xref: /openbmc/linux/include/net/sock.h (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 
74 /*
75  * This structure really needs to be cleaned up.
76  * Most of it is for TCP, and not used by any of
77  * the other protocols.
78  */
79 
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 					printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92 
93 /* This is the per-socket lock.  The spinlock provides a synchronization
94  * between user contexts and software interrupt processing, whereas the
95  * mini-semaphore synchronizes multiple users amongst themselves.
96  */
97 typedef struct {
98 	spinlock_t		slock;
99 	int			owned;
100 	wait_queue_head_t	wq;
101 	/*
102 	 * We express the mutex-alike socket_lock semantics
103 	 * to the lock validator by explicitly managing
104 	 * the slock as a lock variant (in addition to
105 	 * the slock itself):
106 	 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111 
112 struct sock;
113 struct proto;
114 struct net;
115 
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118 
119 /**
120  *	struct sock_common - minimal network layer representation of sockets
121  *	@skc_daddr: Foreign IPv4 addr
122  *	@skc_rcv_saddr: Bound local IPv4 addr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_family: network address family
128  *	@skc_state: Connection state
129  *	@skc_reuse: %SO_REUSEADDR setting
130  *	@skc_reuseport: %SO_REUSEPORT setting
131  *	@skc_bound_dev_if: bound device index if != 0
132  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
133  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134  *	@skc_prot: protocol handlers inside a network family
135  *	@skc_net: reference to the network namespace of this socket
136  *	@skc_node: main hash linkage for various protocol lookup tables
137  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138  *	@skc_tx_queue_mapping: tx queue number for this connection
139  *	@skc_flags: place holder for sk_flags
140  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142  *	@skc_incoming_cpu: record/match cpu processing incoming packets
143  *	@skc_refcnt: reference count
144  *
145  *	This is the minimal network layer representation of sockets, the header
146  *	for struct sock and struct inet_timewait_sock.
147  */
148 struct sock_common {
149 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 	 * address on 64bit arches : cf INET_MATCH()
151 	 */
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	int			skc_bound_dev_if;
179 	union {
180 		struct hlist_node	skc_bind_node;
181 		struct hlist_node	skc_portaddr_node;
182 	};
183 	struct proto		*skc_prot;
184 	possible_net_t		skc_net;
185 
186 #if IS_ENABLED(CONFIG_IPV6)
187 	struct in6_addr		skc_v6_daddr;
188 	struct in6_addr		skc_v6_rcv_saddr;
189 #endif
190 
191 	atomic64_t		skc_cookie;
192 
193 	/* following fields are padding to force
194 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 	 * assuming IPV6 is enabled. We use this padding differently
196 	 * for different kind of 'sockets'
197 	 */
198 	union {
199 		unsigned long	skc_flags;
200 		struct sock	*skc_listener; /* request_sock */
201 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 	};
203 	/*
204 	 * fields between dontcopy_begin/dontcopy_end
205 	 * are not copied in sock_copy()
206 	 */
207 	/* private: */
208 	int			skc_dontcopy_begin[0];
209 	/* public: */
210 	union {
211 		struct hlist_node	skc_node;
212 		struct hlist_nulls_node skc_nulls_node;
213 	};
214 	int			skc_tx_queue_mapping;
215 	union {
216 		int		skc_incoming_cpu;
217 		u32		skc_rcv_wnd;
218 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
219 	};
220 
221 	atomic_t		skc_refcnt;
222 	/* private: */
223 	int                     skc_dontcopy_end[0];
224 	union {
225 		u32		skc_rxhash;
226 		u32		skc_window_clamp;
227 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 	};
229 	/* public: */
230 };
231 
232 /**
233   *	struct sock - network layer representation of sockets
234   *	@__sk_common: shared layout with inet_timewait_sock
235   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237   *	@sk_lock:	synchronizer
238   *	@sk_rcvbuf: size of receive buffer in bytes
239   *	@sk_wq: sock wait queue and async head
240   *	@sk_rx_dst: receive input route used by early demux
241   *	@sk_dst_cache: destination cache
242   *	@sk_policy: flow policy
243   *	@sk_receive_queue: incoming packets
244   *	@sk_wmem_alloc: transmit queue bytes committed
245   *	@sk_write_queue: Packet sending queue
246   *	@sk_omem_alloc: "o" is "option" or "other"
247   *	@sk_wmem_queued: persistent queue size
248   *	@sk_forward_alloc: space allocated forward
249   *	@sk_napi_id: id of the last napi context to receive data for sk
250   *	@sk_ll_usec: usecs to busypoll when there is no data
251   *	@sk_allocation: allocation mode
252   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254   *	@sk_sndbuf: size of send buffer in bytes
255   *	@sk_padding: unused element for alignment
256   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
257   *	@sk_no_check_rx: allow zero checksum in RX packets
258   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
259   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
260   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
261   *	@sk_gso_max_size: Maximum GSO segment size to build
262   *	@sk_gso_max_segs: Maximum number of GSO segments
263   *	@sk_lingertime: %SO_LINGER l_linger setting
264   *	@sk_backlog: always used with the per-socket spinlock held
265   *	@sk_callback_lock: used with the callbacks in the end of this struct
266   *	@sk_error_queue: rarely used
267   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
268   *			  IPV6_ADDRFORM for instance)
269   *	@sk_err: last error
270   *	@sk_err_soft: errors that don't cause failure but are the cause of a
271   *		      persistent failure not just 'timed out'
272   *	@sk_drops: raw/udp drops counter
273   *	@sk_ack_backlog: current listen backlog
274   *	@sk_max_ack_backlog: listen backlog set in listen()
275   *	@sk_priority: %SO_PRIORITY setting
276   *	@sk_type: socket type (%SOCK_STREAM, etc)
277   *	@sk_protocol: which protocol this socket belongs in this network family
278   *	@sk_peer_pid: &struct pid for this socket's peer
279   *	@sk_peer_cred: %SO_PEERCRED setting
280   *	@sk_rcvlowat: %SO_RCVLOWAT setting
281   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
282   *	@sk_sndtimeo: %SO_SNDTIMEO setting
283   *	@sk_txhash: computed flow hash for use on transmit
284   *	@sk_filter: socket filtering instructions
285   *	@sk_timer: sock cleanup timer
286   *	@sk_stamp: time stamp of last packet received
287   *	@sk_tsflags: SO_TIMESTAMPING socket options
288   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
289   *	@sk_socket: Identd and reporting IO signals
290   *	@sk_user_data: RPC layer private data
291   *	@sk_frag: cached page frag
292   *	@sk_peek_off: current peek_offset value
293   *	@sk_send_head: front of stuff to transmit
294   *	@sk_security: used by security modules
295   *	@sk_mark: generic packet mark
296   *	@sk_cgrp_data: cgroup data for this cgroup
297   *	@sk_memcg: this socket's memory cgroup association
298   *	@sk_write_pending: a write to stream socket waits to start
299   *	@sk_state_change: callback to indicate change in the state of the sock
300   *	@sk_data_ready: callback to indicate there is data to be processed
301   *	@sk_write_space: callback to indicate there is bf sending space available
302   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
303   *	@sk_backlog_rcv: callback to process the backlog
304   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
305   *	@sk_reuseport_cb: reuseport group container
306   *	@sk_rcu: used during RCU grace period
307   */
308 struct sock {
309 	/*
310 	 * Now struct inet_timewait_sock also uses sock_common, so please just
311 	 * don't add nothing before this first member (__sk_common) --acme
312 	 */
313 	struct sock_common	__sk_common;
314 #define sk_node			__sk_common.skc_node
315 #define sk_nulls_node		__sk_common.skc_nulls_node
316 #define sk_refcnt		__sk_common.skc_refcnt
317 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
318 
319 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
320 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
321 #define sk_hash			__sk_common.skc_hash
322 #define sk_portpair		__sk_common.skc_portpair
323 #define sk_num			__sk_common.skc_num
324 #define sk_dport		__sk_common.skc_dport
325 #define sk_addrpair		__sk_common.skc_addrpair
326 #define sk_daddr		__sk_common.skc_daddr
327 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
328 #define sk_family		__sk_common.skc_family
329 #define sk_state		__sk_common.skc_state
330 #define sk_reuse		__sk_common.skc_reuse
331 #define sk_reuseport		__sk_common.skc_reuseport
332 #define sk_ipv6only		__sk_common.skc_ipv6only
333 #define sk_net_refcnt		__sk_common.skc_net_refcnt
334 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
335 #define sk_bind_node		__sk_common.skc_bind_node
336 #define sk_prot			__sk_common.skc_prot
337 #define sk_net			__sk_common.skc_net
338 #define sk_v6_daddr		__sk_common.skc_v6_daddr
339 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
340 #define sk_cookie		__sk_common.skc_cookie
341 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
342 #define sk_flags		__sk_common.skc_flags
343 #define sk_rxhash		__sk_common.skc_rxhash
344 
345 	socket_lock_t		sk_lock;
346 	struct sk_buff_head	sk_receive_queue;
347 	/*
348 	 * The backlog queue is special, it is always used with
349 	 * the per-socket spinlock held and requires low latency
350 	 * access. Therefore we special case it's implementation.
351 	 * Note : rmem_alloc is in this structure to fill a hole
352 	 * on 64bit arches, not because its logically part of
353 	 * backlog.
354 	 */
355 	struct {
356 		atomic_t	rmem_alloc;
357 		int		len;
358 		struct sk_buff	*head;
359 		struct sk_buff	*tail;
360 	} sk_backlog;
361 #define sk_rmem_alloc sk_backlog.rmem_alloc
362 	int			sk_forward_alloc;
363 
364 	__u32			sk_txhash;
365 #ifdef CONFIG_NET_RX_BUSY_POLL
366 	unsigned int		sk_napi_id;
367 	unsigned int		sk_ll_usec;
368 #endif
369 	atomic_t		sk_drops;
370 	int			sk_rcvbuf;
371 
372 	struct sk_filter __rcu	*sk_filter;
373 	union {
374 		struct socket_wq __rcu	*sk_wq;
375 		struct socket_wq	*sk_wq_raw;
376 	};
377 #ifdef CONFIG_XFRM
378 	struct xfrm_policy __rcu *sk_policy[2];
379 #endif
380 	struct dst_entry	*sk_rx_dst;
381 	struct dst_entry __rcu	*sk_dst_cache;
382 	/* Note: 32bit hole on 64bit arches */
383 	atomic_t		sk_wmem_alloc;
384 	atomic_t		sk_omem_alloc;
385 	int			sk_sndbuf;
386 	struct sk_buff_head	sk_write_queue;
387 
388 	/*
389 	 * Because of non atomicity rules, all
390 	 * changes are protected by socket lock.
391 	 */
392 	unsigned int		__sk_flags_offset[0];
393 #ifdef __BIG_ENDIAN_BITFIELD
394 #define SK_FL_PROTO_SHIFT  16
395 #define SK_FL_PROTO_MASK   0x00ff0000
396 
397 #define SK_FL_TYPE_SHIFT   0
398 #define SK_FL_TYPE_MASK    0x0000ffff
399 #else
400 #define SK_FL_PROTO_SHIFT  8
401 #define SK_FL_PROTO_MASK   0x0000ff00
402 
403 #define SK_FL_TYPE_SHIFT   16
404 #define SK_FL_TYPE_MASK    0xffff0000
405 #endif
406 
407 	kmemcheck_bitfield_begin(flags);
408 	unsigned int		sk_padding : 2,
409 				sk_no_check_tx : 1,
410 				sk_no_check_rx : 1,
411 				sk_userlocks : 4,
412 				sk_protocol  : 8,
413 				sk_type      : 16;
414 #define SK_PROTOCOL_MAX U8_MAX
415 	kmemcheck_bitfield_end(flags);
416 
417 	int			sk_wmem_queued;
418 	gfp_t			sk_allocation;
419 	u32			sk_pacing_rate; /* bytes per second */
420 	u32			sk_max_pacing_rate;
421 	netdev_features_t	sk_route_caps;
422 	netdev_features_t	sk_route_nocaps;
423 	int			sk_gso_type;
424 	unsigned int		sk_gso_max_size;
425 	u16			sk_gso_max_segs;
426 	int			sk_rcvlowat;
427 	unsigned long	        sk_lingertime;
428 	struct sk_buff_head	sk_error_queue;
429 	struct proto		*sk_prot_creator;
430 	rwlock_t		sk_callback_lock;
431 	int			sk_err,
432 				sk_err_soft;
433 	u32			sk_ack_backlog;
434 	u32			sk_max_ack_backlog;
435 	__u32			sk_priority;
436 	__u32			sk_mark;
437 	kuid_t			sk_uid;
438 	struct pid		*sk_peer_pid;
439 	const struct cred	*sk_peer_cred;
440 	long			sk_rcvtimeo;
441 	long			sk_sndtimeo;
442 	struct timer_list	sk_timer;
443 	ktime_t			sk_stamp;
444 	u16			sk_tsflags;
445 	u8			sk_shutdown;
446 	u32			sk_tskey;
447 	struct socket		*sk_socket;
448 	void			*sk_user_data;
449 	struct page_frag	sk_frag;
450 	struct sk_buff		*sk_send_head;
451 	__s32			sk_peek_off;
452 	int			sk_write_pending;
453 #ifdef CONFIG_SECURITY
454 	void			*sk_security;
455 #endif
456 	struct sock_cgroup_data	sk_cgrp_data;
457 	struct mem_cgroup	*sk_memcg;
458 	void			(*sk_state_change)(struct sock *sk);
459 	void			(*sk_data_ready)(struct sock *sk);
460 	void			(*sk_write_space)(struct sock *sk);
461 	void			(*sk_error_report)(struct sock *sk);
462 	int			(*sk_backlog_rcv)(struct sock *sk,
463 						  struct sk_buff *skb);
464 	void                    (*sk_destruct)(struct sock *sk);
465 	struct sock_reuseport __rcu	*sk_reuseport_cb;
466 	struct rcu_head		sk_rcu;
467 };
468 
469 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
470 
471 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
472 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
473 
474 /*
475  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
476  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
477  * on a socket means that the socket will reuse everybody else's port
478  * without looking at the other's sk_reuse value.
479  */
480 
481 #define SK_NO_REUSE	0
482 #define SK_CAN_REUSE	1
483 #define SK_FORCE_REUSE	2
484 
485 int sk_set_peek_off(struct sock *sk, int val);
486 
487 static inline int sk_peek_offset(struct sock *sk, int flags)
488 {
489 	if (unlikely(flags & MSG_PEEK)) {
490 		s32 off = READ_ONCE(sk->sk_peek_off);
491 		if (off >= 0)
492 			return off;
493 	}
494 
495 	return 0;
496 }
497 
498 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
499 {
500 	s32 off = READ_ONCE(sk->sk_peek_off);
501 
502 	if (unlikely(off >= 0)) {
503 		off = max_t(s32, off - val, 0);
504 		WRITE_ONCE(sk->sk_peek_off, off);
505 	}
506 }
507 
508 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
509 {
510 	sk_peek_offset_bwd(sk, -val);
511 }
512 
513 /*
514  * Hashed lists helper routines
515  */
516 static inline struct sock *sk_entry(const struct hlist_node *node)
517 {
518 	return hlist_entry(node, struct sock, sk_node);
519 }
520 
521 static inline struct sock *__sk_head(const struct hlist_head *head)
522 {
523 	return hlist_entry(head->first, struct sock, sk_node);
524 }
525 
526 static inline struct sock *sk_head(const struct hlist_head *head)
527 {
528 	return hlist_empty(head) ? NULL : __sk_head(head);
529 }
530 
531 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
532 {
533 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
534 }
535 
536 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
537 {
538 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
539 }
540 
541 static inline struct sock *sk_next(const struct sock *sk)
542 {
543 	return sk->sk_node.next ?
544 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
545 }
546 
547 static inline struct sock *sk_nulls_next(const struct sock *sk)
548 {
549 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
550 		hlist_nulls_entry(sk->sk_nulls_node.next,
551 				  struct sock, sk_nulls_node) :
552 		NULL;
553 }
554 
555 static inline bool sk_unhashed(const struct sock *sk)
556 {
557 	return hlist_unhashed(&sk->sk_node);
558 }
559 
560 static inline bool sk_hashed(const struct sock *sk)
561 {
562 	return !sk_unhashed(sk);
563 }
564 
565 static inline void sk_node_init(struct hlist_node *node)
566 {
567 	node->pprev = NULL;
568 }
569 
570 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
571 {
572 	node->pprev = NULL;
573 }
574 
575 static inline void __sk_del_node(struct sock *sk)
576 {
577 	__hlist_del(&sk->sk_node);
578 }
579 
580 /* NB: equivalent to hlist_del_init_rcu */
581 static inline bool __sk_del_node_init(struct sock *sk)
582 {
583 	if (sk_hashed(sk)) {
584 		__sk_del_node(sk);
585 		sk_node_init(&sk->sk_node);
586 		return true;
587 	}
588 	return false;
589 }
590 
591 /* Grab socket reference count. This operation is valid only
592    when sk is ALREADY grabbed f.e. it is found in hash table
593    or a list and the lookup is made under lock preventing hash table
594    modifications.
595  */
596 
597 static __always_inline void sock_hold(struct sock *sk)
598 {
599 	atomic_inc(&sk->sk_refcnt);
600 }
601 
602 /* Ungrab socket in the context, which assumes that socket refcnt
603    cannot hit zero, f.e. it is true in context of any socketcall.
604  */
605 static __always_inline void __sock_put(struct sock *sk)
606 {
607 	atomic_dec(&sk->sk_refcnt);
608 }
609 
610 static inline bool sk_del_node_init(struct sock *sk)
611 {
612 	bool rc = __sk_del_node_init(sk);
613 
614 	if (rc) {
615 		/* paranoid for a while -acme */
616 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
617 		__sock_put(sk);
618 	}
619 	return rc;
620 }
621 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
622 
623 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
624 {
625 	if (sk_hashed(sk)) {
626 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
627 		return true;
628 	}
629 	return false;
630 }
631 
632 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
633 {
634 	bool rc = __sk_nulls_del_node_init_rcu(sk);
635 
636 	if (rc) {
637 		/* paranoid for a while -acme */
638 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
639 		__sock_put(sk);
640 	}
641 	return rc;
642 }
643 
644 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
645 {
646 	hlist_add_head(&sk->sk_node, list);
647 }
648 
649 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
650 {
651 	sock_hold(sk);
652 	__sk_add_node(sk, list);
653 }
654 
655 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
656 {
657 	sock_hold(sk);
658 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
659 	    sk->sk_family == AF_INET6)
660 		hlist_add_tail_rcu(&sk->sk_node, list);
661 	else
662 		hlist_add_head_rcu(&sk->sk_node, list);
663 }
664 
665 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
666 {
667 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
668 	    sk->sk_family == AF_INET6)
669 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
670 	else
671 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
672 }
673 
674 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
675 {
676 	sock_hold(sk);
677 	__sk_nulls_add_node_rcu(sk, list);
678 }
679 
680 static inline void __sk_del_bind_node(struct sock *sk)
681 {
682 	__hlist_del(&sk->sk_bind_node);
683 }
684 
685 static inline void sk_add_bind_node(struct sock *sk,
686 					struct hlist_head *list)
687 {
688 	hlist_add_head(&sk->sk_bind_node, list);
689 }
690 
691 #define sk_for_each(__sk, list) \
692 	hlist_for_each_entry(__sk, list, sk_node)
693 #define sk_for_each_rcu(__sk, list) \
694 	hlist_for_each_entry_rcu(__sk, list, sk_node)
695 #define sk_nulls_for_each(__sk, node, list) \
696 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
697 #define sk_nulls_for_each_rcu(__sk, node, list) \
698 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
699 #define sk_for_each_from(__sk) \
700 	hlist_for_each_entry_from(__sk, sk_node)
701 #define sk_nulls_for_each_from(__sk, node) \
702 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
703 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
704 #define sk_for_each_safe(__sk, tmp, list) \
705 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
706 #define sk_for_each_bound(__sk, list) \
707 	hlist_for_each_entry(__sk, list, sk_bind_node)
708 
709 /**
710  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
711  * @tpos:	the type * to use as a loop cursor.
712  * @pos:	the &struct hlist_node to use as a loop cursor.
713  * @head:	the head for your list.
714  * @offset:	offset of hlist_node within the struct.
715  *
716  */
717 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
718 	for (pos = rcu_dereference((head)->first);			       \
719 	     pos != NULL &&						       \
720 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
721 	     pos = rcu_dereference(pos->next))
722 
723 static inline struct user_namespace *sk_user_ns(struct sock *sk)
724 {
725 	/* Careful only use this in a context where these parameters
726 	 * can not change and must all be valid, such as recvmsg from
727 	 * userspace.
728 	 */
729 	return sk->sk_socket->file->f_cred->user_ns;
730 }
731 
732 /* Sock flags */
733 enum sock_flags {
734 	SOCK_DEAD,
735 	SOCK_DONE,
736 	SOCK_URGINLINE,
737 	SOCK_KEEPOPEN,
738 	SOCK_LINGER,
739 	SOCK_DESTROY,
740 	SOCK_BROADCAST,
741 	SOCK_TIMESTAMP,
742 	SOCK_ZAPPED,
743 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
744 	SOCK_DBG, /* %SO_DEBUG setting */
745 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
746 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
747 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
748 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
749 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
750 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
751 	SOCK_FASYNC, /* fasync() active */
752 	SOCK_RXQ_OVFL,
753 	SOCK_ZEROCOPY, /* buffers from userspace */
754 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
755 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
756 		     * Will use last 4 bytes of packet sent from
757 		     * user-space instead.
758 		     */
759 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
760 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
761 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
762 };
763 
764 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
765 
766 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
767 {
768 	nsk->sk_flags = osk->sk_flags;
769 }
770 
771 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
772 {
773 	__set_bit(flag, &sk->sk_flags);
774 }
775 
776 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
777 {
778 	__clear_bit(flag, &sk->sk_flags);
779 }
780 
781 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
782 {
783 	return test_bit(flag, &sk->sk_flags);
784 }
785 
786 #ifdef CONFIG_NET
787 extern struct static_key memalloc_socks;
788 static inline int sk_memalloc_socks(void)
789 {
790 	return static_key_false(&memalloc_socks);
791 }
792 #else
793 
794 static inline int sk_memalloc_socks(void)
795 {
796 	return 0;
797 }
798 
799 #endif
800 
801 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
802 {
803 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
804 }
805 
806 static inline void sk_acceptq_removed(struct sock *sk)
807 {
808 	sk->sk_ack_backlog--;
809 }
810 
811 static inline void sk_acceptq_added(struct sock *sk)
812 {
813 	sk->sk_ack_backlog++;
814 }
815 
816 static inline bool sk_acceptq_is_full(const struct sock *sk)
817 {
818 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
819 }
820 
821 /*
822  * Compute minimal free write space needed to queue new packets.
823  */
824 static inline int sk_stream_min_wspace(const struct sock *sk)
825 {
826 	return sk->sk_wmem_queued >> 1;
827 }
828 
829 static inline int sk_stream_wspace(const struct sock *sk)
830 {
831 	return sk->sk_sndbuf - sk->sk_wmem_queued;
832 }
833 
834 void sk_stream_write_space(struct sock *sk);
835 
836 /* OOB backlog add */
837 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
838 {
839 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
840 	skb_dst_force_safe(skb);
841 
842 	if (!sk->sk_backlog.tail)
843 		sk->sk_backlog.head = skb;
844 	else
845 		sk->sk_backlog.tail->next = skb;
846 
847 	sk->sk_backlog.tail = skb;
848 	skb->next = NULL;
849 }
850 
851 /*
852  * Take into account size of receive queue and backlog queue
853  * Do not take into account this skb truesize,
854  * to allow even a single big packet to come.
855  */
856 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
857 {
858 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
859 
860 	return qsize > limit;
861 }
862 
863 /* The per-socket spinlock must be held here. */
864 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
865 					      unsigned int limit)
866 {
867 	if (sk_rcvqueues_full(sk, limit))
868 		return -ENOBUFS;
869 
870 	/*
871 	 * If the skb was allocated from pfmemalloc reserves, only
872 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
873 	 * helping free memory
874 	 */
875 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
876 		return -ENOMEM;
877 
878 	__sk_add_backlog(sk, skb);
879 	sk->sk_backlog.len += skb->truesize;
880 	return 0;
881 }
882 
883 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
884 
885 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
886 {
887 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
888 		return __sk_backlog_rcv(sk, skb);
889 
890 	return sk->sk_backlog_rcv(sk, skb);
891 }
892 
893 static inline void sk_incoming_cpu_update(struct sock *sk)
894 {
895 	sk->sk_incoming_cpu = raw_smp_processor_id();
896 }
897 
898 static inline void sock_rps_record_flow_hash(__u32 hash)
899 {
900 #ifdef CONFIG_RPS
901 	struct rps_sock_flow_table *sock_flow_table;
902 
903 	rcu_read_lock();
904 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
905 	rps_record_sock_flow(sock_flow_table, hash);
906 	rcu_read_unlock();
907 #endif
908 }
909 
910 static inline void sock_rps_record_flow(const struct sock *sk)
911 {
912 #ifdef CONFIG_RPS
913 	sock_rps_record_flow_hash(sk->sk_rxhash);
914 #endif
915 }
916 
917 static inline void sock_rps_save_rxhash(struct sock *sk,
918 					const struct sk_buff *skb)
919 {
920 #ifdef CONFIG_RPS
921 	if (unlikely(sk->sk_rxhash != skb->hash))
922 		sk->sk_rxhash = skb->hash;
923 #endif
924 }
925 
926 static inline void sock_rps_reset_rxhash(struct sock *sk)
927 {
928 #ifdef CONFIG_RPS
929 	sk->sk_rxhash = 0;
930 #endif
931 }
932 
933 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
934 	({	int __rc;						\
935 		release_sock(__sk);					\
936 		__rc = __condition;					\
937 		if (!__rc) {						\
938 			*(__timeo) = wait_woken(__wait,			\
939 						TASK_INTERRUPTIBLE,	\
940 						*(__timeo));		\
941 		}							\
942 		sched_annotate_sleep();					\
943 		lock_sock(__sk);					\
944 		__rc = __condition;					\
945 		__rc;							\
946 	})
947 
948 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
949 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
950 void sk_stream_wait_close(struct sock *sk, long timeo_p);
951 int sk_stream_error(struct sock *sk, int flags, int err);
952 void sk_stream_kill_queues(struct sock *sk);
953 void sk_set_memalloc(struct sock *sk);
954 void sk_clear_memalloc(struct sock *sk);
955 
956 void __sk_flush_backlog(struct sock *sk);
957 
958 static inline bool sk_flush_backlog(struct sock *sk)
959 {
960 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
961 		__sk_flush_backlog(sk);
962 		return true;
963 	}
964 	return false;
965 }
966 
967 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
968 
969 struct request_sock_ops;
970 struct timewait_sock_ops;
971 struct inet_hashinfo;
972 struct raw_hashinfo;
973 struct module;
974 
975 /*
976  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
977  * un-modified. Special care is taken when initializing object to zero.
978  */
979 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
980 {
981 	if (offsetof(struct sock, sk_node.next) != 0)
982 		memset(sk, 0, offsetof(struct sock, sk_node.next));
983 	memset(&sk->sk_node.pprev, 0,
984 	       size - offsetof(struct sock, sk_node.pprev));
985 }
986 
987 /* Networking protocol blocks we attach to sockets.
988  * socket layer -> transport layer interface
989  */
990 struct proto {
991 	void			(*close)(struct sock *sk,
992 					long timeout);
993 	int			(*connect)(struct sock *sk,
994 					struct sockaddr *uaddr,
995 					int addr_len);
996 	int			(*disconnect)(struct sock *sk, int flags);
997 
998 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
999 
1000 	int			(*ioctl)(struct sock *sk, int cmd,
1001 					 unsigned long arg);
1002 	int			(*init)(struct sock *sk);
1003 	void			(*destroy)(struct sock *sk);
1004 	void			(*shutdown)(struct sock *sk, int how);
1005 	int			(*setsockopt)(struct sock *sk, int level,
1006 					int optname, char __user *optval,
1007 					unsigned int optlen);
1008 	int			(*getsockopt)(struct sock *sk, int level,
1009 					int optname, char __user *optval,
1010 					int __user *option);
1011 #ifdef CONFIG_COMPAT
1012 	int			(*compat_setsockopt)(struct sock *sk,
1013 					int level,
1014 					int optname, char __user *optval,
1015 					unsigned int optlen);
1016 	int			(*compat_getsockopt)(struct sock *sk,
1017 					int level,
1018 					int optname, char __user *optval,
1019 					int __user *option);
1020 	int			(*compat_ioctl)(struct sock *sk,
1021 					unsigned int cmd, unsigned long arg);
1022 #endif
1023 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1024 					   size_t len);
1025 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1026 					   size_t len, int noblock, int flags,
1027 					   int *addr_len);
1028 	int			(*sendpage)(struct sock *sk, struct page *page,
1029 					int offset, size_t size, int flags);
1030 	int			(*bind)(struct sock *sk,
1031 					struct sockaddr *uaddr, int addr_len);
1032 
1033 	int			(*backlog_rcv) (struct sock *sk,
1034 						struct sk_buff *skb);
1035 
1036 	void		(*release_cb)(struct sock *sk);
1037 
1038 	/* Keeping track of sk's, looking them up, and port selection methods. */
1039 	int			(*hash)(struct sock *sk);
1040 	void			(*unhash)(struct sock *sk);
1041 	void			(*rehash)(struct sock *sk);
1042 	int			(*get_port)(struct sock *sk, unsigned short snum);
1043 
1044 	/* Keeping track of sockets in use */
1045 #ifdef CONFIG_PROC_FS
1046 	unsigned int		inuse_idx;
1047 #endif
1048 
1049 	bool			(*stream_memory_free)(const struct sock *sk);
1050 	/* Memory pressure */
1051 	void			(*enter_memory_pressure)(struct sock *sk);
1052 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1053 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1054 	/*
1055 	 * Pressure flag: try to collapse.
1056 	 * Technical note: it is used by multiple contexts non atomically.
1057 	 * All the __sk_mem_schedule() is of this nature: accounting
1058 	 * is strict, actions are advisory and have some latency.
1059 	 */
1060 	int			*memory_pressure;
1061 	long			*sysctl_mem;
1062 	int			*sysctl_wmem;
1063 	int			*sysctl_rmem;
1064 	int			max_header;
1065 	bool			no_autobind;
1066 
1067 	struct kmem_cache	*slab;
1068 	unsigned int		obj_size;
1069 	int			slab_flags;
1070 
1071 	struct percpu_counter	*orphan_count;
1072 
1073 	struct request_sock_ops	*rsk_prot;
1074 	struct timewait_sock_ops *twsk_prot;
1075 
1076 	union {
1077 		struct inet_hashinfo	*hashinfo;
1078 		struct udp_table	*udp_table;
1079 		struct raw_hashinfo	*raw_hash;
1080 	} h;
1081 
1082 	struct module		*owner;
1083 
1084 	char			name[32];
1085 
1086 	struct list_head	node;
1087 #ifdef SOCK_REFCNT_DEBUG
1088 	atomic_t		socks;
1089 #endif
1090 	int			(*diag_destroy)(struct sock *sk, int err);
1091 };
1092 
1093 int proto_register(struct proto *prot, int alloc_slab);
1094 void proto_unregister(struct proto *prot);
1095 
1096 #ifdef SOCK_REFCNT_DEBUG
1097 static inline void sk_refcnt_debug_inc(struct sock *sk)
1098 {
1099 	atomic_inc(&sk->sk_prot->socks);
1100 }
1101 
1102 static inline void sk_refcnt_debug_dec(struct sock *sk)
1103 {
1104 	atomic_dec(&sk->sk_prot->socks);
1105 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1106 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1107 }
1108 
1109 static inline void sk_refcnt_debug_release(const struct sock *sk)
1110 {
1111 	if (atomic_read(&sk->sk_refcnt) != 1)
1112 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1113 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1114 }
1115 #else /* SOCK_REFCNT_DEBUG */
1116 #define sk_refcnt_debug_inc(sk) do { } while (0)
1117 #define sk_refcnt_debug_dec(sk) do { } while (0)
1118 #define sk_refcnt_debug_release(sk) do { } while (0)
1119 #endif /* SOCK_REFCNT_DEBUG */
1120 
1121 static inline bool sk_stream_memory_free(const struct sock *sk)
1122 {
1123 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1124 		return false;
1125 
1126 	return sk->sk_prot->stream_memory_free ?
1127 		sk->sk_prot->stream_memory_free(sk) : true;
1128 }
1129 
1130 static inline bool sk_stream_is_writeable(const struct sock *sk)
1131 {
1132 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1133 	       sk_stream_memory_free(sk);
1134 }
1135 
1136 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1137 					    struct cgroup *ancestor)
1138 {
1139 #ifdef CONFIG_SOCK_CGROUP_DATA
1140 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1141 				    ancestor);
1142 #else
1143 	return -ENOTSUPP;
1144 #endif
1145 }
1146 
1147 static inline bool sk_has_memory_pressure(const struct sock *sk)
1148 {
1149 	return sk->sk_prot->memory_pressure != NULL;
1150 }
1151 
1152 static inline bool sk_under_memory_pressure(const struct sock *sk)
1153 {
1154 	if (!sk->sk_prot->memory_pressure)
1155 		return false;
1156 
1157 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1158 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1159 		return true;
1160 
1161 	return !!*sk->sk_prot->memory_pressure;
1162 }
1163 
1164 static inline void sk_leave_memory_pressure(struct sock *sk)
1165 {
1166 	int *memory_pressure = sk->sk_prot->memory_pressure;
1167 
1168 	if (!memory_pressure)
1169 		return;
1170 
1171 	if (*memory_pressure)
1172 		*memory_pressure = 0;
1173 }
1174 
1175 static inline void sk_enter_memory_pressure(struct sock *sk)
1176 {
1177 	if (!sk->sk_prot->enter_memory_pressure)
1178 		return;
1179 
1180 	sk->sk_prot->enter_memory_pressure(sk);
1181 }
1182 
1183 static inline long
1184 sk_memory_allocated(const struct sock *sk)
1185 {
1186 	return atomic_long_read(sk->sk_prot->memory_allocated);
1187 }
1188 
1189 static inline long
1190 sk_memory_allocated_add(struct sock *sk, int amt)
1191 {
1192 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1193 }
1194 
1195 static inline void
1196 sk_memory_allocated_sub(struct sock *sk, int amt)
1197 {
1198 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1199 }
1200 
1201 static inline void sk_sockets_allocated_dec(struct sock *sk)
1202 {
1203 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1204 }
1205 
1206 static inline void sk_sockets_allocated_inc(struct sock *sk)
1207 {
1208 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1209 }
1210 
1211 static inline int
1212 sk_sockets_allocated_read_positive(struct sock *sk)
1213 {
1214 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1215 }
1216 
1217 static inline int
1218 proto_sockets_allocated_sum_positive(struct proto *prot)
1219 {
1220 	return percpu_counter_sum_positive(prot->sockets_allocated);
1221 }
1222 
1223 static inline long
1224 proto_memory_allocated(struct proto *prot)
1225 {
1226 	return atomic_long_read(prot->memory_allocated);
1227 }
1228 
1229 static inline bool
1230 proto_memory_pressure(struct proto *prot)
1231 {
1232 	if (!prot->memory_pressure)
1233 		return false;
1234 	return !!*prot->memory_pressure;
1235 }
1236 
1237 
1238 #ifdef CONFIG_PROC_FS
1239 /* Called with local bh disabled */
1240 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1241 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1242 #else
1243 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1244 		int inc)
1245 {
1246 }
1247 #endif
1248 
1249 
1250 /* With per-bucket locks this operation is not-atomic, so that
1251  * this version is not worse.
1252  */
1253 static inline int __sk_prot_rehash(struct sock *sk)
1254 {
1255 	sk->sk_prot->unhash(sk);
1256 	return sk->sk_prot->hash(sk);
1257 }
1258 
1259 /* About 10 seconds */
1260 #define SOCK_DESTROY_TIME (10*HZ)
1261 
1262 /* Sockets 0-1023 can't be bound to unless you are superuser */
1263 #define PROT_SOCK	1024
1264 
1265 #define SHUTDOWN_MASK	3
1266 #define RCV_SHUTDOWN	1
1267 #define SEND_SHUTDOWN	2
1268 
1269 #define SOCK_SNDBUF_LOCK	1
1270 #define SOCK_RCVBUF_LOCK	2
1271 #define SOCK_BINDADDR_LOCK	4
1272 #define SOCK_BINDPORT_LOCK	8
1273 
1274 struct socket_alloc {
1275 	struct socket socket;
1276 	struct inode vfs_inode;
1277 };
1278 
1279 static inline struct socket *SOCKET_I(struct inode *inode)
1280 {
1281 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1282 }
1283 
1284 static inline struct inode *SOCK_INODE(struct socket *socket)
1285 {
1286 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1287 }
1288 
1289 /*
1290  * Functions for memory accounting
1291  */
1292 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1293 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1294 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1295 void __sk_mem_reclaim(struct sock *sk, int amount);
1296 
1297 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1298  * do not necessarily have 16x time more memory than 4KB ones.
1299  */
1300 #define SK_MEM_QUANTUM 4096
1301 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1302 #define SK_MEM_SEND	0
1303 #define SK_MEM_RECV	1
1304 
1305 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1306 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1307 {
1308 	long val = sk->sk_prot->sysctl_mem[index];
1309 
1310 #if PAGE_SIZE > SK_MEM_QUANTUM
1311 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1312 #elif PAGE_SIZE < SK_MEM_QUANTUM
1313 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1314 #endif
1315 	return val;
1316 }
1317 
1318 static inline int sk_mem_pages(int amt)
1319 {
1320 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1321 }
1322 
1323 static inline bool sk_has_account(struct sock *sk)
1324 {
1325 	/* return true if protocol supports memory accounting */
1326 	return !!sk->sk_prot->memory_allocated;
1327 }
1328 
1329 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1330 {
1331 	if (!sk_has_account(sk))
1332 		return true;
1333 	return size <= sk->sk_forward_alloc ||
1334 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1335 }
1336 
1337 static inline bool
1338 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1339 {
1340 	if (!sk_has_account(sk))
1341 		return true;
1342 	return size<= sk->sk_forward_alloc ||
1343 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1344 		skb_pfmemalloc(skb);
1345 }
1346 
1347 static inline void sk_mem_reclaim(struct sock *sk)
1348 {
1349 	if (!sk_has_account(sk))
1350 		return;
1351 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1352 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1353 }
1354 
1355 static inline void sk_mem_reclaim_partial(struct sock *sk)
1356 {
1357 	if (!sk_has_account(sk))
1358 		return;
1359 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1360 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1361 }
1362 
1363 static inline void sk_mem_charge(struct sock *sk, int size)
1364 {
1365 	if (!sk_has_account(sk))
1366 		return;
1367 	sk->sk_forward_alloc -= size;
1368 }
1369 
1370 static inline void sk_mem_uncharge(struct sock *sk, int size)
1371 {
1372 	if (!sk_has_account(sk))
1373 		return;
1374 	sk->sk_forward_alloc += size;
1375 
1376 	/* Avoid a possible overflow.
1377 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1378 	 * is not called and more than 2 GBytes are released at once.
1379 	 *
1380 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1381 	 * no need to hold that much forward allocation anyway.
1382 	 */
1383 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1384 		__sk_mem_reclaim(sk, 1 << 20);
1385 }
1386 
1387 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1388 {
1389 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1390 	sk->sk_wmem_queued -= skb->truesize;
1391 	sk_mem_uncharge(sk, skb->truesize);
1392 	__kfree_skb(skb);
1393 }
1394 
1395 static inline void sock_release_ownership(struct sock *sk)
1396 {
1397 	if (sk->sk_lock.owned) {
1398 		sk->sk_lock.owned = 0;
1399 
1400 		/* The sk_lock has mutex_unlock() semantics: */
1401 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1402 	}
1403 }
1404 
1405 /*
1406  * Macro so as to not evaluate some arguments when
1407  * lockdep is not enabled.
1408  *
1409  * Mark both the sk_lock and the sk_lock.slock as a
1410  * per-address-family lock class.
1411  */
1412 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1413 do {									\
1414 	sk->sk_lock.owned = 0;						\
1415 	init_waitqueue_head(&sk->sk_lock.wq);				\
1416 	spin_lock_init(&(sk)->sk_lock.slock);				\
1417 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1418 			sizeof((sk)->sk_lock));				\
1419 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1420 				(skey), (sname));				\
1421 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1422 } while (0)
1423 
1424 #ifdef CONFIG_LOCKDEP
1425 static inline bool lockdep_sock_is_held(const struct sock *csk)
1426 {
1427 	struct sock *sk = (struct sock *)csk;
1428 
1429 	return lockdep_is_held(&sk->sk_lock) ||
1430 	       lockdep_is_held(&sk->sk_lock.slock);
1431 }
1432 #endif
1433 
1434 void lock_sock_nested(struct sock *sk, int subclass);
1435 
1436 static inline void lock_sock(struct sock *sk)
1437 {
1438 	lock_sock_nested(sk, 0);
1439 }
1440 
1441 void release_sock(struct sock *sk);
1442 
1443 /* BH context may only use the following locking interface. */
1444 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1445 #define bh_lock_sock_nested(__sk) \
1446 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1447 				SINGLE_DEPTH_NESTING)
1448 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1449 
1450 bool lock_sock_fast(struct sock *sk);
1451 /**
1452  * unlock_sock_fast - complement of lock_sock_fast
1453  * @sk: socket
1454  * @slow: slow mode
1455  *
1456  * fast unlock socket for user context.
1457  * If slow mode is on, we call regular release_sock()
1458  */
1459 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1460 {
1461 	if (slow)
1462 		release_sock(sk);
1463 	else
1464 		spin_unlock_bh(&sk->sk_lock.slock);
1465 }
1466 
1467 /* Used by processes to "lock" a socket state, so that
1468  * interrupts and bottom half handlers won't change it
1469  * from under us. It essentially blocks any incoming
1470  * packets, so that we won't get any new data or any
1471  * packets that change the state of the socket.
1472  *
1473  * While locked, BH processing will add new packets to
1474  * the backlog queue.  This queue is processed by the
1475  * owner of the socket lock right before it is released.
1476  *
1477  * Since ~2.3.5 it is also exclusive sleep lock serializing
1478  * accesses from user process context.
1479  */
1480 
1481 static inline void sock_owned_by_me(const struct sock *sk)
1482 {
1483 #ifdef CONFIG_LOCKDEP
1484 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1485 #endif
1486 }
1487 
1488 static inline bool sock_owned_by_user(const struct sock *sk)
1489 {
1490 	sock_owned_by_me(sk);
1491 	return sk->sk_lock.owned;
1492 }
1493 
1494 /* no reclassification while locks are held */
1495 static inline bool sock_allow_reclassification(const struct sock *csk)
1496 {
1497 	struct sock *sk = (struct sock *)csk;
1498 
1499 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1500 }
1501 
1502 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1503 		      struct proto *prot, int kern);
1504 void sk_free(struct sock *sk);
1505 void sk_destruct(struct sock *sk);
1506 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1507 
1508 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1509 			     gfp_t priority);
1510 void __sock_wfree(struct sk_buff *skb);
1511 void sock_wfree(struct sk_buff *skb);
1512 void skb_orphan_partial(struct sk_buff *skb);
1513 void sock_rfree(struct sk_buff *skb);
1514 void sock_efree(struct sk_buff *skb);
1515 #ifdef CONFIG_INET
1516 void sock_edemux(struct sk_buff *skb);
1517 #else
1518 #define sock_edemux(skb) sock_efree(skb)
1519 #endif
1520 
1521 int sock_setsockopt(struct socket *sock, int level, int op,
1522 		    char __user *optval, unsigned int optlen);
1523 
1524 int sock_getsockopt(struct socket *sock, int level, int op,
1525 		    char __user *optval, int __user *optlen);
1526 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1527 				    int noblock, int *errcode);
1528 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1529 				     unsigned long data_len, int noblock,
1530 				     int *errcode, int max_page_order);
1531 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1532 void sock_kfree_s(struct sock *sk, void *mem, int size);
1533 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1534 void sk_send_sigurg(struct sock *sk);
1535 
1536 struct sockcm_cookie {
1537 	u32 mark;
1538 	u16 tsflags;
1539 };
1540 
1541 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1542 		     struct sockcm_cookie *sockc);
1543 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1544 		   struct sockcm_cookie *sockc);
1545 
1546 /*
1547  * Functions to fill in entries in struct proto_ops when a protocol
1548  * does not implement a particular function.
1549  */
1550 int sock_no_bind(struct socket *, struct sockaddr *, int);
1551 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1552 int sock_no_socketpair(struct socket *, struct socket *);
1553 int sock_no_accept(struct socket *, struct socket *, int);
1554 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1555 unsigned int sock_no_poll(struct file *, struct socket *,
1556 			  struct poll_table_struct *);
1557 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1558 int sock_no_listen(struct socket *, int);
1559 int sock_no_shutdown(struct socket *, int);
1560 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1561 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1562 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1563 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1564 int sock_no_mmap(struct file *file, struct socket *sock,
1565 		 struct vm_area_struct *vma);
1566 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1567 			 size_t size, int flags);
1568 
1569 /*
1570  * Functions to fill in entries in struct proto_ops when a protocol
1571  * uses the inet style.
1572  */
1573 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1574 				  char __user *optval, int __user *optlen);
1575 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1576 			int flags);
1577 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1578 				  char __user *optval, unsigned int optlen);
1579 int compat_sock_common_getsockopt(struct socket *sock, int level,
1580 		int optname, char __user *optval, int __user *optlen);
1581 int compat_sock_common_setsockopt(struct socket *sock, int level,
1582 		int optname, char __user *optval, unsigned int optlen);
1583 
1584 void sk_common_release(struct sock *sk);
1585 
1586 /*
1587  *	Default socket callbacks and setup code
1588  */
1589 
1590 /* Initialise core socket variables */
1591 void sock_init_data(struct socket *sock, struct sock *sk);
1592 
1593 /*
1594  * Socket reference counting postulates.
1595  *
1596  * * Each user of socket SHOULD hold a reference count.
1597  * * Each access point to socket (an hash table bucket, reference from a list,
1598  *   running timer, skb in flight MUST hold a reference count.
1599  * * When reference count hits 0, it means it will never increase back.
1600  * * When reference count hits 0, it means that no references from
1601  *   outside exist to this socket and current process on current CPU
1602  *   is last user and may/should destroy this socket.
1603  * * sk_free is called from any context: process, BH, IRQ. When
1604  *   it is called, socket has no references from outside -> sk_free
1605  *   may release descendant resources allocated by the socket, but
1606  *   to the time when it is called, socket is NOT referenced by any
1607  *   hash tables, lists etc.
1608  * * Packets, delivered from outside (from network or from another process)
1609  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1610  *   when they sit in queue. Otherwise, packets will leak to hole, when
1611  *   socket is looked up by one cpu and unhasing is made by another CPU.
1612  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1613  *   (leak to backlog). Packet socket does all the processing inside
1614  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1615  *   use separate SMP lock, so that they are prone too.
1616  */
1617 
1618 /* Ungrab socket and destroy it, if it was the last reference. */
1619 static inline void sock_put(struct sock *sk)
1620 {
1621 	if (atomic_dec_and_test(&sk->sk_refcnt))
1622 		sk_free(sk);
1623 }
1624 /* Generic version of sock_put(), dealing with all sockets
1625  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1626  */
1627 void sock_gen_put(struct sock *sk);
1628 
1629 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1630 		     unsigned int trim_cap, bool refcounted);
1631 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1632 				 const int nested)
1633 {
1634 	return __sk_receive_skb(sk, skb, nested, 1, true);
1635 }
1636 
1637 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1638 {
1639 	sk->sk_tx_queue_mapping = tx_queue;
1640 }
1641 
1642 static inline void sk_tx_queue_clear(struct sock *sk)
1643 {
1644 	sk->sk_tx_queue_mapping = -1;
1645 }
1646 
1647 static inline int sk_tx_queue_get(const struct sock *sk)
1648 {
1649 	return sk ? sk->sk_tx_queue_mapping : -1;
1650 }
1651 
1652 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1653 {
1654 	sk_tx_queue_clear(sk);
1655 	sk->sk_socket = sock;
1656 }
1657 
1658 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1659 {
1660 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1661 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1662 }
1663 /* Detach socket from process context.
1664  * Announce socket dead, detach it from wait queue and inode.
1665  * Note that parent inode held reference count on this struct sock,
1666  * we do not release it in this function, because protocol
1667  * probably wants some additional cleanups or even continuing
1668  * to work with this socket (TCP).
1669  */
1670 static inline void sock_orphan(struct sock *sk)
1671 {
1672 	write_lock_bh(&sk->sk_callback_lock);
1673 	sock_set_flag(sk, SOCK_DEAD);
1674 	sk_set_socket(sk, NULL);
1675 	sk->sk_wq  = NULL;
1676 	write_unlock_bh(&sk->sk_callback_lock);
1677 }
1678 
1679 static inline void sock_graft(struct sock *sk, struct socket *parent)
1680 {
1681 	write_lock_bh(&sk->sk_callback_lock);
1682 	sk->sk_wq = parent->wq;
1683 	parent->sk = sk;
1684 	sk_set_socket(sk, parent);
1685 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1686 	security_sock_graft(sk, parent);
1687 	write_unlock_bh(&sk->sk_callback_lock);
1688 }
1689 
1690 kuid_t sock_i_uid(struct sock *sk);
1691 unsigned long sock_i_ino(struct sock *sk);
1692 
1693 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1694 {
1695 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1696 }
1697 
1698 static inline u32 net_tx_rndhash(void)
1699 {
1700 	u32 v = prandom_u32();
1701 
1702 	return v ?: 1;
1703 }
1704 
1705 static inline void sk_set_txhash(struct sock *sk)
1706 {
1707 	sk->sk_txhash = net_tx_rndhash();
1708 }
1709 
1710 static inline void sk_rethink_txhash(struct sock *sk)
1711 {
1712 	if (sk->sk_txhash)
1713 		sk_set_txhash(sk);
1714 }
1715 
1716 static inline struct dst_entry *
1717 __sk_dst_get(struct sock *sk)
1718 {
1719 	return rcu_dereference_check(sk->sk_dst_cache,
1720 				     lockdep_sock_is_held(sk));
1721 }
1722 
1723 static inline struct dst_entry *
1724 sk_dst_get(struct sock *sk)
1725 {
1726 	struct dst_entry *dst;
1727 
1728 	rcu_read_lock();
1729 	dst = rcu_dereference(sk->sk_dst_cache);
1730 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1731 		dst = NULL;
1732 	rcu_read_unlock();
1733 	return dst;
1734 }
1735 
1736 static inline void dst_negative_advice(struct sock *sk)
1737 {
1738 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1739 
1740 	sk_rethink_txhash(sk);
1741 
1742 	if (dst && dst->ops->negative_advice) {
1743 		ndst = dst->ops->negative_advice(dst);
1744 
1745 		if (ndst != dst) {
1746 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1747 			sk_tx_queue_clear(sk);
1748 		}
1749 	}
1750 }
1751 
1752 static inline void
1753 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1754 {
1755 	struct dst_entry *old_dst;
1756 
1757 	sk_tx_queue_clear(sk);
1758 	/*
1759 	 * This can be called while sk is owned by the caller only,
1760 	 * with no state that can be checked in a rcu_dereference_check() cond
1761 	 */
1762 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1763 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1764 	dst_release(old_dst);
1765 }
1766 
1767 static inline void
1768 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1769 {
1770 	struct dst_entry *old_dst;
1771 
1772 	sk_tx_queue_clear(sk);
1773 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1774 	dst_release(old_dst);
1775 }
1776 
1777 static inline void
1778 __sk_dst_reset(struct sock *sk)
1779 {
1780 	__sk_dst_set(sk, NULL);
1781 }
1782 
1783 static inline void
1784 sk_dst_reset(struct sock *sk)
1785 {
1786 	sk_dst_set(sk, NULL);
1787 }
1788 
1789 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1790 
1791 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1792 
1793 bool sk_mc_loop(struct sock *sk);
1794 
1795 static inline bool sk_can_gso(const struct sock *sk)
1796 {
1797 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1798 }
1799 
1800 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1801 
1802 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1803 {
1804 	sk->sk_route_nocaps |= flags;
1805 	sk->sk_route_caps &= ~flags;
1806 }
1807 
1808 static inline bool sk_check_csum_caps(struct sock *sk)
1809 {
1810 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1811 	       (sk->sk_family == PF_INET &&
1812 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1813 	       (sk->sk_family == PF_INET6 &&
1814 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1815 }
1816 
1817 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1818 					   struct iov_iter *from, char *to,
1819 					   int copy, int offset)
1820 {
1821 	if (skb->ip_summed == CHECKSUM_NONE) {
1822 		__wsum csum = 0;
1823 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1824 			return -EFAULT;
1825 		skb->csum = csum_block_add(skb->csum, csum, offset);
1826 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1827 		if (copy_from_iter_nocache(to, copy, from) != copy)
1828 			return -EFAULT;
1829 	} else if (copy_from_iter(to, copy, from) != copy)
1830 		return -EFAULT;
1831 
1832 	return 0;
1833 }
1834 
1835 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1836 				       struct iov_iter *from, int copy)
1837 {
1838 	int err, offset = skb->len;
1839 
1840 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1841 				       copy, offset);
1842 	if (err)
1843 		__skb_trim(skb, offset);
1844 
1845 	return err;
1846 }
1847 
1848 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1849 					   struct sk_buff *skb,
1850 					   struct page *page,
1851 					   int off, int copy)
1852 {
1853 	int err;
1854 
1855 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1856 				       copy, skb->len);
1857 	if (err)
1858 		return err;
1859 
1860 	skb->len	     += copy;
1861 	skb->data_len	     += copy;
1862 	skb->truesize	     += copy;
1863 	sk->sk_wmem_queued   += copy;
1864 	sk_mem_charge(sk, copy);
1865 	return 0;
1866 }
1867 
1868 /**
1869  * sk_wmem_alloc_get - returns write allocations
1870  * @sk: socket
1871  *
1872  * Returns sk_wmem_alloc minus initial offset of one
1873  */
1874 static inline int sk_wmem_alloc_get(const struct sock *sk)
1875 {
1876 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1877 }
1878 
1879 /**
1880  * sk_rmem_alloc_get - returns read allocations
1881  * @sk: socket
1882  *
1883  * Returns sk_rmem_alloc
1884  */
1885 static inline int sk_rmem_alloc_get(const struct sock *sk)
1886 {
1887 	return atomic_read(&sk->sk_rmem_alloc);
1888 }
1889 
1890 /**
1891  * sk_has_allocations - check if allocations are outstanding
1892  * @sk: socket
1893  *
1894  * Returns true if socket has write or read allocations
1895  */
1896 static inline bool sk_has_allocations(const struct sock *sk)
1897 {
1898 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1899 }
1900 
1901 /**
1902  * skwq_has_sleeper - check if there are any waiting processes
1903  * @wq: struct socket_wq
1904  *
1905  * Returns true if socket_wq has waiting processes
1906  *
1907  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1908  * barrier call. They were added due to the race found within the tcp code.
1909  *
1910  * Consider following tcp code paths:
1911  *
1912  * CPU1                  CPU2
1913  *
1914  * sys_select            receive packet
1915  *   ...                 ...
1916  *   __add_wait_queue    update tp->rcv_nxt
1917  *   ...                 ...
1918  *   tp->rcv_nxt check   sock_def_readable
1919  *   ...                 {
1920  *   schedule               rcu_read_lock();
1921  *                          wq = rcu_dereference(sk->sk_wq);
1922  *                          if (wq && waitqueue_active(&wq->wait))
1923  *                              wake_up_interruptible(&wq->wait)
1924  *                          ...
1925  *                       }
1926  *
1927  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1928  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1929  * could then endup calling schedule and sleep forever if there are no more
1930  * data on the socket.
1931  *
1932  */
1933 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1934 {
1935 	return wq && wq_has_sleeper(&wq->wait);
1936 }
1937 
1938 /**
1939  * sock_poll_wait - place memory barrier behind the poll_wait call.
1940  * @filp:           file
1941  * @wait_address:   socket wait queue
1942  * @p:              poll_table
1943  *
1944  * See the comments in the wq_has_sleeper function.
1945  */
1946 static inline void sock_poll_wait(struct file *filp,
1947 		wait_queue_head_t *wait_address, poll_table *p)
1948 {
1949 	if (!poll_does_not_wait(p) && wait_address) {
1950 		poll_wait(filp, wait_address, p);
1951 		/* We need to be sure we are in sync with the
1952 		 * socket flags modification.
1953 		 *
1954 		 * This memory barrier is paired in the wq_has_sleeper.
1955 		 */
1956 		smp_mb();
1957 	}
1958 }
1959 
1960 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1961 {
1962 	if (sk->sk_txhash) {
1963 		skb->l4_hash = 1;
1964 		skb->hash = sk->sk_txhash;
1965 	}
1966 }
1967 
1968 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1969 
1970 /*
1971  *	Queue a received datagram if it will fit. Stream and sequenced
1972  *	protocols can't normally use this as they need to fit buffers in
1973  *	and play with them.
1974  *
1975  *	Inlined as it's very short and called for pretty much every
1976  *	packet ever received.
1977  */
1978 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1979 {
1980 	skb_orphan(skb);
1981 	skb->sk = sk;
1982 	skb->destructor = sock_rfree;
1983 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1984 	sk_mem_charge(sk, skb->truesize);
1985 }
1986 
1987 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1988 		    unsigned long expires);
1989 
1990 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1991 
1992 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
1993 			unsigned int flags);
1994 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1995 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1996 
1997 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1998 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1999 
2000 /*
2001  *	Recover an error report and clear atomically
2002  */
2003 
2004 static inline int sock_error(struct sock *sk)
2005 {
2006 	int err;
2007 	if (likely(!sk->sk_err))
2008 		return 0;
2009 	err = xchg(&sk->sk_err, 0);
2010 	return -err;
2011 }
2012 
2013 static inline unsigned long sock_wspace(struct sock *sk)
2014 {
2015 	int amt = 0;
2016 
2017 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2018 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2019 		if (amt < 0)
2020 			amt = 0;
2021 	}
2022 	return amt;
2023 }
2024 
2025 /* Note:
2026  *  We use sk->sk_wq_raw, from contexts knowing this
2027  *  pointer is not NULL and cannot disappear/change.
2028  */
2029 static inline void sk_set_bit(int nr, struct sock *sk)
2030 {
2031 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2032 	    !sock_flag(sk, SOCK_FASYNC))
2033 		return;
2034 
2035 	set_bit(nr, &sk->sk_wq_raw->flags);
2036 }
2037 
2038 static inline void sk_clear_bit(int nr, struct sock *sk)
2039 {
2040 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2041 	    !sock_flag(sk, SOCK_FASYNC))
2042 		return;
2043 
2044 	clear_bit(nr, &sk->sk_wq_raw->flags);
2045 }
2046 
2047 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2048 {
2049 	if (sock_flag(sk, SOCK_FASYNC)) {
2050 		rcu_read_lock();
2051 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2052 		rcu_read_unlock();
2053 	}
2054 }
2055 
2056 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2057  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2058  * Note: for send buffers, TCP works better if we can build two skbs at
2059  * minimum.
2060  */
2061 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2062 
2063 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2064 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2065 
2066 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2067 {
2068 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2069 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2070 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2071 	}
2072 }
2073 
2074 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2075 				    bool force_schedule);
2076 
2077 /**
2078  * sk_page_frag - return an appropriate page_frag
2079  * @sk: socket
2080  *
2081  * If socket allocation mode allows current thread to sleep, it means its
2082  * safe to use the per task page_frag instead of the per socket one.
2083  */
2084 static inline struct page_frag *sk_page_frag(struct sock *sk)
2085 {
2086 	if (gfpflags_allow_blocking(sk->sk_allocation))
2087 		return &current->task_frag;
2088 
2089 	return &sk->sk_frag;
2090 }
2091 
2092 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2093 
2094 /*
2095  *	Default write policy as shown to user space via poll/select/SIGIO
2096  */
2097 static inline bool sock_writeable(const struct sock *sk)
2098 {
2099 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2100 }
2101 
2102 static inline gfp_t gfp_any(void)
2103 {
2104 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2105 }
2106 
2107 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2108 {
2109 	return noblock ? 0 : sk->sk_rcvtimeo;
2110 }
2111 
2112 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2113 {
2114 	return noblock ? 0 : sk->sk_sndtimeo;
2115 }
2116 
2117 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2118 {
2119 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2120 }
2121 
2122 /* Alas, with timeout socket operations are not restartable.
2123  * Compare this to poll().
2124  */
2125 static inline int sock_intr_errno(long timeo)
2126 {
2127 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2128 }
2129 
2130 struct sock_skb_cb {
2131 	u32 dropcount;
2132 };
2133 
2134 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2135  * using skb->cb[] would keep using it directly and utilize its
2136  * alignement guarantee.
2137  */
2138 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2139 			    sizeof(struct sock_skb_cb)))
2140 
2141 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2142 			    SOCK_SKB_CB_OFFSET))
2143 
2144 #define sock_skb_cb_check_size(size) \
2145 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2146 
2147 static inline void
2148 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2149 {
2150 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2151 }
2152 
2153 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2154 {
2155 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2156 
2157 	atomic_add(segs, &sk->sk_drops);
2158 }
2159 
2160 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2161 			   struct sk_buff *skb);
2162 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2163 			     struct sk_buff *skb);
2164 
2165 static inline void
2166 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2167 {
2168 	ktime_t kt = skb->tstamp;
2169 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2170 
2171 	/*
2172 	 * generate control messages if
2173 	 * - receive time stamping in software requested
2174 	 * - software time stamp available and wanted
2175 	 * - hardware time stamps available and wanted
2176 	 */
2177 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2178 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2179 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2180 	    (hwtstamps->hwtstamp.tv64 &&
2181 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2182 		__sock_recv_timestamp(msg, sk, skb);
2183 	else
2184 		sk->sk_stamp = kt;
2185 
2186 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2187 		__sock_recv_wifi_status(msg, sk, skb);
2188 }
2189 
2190 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2191 			      struct sk_buff *skb);
2192 
2193 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2194 					  struct sk_buff *skb)
2195 {
2196 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2197 			   (1UL << SOCK_RCVTSTAMP))
2198 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2199 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2200 
2201 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2202 		__sock_recv_ts_and_drops(msg, sk, skb);
2203 	else
2204 		sk->sk_stamp = skb->tstamp;
2205 }
2206 
2207 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2208 
2209 /**
2210  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2211  * @sk:		socket sending this packet
2212  * @tsflags:	timestamping flags to use
2213  * @tx_flags:	completed with instructions for time stamping
2214  *
2215  * Note : callers should take care of initial *tx_flags value (usually 0)
2216  */
2217 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2218 				     __u8 *tx_flags)
2219 {
2220 	if (unlikely(tsflags))
2221 		__sock_tx_timestamp(tsflags, tx_flags);
2222 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2223 		*tx_flags |= SKBTX_WIFI_STATUS;
2224 }
2225 
2226 /**
2227  * sk_eat_skb - Release a skb if it is no longer needed
2228  * @sk: socket to eat this skb from
2229  * @skb: socket buffer to eat
2230  *
2231  * This routine must be called with interrupts disabled or with the socket
2232  * locked so that the sk_buff queue operation is ok.
2233 */
2234 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2235 {
2236 	__skb_unlink(skb, &sk->sk_receive_queue);
2237 	__kfree_skb(skb);
2238 }
2239 
2240 static inline
2241 struct net *sock_net(const struct sock *sk)
2242 {
2243 	return read_pnet(&sk->sk_net);
2244 }
2245 
2246 static inline
2247 void sock_net_set(struct sock *sk, struct net *net)
2248 {
2249 	write_pnet(&sk->sk_net, net);
2250 }
2251 
2252 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2253 {
2254 	if (skb->sk) {
2255 		struct sock *sk = skb->sk;
2256 
2257 		skb->destructor = NULL;
2258 		skb->sk = NULL;
2259 		return sk;
2260 	}
2261 	return NULL;
2262 }
2263 
2264 /* This helper checks if a socket is a full socket,
2265  * ie _not_ a timewait or request socket.
2266  */
2267 static inline bool sk_fullsock(const struct sock *sk)
2268 {
2269 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2270 }
2271 
2272 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2273  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2274  */
2275 static inline bool sk_listener(const struct sock *sk)
2276 {
2277 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2278 }
2279 
2280 /**
2281  * sk_state_load - read sk->sk_state for lockless contexts
2282  * @sk: socket pointer
2283  *
2284  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2285  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2286  */
2287 static inline int sk_state_load(const struct sock *sk)
2288 {
2289 	return smp_load_acquire(&sk->sk_state);
2290 }
2291 
2292 /**
2293  * sk_state_store - update sk->sk_state
2294  * @sk: socket pointer
2295  * @newstate: new state
2296  *
2297  * Paired with sk_state_load(). Should be used in contexts where
2298  * state change might impact lockless readers.
2299  */
2300 static inline void sk_state_store(struct sock *sk, int newstate)
2301 {
2302 	smp_store_release(&sk->sk_state, newstate);
2303 }
2304 
2305 void sock_enable_timestamp(struct sock *sk, int flag);
2306 int sock_get_timestamp(struct sock *, struct timeval __user *);
2307 int sock_get_timestampns(struct sock *, struct timespec __user *);
2308 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2309 		       int type);
2310 
2311 bool sk_ns_capable(const struct sock *sk,
2312 		   struct user_namespace *user_ns, int cap);
2313 bool sk_capable(const struct sock *sk, int cap);
2314 bool sk_net_capable(const struct sock *sk, int cap);
2315 
2316 extern __u32 sysctl_wmem_max;
2317 extern __u32 sysctl_rmem_max;
2318 
2319 extern int sysctl_tstamp_allow_data;
2320 extern int sysctl_optmem_max;
2321 
2322 extern __u32 sysctl_wmem_default;
2323 extern __u32 sysctl_rmem_default;
2324 
2325 #endif	/* _SOCK_H */
2326