1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 #include <linux/net_tstamp.h> 71 72 struct cgroup; 73 struct cgroup_subsys; 74 #ifdef CONFIG_NET 75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 77 #else 78 static inline 79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 80 { 81 return 0; 82 } 83 static inline 84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 85 { 86 } 87 #endif 88 /* 89 * This structure really needs to be cleaned up. 90 * Most of it is for TCP, and not used by any of 91 * the other protocols. 92 */ 93 94 /* Define this to get the SOCK_DBG debugging facility. */ 95 #define SOCK_DEBUGGING 96 #ifdef SOCK_DEBUGGING 97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 98 printk(KERN_DEBUG msg); } while (0) 99 #else 100 /* Validate arguments and do nothing */ 101 static inline __printf(2, 3) 102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 103 { 104 } 105 #endif 106 107 /* This is the per-socket lock. The spinlock provides a synchronization 108 * between user contexts and software interrupt processing, whereas the 109 * mini-semaphore synchronizes multiple users amongst themselves. 110 */ 111 typedef struct { 112 spinlock_t slock; 113 int owned; 114 wait_queue_head_t wq; 115 /* 116 * We express the mutex-alike socket_lock semantics 117 * to the lock validator by explicitly managing 118 * the slock as a lock variant (in addition to 119 * the slock itself): 120 */ 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 struct lockdep_map dep_map; 123 #endif 124 } socket_lock_t; 125 126 struct sock; 127 struct proto; 128 struct net; 129 130 typedef __u32 __bitwise __portpair; 131 typedef __u64 __bitwise __addrpair; 132 133 /** 134 * struct sock_common - minimal network layer representation of sockets 135 * @skc_daddr: Foreign IPv4 addr 136 * @skc_rcv_saddr: Bound local IPv4 addr 137 * @skc_hash: hash value used with various protocol lookup tables 138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 139 * @skc_dport: placeholder for inet_dport/tw_dport 140 * @skc_num: placeholder for inet_num/tw_num 141 * @skc_family: network address family 142 * @skc_state: Connection state 143 * @skc_reuse: %SO_REUSEADDR setting 144 * @skc_reuseport: %SO_REUSEPORT setting 145 * @skc_bound_dev_if: bound device index if != 0 146 * @skc_bind_node: bind hash linkage for various protocol lookup tables 147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 148 * @skc_prot: protocol handlers inside a network family 149 * @skc_net: reference to the network namespace of this socket 150 * @skc_node: main hash linkage for various protocol lookup tables 151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 152 * @skc_tx_queue_mapping: tx queue number for this connection 153 * @skc_refcnt: reference count 154 * 155 * This is the minimal network layer representation of sockets, the header 156 * for struct sock and struct inet_timewait_sock. 157 */ 158 struct sock_common { 159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 160 * address on 64bit arches : cf INET_MATCH() 161 */ 162 union { 163 __addrpair skc_addrpair; 164 struct { 165 __be32 skc_daddr; 166 __be32 skc_rcv_saddr; 167 }; 168 }; 169 union { 170 unsigned int skc_hash; 171 __u16 skc_u16hashes[2]; 172 }; 173 /* skc_dport && skc_num must be grouped as well */ 174 union { 175 __portpair skc_portpair; 176 struct { 177 __be16 skc_dport; 178 __u16 skc_num; 179 }; 180 }; 181 182 unsigned short skc_family; 183 volatile unsigned char skc_state; 184 unsigned char skc_reuse:4; 185 unsigned char skc_reuseport:1; 186 unsigned char skc_ipv6only:1; 187 int skc_bound_dev_if; 188 union { 189 struct hlist_node skc_bind_node; 190 struct hlist_nulls_node skc_portaddr_node; 191 }; 192 struct proto *skc_prot; 193 #ifdef CONFIG_NET_NS 194 struct net *skc_net; 195 #endif 196 197 #if IS_ENABLED(CONFIG_IPV6) 198 struct in6_addr skc_v6_daddr; 199 struct in6_addr skc_v6_rcv_saddr; 200 #endif 201 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 int skc_tx_queue_mapping; 214 atomic_t skc_refcnt; 215 /* private: */ 216 int skc_dontcopy_end[0]; 217 /* public: */ 218 }; 219 220 struct cg_proto; 221 /** 222 * struct sock - network layer representation of sockets 223 * @__sk_common: shared layout with inet_timewait_sock 224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 226 * @sk_lock: synchronizer 227 * @sk_rcvbuf: size of receive buffer in bytes 228 * @sk_wq: sock wait queue and async head 229 * @sk_rx_dst: receive input route used by early demux 230 * @sk_dst_cache: destination cache 231 * @sk_dst_lock: destination cache lock 232 * @sk_policy: flow policy 233 * @sk_receive_queue: incoming packets 234 * @sk_wmem_alloc: transmit queue bytes committed 235 * @sk_write_queue: Packet sending queue 236 * @sk_omem_alloc: "o" is "option" or "other" 237 * @sk_wmem_queued: persistent queue size 238 * @sk_forward_alloc: space allocated forward 239 * @sk_napi_id: id of the last napi context to receive data for sk 240 * @sk_ll_usec: usecs to busypoll when there is no data 241 * @sk_allocation: allocation mode 242 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 243 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 244 * @sk_sndbuf: size of send buffer in bytes 245 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 246 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 247 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 248 * @sk_no_check_rx: allow zero checksum in RX packets 249 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 250 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 251 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 252 * @sk_gso_max_size: Maximum GSO segment size to build 253 * @sk_gso_max_segs: Maximum number of GSO segments 254 * @sk_lingertime: %SO_LINGER l_linger setting 255 * @sk_backlog: always used with the per-socket spinlock held 256 * @sk_callback_lock: used with the callbacks in the end of this struct 257 * @sk_error_queue: rarely used 258 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 259 * IPV6_ADDRFORM for instance) 260 * @sk_err: last error 261 * @sk_err_soft: errors that don't cause failure but are the cause of a 262 * persistent failure not just 'timed out' 263 * @sk_drops: raw/udp drops counter 264 * @sk_ack_backlog: current listen backlog 265 * @sk_max_ack_backlog: listen backlog set in listen() 266 * @sk_priority: %SO_PRIORITY setting 267 * @sk_cgrp_prioidx: socket group's priority map index 268 * @sk_type: socket type (%SOCK_STREAM, etc) 269 * @sk_protocol: which protocol this socket belongs in this network family 270 * @sk_peer_pid: &struct pid for this socket's peer 271 * @sk_peer_cred: %SO_PEERCRED setting 272 * @sk_rcvlowat: %SO_RCVLOWAT setting 273 * @sk_rcvtimeo: %SO_RCVTIMEO setting 274 * @sk_sndtimeo: %SO_SNDTIMEO setting 275 * @sk_rxhash: flow hash received from netif layer 276 * @sk_incoming_cpu: record cpu processing incoming packets 277 * @sk_txhash: computed flow hash for use on transmit 278 * @sk_filter: socket filtering instructions 279 * @sk_protinfo: private area, net family specific, when not using slab 280 * @sk_timer: sock cleanup timer 281 * @sk_stamp: time stamp of last packet received 282 * @sk_tsflags: SO_TIMESTAMPING socket options 283 * @sk_tskey: counter to disambiguate concurrent tstamp requests 284 * @sk_socket: Identd and reporting IO signals 285 * @sk_user_data: RPC layer private data 286 * @sk_frag: cached page frag 287 * @sk_peek_off: current peek_offset value 288 * @sk_send_head: front of stuff to transmit 289 * @sk_security: used by security modules 290 * @sk_mark: generic packet mark 291 * @sk_classid: this socket's cgroup classid 292 * @sk_cgrp: this socket's cgroup-specific proto data 293 * @sk_write_pending: a write to stream socket waits to start 294 * @sk_state_change: callback to indicate change in the state of the sock 295 * @sk_data_ready: callback to indicate there is data to be processed 296 * @sk_write_space: callback to indicate there is bf sending space available 297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 298 * @sk_backlog_rcv: callback to process the backlog 299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 300 */ 301 struct sock { 302 /* 303 * Now struct inet_timewait_sock also uses sock_common, so please just 304 * don't add nothing before this first member (__sk_common) --acme 305 */ 306 struct sock_common __sk_common; 307 #define sk_node __sk_common.skc_node 308 #define sk_nulls_node __sk_common.skc_nulls_node 309 #define sk_refcnt __sk_common.skc_refcnt 310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 311 312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 314 #define sk_hash __sk_common.skc_hash 315 #define sk_portpair __sk_common.skc_portpair 316 #define sk_num __sk_common.skc_num 317 #define sk_dport __sk_common.skc_dport 318 #define sk_addrpair __sk_common.skc_addrpair 319 #define sk_daddr __sk_common.skc_daddr 320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 321 #define sk_family __sk_common.skc_family 322 #define sk_state __sk_common.skc_state 323 #define sk_reuse __sk_common.skc_reuse 324 #define sk_reuseport __sk_common.skc_reuseport 325 #define sk_ipv6only __sk_common.skc_ipv6only 326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 327 #define sk_bind_node __sk_common.skc_bind_node 328 #define sk_prot __sk_common.skc_prot 329 #define sk_net __sk_common.skc_net 330 #define sk_v6_daddr __sk_common.skc_v6_daddr 331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 332 333 socket_lock_t sk_lock; 334 struct sk_buff_head sk_receive_queue; 335 /* 336 * The backlog queue is special, it is always used with 337 * the per-socket spinlock held and requires low latency 338 * access. Therefore we special case it's implementation. 339 * Note : rmem_alloc is in this structure to fill a hole 340 * on 64bit arches, not because its logically part of 341 * backlog. 342 */ 343 struct { 344 atomic_t rmem_alloc; 345 int len; 346 struct sk_buff *head; 347 struct sk_buff *tail; 348 } sk_backlog; 349 #define sk_rmem_alloc sk_backlog.rmem_alloc 350 int sk_forward_alloc; 351 #ifdef CONFIG_RPS 352 __u32 sk_rxhash; 353 #endif 354 u16 sk_incoming_cpu; 355 /* 16bit hole 356 * Warned : sk_incoming_cpu can be set from softirq, 357 * Do not use this hole without fully understanding possible issues. 358 */ 359 360 __u32 sk_txhash; 361 #ifdef CONFIG_NET_RX_BUSY_POLL 362 unsigned int sk_napi_id; 363 unsigned int sk_ll_usec; 364 #endif 365 atomic_t sk_drops; 366 int sk_rcvbuf; 367 368 struct sk_filter __rcu *sk_filter; 369 struct socket_wq __rcu *sk_wq; 370 371 #ifdef CONFIG_XFRM 372 struct xfrm_policy *sk_policy[2]; 373 #endif 374 unsigned long sk_flags; 375 struct dst_entry *sk_rx_dst; 376 struct dst_entry __rcu *sk_dst_cache; 377 spinlock_t sk_dst_lock; 378 atomic_t sk_wmem_alloc; 379 atomic_t sk_omem_alloc; 380 int sk_sndbuf; 381 struct sk_buff_head sk_write_queue; 382 kmemcheck_bitfield_begin(flags); 383 unsigned int sk_shutdown : 2, 384 sk_no_check_tx : 1, 385 sk_no_check_rx : 1, 386 sk_userlocks : 4, 387 sk_protocol : 8, 388 sk_type : 16; 389 kmemcheck_bitfield_end(flags); 390 int sk_wmem_queued; 391 gfp_t sk_allocation; 392 u32 sk_pacing_rate; /* bytes per second */ 393 u32 sk_max_pacing_rate; 394 netdev_features_t sk_route_caps; 395 netdev_features_t sk_route_nocaps; 396 int sk_gso_type; 397 unsigned int sk_gso_max_size; 398 u16 sk_gso_max_segs; 399 int sk_rcvlowat; 400 unsigned long sk_lingertime; 401 struct sk_buff_head sk_error_queue; 402 struct proto *sk_prot_creator; 403 rwlock_t sk_callback_lock; 404 int sk_err, 405 sk_err_soft; 406 unsigned short sk_ack_backlog; 407 unsigned short sk_max_ack_backlog; 408 __u32 sk_priority; 409 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 410 __u32 sk_cgrp_prioidx; 411 #endif 412 struct pid *sk_peer_pid; 413 const struct cred *sk_peer_cred; 414 long sk_rcvtimeo; 415 long sk_sndtimeo; 416 void *sk_protinfo; 417 struct timer_list sk_timer; 418 ktime_t sk_stamp; 419 u16 sk_tsflags; 420 u32 sk_tskey; 421 struct socket *sk_socket; 422 void *sk_user_data; 423 struct page_frag sk_frag; 424 struct sk_buff *sk_send_head; 425 __s32 sk_peek_off; 426 int sk_write_pending; 427 #ifdef CONFIG_SECURITY 428 void *sk_security; 429 #endif 430 __u32 sk_mark; 431 u32 sk_classid; 432 struct cg_proto *sk_cgrp; 433 void (*sk_state_change)(struct sock *sk); 434 void (*sk_data_ready)(struct sock *sk); 435 void (*sk_write_space)(struct sock *sk); 436 void (*sk_error_report)(struct sock *sk); 437 int (*sk_backlog_rcv)(struct sock *sk, 438 struct sk_buff *skb); 439 void (*sk_destruct)(struct sock *sk); 440 }; 441 442 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 443 444 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 445 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 446 447 /* 448 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 449 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 450 * on a socket means that the socket will reuse everybody else's port 451 * without looking at the other's sk_reuse value. 452 */ 453 454 #define SK_NO_REUSE 0 455 #define SK_CAN_REUSE 1 456 #define SK_FORCE_REUSE 2 457 458 static inline int sk_peek_offset(struct sock *sk, int flags) 459 { 460 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 461 return sk->sk_peek_off; 462 else 463 return 0; 464 } 465 466 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 467 { 468 if (sk->sk_peek_off >= 0) { 469 if (sk->sk_peek_off >= val) 470 sk->sk_peek_off -= val; 471 else 472 sk->sk_peek_off = 0; 473 } 474 } 475 476 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 477 { 478 if (sk->sk_peek_off >= 0) 479 sk->sk_peek_off += val; 480 } 481 482 /* 483 * Hashed lists helper routines 484 */ 485 static inline struct sock *sk_entry(const struct hlist_node *node) 486 { 487 return hlist_entry(node, struct sock, sk_node); 488 } 489 490 static inline struct sock *__sk_head(const struct hlist_head *head) 491 { 492 return hlist_entry(head->first, struct sock, sk_node); 493 } 494 495 static inline struct sock *sk_head(const struct hlist_head *head) 496 { 497 return hlist_empty(head) ? NULL : __sk_head(head); 498 } 499 500 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 501 { 502 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 503 } 504 505 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 506 { 507 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 508 } 509 510 static inline struct sock *sk_next(const struct sock *sk) 511 { 512 return sk->sk_node.next ? 513 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 514 } 515 516 static inline struct sock *sk_nulls_next(const struct sock *sk) 517 { 518 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 519 hlist_nulls_entry(sk->sk_nulls_node.next, 520 struct sock, sk_nulls_node) : 521 NULL; 522 } 523 524 static inline bool sk_unhashed(const struct sock *sk) 525 { 526 return hlist_unhashed(&sk->sk_node); 527 } 528 529 static inline bool sk_hashed(const struct sock *sk) 530 { 531 return !sk_unhashed(sk); 532 } 533 534 static inline void sk_node_init(struct hlist_node *node) 535 { 536 node->pprev = NULL; 537 } 538 539 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 540 { 541 node->pprev = NULL; 542 } 543 544 static inline void __sk_del_node(struct sock *sk) 545 { 546 __hlist_del(&sk->sk_node); 547 } 548 549 /* NB: equivalent to hlist_del_init_rcu */ 550 static inline bool __sk_del_node_init(struct sock *sk) 551 { 552 if (sk_hashed(sk)) { 553 __sk_del_node(sk); 554 sk_node_init(&sk->sk_node); 555 return true; 556 } 557 return false; 558 } 559 560 /* Grab socket reference count. This operation is valid only 561 when sk is ALREADY grabbed f.e. it is found in hash table 562 or a list and the lookup is made under lock preventing hash table 563 modifications. 564 */ 565 566 static inline void sock_hold(struct sock *sk) 567 { 568 atomic_inc(&sk->sk_refcnt); 569 } 570 571 /* Ungrab socket in the context, which assumes that socket refcnt 572 cannot hit zero, f.e. it is true in context of any socketcall. 573 */ 574 static inline void __sock_put(struct sock *sk) 575 { 576 atomic_dec(&sk->sk_refcnt); 577 } 578 579 static inline bool sk_del_node_init(struct sock *sk) 580 { 581 bool rc = __sk_del_node_init(sk); 582 583 if (rc) { 584 /* paranoid for a while -acme */ 585 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 586 __sock_put(sk); 587 } 588 return rc; 589 } 590 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 591 592 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 593 { 594 if (sk_hashed(sk)) { 595 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 596 return true; 597 } 598 return false; 599 } 600 601 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 602 { 603 bool rc = __sk_nulls_del_node_init_rcu(sk); 604 605 if (rc) { 606 /* paranoid for a while -acme */ 607 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 608 __sock_put(sk); 609 } 610 return rc; 611 } 612 613 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 614 { 615 hlist_add_head(&sk->sk_node, list); 616 } 617 618 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 619 { 620 sock_hold(sk); 621 __sk_add_node(sk, list); 622 } 623 624 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 625 { 626 sock_hold(sk); 627 hlist_add_head_rcu(&sk->sk_node, list); 628 } 629 630 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 631 { 632 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 633 } 634 635 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 636 { 637 sock_hold(sk); 638 __sk_nulls_add_node_rcu(sk, list); 639 } 640 641 static inline void __sk_del_bind_node(struct sock *sk) 642 { 643 __hlist_del(&sk->sk_bind_node); 644 } 645 646 static inline void sk_add_bind_node(struct sock *sk, 647 struct hlist_head *list) 648 { 649 hlist_add_head(&sk->sk_bind_node, list); 650 } 651 652 #define sk_for_each(__sk, list) \ 653 hlist_for_each_entry(__sk, list, sk_node) 654 #define sk_for_each_rcu(__sk, list) \ 655 hlist_for_each_entry_rcu(__sk, list, sk_node) 656 #define sk_nulls_for_each(__sk, node, list) \ 657 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 658 #define sk_nulls_for_each_rcu(__sk, node, list) \ 659 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 660 #define sk_for_each_from(__sk) \ 661 hlist_for_each_entry_from(__sk, sk_node) 662 #define sk_nulls_for_each_from(__sk, node) \ 663 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 664 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 665 #define sk_for_each_safe(__sk, tmp, list) \ 666 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 667 #define sk_for_each_bound(__sk, list) \ 668 hlist_for_each_entry(__sk, list, sk_bind_node) 669 670 /** 671 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 672 * @tpos: the type * to use as a loop cursor. 673 * @pos: the &struct hlist_node to use as a loop cursor. 674 * @head: the head for your list. 675 * @offset: offset of hlist_node within the struct. 676 * 677 */ 678 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 679 for (pos = (head)->first; \ 680 (!is_a_nulls(pos)) && \ 681 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 682 pos = pos->next) 683 684 static inline struct user_namespace *sk_user_ns(struct sock *sk) 685 { 686 /* Careful only use this in a context where these parameters 687 * can not change and must all be valid, such as recvmsg from 688 * userspace. 689 */ 690 return sk->sk_socket->file->f_cred->user_ns; 691 } 692 693 /* Sock flags */ 694 enum sock_flags { 695 SOCK_DEAD, 696 SOCK_DONE, 697 SOCK_URGINLINE, 698 SOCK_KEEPOPEN, 699 SOCK_LINGER, 700 SOCK_DESTROY, 701 SOCK_BROADCAST, 702 SOCK_TIMESTAMP, 703 SOCK_ZAPPED, 704 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 705 SOCK_DBG, /* %SO_DEBUG setting */ 706 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 707 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 708 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 709 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 710 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 711 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 712 SOCK_FASYNC, /* fasync() active */ 713 SOCK_RXQ_OVFL, 714 SOCK_ZEROCOPY, /* buffers from userspace */ 715 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 716 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 717 * Will use last 4 bytes of packet sent from 718 * user-space instead. 719 */ 720 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 721 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 722 }; 723 724 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 725 { 726 nsk->sk_flags = osk->sk_flags; 727 } 728 729 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 730 { 731 __set_bit(flag, &sk->sk_flags); 732 } 733 734 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 735 { 736 __clear_bit(flag, &sk->sk_flags); 737 } 738 739 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 740 { 741 return test_bit(flag, &sk->sk_flags); 742 } 743 744 #ifdef CONFIG_NET 745 extern struct static_key memalloc_socks; 746 static inline int sk_memalloc_socks(void) 747 { 748 return static_key_false(&memalloc_socks); 749 } 750 #else 751 752 static inline int sk_memalloc_socks(void) 753 { 754 return 0; 755 } 756 757 #endif 758 759 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 760 { 761 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 762 } 763 764 static inline void sk_acceptq_removed(struct sock *sk) 765 { 766 sk->sk_ack_backlog--; 767 } 768 769 static inline void sk_acceptq_added(struct sock *sk) 770 { 771 sk->sk_ack_backlog++; 772 } 773 774 static inline bool sk_acceptq_is_full(const struct sock *sk) 775 { 776 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 777 } 778 779 /* 780 * Compute minimal free write space needed to queue new packets. 781 */ 782 static inline int sk_stream_min_wspace(const struct sock *sk) 783 { 784 return sk->sk_wmem_queued >> 1; 785 } 786 787 static inline int sk_stream_wspace(const struct sock *sk) 788 { 789 return sk->sk_sndbuf - sk->sk_wmem_queued; 790 } 791 792 void sk_stream_write_space(struct sock *sk); 793 794 /* OOB backlog add */ 795 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 796 { 797 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 798 skb_dst_force(skb); 799 800 if (!sk->sk_backlog.tail) 801 sk->sk_backlog.head = skb; 802 else 803 sk->sk_backlog.tail->next = skb; 804 805 sk->sk_backlog.tail = skb; 806 skb->next = NULL; 807 } 808 809 /* 810 * Take into account size of receive queue and backlog queue 811 * Do not take into account this skb truesize, 812 * to allow even a single big packet to come. 813 */ 814 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 815 { 816 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 817 818 return qsize > limit; 819 } 820 821 /* The per-socket spinlock must be held here. */ 822 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 823 unsigned int limit) 824 { 825 if (sk_rcvqueues_full(sk, limit)) 826 return -ENOBUFS; 827 828 __sk_add_backlog(sk, skb); 829 sk->sk_backlog.len += skb->truesize; 830 return 0; 831 } 832 833 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 834 835 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 836 { 837 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 838 return __sk_backlog_rcv(sk, skb); 839 840 return sk->sk_backlog_rcv(sk, skb); 841 } 842 843 static inline void sk_incoming_cpu_update(struct sock *sk) 844 { 845 sk->sk_incoming_cpu = raw_smp_processor_id(); 846 } 847 848 static inline void sock_rps_record_flow_hash(__u32 hash) 849 { 850 #ifdef CONFIG_RPS 851 struct rps_sock_flow_table *sock_flow_table; 852 853 rcu_read_lock(); 854 sock_flow_table = rcu_dereference(rps_sock_flow_table); 855 rps_record_sock_flow(sock_flow_table, hash); 856 rcu_read_unlock(); 857 #endif 858 } 859 860 static inline void sock_rps_reset_flow_hash(__u32 hash) 861 { 862 #ifdef CONFIG_RPS 863 struct rps_sock_flow_table *sock_flow_table; 864 865 rcu_read_lock(); 866 sock_flow_table = rcu_dereference(rps_sock_flow_table); 867 rps_reset_sock_flow(sock_flow_table, hash); 868 rcu_read_unlock(); 869 #endif 870 } 871 872 static inline void sock_rps_record_flow(const struct sock *sk) 873 { 874 #ifdef CONFIG_RPS 875 sock_rps_record_flow_hash(sk->sk_rxhash); 876 #endif 877 } 878 879 static inline void sock_rps_reset_flow(const struct sock *sk) 880 { 881 #ifdef CONFIG_RPS 882 sock_rps_reset_flow_hash(sk->sk_rxhash); 883 #endif 884 } 885 886 static inline void sock_rps_save_rxhash(struct sock *sk, 887 const struct sk_buff *skb) 888 { 889 #ifdef CONFIG_RPS 890 if (unlikely(sk->sk_rxhash != skb->hash)) { 891 sock_rps_reset_flow(sk); 892 sk->sk_rxhash = skb->hash; 893 } 894 #endif 895 } 896 897 static inline void sock_rps_reset_rxhash(struct sock *sk) 898 { 899 #ifdef CONFIG_RPS 900 sock_rps_reset_flow(sk); 901 sk->sk_rxhash = 0; 902 #endif 903 } 904 905 #define sk_wait_event(__sk, __timeo, __condition) \ 906 ({ int __rc; \ 907 release_sock(__sk); \ 908 __rc = __condition; \ 909 if (!__rc) { \ 910 *(__timeo) = schedule_timeout(*(__timeo)); \ 911 } \ 912 sched_annotate_sleep(); \ 913 lock_sock(__sk); \ 914 __rc = __condition; \ 915 __rc; \ 916 }) 917 918 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 919 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 920 void sk_stream_wait_close(struct sock *sk, long timeo_p); 921 int sk_stream_error(struct sock *sk, int flags, int err); 922 void sk_stream_kill_queues(struct sock *sk); 923 void sk_set_memalloc(struct sock *sk); 924 void sk_clear_memalloc(struct sock *sk); 925 926 int sk_wait_data(struct sock *sk, long *timeo); 927 928 struct request_sock_ops; 929 struct timewait_sock_ops; 930 struct inet_hashinfo; 931 struct raw_hashinfo; 932 struct module; 933 934 /* 935 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 936 * un-modified. Special care is taken when initializing object to zero. 937 */ 938 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 939 { 940 if (offsetof(struct sock, sk_node.next) != 0) 941 memset(sk, 0, offsetof(struct sock, sk_node.next)); 942 memset(&sk->sk_node.pprev, 0, 943 size - offsetof(struct sock, sk_node.pprev)); 944 } 945 946 /* Networking protocol blocks we attach to sockets. 947 * socket layer -> transport layer interface 948 * transport -> network interface is defined by struct inet_proto 949 */ 950 struct proto { 951 void (*close)(struct sock *sk, 952 long timeout); 953 int (*connect)(struct sock *sk, 954 struct sockaddr *uaddr, 955 int addr_len); 956 int (*disconnect)(struct sock *sk, int flags); 957 958 struct sock * (*accept)(struct sock *sk, int flags, int *err); 959 960 int (*ioctl)(struct sock *sk, int cmd, 961 unsigned long arg); 962 int (*init)(struct sock *sk); 963 void (*destroy)(struct sock *sk); 964 void (*shutdown)(struct sock *sk, int how); 965 int (*setsockopt)(struct sock *sk, int level, 966 int optname, char __user *optval, 967 unsigned int optlen); 968 int (*getsockopt)(struct sock *sk, int level, 969 int optname, char __user *optval, 970 int __user *option); 971 #ifdef CONFIG_COMPAT 972 int (*compat_setsockopt)(struct sock *sk, 973 int level, 974 int optname, char __user *optval, 975 unsigned int optlen); 976 int (*compat_getsockopt)(struct sock *sk, 977 int level, 978 int optname, char __user *optval, 979 int __user *option); 980 int (*compat_ioctl)(struct sock *sk, 981 unsigned int cmd, unsigned long arg); 982 #endif 983 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 984 struct msghdr *msg, size_t len); 985 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 986 struct msghdr *msg, 987 size_t len, int noblock, int flags, 988 int *addr_len); 989 int (*sendpage)(struct sock *sk, struct page *page, 990 int offset, size_t size, int flags); 991 int (*bind)(struct sock *sk, 992 struct sockaddr *uaddr, int addr_len); 993 994 int (*backlog_rcv) (struct sock *sk, 995 struct sk_buff *skb); 996 997 void (*release_cb)(struct sock *sk); 998 999 /* Keeping track of sk's, looking them up, and port selection methods. */ 1000 void (*hash)(struct sock *sk); 1001 void (*unhash)(struct sock *sk); 1002 void (*rehash)(struct sock *sk); 1003 int (*get_port)(struct sock *sk, unsigned short snum); 1004 void (*clear_sk)(struct sock *sk, int size); 1005 1006 /* Keeping track of sockets in use */ 1007 #ifdef CONFIG_PROC_FS 1008 unsigned int inuse_idx; 1009 #endif 1010 1011 bool (*stream_memory_free)(const struct sock *sk); 1012 /* Memory pressure */ 1013 void (*enter_memory_pressure)(struct sock *sk); 1014 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1015 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1016 /* 1017 * Pressure flag: try to collapse. 1018 * Technical note: it is used by multiple contexts non atomically. 1019 * All the __sk_mem_schedule() is of this nature: accounting 1020 * is strict, actions are advisory and have some latency. 1021 */ 1022 int *memory_pressure; 1023 long *sysctl_mem; 1024 int *sysctl_wmem; 1025 int *sysctl_rmem; 1026 int max_header; 1027 bool no_autobind; 1028 1029 struct kmem_cache *slab; 1030 unsigned int obj_size; 1031 int slab_flags; 1032 1033 struct percpu_counter *orphan_count; 1034 1035 struct request_sock_ops *rsk_prot; 1036 struct timewait_sock_ops *twsk_prot; 1037 1038 union { 1039 struct inet_hashinfo *hashinfo; 1040 struct udp_table *udp_table; 1041 struct raw_hashinfo *raw_hash; 1042 } h; 1043 1044 struct module *owner; 1045 1046 char name[32]; 1047 1048 struct list_head node; 1049 #ifdef SOCK_REFCNT_DEBUG 1050 atomic_t socks; 1051 #endif 1052 #ifdef CONFIG_MEMCG_KMEM 1053 /* 1054 * cgroup specific init/deinit functions. Called once for all 1055 * protocols that implement it, from cgroups populate function. 1056 * This function has to setup any files the protocol want to 1057 * appear in the kmem cgroup filesystem. 1058 */ 1059 int (*init_cgroup)(struct mem_cgroup *memcg, 1060 struct cgroup_subsys *ss); 1061 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1062 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1063 #endif 1064 }; 1065 1066 /* 1067 * Bits in struct cg_proto.flags 1068 */ 1069 enum cg_proto_flags { 1070 /* Currently active and new sockets should be assigned to cgroups */ 1071 MEMCG_SOCK_ACTIVE, 1072 /* It was ever activated; we must disarm static keys on destruction */ 1073 MEMCG_SOCK_ACTIVATED, 1074 }; 1075 1076 struct cg_proto { 1077 struct page_counter memory_allocated; /* Current allocated memory. */ 1078 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1079 int memory_pressure; 1080 long sysctl_mem[3]; 1081 unsigned long flags; 1082 /* 1083 * memcg field is used to find which memcg we belong directly 1084 * Each memcg struct can hold more than one cg_proto, so container_of 1085 * won't really cut. 1086 * 1087 * The elegant solution would be having an inverse function to 1088 * proto_cgroup in struct proto, but that means polluting the structure 1089 * for everybody, instead of just for memcg users. 1090 */ 1091 struct mem_cgroup *memcg; 1092 }; 1093 1094 int proto_register(struct proto *prot, int alloc_slab); 1095 void proto_unregister(struct proto *prot); 1096 1097 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1098 { 1099 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1100 } 1101 1102 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 1103 { 1104 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1105 } 1106 1107 #ifdef SOCK_REFCNT_DEBUG 1108 static inline void sk_refcnt_debug_inc(struct sock *sk) 1109 { 1110 atomic_inc(&sk->sk_prot->socks); 1111 } 1112 1113 static inline void sk_refcnt_debug_dec(struct sock *sk) 1114 { 1115 atomic_dec(&sk->sk_prot->socks); 1116 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1117 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1118 } 1119 1120 static inline void sk_refcnt_debug_release(const struct sock *sk) 1121 { 1122 if (atomic_read(&sk->sk_refcnt) != 1) 1123 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1124 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1125 } 1126 #else /* SOCK_REFCNT_DEBUG */ 1127 #define sk_refcnt_debug_inc(sk) do { } while (0) 1128 #define sk_refcnt_debug_dec(sk) do { } while (0) 1129 #define sk_refcnt_debug_release(sk) do { } while (0) 1130 #endif /* SOCK_REFCNT_DEBUG */ 1131 1132 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1133 extern struct static_key memcg_socket_limit_enabled; 1134 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1135 struct cg_proto *cg_proto) 1136 { 1137 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1138 } 1139 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1140 #else 1141 #define mem_cgroup_sockets_enabled 0 1142 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1143 struct cg_proto *cg_proto) 1144 { 1145 return NULL; 1146 } 1147 #endif 1148 1149 static inline bool sk_stream_memory_free(const struct sock *sk) 1150 { 1151 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1152 return false; 1153 1154 return sk->sk_prot->stream_memory_free ? 1155 sk->sk_prot->stream_memory_free(sk) : true; 1156 } 1157 1158 static inline bool sk_stream_is_writeable(const struct sock *sk) 1159 { 1160 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1161 sk_stream_memory_free(sk); 1162 } 1163 1164 1165 static inline bool sk_has_memory_pressure(const struct sock *sk) 1166 { 1167 return sk->sk_prot->memory_pressure != NULL; 1168 } 1169 1170 static inline bool sk_under_memory_pressure(const struct sock *sk) 1171 { 1172 if (!sk->sk_prot->memory_pressure) 1173 return false; 1174 1175 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1176 return !!sk->sk_cgrp->memory_pressure; 1177 1178 return !!*sk->sk_prot->memory_pressure; 1179 } 1180 1181 static inline void sk_leave_memory_pressure(struct sock *sk) 1182 { 1183 int *memory_pressure = sk->sk_prot->memory_pressure; 1184 1185 if (!memory_pressure) 1186 return; 1187 1188 if (*memory_pressure) 1189 *memory_pressure = 0; 1190 1191 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1192 struct cg_proto *cg_proto = sk->sk_cgrp; 1193 struct proto *prot = sk->sk_prot; 1194 1195 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1196 cg_proto->memory_pressure = 0; 1197 } 1198 1199 } 1200 1201 static inline void sk_enter_memory_pressure(struct sock *sk) 1202 { 1203 if (!sk->sk_prot->enter_memory_pressure) 1204 return; 1205 1206 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1207 struct cg_proto *cg_proto = sk->sk_cgrp; 1208 struct proto *prot = sk->sk_prot; 1209 1210 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1211 cg_proto->memory_pressure = 1; 1212 } 1213 1214 sk->sk_prot->enter_memory_pressure(sk); 1215 } 1216 1217 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1218 { 1219 long *prot = sk->sk_prot->sysctl_mem; 1220 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1221 prot = sk->sk_cgrp->sysctl_mem; 1222 return prot[index]; 1223 } 1224 1225 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1226 unsigned long amt, 1227 int *parent_status) 1228 { 1229 page_counter_charge(&prot->memory_allocated, amt); 1230 1231 if (page_counter_read(&prot->memory_allocated) > 1232 prot->memory_allocated.limit) 1233 *parent_status = OVER_LIMIT; 1234 } 1235 1236 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1237 unsigned long amt) 1238 { 1239 page_counter_uncharge(&prot->memory_allocated, amt); 1240 } 1241 1242 static inline long 1243 sk_memory_allocated(const struct sock *sk) 1244 { 1245 struct proto *prot = sk->sk_prot; 1246 1247 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1248 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1249 1250 return atomic_long_read(prot->memory_allocated); 1251 } 1252 1253 static inline long 1254 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1255 { 1256 struct proto *prot = sk->sk_prot; 1257 1258 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1259 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1260 /* update the root cgroup regardless */ 1261 atomic_long_add_return(amt, prot->memory_allocated); 1262 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1263 } 1264 1265 return atomic_long_add_return(amt, prot->memory_allocated); 1266 } 1267 1268 static inline void 1269 sk_memory_allocated_sub(struct sock *sk, int amt) 1270 { 1271 struct proto *prot = sk->sk_prot; 1272 1273 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1274 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1275 1276 atomic_long_sub(amt, prot->memory_allocated); 1277 } 1278 1279 static inline void sk_sockets_allocated_dec(struct sock *sk) 1280 { 1281 struct proto *prot = sk->sk_prot; 1282 1283 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1284 struct cg_proto *cg_proto = sk->sk_cgrp; 1285 1286 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1287 percpu_counter_dec(&cg_proto->sockets_allocated); 1288 } 1289 1290 percpu_counter_dec(prot->sockets_allocated); 1291 } 1292 1293 static inline void sk_sockets_allocated_inc(struct sock *sk) 1294 { 1295 struct proto *prot = sk->sk_prot; 1296 1297 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1298 struct cg_proto *cg_proto = sk->sk_cgrp; 1299 1300 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1301 percpu_counter_inc(&cg_proto->sockets_allocated); 1302 } 1303 1304 percpu_counter_inc(prot->sockets_allocated); 1305 } 1306 1307 static inline int 1308 sk_sockets_allocated_read_positive(struct sock *sk) 1309 { 1310 struct proto *prot = sk->sk_prot; 1311 1312 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1313 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1314 1315 return percpu_counter_read_positive(prot->sockets_allocated); 1316 } 1317 1318 static inline int 1319 proto_sockets_allocated_sum_positive(struct proto *prot) 1320 { 1321 return percpu_counter_sum_positive(prot->sockets_allocated); 1322 } 1323 1324 static inline long 1325 proto_memory_allocated(struct proto *prot) 1326 { 1327 return atomic_long_read(prot->memory_allocated); 1328 } 1329 1330 static inline bool 1331 proto_memory_pressure(struct proto *prot) 1332 { 1333 if (!prot->memory_pressure) 1334 return false; 1335 return !!*prot->memory_pressure; 1336 } 1337 1338 1339 #ifdef CONFIG_PROC_FS 1340 /* Called with local bh disabled */ 1341 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1342 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1343 #else 1344 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1345 int inc) 1346 { 1347 } 1348 #endif 1349 1350 1351 /* With per-bucket locks this operation is not-atomic, so that 1352 * this version is not worse. 1353 */ 1354 static inline void __sk_prot_rehash(struct sock *sk) 1355 { 1356 sk->sk_prot->unhash(sk); 1357 sk->sk_prot->hash(sk); 1358 } 1359 1360 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1361 1362 /* About 10 seconds */ 1363 #define SOCK_DESTROY_TIME (10*HZ) 1364 1365 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1366 #define PROT_SOCK 1024 1367 1368 #define SHUTDOWN_MASK 3 1369 #define RCV_SHUTDOWN 1 1370 #define SEND_SHUTDOWN 2 1371 1372 #define SOCK_SNDBUF_LOCK 1 1373 #define SOCK_RCVBUF_LOCK 2 1374 #define SOCK_BINDADDR_LOCK 4 1375 #define SOCK_BINDPORT_LOCK 8 1376 1377 /* sock_iocb: used to kick off async processing of socket ios */ 1378 struct sock_iocb { 1379 struct list_head list; 1380 1381 int flags; 1382 int size; 1383 struct socket *sock; 1384 struct sock *sk; 1385 struct scm_cookie *scm; 1386 struct msghdr *msg, async_msg; 1387 struct kiocb *kiocb; 1388 }; 1389 1390 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1391 { 1392 return (struct sock_iocb *)iocb->private; 1393 } 1394 1395 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1396 { 1397 return si->kiocb; 1398 } 1399 1400 struct socket_alloc { 1401 struct socket socket; 1402 struct inode vfs_inode; 1403 }; 1404 1405 static inline struct socket *SOCKET_I(struct inode *inode) 1406 { 1407 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1408 } 1409 1410 static inline struct inode *SOCK_INODE(struct socket *socket) 1411 { 1412 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1413 } 1414 1415 /* 1416 * Functions for memory accounting 1417 */ 1418 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1419 void __sk_mem_reclaim(struct sock *sk); 1420 1421 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1422 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1423 #define SK_MEM_SEND 0 1424 #define SK_MEM_RECV 1 1425 1426 static inline int sk_mem_pages(int amt) 1427 { 1428 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1429 } 1430 1431 static inline bool sk_has_account(struct sock *sk) 1432 { 1433 /* return true if protocol supports memory accounting */ 1434 return !!sk->sk_prot->memory_allocated; 1435 } 1436 1437 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1438 { 1439 if (!sk_has_account(sk)) 1440 return true; 1441 return size <= sk->sk_forward_alloc || 1442 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1443 } 1444 1445 static inline bool 1446 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1447 { 1448 if (!sk_has_account(sk)) 1449 return true; 1450 return size<= sk->sk_forward_alloc || 1451 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1452 skb_pfmemalloc(skb); 1453 } 1454 1455 static inline void sk_mem_reclaim(struct sock *sk) 1456 { 1457 if (!sk_has_account(sk)) 1458 return; 1459 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1460 __sk_mem_reclaim(sk); 1461 } 1462 1463 static inline void sk_mem_reclaim_partial(struct sock *sk) 1464 { 1465 if (!sk_has_account(sk)) 1466 return; 1467 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1468 __sk_mem_reclaim(sk); 1469 } 1470 1471 static inline void sk_mem_charge(struct sock *sk, int size) 1472 { 1473 if (!sk_has_account(sk)) 1474 return; 1475 sk->sk_forward_alloc -= size; 1476 } 1477 1478 static inline void sk_mem_uncharge(struct sock *sk, int size) 1479 { 1480 if (!sk_has_account(sk)) 1481 return; 1482 sk->sk_forward_alloc += size; 1483 } 1484 1485 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1486 { 1487 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1488 sk->sk_wmem_queued -= skb->truesize; 1489 sk_mem_uncharge(sk, skb->truesize); 1490 __kfree_skb(skb); 1491 } 1492 1493 /* Used by processes to "lock" a socket state, so that 1494 * interrupts and bottom half handlers won't change it 1495 * from under us. It essentially blocks any incoming 1496 * packets, so that we won't get any new data or any 1497 * packets that change the state of the socket. 1498 * 1499 * While locked, BH processing will add new packets to 1500 * the backlog queue. This queue is processed by the 1501 * owner of the socket lock right before it is released. 1502 * 1503 * Since ~2.3.5 it is also exclusive sleep lock serializing 1504 * accesses from user process context. 1505 */ 1506 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1507 1508 static inline void sock_release_ownership(struct sock *sk) 1509 { 1510 sk->sk_lock.owned = 0; 1511 } 1512 1513 /* 1514 * Macro so as to not evaluate some arguments when 1515 * lockdep is not enabled. 1516 * 1517 * Mark both the sk_lock and the sk_lock.slock as a 1518 * per-address-family lock class. 1519 */ 1520 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1521 do { \ 1522 sk->sk_lock.owned = 0; \ 1523 init_waitqueue_head(&sk->sk_lock.wq); \ 1524 spin_lock_init(&(sk)->sk_lock.slock); \ 1525 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1526 sizeof((sk)->sk_lock)); \ 1527 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1528 (skey), (sname)); \ 1529 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1530 } while (0) 1531 1532 void lock_sock_nested(struct sock *sk, int subclass); 1533 1534 static inline void lock_sock(struct sock *sk) 1535 { 1536 lock_sock_nested(sk, 0); 1537 } 1538 1539 void release_sock(struct sock *sk); 1540 1541 /* BH context may only use the following locking interface. */ 1542 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1543 #define bh_lock_sock_nested(__sk) \ 1544 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1545 SINGLE_DEPTH_NESTING) 1546 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1547 1548 bool lock_sock_fast(struct sock *sk); 1549 /** 1550 * unlock_sock_fast - complement of lock_sock_fast 1551 * @sk: socket 1552 * @slow: slow mode 1553 * 1554 * fast unlock socket for user context. 1555 * If slow mode is on, we call regular release_sock() 1556 */ 1557 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1558 { 1559 if (slow) 1560 release_sock(sk); 1561 else 1562 spin_unlock_bh(&sk->sk_lock.slock); 1563 } 1564 1565 1566 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1567 struct proto *prot); 1568 void sk_free(struct sock *sk); 1569 void sk_release_kernel(struct sock *sk); 1570 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1571 1572 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1573 gfp_t priority); 1574 void sock_wfree(struct sk_buff *skb); 1575 void skb_orphan_partial(struct sk_buff *skb); 1576 void sock_rfree(struct sk_buff *skb); 1577 void sock_efree(struct sk_buff *skb); 1578 #ifdef CONFIG_INET 1579 void sock_edemux(struct sk_buff *skb); 1580 #else 1581 #define sock_edemux(skb) sock_efree(skb) 1582 #endif 1583 1584 int sock_setsockopt(struct socket *sock, int level, int op, 1585 char __user *optval, unsigned int optlen); 1586 1587 int sock_getsockopt(struct socket *sock, int level, int op, 1588 char __user *optval, int __user *optlen); 1589 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1590 int noblock, int *errcode); 1591 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1592 unsigned long data_len, int noblock, 1593 int *errcode, int max_page_order); 1594 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1595 void sock_kfree_s(struct sock *sk, void *mem, int size); 1596 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1597 void sk_send_sigurg(struct sock *sk); 1598 1599 /* 1600 * Functions to fill in entries in struct proto_ops when a protocol 1601 * does not implement a particular function. 1602 */ 1603 int sock_no_bind(struct socket *, struct sockaddr *, int); 1604 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1605 int sock_no_socketpair(struct socket *, struct socket *); 1606 int sock_no_accept(struct socket *, struct socket *, int); 1607 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1608 unsigned int sock_no_poll(struct file *, struct socket *, 1609 struct poll_table_struct *); 1610 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1611 int sock_no_listen(struct socket *, int); 1612 int sock_no_shutdown(struct socket *, int); 1613 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1614 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1615 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); 1616 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, 1617 int); 1618 int sock_no_mmap(struct file *file, struct socket *sock, 1619 struct vm_area_struct *vma); 1620 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1621 size_t size, int flags); 1622 1623 /* 1624 * Functions to fill in entries in struct proto_ops when a protocol 1625 * uses the inet style. 1626 */ 1627 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1628 char __user *optval, int __user *optlen); 1629 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1630 struct msghdr *msg, size_t size, int flags); 1631 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1632 char __user *optval, unsigned int optlen); 1633 int compat_sock_common_getsockopt(struct socket *sock, int level, 1634 int optname, char __user *optval, int __user *optlen); 1635 int compat_sock_common_setsockopt(struct socket *sock, int level, 1636 int optname, char __user *optval, unsigned int optlen); 1637 1638 void sk_common_release(struct sock *sk); 1639 1640 /* 1641 * Default socket callbacks and setup code 1642 */ 1643 1644 /* Initialise core socket variables */ 1645 void sock_init_data(struct socket *sock, struct sock *sk); 1646 1647 /* 1648 * Socket reference counting postulates. 1649 * 1650 * * Each user of socket SHOULD hold a reference count. 1651 * * Each access point to socket (an hash table bucket, reference from a list, 1652 * running timer, skb in flight MUST hold a reference count. 1653 * * When reference count hits 0, it means it will never increase back. 1654 * * When reference count hits 0, it means that no references from 1655 * outside exist to this socket and current process on current CPU 1656 * is last user and may/should destroy this socket. 1657 * * sk_free is called from any context: process, BH, IRQ. When 1658 * it is called, socket has no references from outside -> sk_free 1659 * may release descendant resources allocated by the socket, but 1660 * to the time when it is called, socket is NOT referenced by any 1661 * hash tables, lists etc. 1662 * * Packets, delivered from outside (from network or from another process) 1663 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1664 * when they sit in queue. Otherwise, packets will leak to hole, when 1665 * socket is looked up by one cpu and unhasing is made by another CPU. 1666 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1667 * (leak to backlog). Packet socket does all the processing inside 1668 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1669 * use separate SMP lock, so that they are prone too. 1670 */ 1671 1672 /* Ungrab socket and destroy it, if it was the last reference. */ 1673 static inline void sock_put(struct sock *sk) 1674 { 1675 if (atomic_dec_and_test(&sk->sk_refcnt)) 1676 sk_free(sk); 1677 } 1678 /* Generic version of sock_put(), dealing with all sockets 1679 * (TCP_TIMEWAIT, ESTABLISHED...) 1680 */ 1681 void sock_gen_put(struct sock *sk); 1682 1683 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1684 1685 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1686 { 1687 sk->sk_tx_queue_mapping = tx_queue; 1688 } 1689 1690 static inline void sk_tx_queue_clear(struct sock *sk) 1691 { 1692 sk->sk_tx_queue_mapping = -1; 1693 } 1694 1695 static inline int sk_tx_queue_get(const struct sock *sk) 1696 { 1697 return sk ? sk->sk_tx_queue_mapping : -1; 1698 } 1699 1700 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1701 { 1702 sk_tx_queue_clear(sk); 1703 sk->sk_socket = sock; 1704 } 1705 1706 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1707 { 1708 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1709 return &rcu_dereference_raw(sk->sk_wq)->wait; 1710 } 1711 /* Detach socket from process context. 1712 * Announce socket dead, detach it from wait queue and inode. 1713 * Note that parent inode held reference count on this struct sock, 1714 * we do not release it in this function, because protocol 1715 * probably wants some additional cleanups or even continuing 1716 * to work with this socket (TCP). 1717 */ 1718 static inline void sock_orphan(struct sock *sk) 1719 { 1720 write_lock_bh(&sk->sk_callback_lock); 1721 sock_set_flag(sk, SOCK_DEAD); 1722 sk_set_socket(sk, NULL); 1723 sk->sk_wq = NULL; 1724 write_unlock_bh(&sk->sk_callback_lock); 1725 } 1726 1727 static inline void sock_graft(struct sock *sk, struct socket *parent) 1728 { 1729 write_lock_bh(&sk->sk_callback_lock); 1730 sk->sk_wq = parent->wq; 1731 parent->sk = sk; 1732 sk_set_socket(sk, parent); 1733 security_sock_graft(sk, parent); 1734 write_unlock_bh(&sk->sk_callback_lock); 1735 } 1736 1737 kuid_t sock_i_uid(struct sock *sk); 1738 unsigned long sock_i_ino(struct sock *sk); 1739 1740 static inline struct dst_entry * 1741 __sk_dst_get(struct sock *sk) 1742 { 1743 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1744 lockdep_is_held(&sk->sk_lock.slock)); 1745 } 1746 1747 static inline struct dst_entry * 1748 sk_dst_get(struct sock *sk) 1749 { 1750 struct dst_entry *dst; 1751 1752 rcu_read_lock(); 1753 dst = rcu_dereference(sk->sk_dst_cache); 1754 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1755 dst = NULL; 1756 rcu_read_unlock(); 1757 return dst; 1758 } 1759 1760 static inline void dst_negative_advice(struct sock *sk) 1761 { 1762 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1763 1764 if (dst && dst->ops->negative_advice) { 1765 ndst = dst->ops->negative_advice(dst); 1766 1767 if (ndst != dst) { 1768 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1769 sk_tx_queue_clear(sk); 1770 } 1771 } 1772 } 1773 1774 static inline void 1775 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1776 { 1777 struct dst_entry *old_dst; 1778 1779 sk_tx_queue_clear(sk); 1780 /* 1781 * This can be called while sk is owned by the caller only, 1782 * with no state that can be checked in a rcu_dereference_check() cond 1783 */ 1784 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1785 rcu_assign_pointer(sk->sk_dst_cache, dst); 1786 dst_release(old_dst); 1787 } 1788 1789 static inline void 1790 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1791 { 1792 struct dst_entry *old_dst; 1793 1794 sk_tx_queue_clear(sk); 1795 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1796 dst_release(old_dst); 1797 } 1798 1799 static inline void 1800 __sk_dst_reset(struct sock *sk) 1801 { 1802 __sk_dst_set(sk, NULL); 1803 } 1804 1805 static inline void 1806 sk_dst_reset(struct sock *sk) 1807 { 1808 sk_dst_set(sk, NULL); 1809 } 1810 1811 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1812 1813 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1814 1815 static inline bool sk_can_gso(const struct sock *sk) 1816 { 1817 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1818 } 1819 1820 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1821 1822 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1823 { 1824 sk->sk_route_nocaps |= flags; 1825 sk->sk_route_caps &= ~flags; 1826 } 1827 1828 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1829 char __user *from, char *to, 1830 int copy, int offset) 1831 { 1832 if (skb->ip_summed == CHECKSUM_NONE) { 1833 int err = 0; 1834 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1835 if (err) 1836 return err; 1837 skb->csum = csum_block_add(skb->csum, csum, offset); 1838 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1839 if (!access_ok(VERIFY_READ, from, copy) || 1840 __copy_from_user_nocache(to, from, copy)) 1841 return -EFAULT; 1842 } else if (copy_from_user(to, from, copy)) 1843 return -EFAULT; 1844 1845 return 0; 1846 } 1847 1848 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1849 char __user *from, int copy) 1850 { 1851 int err, offset = skb->len; 1852 1853 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1854 copy, offset); 1855 if (err) 1856 __skb_trim(skb, offset); 1857 1858 return err; 1859 } 1860 1861 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1862 struct sk_buff *skb, 1863 struct page *page, 1864 int off, int copy) 1865 { 1866 int err; 1867 1868 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1869 copy, skb->len); 1870 if (err) 1871 return err; 1872 1873 skb->len += copy; 1874 skb->data_len += copy; 1875 skb->truesize += copy; 1876 sk->sk_wmem_queued += copy; 1877 sk_mem_charge(sk, copy); 1878 return 0; 1879 } 1880 1881 /** 1882 * sk_wmem_alloc_get - returns write allocations 1883 * @sk: socket 1884 * 1885 * Returns sk_wmem_alloc minus initial offset of one 1886 */ 1887 static inline int sk_wmem_alloc_get(const struct sock *sk) 1888 { 1889 return atomic_read(&sk->sk_wmem_alloc) - 1; 1890 } 1891 1892 /** 1893 * sk_rmem_alloc_get - returns read allocations 1894 * @sk: socket 1895 * 1896 * Returns sk_rmem_alloc 1897 */ 1898 static inline int sk_rmem_alloc_get(const struct sock *sk) 1899 { 1900 return atomic_read(&sk->sk_rmem_alloc); 1901 } 1902 1903 /** 1904 * sk_has_allocations - check if allocations are outstanding 1905 * @sk: socket 1906 * 1907 * Returns true if socket has write or read allocations 1908 */ 1909 static inline bool sk_has_allocations(const struct sock *sk) 1910 { 1911 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1912 } 1913 1914 /** 1915 * wq_has_sleeper - check if there are any waiting processes 1916 * @wq: struct socket_wq 1917 * 1918 * Returns true if socket_wq has waiting processes 1919 * 1920 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1921 * barrier call. They were added due to the race found within the tcp code. 1922 * 1923 * Consider following tcp code paths: 1924 * 1925 * CPU1 CPU2 1926 * 1927 * sys_select receive packet 1928 * ... ... 1929 * __add_wait_queue update tp->rcv_nxt 1930 * ... ... 1931 * tp->rcv_nxt check sock_def_readable 1932 * ... { 1933 * schedule rcu_read_lock(); 1934 * wq = rcu_dereference(sk->sk_wq); 1935 * if (wq && waitqueue_active(&wq->wait)) 1936 * wake_up_interruptible(&wq->wait) 1937 * ... 1938 * } 1939 * 1940 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1941 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1942 * could then endup calling schedule and sleep forever if there are no more 1943 * data on the socket. 1944 * 1945 */ 1946 static inline bool wq_has_sleeper(struct socket_wq *wq) 1947 { 1948 /* We need to be sure we are in sync with the 1949 * add_wait_queue modifications to the wait queue. 1950 * 1951 * This memory barrier is paired in the sock_poll_wait. 1952 */ 1953 smp_mb(); 1954 return wq && waitqueue_active(&wq->wait); 1955 } 1956 1957 /** 1958 * sock_poll_wait - place memory barrier behind the poll_wait call. 1959 * @filp: file 1960 * @wait_address: socket wait queue 1961 * @p: poll_table 1962 * 1963 * See the comments in the wq_has_sleeper function. 1964 */ 1965 static inline void sock_poll_wait(struct file *filp, 1966 wait_queue_head_t *wait_address, poll_table *p) 1967 { 1968 if (!poll_does_not_wait(p) && wait_address) { 1969 poll_wait(filp, wait_address, p); 1970 /* We need to be sure we are in sync with the 1971 * socket flags modification. 1972 * 1973 * This memory barrier is paired in the wq_has_sleeper. 1974 */ 1975 smp_mb(); 1976 } 1977 } 1978 1979 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1980 { 1981 if (sk->sk_txhash) { 1982 skb->l4_hash = 1; 1983 skb->hash = sk->sk_txhash; 1984 } 1985 } 1986 1987 /* 1988 * Queue a received datagram if it will fit. Stream and sequenced 1989 * protocols can't normally use this as they need to fit buffers in 1990 * and play with them. 1991 * 1992 * Inlined as it's very short and called for pretty much every 1993 * packet ever received. 1994 */ 1995 1996 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1997 { 1998 skb_orphan(skb); 1999 skb->sk = sk; 2000 skb->destructor = sock_wfree; 2001 skb_set_hash_from_sk(skb, sk); 2002 /* 2003 * We used to take a refcount on sk, but following operation 2004 * is enough to guarantee sk_free() wont free this sock until 2005 * all in-flight packets are completed 2006 */ 2007 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 2008 } 2009 2010 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2011 { 2012 skb_orphan(skb); 2013 skb->sk = sk; 2014 skb->destructor = sock_rfree; 2015 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2016 sk_mem_charge(sk, skb->truesize); 2017 } 2018 2019 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2020 unsigned long expires); 2021 2022 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2023 2024 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2025 2026 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2027 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2028 2029 /* 2030 * Recover an error report and clear atomically 2031 */ 2032 2033 static inline int sock_error(struct sock *sk) 2034 { 2035 int err; 2036 if (likely(!sk->sk_err)) 2037 return 0; 2038 err = xchg(&sk->sk_err, 0); 2039 return -err; 2040 } 2041 2042 static inline unsigned long sock_wspace(struct sock *sk) 2043 { 2044 int amt = 0; 2045 2046 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2047 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2048 if (amt < 0) 2049 amt = 0; 2050 } 2051 return amt; 2052 } 2053 2054 static inline void sk_wake_async(struct sock *sk, int how, int band) 2055 { 2056 if (sock_flag(sk, SOCK_FASYNC)) 2057 sock_wake_async(sk->sk_socket, how, band); 2058 } 2059 2060 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2061 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2062 * Note: for send buffers, TCP works better if we can build two skbs at 2063 * minimum. 2064 */ 2065 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2066 2067 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2068 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2069 2070 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2071 { 2072 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2073 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2074 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2075 } 2076 } 2077 2078 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2079 2080 /** 2081 * sk_page_frag - return an appropriate page_frag 2082 * @sk: socket 2083 * 2084 * If socket allocation mode allows current thread to sleep, it means its 2085 * safe to use the per task page_frag instead of the per socket one. 2086 */ 2087 static inline struct page_frag *sk_page_frag(struct sock *sk) 2088 { 2089 if (sk->sk_allocation & __GFP_WAIT) 2090 return ¤t->task_frag; 2091 2092 return &sk->sk_frag; 2093 } 2094 2095 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2096 2097 /* 2098 * Default write policy as shown to user space via poll/select/SIGIO 2099 */ 2100 static inline bool sock_writeable(const struct sock *sk) 2101 { 2102 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2103 } 2104 2105 static inline gfp_t gfp_any(void) 2106 { 2107 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2108 } 2109 2110 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2111 { 2112 return noblock ? 0 : sk->sk_rcvtimeo; 2113 } 2114 2115 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2116 { 2117 return noblock ? 0 : sk->sk_sndtimeo; 2118 } 2119 2120 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2121 { 2122 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2123 } 2124 2125 /* Alas, with timeout socket operations are not restartable. 2126 * Compare this to poll(). 2127 */ 2128 static inline int sock_intr_errno(long timeo) 2129 { 2130 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2131 } 2132 2133 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2134 struct sk_buff *skb); 2135 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2136 struct sk_buff *skb); 2137 2138 static inline void 2139 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2140 { 2141 ktime_t kt = skb->tstamp; 2142 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2143 2144 /* 2145 * generate control messages if 2146 * - receive time stamping in software requested 2147 * - software time stamp available and wanted 2148 * - hardware time stamps available and wanted 2149 */ 2150 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2151 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2152 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2153 (hwtstamps->hwtstamp.tv64 && 2154 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2155 __sock_recv_timestamp(msg, sk, skb); 2156 else 2157 sk->sk_stamp = kt; 2158 2159 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2160 __sock_recv_wifi_status(msg, sk, skb); 2161 } 2162 2163 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2164 struct sk_buff *skb); 2165 2166 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2167 struct sk_buff *skb) 2168 { 2169 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2170 (1UL << SOCK_RCVTSTAMP)) 2171 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2172 SOF_TIMESTAMPING_RAW_HARDWARE) 2173 2174 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2175 __sock_recv_ts_and_drops(msg, sk, skb); 2176 else 2177 sk->sk_stamp = skb->tstamp; 2178 } 2179 2180 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags); 2181 2182 /** 2183 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2184 * @sk: socket sending this packet 2185 * @tx_flags: completed with instructions for time stamping 2186 * 2187 * Note : callers should take care of initial *tx_flags value (usually 0) 2188 */ 2189 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 2190 { 2191 if (unlikely(sk->sk_tsflags)) 2192 __sock_tx_timestamp(sk, tx_flags); 2193 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2194 *tx_flags |= SKBTX_WIFI_STATUS; 2195 } 2196 2197 /** 2198 * sk_eat_skb - Release a skb if it is no longer needed 2199 * @sk: socket to eat this skb from 2200 * @skb: socket buffer to eat 2201 * 2202 * This routine must be called with interrupts disabled or with the socket 2203 * locked so that the sk_buff queue operation is ok. 2204 */ 2205 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2206 { 2207 __skb_unlink(skb, &sk->sk_receive_queue); 2208 __kfree_skb(skb); 2209 } 2210 2211 static inline 2212 struct net *sock_net(const struct sock *sk) 2213 { 2214 return read_pnet(&sk->sk_net); 2215 } 2216 2217 static inline 2218 void sock_net_set(struct sock *sk, struct net *net) 2219 { 2220 write_pnet(&sk->sk_net, net); 2221 } 2222 2223 /* 2224 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2225 * They should not hold a reference to a namespace in order to allow 2226 * to stop it. 2227 * Sockets after sk_change_net should be released using sk_release_kernel 2228 */ 2229 static inline void sk_change_net(struct sock *sk, struct net *net) 2230 { 2231 struct net *current_net = sock_net(sk); 2232 2233 if (!net_eq(current_net, net)) { 2234 put_net(current_net); 2235 sock_net_set(sk, hold_net(net)); 2236 } 2237 } 2238 2239 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2240 { 2241 if (skb->sk) { 2242 struct sock *sk = skb->sk; 2243 2244 skb->destructor = NULL; 2245 skb->sk = NULL; 2246 return sk; 2247 } 2248 return NULL; 2249 } 2250 2251 void sock_enable_timestamp(struct sock *sk, int flag); 2252 int sock_get_timestamp(struct sock *, struct timeval __user *); 2253 int sock_get_timestampns(struct sock *, struct timespec __user *); 2254 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2255 int type); 2256 2257 bool sk_ns_capable(const struct sock *sk, 2258 struct user_namespace *user_ns, int cap); 2259 bool sk_capable(const struct sock *sk, int cap); 2260 bool sk_net_capable(const struct sock *sk, int cap); 2261 2262 extern __u32 sysctl_wmem_max; 2263 extern __u32 sysctl_rmem_max; 2264 2265 extern int sysctl_optmem_max; 2266 2267 extern __u32 sysctl_wmem_default; 2268 extern __u32 sysctl_rmem_default; 2269 2270 #endif /* _SOCK_H */ 2271