xref: /openbmc/linux/include/net/sock.h (revision c819e2cf)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 #include <linux/net_tstamp.h>
71 
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 	return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89  * This structure really needs to be cleaned up.
90  * Most of it is for TCP, and not used by any of
91  * the other protocols.
92  */
93 
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 					printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106 
107 /* This is the per-socket lock.  The spinlock provides a synchronization
108  * between user contexts and software interrupt processing, whereas the
109  * mini-semaphore synchronizes multiple users amongst themselves.
110  */
111 typedef struct {
112 	spinlock_t		slock;
113 	int			owned;
114 	wait_queue_head_t	wq;
115 	/*
116 	 * We express the mutex-alike socket_lock semantics
117 	 * to the lock validator by explicitly managing
118 	 * the slock as a lock variant (in addition to
119 	 * the slock itself):
120 	 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 	struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125 
126 struct sock;
127 struct proto;
128 struct net;
129 
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132 
133 /**
134  *	struct sock_common - minimal network layer representation of sockets
135  *	@skc_daddr: Foreign IPv4 addr
136  *	@skc_rcv_saddr: Bound local IPv4 addr
137  *	@skc_hash: hash value used with various protocol lookup tables
138  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
139  *	@skc_dport: placeholder for inet_dport/tw_dport
140  *	@skc_num: placeholder for inet_num/tw_num
141  *	@skc_family: network address family
142  *	@skc_state: Connection state
143  *	@skc_reuse: %SO_REUSEADDR setting
144  *	@skc_reuseport: %SO_REUSEPORT setting
145  *	@skc_bound_dev_if: bound device index if != 0
146  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
147  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148  *	@skc_prot: protocol handlers inside a network family
149  *	@skc_net: reference to the network namespace of this socket
150  *	@skc_node: main hash linkage for various protocol lookup tables
151  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152  *	@skc_tx_queue_mapping: tx queue number for this connection
153  *	@skc_refcnt: reference count
154  *
155  *	This is the minimal network layer representation of sockets, the header
156  *	for struct sock and struct inet_timewait_sock.
157  */
158 struct sock_common {
159 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 	 * address on 64bit arches : cf INET_MATCH()
161 	 */
162 	union {
163 		__addrpair	skc_addrpair;
164 		struct {
165 			__be32	skc_daddr;
166 			__be32	skc_rcv_saddr;
167 		};
168 	};
169 	union  {
170 		unsigned int	skc_hash;
171 		__u16		skc_u16hashes[2];
172 	};
173 	/* skc_dport && skc_num must be grouped as well */
174 	union {
175 		__portpair	skc_portpair;
176 		struct {
177 			__be16	skc_dport;
178 			__u16	skc_num;
179 		};
180 	};
181 
182 	unsigned short		skc_family;
183 	volatile unsigned char	skc_state;
184 	unsigned char		skc_reuse:4;
185 	unsigned char		skc_reuseport:1;
186 	unsigned char		skc_ipv6only:1;
187 	int			skc_bound_dev_if;
188 	union {
189 		struct hlist_node	skc_bind_node;
190 		struct hlist_nulls_node skc_portaddr_node;
191 	};
192 	struct proto		*skc_prot;
193 #ifdef CONFIG_NET_NS
194 	struct net	 	*skc_net;
195 #endif
196 
197 #if IS_ENABLED(CONFIG_IPV6)
198 	struct in6_addr		skc_v6_daddr;
199 	struct in6_addr		skc_v6_rcv_saddr;
200 #endif
201 
202 	/*
203 	 * fields between dontcopy_begin/dontcopy_end
204 	 * are not copied in sock_copy()
205 	 */
206 	/* private: */
207 	int			skc_dontcopy_begin[0];
208 	/* public: */
209 	union {
210 		struct hlist_node	skc_node;
211 		struct hlist_nulls_node skc_nulls_node;
212 	};
213 	int			skc_tx_queue_mapping;
214 	atomic_t		skc_refcnt;
215 	/* private: */
216 	int                     skc_dontcopy_end[0];
217 	/* public: */
218 };
219 
220 struct cg_proto;
221 /**
222   *	struct sock - network layer representation of sockets
223   *	@__sk_common: shared layout with inet_timewait_sock
224   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226   *	@sk_lock:	synchronizer
227   *	@sk_rcvbuf: size of receive buffer in bytes
228   *	@sk_wq: sock wait queue and async head
229   *	@sk_rx_dst: receive input route used by early demux
230   *	@sk_dst_cache: destination cache
231   *	@sk_dst_lock: destination cache lock
232   *	@sk_policy: flow policy
233   *	@sk_receive_queue: incoming packets
234   *	@sk_wmem_alloc: transmit queue bytes committed
235   *	@sk_write_queue: Packet sending queue
236   *	@sk_omem_alloc: "o" is "option" or "other"
237   *	@sk_wmem_queued: persistent queue size
238   *	@sk_forward_alloc: space allocated forward
239   *	@sk_napi_id: id of the last napi context to receive data for sk
240   *	@sk_ll_usec: usecs to busypoll when there is no data
241   *	@sk_allocation: allocation mode
242   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
243   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
244   *	@sk_sndbuf: size of send buffer in bytes
245   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
246   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
247   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
248   *	@sk_no_check_rx: allow zero checksum in RX packets
249   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
250   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
251   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
252   *	@sk_gso_max_size: Maximum GSO segment size to build
253   *	@sk_gso_max_segs: Maximum number of GSO segments
254   *	@sk_lingertime: %SO_LINGER l_linger setting
255   *	@sk_backlog: always used with the per-socket spinlock held
256   *	@sk_callback_lock: used with the callbacks in the end of this struct
257   *	@sk_error_queue: rarely used
258   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
259   *			  IPV6_ADDRFORM for instance)
260   *	@sk_err: last error
261   *	@sk_err_soft: errors that don't cause failure but are the cause of a
262   *		      persistent failure not just 'timed out'
263   *	@sk_drops: raw/udp drops counter
264   *	@sk_ack_backlog: current listen backlog
265   *	@sk_max_ack_backlog: listen backlog set in listen()
266   *	@sk_priority: %SO_PRIORITY setting
267   *	@sk_cgrp_prioidx: socket group's priority map index
268   *	@sk_type: socket type (%SOCK_STREAM, etc)
269   *	@sk_protocol: which protocol this socket belongs in this network family
270   *	@sk_peer_pid: &struct pid for this socket's peer
271   *	@sk_peer_cred: %SO_PEERCRED setting
272   *	@sk_rcvlowat: %SO_RCVLOWAT setting
273   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
274   *	@sk_sndtimeo: %SO_SNDTIMEO setting
275   *	@sk_rxhash: flow hash received from netif layer
276   *	@sk_incoming_cpu: record cpu processing incoming packets
277   *	@sk_txhash: computed flow hash for use on transmit
278   *	@sk_filter: socket filtering instructions
279   *	@sk_protinfo: private area, net family specific, when not using slab
280   *	@sk_timer: sock cleanup timer
281   *	@sk_stamp: time stamp of last packet received
282   *	@sk_tsflags: SO_TIMESTAMPING socket options
283   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
284   *	@sk_socket: Identd and reporting IO signals
285   *	@sk_user_data: RPC layer private data
286   *	@sk_frag: cached page frag
287   *	@sk_peek_off: current peek_offset value
288   *	@sk_send_head: front of stuff to transmit
289   *	@sk_security: used by security modules
290   *	@sk_mark: generic packet mark
291   *	@sk_classid: this socket's cgroup classid
292   *	@sk_cgrp: this socket's cgroup-specific proto data
293   *	@sk_write_pending: a write to stream socket waits to start
294   *	@sk_state_change: callback to indicate change in the state of the sock
295   *	@sk_data_ready: callback to indicate there is data to be processed
296   *	@sk_write_space: callback to indicate there is bf sending space available
297   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298   *	@sk_backlog_rcv: callback to process the backlog
299   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
300  */
301 struct sock {
302 	/*
303 	 * Now struct inet_timewait_sock also uses sock_common, so please just
304 	 * don't add nothing before this first member (__sk_common) --acme
305 	 */
306 	struct sock_common	__sk_common;
307 #define sk_node			__sk_common.skc_node
308 #define sk_nulls_node		__sk_common.skc_nulls_node
309 #define sk_refcnt		__sk_common.skc_refcnt
310 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
311 
312 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
314 #define sk_hash			__sk_common.skc_hash
315 #define sk_portpair		__sk_common.skc_portpair
316 #define sk_num			__sk_common.skc_num
317 #define sk_dport		__sk_common.skc_dport
318 #define sk_addrpair		__sk_common.skc_addrpair
319 #define sk_daddr		__sk_common.skc_daddr
320 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
321 #define sk_family		__sk_common.skc_family
322 #define sk_state		__sk_common.skc_state
323 #define sk_reuse		__sk_common.skc_reuse
324 #define sk_reuseport		__sk_common.skc_reuseport
325 #define sk_ipv6only		__sk_common.skc_ipv6only
326 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
327 #define sk_bind_node		__sk_common.skc_bind_node
328 #define sk_prot			__sk_common.skc_prot
329 #define sk_net			__sk_common.skc_net
330 #define sk_v6_daddr		__sk_common.skc_v6_daddr
331 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
332 
333 	socket_lock_t		sk_lock;
334 	struct sk_buff_head	sk_receive_queue;
335 	/*
336 	 * The backlog queue is special, it is always used with
337 	 * the per-socket spinlock held and requires low latency
338 	 * access. Therefore we special case it's implementation.
339 	 * Note : rmem_alloc is in this structure to fill a hole
340 	 * on 64bit arches, not because its logically part of
341 	 * backlog.
342 	 */
343 	struct {
344 		atomic_t	rmem_alloc;
345 		int		len;
346 		struct sk_buff	*head;
347 		struct sk_buff	*tail;
348 	} sk_backlog;
349 #define sk_rmem_alloc sk_backlog.rmem_alloc
350 	int			sk_forward_alloc;
351 #ifdef CONFIG_RPS
352 	__u32			sk_rxhash;
353 #endif
354 	u16			sk_incoming_cpu;
355 	/* 16bit hole
356 	 * Warned : sk_incoming_cpu can be set from softirq,
357 	 * Do not use this hole without fully understanding possible issues.
358 	 */
359 
360 	__u32			sk_txhash;
361 #ifdef CONFIG_NET_RX_BUSY_POLL
362 	unsigned int		sk_napi_id;
363 	unsigned int		sk_ll_usec;
364 #endif
365 	atomic_t		sk_drops;
366 	int			sk_rcvbuf;
367 
368 	struct sk_filter __rcu	*sk_filter;
369 	struct socket_wq __rcu	*sk_wq;
370 
371 #ifdef CONFIG_XFRM
372 	struct xfrm_policy	*sk_policy[2];
373 #endif
374 	unsigned long 		sk_flags;
375 	struct dst_entry	*sk_rx_dst;
376 	struct dst_entry __rcu	*sk_dst_cache;
377 	spinlock_t		sk_dst_lock;
378 	atomic_t		sk_wmem_alloc;
379 	atomic_t		sk_omem_alloc;
380 	int			sk_sndbuf;
381 	struct sk_buff_head	sk_write_queue;
382 	kmemcheck_bitfield_begin(flags);
383 	unsigned int		sk_shutdown  : 2,
384 				sk_no_check_tx : 1,
385 				sk_no_check_rx : 1,
386 				sk_userlocks : 4,
387 				sk_protocol  : 8,
388 				sk_type      : 16;
389 	kmemcheck_bitfield_end(flags);
390 	int			sk_wmem_queued;
391 	gfp_t			sk_allocation;
392 	u32			sk_pacing_rate; /* bytes per second */
393 	u32			sk_max_pacing_rate;
394 	netdev_features_t	sk_route_caps;
395 	netdev_features_t	sk_route_nocaps;
396 	int			sk_gso_type;
397 	unsigned int		sk_gso_max_size;
398 	u16			sk_gso_max_segs;
399 	int			sk_rcvlowat;
400 	unsigned long	        sk_lingertime;
401 	struct sk_buff_head	sk_error_queue;
402 	struct proto		*sk_prot_creator;
403 	rwlock_t		sk_callback_lock;
404 	int			sk_err,
405 				sk_err_soft;
406 	unsigned short		sk_ack_backlog;
407 	unsigned short		sk_max_ack_backlog;
408 	__u32			sk_priority;
409 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
410 	__u32			sk_cgrp_prioidx;
411 #endif
412 	struct pid		*sk_peer_pid;
413 	const struct cred	*sk_peer_cred;
414 	long			sk_rcvtimeo;
415 	long			sk_sndtimeo;
416 	void			*sk_protinfo;
417 	struct timer_list	sk_timer;
418 	ktime_t			sk_stamp;
419 	u16			sk_tsflags;
420 	u32			sk_tskey;
421 	struct socket		*sk_socket;
422 	void			*sk_user_data;
423 	struct page_frag	sk_frag;
424 	struct sk_buff		*sk_send_head;
425 	__s32			sk_peek_off;
426 	int			sk_write_pending;
427 #ifdef CONFIG_SECURITY
428 	void			*sk_security;
429 #endif
430 	__u32			sk_mark;
431 	u32			sk_classid;
432 	struct cg_proto		*sk_cgrp;
433 	void			(*sk_state_change)(struct sock *sk);
434 	void			(*sk_data_ready)(struct sock *sk);
435 	void			(*sk_write_space)(struct sock *sk);
436 	void			(*sk_error_report)(struct sock *sk);
437 	int			(*sk_backlog_rcv)(struct sock *sk,
438 						  struct sk_buff *skb);
439 	void                    (*sk_destruct)(struct sock *sk);
440 };
441 
442 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
443 
444 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
445 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
446 
447 /*
448  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
449  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
450  * on a socket means that the socket will reuse everybody else's port
451  * without looking at the other's sk_reuse value.
452  */
453 
454 #define SK_NO_REUSE	0
455 #define SK_CAN_REUSE	1
456 #define SK_FORCE_REUSE	2
457 
458 static inline int sk_peek_offset(struct sock *sk, int flags)
459 {
460 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
461 		return sk->sk_peek_off;
462 	else
463 		return 0;
464 }
465 
466 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
467 {
468 	if (sk->sk_peek_off >= 0) {
469 		if (sk->sk_peek_off >= val)
470 			sk->sk_peek_off -= val;
471 		else
472 			sk->sk_peek_off = 0;
473 	}
474 }
475 
476 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
477 {
478 	if (sk->sk_peek_off >= 0)
479 		sk->sk_peek_off += val;
480 }
481 
482 /*
483  * Hashed lists helper routines
484  */
485 static inline struct sock *sk_entry(const struct hlist_node *node)
486 {
487 	return hlist_entry(node, struct sock, sk_node);
488 }
489 
490 static inline struct sock *__sk_head(const struct hlist_head *head)
491 {
492 	return hlist_entry(head->first, struct sock, sk_node);
493 }
494 
495 static inline struct sock *sk_head(const struct hlist_head *head)
496 {
497 	return hlist_empty(head) ? NULL : __sk_head(head);
498 }
499 
500 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
501 {
502 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
503 }
504 
505 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
506 {
507 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
508 }
509 
510 static inline struct sock *sk_next(const struct sock *sk)
511 {
512 	return sk->sk_node.next ?
513 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
514 }
515 
516 static inline struct sock *sk_nulls_next(const struct sock *sk)
517 {
518 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
519 		hlist_nulls_entry(sk->sk_nulls_node.next,
520 				  struct sock, sk_nulls_node) :
521 		NULL;
522 }
523 
524 static inline bool sk_unhashed(const struct sock *sk)
525 {
526 	return hlist_unhashed(&sk->sk_node);
527 }
528 
529 static inline bool sk_hashed(const struct sock *sk)
530 {
531 	return !sk_unhashed(sk);
532 }
533 
534 static inline void sk_node_init(struct hlist_node *node)
535 {
536 	node->pprev = NULL;
537 }
538 
539 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
540 {
541 	node->pprev = NULL;
542 }
543 
544 static inline void __sk_del_node(struct sock *sk)
545 {
546 	__hlist_del(&sk->sk_node);
547 }
548 
549 /* NB: equivalent to hlist_del_init_rcu */
550 static inline bool __sk_del_node_init(struct sock *sk)
551 {
552 	if (sk_hashed(sk)) {
553 		__sk_del_node(sk);
554 		sk_node_init(&sk->sk_node);
555 		return true;
556 	}
557 	return false;
558 }
559 
560 /* Grab socket reference count. This operation is valid only
561    when sk is ALREADY grabbed f.e. it is found in hash table
562    or a list and the lookup is made under lock preventing hash table
563    modifications.
564  */
565 
566 static inline void sock_hold(struct sock *sk)
567 {
568 	atomic_inc(&sk->sk_refcnt);
569 }
570 
571 /* Ungrab socket in the context, which assumes that socket refcnt
572    cannot hit zero, f.e. it is true in context of any socketcall.
573  */
574 static inline void __sock_put(struct sock *sk)
575 {
576 	atomic_dec(&sk->sk_refcnt);
577 }
578 
579 static inline bool sk_del_node_init(struct sock *sk)
580 {
581 	bool rc = __sk_del_node_init(sk);
582 
583 	if (rc) {
584 		/* paranoid for a while -acme */
585 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
586 		__sock_put(sk);
587 	}
588 	return rc;
589 }
590 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
591 
592 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
593 {
594 	if (sk_hashed(sk)) {
595 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
596 		return true;
597 	}
598 	return false;
599 }
600 
601 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
602 {
603 	bool rc = __sk_nulls_del_node_init_rcu(sk);
604 
605 	if (rc) {
606 		/* paranoid for a while -acme */
607 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
608 		__sock_put(sk);
609 	}
610 	return rc;
611 }
612 
613 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
614 {
615 	hlist_add_head(&sk->sk_node, list);
616 }
617 
618 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
619 {
620 	sock_hold(sk);
621 	__sk_add_node(sk, list);
622 }
623 
624 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
625 {
626 	sock_hold(sk);
627 	hlist_add_head_rcu(&sk->sk_node, list);
628 }
629 
630 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
631 {
632 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
633 }
634 
635 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
636 {
637 	sock_hold(sk);
638 	__sk_nulls_add_node_rcu(sk, list);
639 }
640 
641 static inline void __sk_del_bind_node(struct sock *sk)
642 {
643 	__hlist_del(&sk->sk_bind_node);
644 }
645 
646 static inline void sk_add_bind_node(struct sock *sk,
647 					struct hlist_head *list)
648 {
649 	hlist_add_head(&sk->sk_bind_node, list);
650 }
651 
652 #define sk_for_each(__sk, list) \
653 	hlist_for_each_entry(__sk, list, sk_node)
654 #define sk_for_each_rcu(__sk, list) \
655 	hlist_for_each_entry_rcu(__sk, list, sk_node)
656 #define sk_nulls_for_each(__sk, node, list) \
657 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
658 #define sk_nulls_for_each_rcu(__sk, node, list) \
659 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
660 #define sk_for_each_from(__sk) \
661 	hlist_for_each_entry_from(__sk, sk_node)
662 #define sk_nulls_for_each_from(__sk, node) \
663 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
664 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
665 #define sk_for_each_safe(__sk, tmp, list) \
666 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
667 #define sk_for_each_bound(__sk, list) \
668 	hlist_for_each_entry(__sk, list, sk_bind_node)
669 
670 /**
671  * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
672  * @tpos:	the type * to use as a loop cursor.
673  * @pos:	the &struct hlist_node to use as a loop cursor.
674  * @head:	the head for your list.
675  * @offset:	offset of hlist_node within the struct.
676  *
677  */
678 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
679 	for (pos = (head)->first;					       \
680 	     (!is_a_nulls(pos)) &&					       \
681 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
682 	     pos = pos->next)
683 
684 static inline struct user_namespace *sk_user_ns(struct sock *sk)
685 {
686 	/* Careful only use this in a context where these parameters
687 	 * can not change and must all be valid, such as recvmsg from
688 	 * userspace.
689 	 */
690 	return sk->sk_socket->file->f_cred->user_ns;
691 }
692 
693 /* Sock flags */
694 enum sock_flags {
695 	SOCK_DEAD,
696 	SOCK_DONE,
697 	SOCK_URGINLINE,
698 	SOCK_KEEPOPEN,
699 	SOCK_LINGER,
700 	SOCK_DESTROY,
701 	SOCK_BROADCAST,
702 	SOCK_TIMESTAMP,
703 	SOCK_ZAPPED,
704 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
705 	SOCK_DBG, /* %SO_DEBUG setting */
706 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
707 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
708 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
709 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
710 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
711 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
712 	SOCK_FASYNC, /* fasync() active */
713 	SOCK_RXQ_OVFL,
714 	SOCK_ZEROCOPY, /* buffers from userspace */
715 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
716 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
717 		     * Will use last 4 bytes of packet sent from
718 		     * user-space instead.
719 		     */
720 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
721 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
722 };
723 
724 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
725 {
726 	nsk->sk_flags = osk->sk_flags;
727 }
728 
729 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
730 {
731 	__set_bit(flag, &sk->sk_flags);
732 }
733 
734 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
735 {
736 	__clear_bit(flag, &sk->sk_flags);
737 }
738 
739 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
740 {
741 	return test_bit(flag, &sk->sk_flags);
742 }
743 
744 #ifdef CONFIG_NET
745 extern struct static_key memalloc_socks;
746 static inline int sk_memalloc_socks(void)
747 {
748 	return static_key_false(&memalloc_socks);
749 }
750 #else
751 
752 static inline int sk_memalloc_socks(void)
753 {
754 	return 0;
755 }
756 
757 #endif
758 
759 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
760 {
761 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
762 }
763 
764 static inline void sk_acceptq_removed(struct sock *sk)
765 {
766 	sk->sk_ack_backlog--;
767 }
768 
769 static inline void sk_acceptq_added(struct sock *sk)
770 {
771 	sk->sk_ack_backlog++;
772 }
773 
774 static inline bool sk_acceptq_is_full(const struct sock *sk)
775 {
776 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
777 }
778 
779 /*
780  * Compute minimal free write space needed to queue new packets.
781  */
782 static inline int sk_stream_min_wspace(const struct sock *sk)
783 {
784 	return sk->sk_wmem_queued >> 1;
785 }
786 
787 static inline int sk_stream_wspace(const struct sock *sk)
788 {
789 	return sk->sk_sndbuf - sk->sk_wmem_queued;
790 }
791 
792 void sk_stream_write_space(struct sock *sk);
793 
794 /* OOB backlog add */
795 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
796 {
797 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
798 	skb_dst_force(skb);
799 
800 	if (!sk->sk_backlog.tail)
801 		sk->sk_backlog.head = skb;
802 	else
803 		sk->sk_backlog.tail->next = skb;
804 
805 	sk->sk_backlog.tail = skb;
806 	skb->next = NULL;
807 }
808 
809 /*
810  * Take into account size of receive queue and backlog queue
811  * Do not take into account this skb truesize,
812  * to allow even a single big packet to come.
813  */
814 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
815 {
816 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
817 
818 	return qsize > limit;
819 }
820 
821 /* The per-socket spinlock must be held here. */
822 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
823 					      unsigned int limit)
824 {
825 	if (sk_rcvqueues_full(sk, limit))
826 		return -ENOBUFS;
827 
828 	__sk_add_backlog(sk, skb);
829 	sk->sk_backlog.len += skb->truesize;
830 	return 0;
831 }
832 
833 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
834 
835 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
836 {
837 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
838 		return __sk_backlog_rcv(sk, skb);
839 
840 	return sk->sk_backlog_rcv(sk, skb);
841 }
842 
843 static inline void sk_incoming_cpu_update(struct sock *sk)
844 {
845 	sk->sk_incoming_cpu = raw_smp_processor_id();
846 }
847 
848 static inline void sock_rps_record_flow_hash(__u32 hash)
849 {
850 #ifdef CONFIG_RPS
851 	struct rps_sock_flow_table *sock_flow_table;
852 
853 	rcu_read_lock();
854 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
855 	rps_record_sock_flow(sock_flow_table, hash);
856 	rcu_read_unlock();
857 #endif
858 }
859 
860 static inline void sock_rps_reset_flow_hash(__u32 hash)
861 {
862 #ifdef CONFIG_RPS
863 	struct rps_sock_flow_table *sock_flow_table;
864 
865 	rcu_read_lock();
866 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
867 	rps_reset_sock_flow(sock_flow_table, hash);
868 	rcu_read_unlock();
869 #endif
870 }
871 
872 static inline void sock_rps_record_flow(const struct sock *sk)
873 {
874 #ifdef CONFIG_RPS
875 	sock_rps_record_flow_hash(sk->sk_rxhash);
876 #endif
877 }
878 
879 static inline void sock_rps_reset_flow(const struct sock *sk)
880 {
881 #ifdef CONFIG_RPS
882 	sock_rps_reset_flow_hash(sk->sk_rxhash);
883 #endif
884 }
885 
886 static inline void sock_rps_save_rxhash(struct sock *sk,
887 					const struct sk_buff *skb)
888 {
889 #ifdef CONFIG_RPS
890 	if (unlikely(sk->sk_rxhash != skb->hash)) {
891 		sock_rps_reset_flow(sk);
892 		sk->sk_rxhash = skb->hash;
893 	}
894 #endif
895 }
896 
897 static inline void sock_rps_reset_rxhash(struct sock *sk)
898 {
899 #ifdef CONFIG_RPS
900 	sock_rps_reset_flow(sk);
901 	sk->sk_rxhash = 0;
902 #endif
903 }
904 
905 #define sk_wait_event(__sk, __timeo, __condition)			\
906 	({	int __rc;						\
907 		release_sock(__sk);					\
908 		__rc = __condition;					\
909 		if (!__rc) {						\
910 			*(__timeo) = schedule_timeout(*(__timeo));	\
911 		}							\
912 		sched_annotate_sleep();						\
913 		lock_sock(__sk);					\
914 		__rc = __condition;					\
915 		__rc;							\
916 	})
917 
918 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
919 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
920 void sk_stream_wait_close(struct sock *sk, long timeo_p);
921 int sk_stream_error(struct sock *sk, int flags, int err);
922 void sk_stream_kill_queues(struct sock *sk);
923 void sk_set_memalloc(struct sock *sk);
924 void sk_clear_memalloc(struct sock *sk);
925 
926 int sk_wait_data(struct sock *sk, long *timeo);
927 
928 struct request_sock_ops;
929 struct timewait_sock_ops;
930 struct inet_hashinfo;
931 struct raw_hashinfo;
932 struct module;
933 
934 /*
935  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
936  * un-modified. Special care is taken when initializing object to zero.
937  */
938 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
939 {
940 	if (offsetof(struct sock, sk_node.next) != 0)
941 		memset(sk, 0, offsetof(struct sock, sk_node.next));
942 	memset(&sk->sk_node.pprev, 0,
943 	       size - offsetof(struct sock, sk_node.pprev));
944 }
945 
946 /* Networking protocol blocks we attach to sockets.
947  * socket layer -> transport layer interface
948  * transport -> network interface is defined by struct inet_proto
949  */
950 struct proto {
951 	void			(*close)(struct sock *sk,
952 					long timeout);
953 	int			(*connect)(struct sock *sk,
954 					struct sockaddr *uaddr,
955 					int addr_len);
956 	int			(*disconnect)(struct sock *sk, int flags);
957 
958 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
959 
960 	int			(*ioctl)(struct sock *sk, int cmd,
961 					 unsigned long arg);
962 	int			(*init)(struct sock *sk);
963 	void			(*destroy)(struct sock *sk);
964 	void			(*shutdown)(struct sock *sk, int how);
965 	int			(*setsockopt)(struct sock *sk, int level,
966 					int optname, char __user *optval,
967 					unsigned int optlen);
968 	int			(*getsockopt)(struct sock *sk, int level,
969 					int optname, char __user *optval,
970 					int __user *option);
971 #ifdef CONFIG_COMPAT
972 	int			(*compat_setsockopt)(struct sock *sk,
973 					int level,
974 					int optname, char __user *optval,
975 					unsigned int optlen);
976 	int			(*compat_getsockopt)(struct sock *sk,
977 					int level,
978 					int optname, char __user *optval,
979 					int __user *option);
980 	int			(*compat_ioctl)(struct sock *sk,
981 					unsigned int cmd, unsigned long arg);
982 #endif
983 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
984 					   struct msghdr *msg, size_t len);
985 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
986 					   struct msghdr *msg,
987 					   size_t len, int noblock, int flags,
988 					   int *addr_len);
989 	int			(*sendpage)(struct sock *sk, struct page *page,
990 					int offset, size_t size, int flags);
991 	int			(*bind)(struct sock *sk,
992 					struct sockaddr *uaddr, int addr_len);
993 
994 	int			(*backlog_rcv) (struct sock *sk,
995 						struct sk_buff *skb);
996 
997 	void		(*release_cb)(struct sock *sk);
998 
999 	/* Keeping track of sk's, looking them up, and port selection methods. */
1000 	void			(*hash)(struct sock *sk);
1001 	void			(*unhash)(struct sock *sk);
1002 	void			(*rehash)(struct sock *sk);
1003 	int			(*get_port)(struct sock *sk, unsigned short snum);
1004 	void			(*clear_sk)(struct sock *sk, int size);
1005 
1006 	/* Keeping track of sockets in use */
1007 #ifdef CONFIG_PROC_FS
1008 	unsigned int		inuse_idx;
1009 #endif
1010 
1011 	bool			(*stream_memory_free)(const struct sock *sk);
1012 	/* Memory pressure */
1013 	void			(*enter_memory_pressure)(struct sock *sk);
1014 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1015 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1016 	/*
1017 	 * Pressure flag: try to collapse.
1018 	 * Technical note: it is used by multiple contexts non atomically.
1019 	 * All the __sk_mem_schedule() is of this nature: accounting
1020 	 * is strict, actions are advisory and have some latency.
1021 	 */
1022 	int			*memory_pressure;
1023 	long			*sysctl_mem;
1024 	int			*sysctl_wmem;
1025 	int			*sysctl_rmem;
1026 	int			max_header;
1027 	bool			no_autobind;
1028 
1029 	struct kmem_cache	*slab;
1030 	unsigned int		obj_size;
1031 	int			slab_flags;
1032 
1033 	struct percpu_counter	*orphan_count;
1034 
1035 	struct request_sock_ops	*rsk_prot;
1036 	struct timewait_sock_ops *twsk_prot;
1037 
1038 	union {
1039 		struct inet_hashinfo	*hashinfo;
1040 		struct udp_table	*udp_table;
1041 		struct raw_hashinfo	*raw_hash;
1042 	} h;
1043 
1044 	struct module		*owner;
1045 
1046 	char			name[32];
1047 
1048 	struct list_head	node;
1049 #ifdef SOCK_REFCNT_DEBUG
1050 	atomic_t		socks;
1051 #endif
1052 #ifdef CONFIG_MEMCG_KMEM
1053 	/*
1054 	 * cgroup specific init/deinit functions. Called once for all
1055 	 * protocols that implement it, from cgroups populate function.
1056 	 * This function has to setup any files the protocol want to
1057 	 * appear in the kmem cgroup filesystem.
1058 	 */
1059 	int			(*init_cgroup)(struct mem_cgroup *memcg,
1060 					       struct cgroup_subsys *ss);
1061 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1062 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1063 #endif
1064 };
1065 
1066 /*
1067  * Bits in struct cg_proto.flags
1068  */
1069 enum cg_proto_flags {
1070 	/* Currently active and new sockets should be assigned to cgroups */
1071 	MEMCG_SOCK_ACTIVE,
1072 	/* It was ever activated; we must disarm static keys on destruction */
1073 	MEMCG_SOCK_ACTIVATED,
1074 };
1075 
1076 struct cg_proto {
1077 	struct page_counter	memory_allocated;	/* Current allocated memory. */
1078 	struct percpu_counter	sockets_allocated;	/* Current number of sockets. */
1079 	int			memory_pressure;
1080 	long			sysctl_mem[3];
1081 	unsigned long		flags;
1082 	/*
1083 	 * memcg field is used to find which memcg we belong directly
1084 	 * Each memcg struct can hold more than one cg_proto, so container_of
1085 	 * won't really cut.
1086 	 *
1087 	 * The elegant solution would be having an inverse function to
1088 	 * proto_cgroup in struct proto, but that means polluting the structure
1089 	 * for everybody, instead of just for memcg users.
1090 	 */
1091 	struct mem_cgroup	*memcg;
1092 };
1093 
1094 int proto_register(struct proto *prot, int alloc_slab);
1095 void proto_unregister(struct proto *prot);
1096 
1097 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1098 {
1099 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1100 }
1101 
1102 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1103 {
1104 	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1105 }
1106 
1107 #ifdef SOCK_REFCNT_DEBUG
1108 static inline void sk_refcnt_debug_inc(struct sock *sk)
1109 {
1110 	atomic_inc(&sk->sk_prot->socks);
1111 }
1112 
1113 static inline void sk_refcnt_debug_dec(struct sock *sk)
1114 {
1115 	atomic_dec(&sk->sk_prot->socks);
1116 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1117 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1118 }
1119 
1120 static inline void sk_refcnt_debug_release(const struct sock *sk)
1121 {
1122 	if (atomic_read(&sk->sk_refcnt) != 1)
1123 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1124 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1125 }
1126 #else /* SOCK_REFCNT_DEBUG */
1127 #define sk_refcnt_debug_inc(sk) do { } while (0)
1128 #define sk_refcnt_debug_dec(sk) do { } while (0)
1129 #define sk_refcnt_debug_release(sk) do { } while (0)
1130 #endif /* SOCK_REFCNT_DEBUG */
1131 
1132 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1133 extern struct static_key memcg_socket_limit_enabled;
1134 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1135 					       struct cg_proto *cg_proto)
1136 {
1137 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1138 }
1139 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1140 #else
1141 #define mem_cgroup_sockets_enabled 0
1142 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1143 					       struct cg_proto *cg_proto)
1144 {
1145 	return NULL;
1146 }
1147 #endif
1148 
1149 static inline bool sk_stream_memory_free(const struct sock *sk)
1150 {
1151 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1152 		return false;
1153 
1154 	return sk->sk_prot->stream_memory_free ?
1155 		sk->sk_prot->stream_memory_free(sk) : true;
1156 }
1157 
1158 static inline bool sk_stream_is_writeable(const struct sock *sk)
1159 {
1160 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1161 	       sk_stream_memory_free(sk);
1162 }
1163 
1164 
1165 static inline bool sk_has_memory_pressure(const struct sock *sk)
1166 {
1167 	return sk->sk_prot->memory_pressure != NULL;
1168 }
1169 
1170 static inline bool sk_under_memory_pressure(const struct sock *sk)
1171 {
1172 	if (!sk->sk_prot->memory_pressure)
1173 		return false;
1174 
1175 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1176 		return !!sk->sk_cgrp->memory_pressure;
1177 
1178 	return !!*sk->sk_prot->memory_pressure;
1179 }
1180 
1181 static inline void sk_leave_memory_pressure(struct sock *sk)
1182 {
1183 	int *memory_pressure = sk->sk_prot->memory_pressure;
1184 
1185 	if (!memory_pressure)
1186 		return;
1187 
1188 	if (*memory_pressure)
1189 		*memory_pressure = 0;
1190 
1191 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1192 		struct cg_proto *cg_proto = sk->sk_cgrp;
1193 		struct proto *prot = sk->sk_prot;
1194 
1195 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1196 			cg_proto->memory_pressure = 0;
1197 	}
1198 
1199 }
1200 
1201 static inline void sk_enter_memory_pressure(struct sock *sk)
1202 {
1203 	if (!sk->sk_prot->enter_memory_pressure)
1204 		return;
1205 
1206 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1207 		struct cg_proto *cg_proto = sk->sk_cgrp;
1208 		struct proto *prot = sk->sk_prot;
1209 
1210 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1211 			cg_proto->memory_pressure = 1;
1212 	}
1213 
1214 	sk->sk_prot->enter_memory_pressure(sk);
1215 }
1216 
1217 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1218 {
1219 	long *prot = sk->sk_prot->sysctl_mem;
1220 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1221 		prot = sk->sk_cgrp->sysctl_mem;
1222 	return prot[index];
1223 }
1224 
1225 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1226 					      unsigned long amt,
1227 					      int *parent_status)
1228 {
1229 	page_counter_charge(&prot->memory_allocated, amt);
1230 
1231 	if (page_counter_read(&prot->memory_allocated) >
1232 	    prot->memory_allocated.limit)
1233 		*parent_status = OVER_LIMIT;
1234 }
1235 
1236 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1237 					      unsigned long amt)
1238 {
1239 	page_counter_uncharge(&prot->memory_allocated, amt);
1240 }
1241 
1242 static inline long
1243 sk_memory_allocated(const struct sock *sk)
1244 {
1245 	struct proto *prot = sk->sk_prot;
1246 
1247 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1248 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1249 
1250 	return atomic_long_read(prot->memory_allocated);
1251 }
1252 
1253 static inline long
1254 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1255 {
1256 	struct proto *prot = sk->sk_prot;
1257 
1258 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1259 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1260 		/* update the root cgroup regardless */
1261 		atomic_long_add_return(amt, prot->memory_allocated);
1262 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1263 	}
1264 
1265 	return atomic_long_add_return(amt, prot->memory_allocated);
1266 }
1267 
1268 static inline void
1269 sk_memory_allocated_sub(struct sock *sk, int amt)
1270 {
1271 	struct proto *prot = sk->sk_prot;
1272 
1273 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1274 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1275 
1276 	atomic_long_sub(amt, prot->memory_allocated);
1277 }
1278 
1279 static inline void sk_sockets_allocated_dec(struct sock *sk)
1280 {
1281 	struct proto *prot = sk->sk_prot;
1282 
1283 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1284 		struct cg_proto *cg_proto = sk->sk_cgrp;
1285 
1286 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1287 			percpu_counter_dec(&cg_proto->sockets_allocated);
1288 	}
1289 
1290 	percpu_counter_dec(prot->sockets_allocated);
1291 }
1292 
1293 static inline void sk_sockets_allocated_inc(struct sock *sk)
1294 {
1295 	struct proto *prot = sk->sk_prot;
1296 
1297 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1298 		struct cg_proto *cg_proto = sk->sk_cgrp;
1299 
1300 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1301 			percpu_counter_inc(&cg_proto->sockets_allocated);
1302 	}
1303 
1304 	percpu_counter_inc(prot->sockets_allocated);
1305 }
1306 
1307 static inline int
1308 sk_sockets_allocated_read_positive(struct sock *sk)
1309 {
1310 	struct proto *prot = sk->sk_prot;
1311 
1312 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1313 		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1314 
1315 	return percpu_counter_read_positive(prot->sockets_allocated);
1316 }
1317 
1318 static inline int
1319 proto_sockets_allocated_sum_positive(struct proto *prot)
1320 {
1321 	return percpu_counter_sum_positive(prot->sockets_allocated);
1322 }
1323 
1324 static inline long
1325 proto_memory_allocated(struct proto *prot)
1326 {
1327 	return atomic_long_read(prot->memory_allocated);
1328 }
1329 
1330 static inline bool
1331 proto_memory_pressure(struct proto *prot)
1332 {
1333 	if (!prot->memory_pressure)
1334 		return false;
1335 	return !!*prot->memory_pressure;
1336 }
1337 
1338 
1339 #ifdef CONFIG_PROC_FS
1340 /* Called with local bh disabled */
1341 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1342 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1343 #else
1344 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1345 		int inc)
1346 {
1347 }
1348 #endif
1349 
1350 
1351 /* With per-bucket locks this operation is not-atomic, so that
1352  * this version is not worse.
1353  */
1354 static inline void __sk_prot_rehash(struct sock *sk)
1355 {
1356 	sk->sk_prot->unhash(sk);
1357 	sk->sk_prot->hash(sk);
1358 }
1359 
1360 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1361 
1362 /* About 10 seconds */
1363 #define SOCK_DESTROY_TIME (10*HZ)
1364 
1365 /* Sockets 0-1023 can't be bound to unless you are superuser */
1366 #define PROT_SOCK	1024
1367 
1368 #define SHUTDOWN_MASK	3
1369 #define RCV_SHUTDOWN	1
1370 #define SEND_SHUTDOWN	2
1371 
1372 #define SOCK_SNDBUF_LOCK	1
1373 #define SOCK_RCVBUF_LOCK	2
1374 #define SOCK_BINDADDR_LOCK	4
1375 #define SOCK_BINDPORT_LOCK	8
1376 
1377 /* sock_iocb: used to kick off async processing of socket ios */
1378 struct sock_iocb {
1379 	struct list_head	list;
1380 
1381 	int			flags;
1382 	int			size;
1383 	struct socket		*sock;
1384 	struct sock		*sk;
1385 	struct scm_cookie	*scm;
1386 	struct msghdr		*msg, async_msg;
1387 	struct kiocb		*kiocb;
1388 };
1389 
1390 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1391 {
1392 	return (struct sock_iocb *)iocb->private;
1393 }
1394 
1395 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1396 {
1397 	return si->kiocb;
1398 }
1399 
1400 struct socket_alloc {
1401 	struct socket socket;
1402 	struct inode vfs_inode;
1403 };
1404 
1405 static inline struct socket *SOCKET_I(struct inode *inode)
1406 {
1407 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1408 }
1409 
1410 static inline struct inode *SOCK_INODE(struct socket *socket)
1411 {
1412 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1413 }
1414 
1415 /*
1416  * Functions for memory accounting
1417  */
1418 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1419 void __sk_mem_reclaim(struct sock *sk);
1420 
1421 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1422 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1423 #define SK_MEM_SEND	0
1424 #define SK_MEM_RECV	1
1425 
1426 static inline int sk_mem_pages(int amt)
1427 {
1428 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1429 }
1430 
1431 static inline bool sk_has_account(struct sock *sk)
1432 {
1433 	/* return true if protocol supports memory accounting */
1434 	return !!sk->sk_prot->memory_allocated;
1435 }
1436 
1437 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1438 {
1439 	if (!sk_has_account(sk))
1440 		return true;
1441 	return size <= sk->sk_forward_alloc ||
1442 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1443 }
1444 
1445 static inline bool
1446 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1447 {
1448 	if (!sk_has_account(sk))
1449 		return true;
1450 	return size<= sk->sk_forward_alloc ||
1451 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1452 		skb_pfmemalloc(skb);
1453 }
1454 
1455 static inline void sk_mem_reclaim(struct sock *sk)
1456 {
1457 	if (!sk_has_account(sk))
1458 		return;
1459 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1460 		__sk_mem_reclaim(sk);
1461 }
1462 
1463 static inline void sk_mem_reclaim_partial(struct sock *sk)
1464 {
1465 	if (!sk_has_account(sk))
1466 		return;
1467 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1468 		__sk_mem_reclaim(sk);
1469 }
1470 
1471 static inline void sk_mem_charge(struct sock *sk, int size)
1472 {
1473 	if (!sk_has_account(sk))
1474 		return;
1475 	sk->sk_forward_alloc -= size;
1476 }
1477 
1478 static inline void sk_mem_uncharge(struct sock *sk, int size)
1479 {
1480 	if (!sk_has_account(sk))
1481 		return;
1482 	sk->sk_forward_alloc += size;
1483 }
1484 
1485 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1486 {
1487 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1488 	sk->sk_wmem_queued -= skb->truesize;
1489 	sk_mem_uncharge(sk, skb->truesize);
1490 	__kfree_skb(skb);
1491 }
1492 
1493 /* Used by processes to "lock" a socket state, so that
1494  * interrupts and bottom half handlers won't change it
1495  * from under us. It essentially blocks any incoming
1496  * packets, so that we won't get any new data or any
1497  * packets that change the state of the socket.
1498  *
1499  * While locked, BH processing will add new packets to
1500  * the backlog queue.  This queue is processed by the
1501  * owner of the socket lock right before it is released.
1502  *
1503  * Since ~2.3.5 it is also exclusive sleep lock serializing
1504  * accesses from user process context.
1505  */
1506 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1507 
1508 static inline void sock_release_ownership(struct sock *sk)
1509 {
1510 	sk->sk_lock.owned = 0;
1511 }
1512 
1513 /*
1514  * Macro so as to not evaluate some arguments when
1515  * lockdep is not enabled.
1516  *
1517  * Mark both the sk_lock and the sk_lock.slock as a
1518  * per-address-family lock class.
1519  */
1520 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1521 do {									\
1522 	sk->sk_lock.owned = 0;						\
1523 	init_waitqueue_head(&sk->sk_lock.wq);				\
1524 	spin_lock_init(&(sk)->sk_lock.slock);				\
1525 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1526 			sizeof((sk)->sk_lock));				\
1527 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1528 				(skey), (sname));				\
1529 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1530 } while (0)
1531 
1532 void lock_sock_nested(struct sock *sk, int subclass);
1533 
1534 static inline void lock_sock(struct sock *sk)
1535 {
1536 	lock_sock_nested(sk, 0);
1537 }
1538 
1539 void release_sock(struct sock *sk);
1540 
1541 /* BH context may only use the following locking interface. */
1542 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1543 #define bh_lock_sock_nested(__sk) \
1544 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1545 				SINGLE_DEPTH_NESTING)
1546 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1547 
1548 bool lock_sock_fast(struct sock *sk);
1549 /**
1550  * unlock_sock_fast - complement of lock_sock_fast
1551  * @sk: socket
1552  * @slow: slow mode
1553  *
1554  * fast unlock socket for user context.
1555  * If slow mode is on, we call regular release_sock()
1556  */
1557 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1558 {
1559 	if (slow)
1560 		release_sock(sk);
1561 	else
1562 		spin_unlock_bh(&sk->sk_lock.slock);
1563 }
1564 
1565 
1566 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1567 		      struct proto *prot);
1568 void sk_free(struct sock *sk);
1569 void sk_release_kernel(struct sock *sk);
1570 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1571 
1572 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1573 			     gfp_t priority);
1574 void sock_wfree(struct sk_buff *skb);
1575 void skb_orphan_partial(struct sk_buff *skb);
1576 void sock_rfree(struct sk_buff *skb);
1577 void sock_efree(struct sk_buff *skb);
1578 #ifdef CONFIG_INET
1579 void sock_edemux(struct sk_buff *skb);
1580 #else
1581 #define sock_edemux(skb) sock_efree(skb)
1582 #endif
1583 
1584 int sock_setsockopt(struct socket *sock, int level, int op,
1585 		    char __user *optval, unsigned int optlen);
1586 
1587 int sock_getsockopt(struct socket *sock, int level, int op,
1588 		    char __user *optval, int __user *optlen);
1589 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1590 				    int noblock, int *errcode);
1591 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1592 				     unsigned long data_len, int noblock,
1593 				     int *errcode, int max_page_order);
1594 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1595 void sock_kfree_s(struct sock *sk, void *mem, int size);
1596 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1597 void sk_send_sigurg(struct sock *sk);
1598 
1599 /*
1600  * Functions to fill in entries in struct proto_ops when a protocol
1601  * does not implement a particular function.
1602  */
1603 int sock_no_bind(struct socket *, struct sockaddr *, int);
1604 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1605 int sock_no_socketpair(struct socket *, struct socket *);
1606 int sock_no_accept(struct socket *, struct socket *, int);
1607 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1608 unsigned int sock_no_poll(struct file *, struct socket *,
1609 			  struct poll_table_struct *);
1610 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1611 int sock_no_listen(struct socket *, int);
1612 int sock_no_shutdown(struct socket *, int);
1613 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1614 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1615 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1616 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1617 		    int);
1618 int sock_no_mmap(struct file *file, struct socket *sock,
1619 		 struct vm_area_struct *vma);
1620 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1621 			 size_t size, int flags);
1622 
1623 /*
1624  * Functions to fill in entries in struct proto_ops when a protocol
1625  * uses the inet style.
1626  */
1627 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1628 				  char __user *optval, int __user *optlen);
1629 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1630 			       struct msghdr *msg, size_t size, int flags);
1631 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1632 				  char __user *optval, unsigned int optlen);
1633 int compat_sock_common_getsockopt(struct socket *sock, int level,
1634 		int optname, char __user *optval, int __user *optlen);
1635 int compat_sock_common_setsockopt(struct socket *sock, int level,
1636 		int optname, char __user *optval, unsigned int optlen);
1637 
1638 void sk_common_release(struct sock *sk);
1639 
1640 /*
1641  *	Default socket callbacks and setup code
1642  */
1643 
1644 /* Initialise core socket variables */
1645 void sock_init_data(struct socket *sock, struct sock *sk);
1646 
1647 /*
1648  * Socket reference counting postulates.
1649  *
1650  * * Each user of socket SHOULD hold a reference count.
1651  * * Each access point to socket (an hash table bucket, reference from a list,
1652  *   running timer, skb in flight MUST hold a reference count.
1653  * * When reference count hits 0, it means it will never increase back.
1654  * * When reference count hits 0, it means that no references from
1655  *   outside exist to this socket and current process on current CPU
1656  *   is last user and may/should destroy this socket.
1657  * * sk_free is called from any context: process, BH, IRQ. When
1658  *   it is called, socket has no references from outside -> sk_free
1659  *   may release descendant resources allocated by the socket, but
1660  *   to the time when it is called, socket is NOT referenced by any
1661  *   hash tables, lists etc.
1662  * * Packets, delivered from outside (from network or from another process)
1663  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1664  *   when they sit in queue. Otherwise, packets will leak to hole, when
1665  *   socket is looked up by one cpu and unhasing is made by another CPU.
1666  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1667  *   (leak to backlog). Packet socket does all the processing inside
1668  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1669  *   use separate SMP lock, so that they are prone too.
1670  */
1671 
1672 /* Ungrab socket and destroy it, if it was the last reference. */
1673 static inline void sock_put(struct sock *sk)
1674 {
1675 	if (atomic_dec_and_test(&sk->sk_refcnt))
1676 		sk_free(sk);
1677 }
1678 /* Generic version of sock_put(), dealing with all sockets
1679  * (TCP_TIMEWAIT, ESTABLISHED...)
1680  */
1681 void sock_gen_put(struct sock *sk);
1682 
1683 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1684 
1685 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1686 {
1687 	sk->sk_tx_queue_mapping = tx_queue;
1688 }
1689 
1690 static inline void sk_tx_queue_clear(struct sock *sk)
1691 {
1692 	sk->sk_tx_queue_mapping = -1;
1693 }
1694 
1695 static inline int sk_tx_queue_get(const struct sock *sk)
1696 {
1697 	return sk ? sk->sk_tx_queue_mapping : -1;
1698 }
1699 
1700 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1701 {
1702 	sk_tx_queue_clear(sk);
1703 	sk->sk_socket = sock;
1704 }
1705 
1706 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1707 {
1708 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1709 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1710 }
1711 /* Detach socket from process context.
1712  * Announce socket dead, detach it from wait queue and inode.
1713  * Note that parent inode held reference count on this struct sock,
1714  * we do not release it in this function, because protocol
1715  * probably wants some additional cleanups or even continuing
1716  * to work with this socket (TCP).
1717  */
1718 static inline void sock_orphan(struct sock *sk)
1719 {
1720 	write_lock_bh(&sk->sk_callback_lock);
1721 	sock_set_flag(sk, SOCK_DEAD);
1722 	sk_set_socket(sk, NULL);
1723 	sk->sk_wq  = NULL;
1724 	write_unlock_bh(&sk->sk_callback_lock);
1725 }
1726 
1727 static inline void sock_graft(struct sock *sk, struct socket *parent)
1728 {
1729 	write_lock_bh(&sk->sk_callback_lock);
1730 	sk->sk_wq = parent->wq;
1731 	parent->sk = sk;
1732 	sk_set_socket(sk, parent);
1733 	security_sock_graft(sk, parent);
1734 	write_unlock_bh(&sk->sk_callback_lock);
1735 }
1736 
1737 kuid_t sock_i_uid(struct sock *sk);
1738 unsigned long sock_i_ino(struct sock *sk);
1739 
1740 static inline struct dst_entry *
1741 __sk_dst_get(struct sock *sk)
1742 {
1743 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1744 						       lockdep_is_held(&sk->sk_lock.slock));
1745 }
1746 
1747 static inline struct dst_entry *
1748 sk_dst_get(struct sock *sk)
1749 {
1750 	struct dst_entry *dst;
1751 
1752 	rcu_read_lock();
1753 	dst = rcu_dereference(sk->sk_dst_cache);
1754 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1755 		dst = NULL;
1756 	rcu_read_unlock();
1757 	return dst;
1758 }
1759 
1760 static inline void dst_negative_advice(struct sock *sk)
1761 {
1762 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1763 
1764 	if (dst && dst->ops->negative_advice) {
1765 		ndst = dst->ops->negative_advice(dst);
1766 
1767 		if (ndst != dst) {
1768 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1769 			sk_tx_queue_clear(sk);
1770 		}
1771 	}
1772 }
1773 
1774 static inline void
1775 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1776 {
1777 	struct dst_entry *old_dst;
1778 
1779 	sk_tx_queue_clear(sk);
1780 	/*
1781 	 * This can be called while sk is owned by the caller only,
1782 	 * with no state that can be checked in a rcu_dereference_check() cond
1783 	 */
1784 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1785 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1786 	dst_release(old_dst);
1787 }
1788 
1789 static inline void
1790 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1791 {
1792 	struct dst_entry *old_dst;
1793 
1794 	sk_tx_queue_clear(sk);
1795 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1796 	dst_release(old_dst);
1797 }
1798 
1799 static inline void
1800 __sk_dst_reset(struct sock *sk)
1801 {
1802 	__sk_dst_set(sk, NULL);
1803 }
1804 
1805 static inline void
1806 sk_dst_reset(struct sock *sk)
1807 {
1808 	sk_dst_set(sk, NULL);
1809 }
1810 
1811 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1812 
1813 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1814 
1815 static inline bool sk_can_gso(const struct sock *sk)
1816 {
1817 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1818 }
1819 
1820 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1821 
1822 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1823 {
1824 	sk->sk_route_nocaps |= flags;
1825 	sk->sk_route_caps &= ~flags;
1826 }
1827 
1828 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1829 					   char __user *from, char *to,
1830 					   int copy, int offset)
1831 {
1832 	if (skb->ip_summed == CHECKSUM_NONE) {
1833 		int err = 0;
1834 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1835 		if (err)
1836 			return err;
1837 		skb->csum = csum_block_add(skb->csum, csum, offset);
1838 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1839 		if (!access_ok(VERIFY_READ, from, copy) ||
1840 		    __copy_from_user_nocache(to, from, copy))
1841 			return -EFAULT;
1842 	} else if (copy_from_user(to, from, copy))
1843 		return -EFAULT;
1844 
1845 	return 0;
1846 }
1847 
1848 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1849 				       char __user *from, int copy)
1850 {
1851 	int err, offset = skb->len;
1852 
1853 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1854 				       copy, offset);
1855 	if (err)
1856 		__skb_trim(skb, offset);
1857 
1858 	return err;
1859 }
1860 
1861 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1862 					   struct sk_buff *skb,
1863 					   struct page *page,
1864 					   int off, int copy)
1865 {
1866 	int err;
1867 
1868 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1869 				       copy, skb->len);
1870 	if (err)
1871 		return err;
1872 
1873 	skb->len	     += copy;
1874 	skb->data_len	     += copy;
1875 	skb->truesize	     += copy;
1876 	sk->sk_wmem_queued   += copy;
1877 	sk_mem_charge(sk, copy);
1878 	return 0;
1879 }
1880 
1881 /**
1882  * sk_wmem_alloc_get - returns write allocations
1883  * @sk: socket
1884  *
1885  * Returns sk_wmem_alloc minus initial offset of one
1886  */
1887 static inline int sk_wmem_alloc_get(const struct sock *sk)
1888 {
1889 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1890 }
1891 
1892 /**
1893  * sk_rmem_alloc_get - returns read allocations
1894  * @sk: socket
1895  *
1896  * Returns sk_rmem_alloc
1897  */
1898 static inline int sk_rmem_alloc_get(const struct sock *sk)
1899 {
1900 	return atomic_read(&sk->sk_rmem_alloc);
1901 }
1902 
1903 /**
1904  * sk_has_allocations - check if allocations are outstanding
1905  * @sk: socket
1906  *
1907  * Returns true if socket has write or read allocations
1908  */
1909 static inline bool sk_has_allocations(const struct sock *sk)
1910 {
1911 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1912 }
1913 
1914 /**
1915  * wq_has_sleeper - check if there are any waiting processes
1916  * @wq: struct socket_wq
1917  *
1918  * Returns true if socket_wq has waiting processes
1919  *
1920  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1921  * barrier call. They were added due to the race found within the tcp code.
1922  *
1923  * Consider following tcp code paths:
1924  *
1925  * CPU1                  CPU2
1926  *
1927  * sys_select            receive packet
1928  *   ...                 ...
1929  *   __add_wait_queue    update tp->rcv_nxt
1930  *   ...                 ...
1931  *   tp->rcv_nxt check   sock_def_readable
1932  *   ...                 {
1933  *   schedule               rcu_read_lock();
1934  *                          wq = rcu_dereference(sk->sk_wq);
1935  *                          if (wq && waitqueue_active(&wq->wait))
1936  *                              wake_up_interruptible(&wq->wait)
1937  *                          ...
1938  *                       }
1939  *
1940  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1941  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1942  * could then endup calling schedule and sleep forever if there are no more
1943  * data on the socket.
1944  *
1945  */
1946 static inline bool wq_has_sleeper(struct socket_wq *wq)
1947 {
1948 	/* We need to be sure we are in sync with the
1949 	 * add_wait_queue modifications to the wait queue.
1950 	 *
1951 	 * This memory barrier is paired in the sock_poll_wait.
1952 	 */
1953 	smp_mb();
1954 	return wq && waitqueue_active(&wq->wait);
1955 }
1956 
1957 /**
1958  * sock_poll_wait - place memory barrier behind the poll_wait call.
1959  * @filp:           file
1960  * @wait_address:   socket wait queue
1961  * @p:              poll_table
1962  *
1963  * See the comments in the wq_has_sleeper function.
1964  */
1965 static inline void sock_poll_wait(struct file *filp,
1966 		wait_queue_head_t *wait_address, poll_table *p)
1967 {
1968 	if (!poll_does_not_wait(p) && wait_address) {
1969 		poll_wait(filp, wait_address, p);
1970 		/* We need to be sure we are in sync with the
1971 		 * socket flags modification.
1972 		 *
1973 		 * This memory barrier is paired in the wq_has_sleeper.
1974 		 */
1975 		smp_mb();
1976 	}
1977 }
1978 
1979 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1980 {
1981 	if (sk->sk_txhash) {
1982 		skb->l4_hash = 1;
1983 		skb->hash = sk->sk_txhash;
1984 	}
1985 }
1986 
1987 /*
1988  *	Queue a received datagram if it will fit. Stream and sequenced
1989  *	protocols can't normally use this as they need to fit buffers in
1990  *	and play with them.
1991  *
1992  *	Inlined as it's very short and called for pretty much every
1993  *	packet ever received.
1994  */
1995 
1996 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1997 {
1998 	skb_orphan(skb);
1999 	skb->sk = sk;
2000 	skb->destructor = sock_wfree;
2001 	skb_set_hash_from_sk(skb, sk);
2002 	/*
2003 	 * We used to take a refcount on sk, but following operation
2004 	 * is enough to guarantee sk_free() wont free this sock until
2005 	 * all in-flight packets are completed
2006 	 */
2007 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2008 }
2009 
2010 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2011 {
2012 	skb_orphan(skb);
2013 	skb->sk = sk;
2014 	skb->destructor = sock_rfree;
2015 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2016 	sk_mem_charge(sk, skb->truesize);
2017 }
2018 
2019 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2020 		    unsigned long expires);
2021 
2022 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2023 
2024 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2025 
2026 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2027 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2028 
2029 /*
2030  *	Recover an error report and clear atomically
2031  */
2032 
2033 static inline int sock_error(struct sock *sk)
2034 {
2035 	int err;
2036 	if (likely(!sk->sk_err))
2037 		return 0;
2038 	err = xchg(&sk->sk_err, 0);
2039 	return -err;
2040 }
2041 
2042 static inline unsigned long sock_wspace(struct sock *sk)
2043 {
2044 	int amt = 0;
2045 
2046 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2047 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2048 		if (amt < 0)
2049 			amt = 0;
2050 	}
2051 	return amt;
2052 }
2053 
2054 static inline void sk_wake_async(struct sock *sk, int how, int band)
2055 {
2056 	if (sock_flag(sk, SOCK_FASYNC))
2057 		sock_wake_async(sk->sk_socket, how, band);
2058 }
2059 
2060 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2061  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2062  * Note: for send buffers, TCP works better if we can build two skbs at
2063  * minimum.
2064  */
2065 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2066 
2067 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2068 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2069 
2070 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2071 {
2072 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2073 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2074 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2075 	}
2076 }
2077 
2078 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2079 
2080 /**
2081  * sk_page_frag - return an appropriate page_frag
2082  * @sk: socket
2083  *
2084  * If socket allocation mode allows current thread to sleep, it means its
2085  * safe to use the per task page_frag instead of the per socket one.
2086  */
2087 static inline struct page_frag *sk_page_frag(struct sock *sk)
2088 {
2089 	if (sk->sk_allocation & __GFP_WAIT)
2090 		return &current->task_frag;
2091 
2092 	return &sk->sk_frag;
2093 }
2094 
2095 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2096 
2097 /*
2098  *	Default write policy as shown to user space via poll/select/SIGIO
2099  */
2100 static inline bool sock_writeable(const struct sock *sk)
2101 {
2102 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2103 }
2104 
2105 static inline gfp_t gfp_any(void)
2106 {
2107 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2108 }
2109 
2110 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2111 {
2112 	return noblock ? 0 : sk->sk_rcvtimeo;
2113 }
2114 
2115 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2116 {
2117 	return noblock ? 0 : sk->sk_sndtimeo;
2118 }
2119 
2120 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2121 {
2122 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2123 }
2124 
2125 /* Alas, with timeout socket operations are not restartable.
2126  * Compare this to poll().
2127  */
2128 static inline int sock_intr_errno(long timeo)
2129 {
2130 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2131 }
2132 
2133 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2134 			   struct sk_buff *skb);
2135 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2136 			     struct sk_buff *skb);
2137 
2138 static inline void
2139 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2140 {
2141 	ktime_t kt = skb->tstamp;
2142 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2143 
2144 	/*
2145 	 * generate control messages if
2146 	 * - receive time stamping in software requested
2147 	 * - software time stamp available and wanted
2148 	 * - hardware time stamps available and wanted
2149 	 */
2150 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2151 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2152 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2153 	    (hwtstamps->hwtstamp.tv64 &&
2154 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2155 		__sock_recv_timestamp(msg, sk, skb);
2156 	else
2157 		sk->sk_stamp = kt;
2158 
2159 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2160 		__sock_recv_wifi_status(msg, sk, skb);
2161 }
2162 
2163 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2164 			      struct sk_buff *skb);
2165 
2166 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2167 					  struct sk_buff *skb)
2168 {
2169 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2170 			   (1UL << SOCK_RCVTSTAMP))
2171 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2172 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2173 
2174 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2175 		__sock_recv_ts_and_drops(msg, sk, skb);
2176 	else
2177 		sk->sk_stamp = skb->tstamp;
2178 }
2179 
2180 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2181 
2182 /**
2183  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2184  * @sk:		socket sending this packet
2185  * @tx_flags:	completed with instructions for time stamping
2186  *
2187  * Note : callers should take care of initial *tx_flags value (usually 0)
2188  */
2189 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2190 {
2191 	if (unlikely(sk->sk_tsflags))
2192 		__sock_tx_timestamp(sk, tx_flags);
2193 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2194 		*tx_flags |= SKBTX_WIFI_STATUS;
2195 }
2196 
2197 /**
2198  * sk_eat_skb - Release a skb if it is no longer needed
2199  * @sk: socket to eat this skb from
2200  * @skb: socket buffer to eat
2201  *
2202  * This routine must be called with interrupts disabled or with the socket
2203  * locked so that the sk_buff queue operation is ok.
2204 */
2205 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2206 {
2207 	__skb_unlink(skb, &sk->sk_receive_queue);
2208 	__kfree_skb(skb);
2209 }
2210 
2211 static inline
2212 struct net *sock_net(const struct sock *sk)
2213 {
2214 	return read_pnet(&sk->sk_net);
2215 }
2216 
2217 static inline
2218 void sock_net_set(struct sock *sk, struct net *net)
2219 {
2220 	write_pnet(&sk->sk_net, net);
2221 }
2222 
2223 /*
2224  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2225  * They should not hold a reference to a namespace in order to allow
2226  * to stop it.
2227  * Sockets after sk_change_net should be released using sk_release_kernel
2228  */
2229 static inline void sk_change_net(struct sock *sk, struct net *net)
2230 {
2231 	struct net *current_net = sock_net(sk);
2232 
2233 	if (!net_eq(current_net, net)) {
2234 		put_net(current_net);
2235 		sock_net_set(sk, hold_net(net));
2236 	}
2237 }
2238 
2239 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2240 {
2241 	if (skb->sk) {
2242 		struct sock *sk = skb->sk;
2243 
2244 		skb->destructor = NULL;
2245 		skb->sk = NULL;
2246 		return sk;
2247 	}
2248 	return NULL;
2249 }
2250 
2251 void sock_enable_timestamp(struct sock *sk, int flag);
2252 int sock_get_timestamp(struct sock *, struct timeval __user *);
2253 int sock_get_timestampns(struct sock *, struct timespec __user *);
2254 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2255 		       int type);
2256 
2257 bool sk_ns_capable(const struct sock *sk,
2258 		   struct user_namespace *user_ns, int cap);
2259 bool sk_capable(const struct sock *sk, int cap);
2260 bool sk_net_capable(const struct sock *sk, int cap);
2261 
2262 extern __u32 sysctl_wmem_max;
2263 extern __u32 sysctl_rmem_max;
2264 
2265 extern int sysctl_optmem_max;
2266 
2267 extern __u32 sysctl_wmem_default;
2268 extern __u32 sysctl_rmem_default;
2269 
2270 #endif	/* _SOCK_H */
2271