partial(struct sk_buff *skb); 1502 void sock_rfree(struct sk_buff *skb); 1503 void sock_efree(struct sk_buff *skb); 1504 #ifdef CONFIG_INET 1505 void sock_edemux(struct sk_buff *skb); 1506 #else 1507 #define sock_edemux(skb) sock_efree(skb) 1508 #endif 1509 1510 int sock_setsockopt(struct socket *sock, int level, int op, 1511 char __user *optval, unsigned int optlen); 1512 1513 int sock_getsockopt(struct socket *sock, int level, int op, 1514 char __user *optval, int __user *optlen); 1515 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1516 int noblock, int *errcode); 1517 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1518 unsigned long data_len, int noblock, 1519 int *errcode, int max_page_order); 1520 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1521 void sock_kfree_s(struct sock *sk, void *mem, int size); 1522 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1523 void sk_send_sigurg(struct sock *sk); 1524 1525 /* 1526 * Functions to fill in entries in struct proto_ops when a protocol 1527 * does not implement a particular function. 1528 */ 1529 int sock_no_bind(struct socket *, struct sockaddr *, int); 1530 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1531 int sock_no_socketpair(struct socket *, struct socket *); 1532 int sock_no_accept(struct socket *, struct socket *, int); 1533 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1534 unsigned int sock_no_poll(struct file *, struct socket *, 1535 struct poll_table_struct *); 1536 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1537 int sock_no_listen(struct socket *, int); 1538 int sock_no_shutdown(struct socket *, int); 1539 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1540 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1541 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1542 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1543 int sock_no_mmap(struct file *file, struct socket *sock, 1544 struct vm_area_struct *vma); 1545 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1546 size_t size, int flags); 1547 1548 /* 1549 * Functions to fill in entries in struct proto_ops when a protocol 1550 * uses the inet style. 1551 */ 1552 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1553 char __user *optval, int __user *optlen); 1554 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1555 int flags); 1556 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1557 char __user *optval, unsigned int optlen); 1558 int compat_sock_common_getsockopt(struct socket *sock, int level, 1559 int optname, char __user *optval, int __user *optlen); 1560 int compat_sock_common_setsockopt(struct socket *sock, int level, 1561 int optname, char __user *optval, unsigned int optlen); 1562 1563 void sk_common_release(struct sock *sk); 1564 1565 /* 1566 * Default socket callbacks and setup code 1567 */ 1568 1569 /* Initialise core socket variables */ 1570 void sock_init_data(struct socket *sock, struct sock *sk); 1571 1572 /* 1573 * Socket reference counting postulates. 1574 * 1575 * * Each user of socket SHOULD hold a reference count. 1576 * * Each access point to socket (an hash table bucket, reference from a list, 1577 * running timer, skb in flight MUST hold a reference count. 1578 * * When reference count hits 0, it means it will never increase back. 1579 * * When reference count hits 0, it means that no references from 1580 * outside exist to this socket and current process on current CPU 1581 * is last user and may/should destroy this socket. 1582 * * sk_free is called from any context: process, BH, IRQ. When 1583 * it is called, socket has no references from outside -> sk_free 1584 * may release descendant resources allocated by the socket, but 1585 * to the time when it is called, socket is NOT referenced by any 1586 * hash tables, lists etc. 1587 * * Packets, delivered from outside (from network or from another process) 1588 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1589 * when they sit in queue. Otherwise, packets will leak to hole, when 1590 * socket is looked up by one cpu and unhasing is made by another CPU. 1591 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1592 * (leak to backlog). Packet socket does all the processing inside 1593 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1594 * use separate SMP lock, so that they are prone too. 1595 */ 1596 1597 /* Ungrab socket and destroy it, if it was the last reference. */ 1598 static inline void sock_put(struct sock *sk) 1599 { 1600 if (atomic_dec_and_test(&sk->sk_refcnt)) 1601 sk_free(sk); 1602 } 1603 /* Generic version of sock_put(), dealing with all sockets 1604 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1605 */ 1606 void sock_gen_put(struct sock *sk); 1607 1608 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1609 1610 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1611 { 1612 sk->sk_tx_queue_mapping = tx_queue; 1613 } 1614 1615 static inline void sk_tx_queue_clear(struct sock *sk) 1616 { 1617 sk->sk_tx_queue_mapping = -1; 1618 } 1619 1620 static inline int sk_tx_queue_get(const struct sock *sk) 1621 { 1622 return sk ? sk->sk_tx_queue_mapping : -1; 1623 } 1624 1625 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1626 { 1627 sk_tx_queue_clear(sk); 1628 sk->sk_socket = sock; 1629 } 1630 1631 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1632 { 1633 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1634 return &rcu_dereference_raw(sk->sk_wq)->wait; 1635 } 1636 /* Detach socket from process context. 1637 * Announce socket dead, detach it from wait queue and inode. 1638 * Note that parent inode held reference count on this struct sock, 1639 * we do not release it in this function, because protocol 1640 * probably wants some additional cleanups or even continuing 1641 * to work with this socket (TCP). 1642 */ 1643 static inline void sock_orphan(struct sock *sk) 1644 { 1645 write_lock_bh(&sk->sk_callback_lock); 1646 sock_set_flag(sk, SOCK_DEAD); 1647 sk_set_socket(sk, NULL); 1648 sk->sk_wq = NULL; 1649 write_unlock_bh(&sk->sk_callback_lock); 1650 } 1651 1652 static inline void sock_graft(struct sock *sk, struct socket *parent) 1653 { 1654 write_lock_bh(&sk->sk_callback_lock); 1655 sk->sk_wq = parent->wq; 1656 parent->sk = sk; 1657 sk_set_socket(sk, parent); 1658 security_sock_graft(sk, parent); 1659 write_unlock_bh(&sk->sk_callback_lock); 1660 } 1661 1662 kuid_t sock_i_uid(struct sock *sk); 1663 unsigned long sock_i_ino(struct sock *sk); 1664 1665 static inline void sk_set_txhash(struct sock *sk) 1666 { 1667 sk->sk_txhash = prandom_u32(); 1668 1669 if (unlikely(!sk->sk_txhash)) 1670 sk->sk_txhash = 1; 1671 } 1672 1673 static inline void sk_rethink_txhash(struct sock *sk) 1674 { 1675 if (sk->sk_txhash) 1676 sk_set_txhash(sk); 1677 } 1678 1679 static inline struct dst_entry * 1680 __sk_dst_get(struct sock *sk) 1681 { 1682 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1683 lockdep_is_held(&sk->sk_lock.slock)); 1684 } 1685 1686 static inline struct dst_entry * 1687 sk_dst_get(struct sock *sk) 1688 { 1689 struct dst_entry *dst; 1690 1691 rcu_read_lock(); 1692 dst = rcu_dereference(sk->sk_dst_cache); 1693 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1694 dst = NULL; 1695 rcu_read_unlock(); 1696 return dst; 1697 } 1698 1699 static inline void dst_negative_advice(struct sock *sk) 1700 { 1701 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1702 1703 sk_rethink_txhash(sk); 1704 1705 if (dst && dst->ops->negative_advice) { 1706 ndst = dst->ops->negative_advice(dst); 1707 1708 if (ndst != dst) { 1709 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1710 sk_tx_queue_clear(sk); 1711 } 1712 } 1713 } 1714 1715 static inline void 1716 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1717 { 1718 struct dst_entry *old_dst; 1719 1720 sk_tx_queue_clear(sk); 1721 /* 1722 * This can be called while sk is owned by the caller only, 1723 * with no state that can be checked in a rcu_dereference_check() cond 1724 */ 1725 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1726 rcu_assign_pointer(sk->sk_dst_cache, dst); 1727 dst_release(old_dst); 1728 } 1729 1730 static inline void 1731 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1732 { 1733 struct dst_entry *old_dst; 1734 1735 sk_tx_queue_clear(sk); 1736 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1737 dst_release(old_dst); 1738 } 1739 1740 static inline void 1741 __sk_dst_reset(struct sock *sk) 1742 { 1743 __sk_dst_set(sk, NULL); 1744 } 1745 1746 static inline void 1747 sk_dst_reset(struct sock *sk) 1748 { 1749 sk_dst_set(sk, NULL); 1750 } 1751 1752 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1753 1754 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1755 1756 bool sk_mc_loop(struct sock *sk); 1757 1758 static inline bool sk_can_gso(const struct sock *sk) 1759 { 1760 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1761 } 1762 1763 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1764 1765 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1766 { 1767 sk->sk_route_nocaps |= flags; 1768 sk->sk_route_caps &= ~flags; 1769 } 1770 1771 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1772 struct iov_iter *from, char *to, 1773 int copy, int offset) 1774 { 1775 if (skb->ip_summed == CHECKSUM_NONE) { 1776 __wsum csum = 0; 1777 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy) 1778 return -EFAULT; 1779 skb->csum = csum_block_add(skb->csum, csum, offset); 1780 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1781 if (copy_from_iter_nocache(to, copy, from) != copy) 1782 return -EFAULT; 1783 } else if (copy_from_iter(to, copy, from) != copy) 1784 return -EFAULT; 1785 1786 return 0; 1787 } 1788 1789 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1790 struct iov_iter *from, int copy) 1791 { 1792 int err, offset = skb->len; 1793 1794 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1795 copy, offset); 1796 if (err) 1797 __skb_trim(skb, offset); 1798 1799 return err; 1800 } 1801 1802 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1803 struct sk_buff *skb, 1804 struct page *page, 1805 int off, int copy) 1806 { 1807 int err; 1808 1809 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1810 copy, skb->len); 1811 if (err) 1812 return err; 1813 1814 skb->len += copy; 1815 skb->data_len += copy; 1816 skb->truesize += copy; 1817 sk->sk_wmem_queued += copy; 1818 sk_mem_charge(sk, copy); 1819 return 0; 1820 } 1821 1822 /** 1823 * sk_wmem_alloc_get - returns write allocations 1824 * @sk: socket 1825 * 1826 * Returns sk_wmem_alloc minus initial offset of one 1827 */ 1828 static inline int sk_wmem_alloc_get(const struct sock *sk) 1829 { 1830 return atomic_read(&sk->sk_wmem_alloc) - 1; 1831 } 1832 1833 /** 1834 * sk_rmem_alloc_get - returns read allocations 1835 * @sk: socket 1836 * 1837 * Returns sk_rmem_alloc 1838 */ 1839 static inline int sk_rmem_alloc_get(const struct sock *sk) 1840 { 1841 return atomic_read(&sk->sk_rmem_alloc); 1842 } 1843 1844 /** 1845 * sk_has_allocations - check if allocations are outstanding 1846 * @sk: socket 1847 * 1848 * Returns true if socket has write or read allocations 1849 */ 1850 static inline bool sk_has_allocations(const struct sock *sk) 1851 { 1852 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1853 } 1854 1855 /** 1856 * wq_has_sleeper - check if there are any waiting processes 1857 * @wq: struct socket_wq 1858 * 1859 * Returns true if socket_wq has waiting processes 1860 * 1861 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1862 * barrier call. They were added due to the race found within the tcp code. 1863 * 1864 * Consider following tcp code paths: 1865 * 1866 * CPU1 CPU2 1867 * 1868 * sys_select receive packet 1869 * ... ... 1870 * __add_wait_queue update tp->rcv_nxt 1871 * ... ... 1872 * tp->rcv_nxt check sock_def_readable 1873 * ... { 1874 * schedule rcu_read_lock(); 1875 * wq = rcu_dereference(sk->sk_wq); 1876 * if (wq && waitqueue_active(&wq->wait)) 1877 * wake_up_interruptible(&wq->wait) 1878 * ... 1879 * } 1880 * 1881 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1882 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1883 * could then endup calling schedule and sleep forever if there are no more 1884 * data on the socket. 1885 * 1886 */ 1887 static inline bool wq_has_sleeper(struct socket_wq *wq) 1888 { 1889 /* We need to be sure we are in sync with the 1890 * add_wait_queue modifications to the wait queue. 1891 * 1892 * This memory barrier is paired in the sock_poll_wait. 1893 */ 1894 smp_mb(); 1895 return wq && waitqueue_active(&wq->wait); 1896 } 1897 1898 /** 1899 * sock_poll_wait - place memory barrier behind the poll_wait call. 1900 * @filp: file 1901 * @wait_address: socket wait queue 1902 * @p: poll_table 1903 * 1904 * See the comments in the wq_has_sleeper function. 1905 */ 1906 static inline void sock_poll_wait(struct file *filp, 1907 wait_queue_head_t *wait_address, poll_table *p) 1908 { 1909 if (!poll_does_not_wait(p) && wait_address) { 1910 poll_wait(filp, wait_address, p); 1911 /* We need to be sure we are in sync with the 1912 * socket flags modification. 1913 * 1914 * This memory barrier is paired in the wq_has_sleeper. 1915 */ 1916 smp_mb(); 1917 } 1918 } 1919 1920 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1921 { 1922 if (sk->sk_txhash) { 1923 skb->l4_hash = 1; 1924 skb->hash = sk->sk_txhash; 1925 } 1926 } 1927 1928 /* 1929 * Queue a received datagram if it will fit. Stream and sequenced 1930 * protocols can't normally use this as they need to fit buffers in 1931 * and play with them. 1932 * 1933 * Inlined as it's very short and called for pretty much every 1934 * packet ever received. 1935 */ 1936 1937 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1938 { 1939 skb_orphan(skb); 1940 skb->sk = sk; 1941 skb->destructor = sock_wfree; 1942 skb_set_hash_from_sk(skb, sk); 1943 /* 1944 * We used to take a refcount on sk, but following operation 1945 * is enough to guarantee sk_free() wont free this sock until 1946 * all in-flight packets are completed 1947 */ 1948 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1949 } 1950 1951 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1952 { 1953 skb_orphan(skb); 1954 skb->sk = sk; 1955 skb->destructor = sock_rfree; 1956 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1957 sk_mem_charge(sk, skb->truesize); 1958 } 1959 1960 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 1961 unsigned long expires); 1962 1963 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 1964 1965 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1966 1967 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1968 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 1969 1970 /* 1971 * Recover an error report and clear atomically 1972 */ 1973 1974 static inline int sock_error(struct sock *sk) 1975 { 1976 int err; 1977 if (likely(!sk->sk_err)) 1978 return 0; 1979 err = xchg(&sk->sk_err, 0); 1980 return -err; 1981 } 1982 1983 static inline unsigned long sock_wspace(struct sock *sk) 1984 { 1985 int amt = 0; 1986 1987 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1988 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1989 if (amt < 0) 1990 amt = 0; 1991 } 1992 return amt; 1993 } 1994 1995 static inline void sk_wake_async(struct sock *sk, int how, int band) 1996 { 1997 if (sock_flag(sk, SOCK_FASYNC)) 1998 sock_wake_async(sk->sk_socket, how, band); 1999 } 2000 2001 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2002 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2003 * Note: for send buffers, TCP works better if we can build two skbs at 2004 * minimum. 2005 */ 2006 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2007 2008 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2009 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2010 2011 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2012 { 2013 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2014 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2015 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2016 } 2017 } 2018 2019 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2020 bool force_schedule); 2021 2022 /** 2023 * sk_page_frag - return an appropriate page_frag 2024 * @sk: socket 2025 * 2026 * If socket allocation mode allows current thread to sleep, it means its 2027 * safe to use the per task page_frag instead of the per socket one. 2028 */ 2029 static inline struct page_frag *sk_page_frag(struct sock *sk) 2030 { 2031 if (sk->sk_allocation & __GFP_WAIT) 2032 return ¤t->task_frag; 2033 2034 return &sk->sk_frag; 2035 } 2036 2037 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2038 2039 /* 2040 * Default write policy as shown to user space via poll/select/SIGIO 2041 */ 2042 static inline bool sock_writeable(const struct sock *sk) 2043 { 2044 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2045 } 2046 2047 static inline gfp_t gfp_any(void) 2048 { 2049 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2050 } 2051 2052 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2053 { 2054 return noblock ? 0 : sk->sk_rcvtimeo; 2055 } 2056 2057 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2058 { 2059 return noblock ? 0 : sk->sk_sndtimeo; 2060 } 2061 2062 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2063 { 2064 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2065 } 2066 2067 /* Alas, with timeout socket operations are not restartable. 2068 * Compare this to poll(). 2069 */ 2070 static inline int sock_intr_errno(long timeo) 2071 { 2072 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2073 } 2074 2075 struct sock_skb_cb { 2076 u32 dropcount; 2077 }; 2078 2079 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2080 * using skb->cb[] would keep using it directly and utilize its 2081 * alignement guarantee. 2082 */ 2083 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2084 sizeof(struct sock_skb_cb))) 2085 2086 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2087 SOCK_SKB_CB_OFFSET)) 2088 2089 #define sock_skb_cb_check_size(size) \ 2090 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2091 2092 static inline void 2093 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2094 { 2095 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops); 2096 } 2097 2098 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2099 struct sk_buff *skb); 2100 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2101 struct sk_buff *skb); 2102 2103 static inline void 2104 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2105 { 2106 ktime_t kt = skb->tstamp; 2107 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2108 2109 /* 2110 * generate control messages if 2111 * - receive time stamping in software requested 2112 * - software time stamp available and wanted 2113 * - hardware time stamps available and wanted 2114 */ 2115 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2116 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2117 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2118 (hwtstamps->hwtstamp.tv64 && 2119 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2120 __sock_recv_timestamp(msg, sk, skb); 2121 else 2122 sk->sk_stamp = kt; 2123 2124 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2125 __sock_recv_wifi_status(msg, sk, skb); 2126 } 2127 2128 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2129 struct sk_buff *skb); 2130 2131 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2132 struct sk_buff *skb) 2133 { 2134 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2135 (1UL << SOCK_RCVTSTAMP)) 2136 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2137 SOF_TIMESTAMPING_RAW_HARDWARE) 2138 2139 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2140 __sock_recv_ts_and_drops(msg, sk, skb); 2141 else 2142 sk->sk_stamp = skb->tstamp; 2143 } 2144 2145 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags); 2146 2147 /** 2148 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2149 * @sk: socket sending this packet 2150 * @tx_flags: completed with instructions for time stamping 2151 * 2152 * Note : callers should take care of initial *tx_flags value (usually 0) 2153 */ 2154 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 2155 { 2156 if (unlikely(sk->sk_tsflags)) 2157 __sock_tx_timestamp(sk, tx_flags); 2158 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2159 *tx_flags |= SKBTX_WIFI_STATUS; 2160 } 2161 2162 /** 2163 * sk_eat_skb - Release a skb if it is no longer needed 2164 * @sk: socket to eat this skb from 2165 * @skb: socket buffer to eat 2166 * 2167 * This routine must be called with interrupts disabled or with the socket 2168 * locked so that the sk_buff queue operation is ok. 2169 */ 2170 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2171 { 2172 __skb_unlink(skb, &sk->sk_receive_queue); 2173 __kfree_skb(skb); 2174 } 2175 2176 static inline 2177 struct net *sock_net(const struct sock *sk) 2178 { 2179 return read_pnet(&sk->sk_net); 2180 } 2181 2182 static inline 2183 void sock_net_set(struct sock *sk, struct net *net) 2184 { 2185 write_pnet(&sk->sk_net, net); 2186 } 2187 2188 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2189 { 2190 if (skb->sk) { 2191 struct sock *sk = skb->sk; 2192 2193 skb->destructor = NULL; 2194 skb->sk = NULL; 2195 return sk; 2196 } 2197 return NULL; 2198 } 2199 2200 /* This helper checks if a socket is a full socket, 2201 * ie _not_ a timewait or request socket. 2202 */ 2203 static inline bool sk_fullsock(const struct sock *sk) 2204 { 2205 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2206 } 2207 2208 void sock_enable_timestamp(struct sock *sk, int flag); 2209 int sock_get_timestamp(struct sock *, struct timeval __user *); 2210 int sock_get_timestampns(struct sock *, struct timespec __user *); 2211 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2212 int type); 2213 2214 bool sk_ns_capable(const struct sock *sk, 2215 struct user_namespace *user_ns, int cap); 2216 bool sk_capable(const struct sock *sk, int cap); 2217 bool sk_net_capable(const struct sock *sk, int cap); 2218 2219 extern __u32 sysctl_wmem_max; 2220 extern __u32 sysctl_rmem_max; 2221 2222 extern int sysctl_tstamp_allow_data; 2223 extern int sysctl_optmem_max; 2224 2225 extern __u32 sysctl_wmem_default; 2226 extern __u32 sysctl_rmem_default; 2227 2228 #endif /* _SOCK_H */ 2229