1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/memcontrol.h> 58 #include <linux/res_counter.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 71 struct cgroup; 72 struct cgroup_subsys; 73 #ifdef CONFIG_NET 74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 76 #else 77 static inline 78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 79 { 80 return 0; 81 } 82 static inline 83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 84 { 85 } 86 #endif 87 /* 88 * This structure really needs to be cleaned up. 89 * Most of it is for TCP, and not used by any of 90 * the other protocols. 91 */ 92 93 /* Define this to get the SOCK_DBG debugging facility. */ 94 #define SOCK_DEBUGGING 95 #ifdef SOCK_DEBUGGING 96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 97 printk(KERN_DEBUG msg); } while (0) 98 #else 99 /* Validate arguments and do nothing */ 100 static inline __printf(2, 3) 101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 102 { 103 } 104 #endif 105 106 /* This is the per-socket lock. The spinlock provides a synchronization 107 * between user contexts and software interrupt processing, whereas the 108 * mini-semaphore synchronizes multiple users amongst themselves. 109 */ 110 typedef struct { 111 spinlock_t slock; 112 int owned; 113 wait_queue_head_t wq; 114 /* 115 * We express the mutex-alike socket_lock semantics 116 * to the lock validator by explicitly managing 117 * the slock as a lock variant (in addition to 118 * the slock itself): 119 */ 120 #ifdef CONFIG_DEBUG_LOCK_ALLOC 121 struct lockdep_map dep_map; 122 #endif 123 } socket_lock_t; 124 125 struct sock; 126 struct proto; 127 struct net; 128 129 typedef __u32 __bitwise __portpair; 130 typedef __u64 __bitwise __addrpair; 131 132 /** 133 * struct sock_common - minimal network layer representation of sockets 134 * @skc_daddr: Foreign IPv4 addr 135 * @skc_rcv_saddr: Bound local IPv4 addr 136 * @skc_hash: hash value used with various protocol lookup tables 137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 138 * @skc_dport: placeholder for inet_dport/tw_dport 139 * @skc_num: placeholder for inet_num/tw_num 140 * @skc_family: network address family 141 * @skc_state: Connection state 142 * @skc_reuse: %SO_REUSEADDR setting 143 * @skc_reuseport: %SO_REUSEPORT setting 144 * @skc_bound_dev_if: bound device index if != 0 145 * @skc_bind_node: bind hash linkage for various protocol lookup tables 146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 147 * @skc_prot: protocol handlers inside a network family 148 * @skc_net: reference to the network namespace of this socket 149 * @skc_node: main hash linkage for various protocol lookup tables 150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 151 * @skc_tx_queue_mapping: tx queue number for this connection 152 * @skc_refcnt: reference count 153 * 154 * This is the minimal network layer representation of sockets, the header 155 * for struct sock and struct inet_timewait_sock. 156 */ 157 struct sock_common { 158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 159 * address on 64bit arches : cf INET_MATCH() 160 */ 161 union { 162 __addrpair skc_addrpair; 163 struct { 164 __be32 skc_daddr; 165 __be32 skc_rcv_saddr; 166 }; 167 }; 168 union { 169 unsigned int skc_hash; 170 __u16 skc_u16hashes[2]; 171 }; 172 /* skc_dport && skc_num must be grouped as well */ 173 union { 174 __portpair skc_portpair; 175 struct { 176 __be16 skc_dport; 177 __u16 skc_num; 178 }; 179 }; 180 181 unsigned short skc_family; 182 volatile unsigned char skc_state; 183 unsigned char skc_reuse:4; 184 unsigned char skc_reuseport:4; 185 int skc_bound_dev_if; 186 union { 187 struct hlist_node skc_bind_node; 188 struct hlist_nulls_node skc_portaddr_node; 189 }; 190 struct proto *skc_prot; 191 #ifdef CONFIG_NET_NS 192 struct net *skc_net; 193 #endif 194 195 #if IS_ENABLED(CONFIG_IPV6) 196 struct in6_addr skc_v6_daddr; 197 struct in6_addr skc_v6_rcv_saddr; 198 #endif 199 200 /* 201 * fields between dontcopy_begin/dontcopy_end 202 * are not copied in sock_copy() 203 */ 204 /* private: */ 205 int skc_dontcopy_begin[0]; 206 /* public: */ 207 union { 208 struct hlist_node skc_node; 209 struct hlist_nulls_node skc_nulls_node; 210 }; 211 int skc_tx_queue_mapping; 212 atomic_t skc_refcnt; 213 /* private: */ 214 int skc_dontcopy_end[0]; 215 /* public: */ 216 }; 217 218 struct cg_proto; 219 /** 220 * struct sock - network layer representation of sockets 221 * @__sk_common: shared layout with inet_timewait_sock 222 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 223 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 224 * @sk_lock: synchronizer 225 * @sk_rcvbuf: size of receive buffer in bytes 226 * @sk_wq: sock wait queue and async head 227 * @sk_rx_dst: receive input route used by early demux 228 * @sk_dst_cache: destination cache 229 * @sk_dst_lock: destination cache lock 230 * @sk_policy: flow policy 231 * @sk_receive_queue: incoming packets 232 * @sk_wmem_alloc: transmit queue bytes committed 233 * @sk_write_queue: Packet sending queue 234 * @sk_async_wait_queue: DMA copied packets 235 * @sk_omem_alloc: "o" is "option" or "other" 236 * @sk_wmem_queued: persistent queue size 237 * @sk_forward_alloc: space allocated forward 238 * @sk_napi_id: id of the last napi context to receive data for sk 239 * @sk_ll_usec: usecs to busypoll when there is no data 240 * @sk_allocation: allocation mode 241 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 242 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 243 * @sk_sndbuf: size of send buffer in bytes 244 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 245 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 246 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets 247 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 248 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 249 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 250 * @sk_gso_max_size: Maximum GSO segment size to build 251 * @sk_gso_max_segs: Maximum number of GSO segments 252 * @sk_lingertime: %SO_LINGER l_linger setting 253 * @sk_backlog: always used with the per-socket spinlock held 254 * @sk_callback_lock: used with the callbacks in the end of this struct 255 * @sk_error_queue: rarely used 256 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 257 * IPV6_ADDRFORM for instance) 258 * @sk_err: last error 259 * @sk_err_soft: errors that don't cause failure but are the cause of a 260 * persistent failure not just 'timed out' 261 * @sk_drops: raw/udp drops counter 262 * @sk_ack_backlog: current listen backlog 263 * @sk_max_ack_backlog: listen backlog set in listen() 264 * @sk_priority: %SO_PRIORITY setting 265 * @sk_cgrp_prioidx: socket group's priority map index 266 * @sk_type: socket type (%SOCK_STREAM, etc) 267 * @sk_protocol: which protocol this socket belongs in this network family 268 * @sk_peer_pid: &struct pid for this socket's peer 269 * @sk_peer_cred: %SO_PEERCRED setting 270 * @sk_rcvlowat: %SO_RCVLOWAT setting 271 * @sk_rcvtimeo: %SO_RCVTIMEO setting 272 * @sk_sndtimeo: %SO_SNDTIMEO setting 273 * @sk_rxhash: flow hash received from netif layer 274 * @sk_filter: socket filtering instructions 275 * @sk_protinfo: private area, net family specific, when not using slab 276 * @sk_timer: sock cleanup timer 277 * @sk_stamp: time stamp of last packet received 278 * @sk_socket: Identd and reporting IO signals 279 * @sk_user_data: RPC layer private data 280 * @sk_frag: cached page frag 281 * @sk_peek_off: current peek_offset value 282 * @sk_send_head: front of stuff to transmit 283 * @sk_security: used by security modules 284 * @sk_mark: generic packet mark 285 * @sk_classid: this socket's cgroup classid 286 * @sk_cgrp: this socket's cgroup-specific proto data 287 * @sk_write_pending: a write to stream socket waits to start 288 * @sk_state_change: callback to indicate change in the state of the sock 289 * @sk_data_ready: callback to indicate there is data to be processed 290 * @sk_write_space: callback to indicate there is bf sending space available 291 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 292 * @sk_backlog_rcv: callback to process the backlog 293 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 294 */ 295 struct sock { 296 /* 297 * Now struct inet_timewait_sock also uses sock_common, so please just 298 * don't add nothing before this first member (__sk_common) --acme 299 */ 300 struct sock_common __sk_common; 301 #define sk_node __sk_common.skc_node 302 #define sk_nulls_node __sk_common.skc_nulls_node 303 #define sk_refcnt __sk_common.skc_refcnt 304 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 305 306 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 307 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 308 #define sk_hash __sk_common.skc_hash 309 #define sk_portpair __sk_common.skc_portpair 310 #define sk_num __sk_common.skc_num 311 #define sk_dport __sk_common.skc_dport 312 #define sk_addrpair __sk_common.skc_addrpair 313 #define sk_daddr __sk_common.skc_daddr 314 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 315 #define sk_family __sk_common.skc_family 316 #define sk_state __sk_common.skc_state 317 #define sk_reuse __sk_common.skc_reuse 318 #define sk_reuseport __sk_common.skc_reuseport 319 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 320 #define sk_bind_node __sk_common.skc_bind_node 321 #define sk_prot __sk_common.skc_prot 322 #define sk_net __sk_common.skc_net 323 #define sk_v6_daddr __sk_common.skc_v6_daddr 324 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 325 326 socket_lock_t sk_lock; 327 struct sk_buff_head sk_receive_queue; 328 /* 329 * The backlog queue is special, it is always used with 330 * the per-socket spinlock held and requires low latency 331 * access. Therefore we special case it's implementation. 332 * Note : rmem_alloc is in this structure to fill a hole 333 * on 64bit arches, not because its logically part of 334 * backlog. 335 */ 336 struct { 337 atomic_t rmem_alloc; 338 int len; 339 struct sk_buff *head; 340 struct sk_buff *tail; 341 } sk_backlog; 342 #define sk_rmem_alloc sk_backlog.rmem_alloc 343 int sk_forward_alloc; 344 #ifdef CONFIG_RPS 345 __u32 sk_rxhash; 346 #endif 347 #ifdef CONFIG_NET_RX_BUSY_POLL 348 unsigned int sk_napi_id; 349 unsigned int sk_ll_usec; 350 #endif 351 atomic_t sk_drops; 352 int sk_rcvbuf; 353 354 struct sk_filter __rcu *sk_filter; 355 struct socket_wq __rcu *sk_wq; 356 357 #ifdef CONFIG_NET_DMA 358 struct sk_buff_head sk_async_wait_queue; 359 #endif 360 361 #ifdef CONFIG_XFRM 362 struct xfrm_policy *sk_policy[2]; 363 #endif 364 unsigned long sk_flags; 365 struct dst_entry *sk_rx_dst; 366 struct dst_entry __rcu *sk_dst_cache; 367 spinlock_t sk_dst_lock; 368 atomic_t sk_wmem_alloc; 369 atomic_t sk_omem_alloc; 370 int sk_sndbuf; 371 struct sk_buff_head sk_write_queue; 372 kmemcheck_bitfield_begin(flags); 373 unsigned int sk_shutdown : 2, 374 sk_no_check : 2, 375 sk_userlocks : 4, 376 sk_protocol : 8, 377 sk_type : 16; 378 kmemcheck_bitfield_end(flags); 379 int sk_wmem_queued; 380 gfp_t sk_allocation; 381 u32 sk_pacing_rate; /* bytes per second */ 382 u32 sk_max_pacing_rate; 383 netdev_features_t sk_route_caps; 384 netdev_features_t sk_route_nocaps; 385 int sk_gso_type; 386 unsigned int sk_gso_max_size; 387 u16 sk_gso_max_segs; 388 int sk_rcvlowat; 389 unsigned long sk_lingertime; 390 struct sk_buff_head sk_error_queue; 391 struct proto *sk_prot_creator; 392 rwlock_t sk_callback_lock; 393 int sk_err, 394 sk_err_soft; 395 unsigned short sk_ack_backlog; 396 unsigned short sk_max_ack_backlog; 397 __u32 sk_priority; 398 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 399 __u32 sk_cgrp_prioidx; 400 #endif 401 struct pid *sk_peer_pid; 402 const struct cred *sk_peer_cred; 403 long sk_rcvtimeo; 404 long sk_sndtimeo; 405 void *sk_protinfo; 406 struct timer_list sk_timer; 407 ktime_t sk_stamp; 408 struct socket *sk_socket; 409 void *sk_user_data; 410 struct page_frag sk_frag; 411 struct sk_buff *sk_send_head; 412 __s32 sk_peek_off; 413 int sk_write_pending; 414 #ifdef CONFIG_SECURITY 415 void *sk_security; 416 #endif 417 __u32 sk_mark; 418 u32 sk_classid; 419 struct cg_proto *sk_cgrp; 420 void (*sk_state_change)(struct sock *sk); 421 void (*sk_data_ready)(struct sock *sk, int bytes); 422 void (*sk_write_space)(struct sock *sk); 423 void (*sk_error_report)(struct sock *sk); 424 int (*sk_backlog_rcv)(struct sock *sk, 425 struct sk_buff *skb); 426 void (*sk_destruct)(struct sock *sk); 427 }; 428 429 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 430 431 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 432 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 433 434 /* 435 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 436 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 437 * on a socket means that the socket will reuse everybody else's port 438 * without looking at the other's sk_reuse value. 439 */ 440 441 #define SK_NO_REUSE 0 442 #define SK_CAN_REUSE 1 443 #define SK_FORCE_REUSE 2 444 445 static inline int sk_peek_offset(struct sock *sk, int flags) 446 { 447 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 448 return sk->sk_peek_off; 449 else 450 return 0; 451 } 452 453 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 454 { 455 if (sk->sk_peek_off >= 0) { 456 if (sk->sk_peek_off >= val) 457 sk->sk_peek_off -= val; 458 else 459 sk->sk_peek_off = 0; 460 } 461 } 462 463 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 464 { 465 if (sk->sk_peek_off >= 0) 466 sk->sk_peek_off += val; 467 } 468 469 /* 470 * Hashed lists helper routines 471 */ 472 static inline struct sock *sk_entry(const struct hlist_node *node) 473 { 474 return hlist_entry(node, struct sock, sk_node); 475 } 476 477 static inline struct sock *__sk_head(const struct hlist_head *head) 478 { 479 return hlist_entry(head->first, struct sock, sk_node); 480 } 481 482 static inline struct sock *sk_head(const struct hlist_head *head) 483 { 484 return hlist_empty(head) ? NULL : __sk_head(head); 485 } 486 487 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 488 { 489 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 490 } 491 492 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 493 { 494 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 495 } 496 497 static inline struct sock *sk_next(const struct sock *sk) 498 { 499 return sk->sk_node.next ? 500 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 501 } 502 503 static inline struct sock *sk_nulls_next(const struct sock *sk) 504 { 505 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 506 hlist_nulls_entry(sk->sk_nulls_node.next, 507 struct sock, sk_nulls_node) : 508 NULL; 509 } 510 511 static inline bool sk_unhashed(const struct sock *sk) 512 { 513 return hlist_unhashed(&sk->sk_node); 514 } 515 516 static inline bool sk_hashed(const struct sock *sk) 517 { 518 return !sk_unhashed(sk); 519 } 520 521 static inline void sk_node_init(struct hlist_node *node) 522 { 523 node->pprev = NULL; 524 } 525 526 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 527 { 528 node->pprev = NULL; 529 } 530 531 static inline void __sk_del_node(struct sock *sk) 532 { 533 __hlist_del(&sk->sk_node); 534 } 535 536 /* NB: equivalent to hlist_del_init_rcu */ 537 static inline bool __sk_del_node_init(struct sock *sk) 538 { 539 if (sk_hashed(sk)) { 540 __sk_del_node(sk); 541 sk_node_init(&sk->sk_node); 542 return true; 543 } 544 return false; 545 } 546 547 /* Grab socket reference count. This operation is valid only 548 when sk is ALREADY grabbed f.e. it is found in hash table 549 or a list and the lookup is made under lock preventing hash table 550 modifications. 551 */ 552 553 static inline void sock_hold(struct sock *sk) 554 { 555 atomic_inc(&sk->sk_refcnt); 556 } 557 558 /* Ungrab socket in the context, which assumes that socket refcnt 559 cannot hit zero, f.e. it is true in context of any socketcall. 560 */ 561 static inline void __sock_put(struct sock *sk) 562 { 563 atomic_dec(&sk->sk_refcnt); 564 } 565 566 static inline bool sk_del_node_init(struct sock *sk) 567 { 568 bool rc = __sk_del_node_init(sk); 569 570 if (rc) { 571 /* paranoid for a while -acme */ 572 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 573 __sock_put(sk); 574 } 575 return rc; 576 } 577 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 578 579 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 580 { 581 if (sk_hashed(sk)) { 582 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 583 return true; 584 } 585 return false; 586 } 587 588 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 589 { 590 bool rc = __sk_nulls_del_node_init_rcu(sk); 591 592 if (rc) { 593 /* paranoid for a while -acme */ 594 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 595 __sock_put(sk); 596 } 597 return rc; 598 } 599 600 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 601 { 602 hlist_add_head(&sk->sk_node, list); 603 } 604 605 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 606 { 607 sock_hold(sk); 608 __sk_add_node(sk, list); 609 } 610 611 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 612 { 613 sock_hold(sk); 614 hlist_add_head_rcu(&sk->sk_node, list); 615 } 616 617 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 618 { 619 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 620 } 621 622 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 623 { 624 sock_hold(sk); 625 __sk_nulls_add_node_rcu(sk, list); 626 } 627 628 static inline void __sk_del_bind_node(struct sock *sk) 629 { 630 __hlist_del(&sk->sk_bind_node); 631 } 632 633 static inline void sk_add_bind_node(struct sock *sk, 634 struct hlist_head *list) 635 { 636 hlist_add_head(&sk->sk_bind_node, list); 637 } 638 639 #define sk_for_each(__sk, list) \ 640 hlist_for_each_entry(__sk, list, sk_node) 641 #define sk_for_each_rcu(__sk, list) \ 642 hlist_for_each_entry_rcu(__sk, list, sk_node) 643 #define sk_nulls_for_each(__sk, node, list) \ 644 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 645 #define sk_nulls_for_each_rcu(__sk, node, list) \ 646 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 647 #define sk_for_each_from(__sk) \ 648 hlist_for_each_entry_from(__sk, sk_node) 649 #define sk_nulls_for_each_from(__sk, node) \ 650 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 651 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 652 #define sk_for_each_safe(__sk, tmp, list) \ 653 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 654 #define sk_for_each_bound(__sk, list) \ 655 hlist_for_each_entry(__sk, list, sk_bind_node) 656 657 static inline struct user_namespace *sk_user_ns(struct sock *sk) 658 { 659 /* Careful only use this in a context where these parameters 660 * can not change and must all be valid, such as recvmsg from 661 * userspace. 662 */ 663 return sk->sk_socket->file->f_cred->user_ns; 664 } 665 666 /* Sock flags */ 667 enum sock_flags { 668 SOCK_DEAD, 669 SOCK_DONE, 670 SOCK_URGINLINE, 671 SOCK_KEEPOPEN, 672 SOCK_LINGER, 673 SOCK_DESTROY, 674 SOCK_BROADCAST, 675 SOCK_TIMESTAMP, 676 SOCK_ZAPPED, 677 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 678 SOCK_DBG, /* %SO_DEBUG setting */ 679 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 680 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 681 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 682 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 683 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 684 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 685 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 686 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 687 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 688 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 689 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 690 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 691 SOCK_FASYNC, /* fasync() active */ 692 SOCK_RXQ_OVFL, 693 SOCK_ZEROCOPY, /* buffers from userspace */ 694 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 695 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 696 * Will use last 4 bytes of packet sent from 697 * user-space instead. 698 */ 699 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 700 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 701 }; 702 703 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 704 { 705 nsk->sk_flags = osk->sk_flags; 706 } 707 708 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 709 { 710 __set_bit(flag, &sk->sk_flags); 711 } 712 713 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 714 { 715 __clear_bit(flag, &sk->sk_flags); 716 } 717 718 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 719 { 720 return test_bit(flag, &sk->sk_flags); 721 } 722 723 #ifdef CONFIG_NET 724 extern struct static_key memalloc_socks; 725 static inline int sk_memalloc_socks(void) 726 { 727 return static_key_false(&memalloc_socks); 728 } 729 #else 730 731 static inline int sk_memalloc_socks(void) 732 { 733 return 0; 734 } 735 736 #endif 737 738 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 739 { 740 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 741 } 742 743 static inline void sk_acceptq_removed(struct sock *sk) 744 { 745 sk->sk_ack_backlog--; 746 } 747 748 static inline void sk_acceptq_added(struct sock *sk) 749 { 750 sk->sk_ack_backlog++; 751 } 752 753 static inline bool sk_acceptq_is_full(const struct sock *sk) 754 { 755 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 756 } 757 758 /* 759 * Compute minimal free write space needed to queue new packets. 760 */ 761 static inline int sk_stream_min_wspace(const struct sock *sk) 762 { 763 return sk->sk_wmem_queued >> 1; 764 } 765 766 static inline int sk_stream_wspace(const struct sock *sk) 767 { 768 return sk->sk_sndbuf - sk->sk_wmem_queued; 769 } 770 771 void sk_stream_write_space(struct sock *sk); 772 773 /* OOB backlog add */ 774 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 775 { 776 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 777 skb_dst_force(skb); 778 779 if (!sk->sk_backlog.tail) 780 sk->sk_backlog.head = skb; 781 else 782 sk->sk_backlog.tail->next = skb; 783 784 sk->sk_backlog.tail = skb; 785 skb->next = NULL; 786 } 787 788 /* 789 * Take into account size of receive queue and backlog queue 790 * Do not take into account this skb truesize, 791 * to allow even a single big packet to come. 792 */ 793 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb, 794 unsigned int limit) 795 { 796 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 797 798 return qsize > limit; 799 } 800 801 /* The per-socket spinlock must be held here. */ 802 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 803 unsigned int limit) 804 { 805 if (sk_rcvqueues_full(sk, skb, limit)) 806 return -ENOBUFS; 807 808 __sk_add_backlog(sk, skb); 809 sk->sk_backlog.len += skb->truesize; 810 return 0; 811 } 812 813 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 814 815 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 816 { 817 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 818 return __sk_backlog_rcv(sk, skb); 819 820 return sk->sk_backlog_rcv(sk, skb); 821 } 822 823 static inline void sock_rps_record_flow(const struct sock *sk) 824 { 825 #ifdef CONFIG_RPS 826 struct rps_sock_flow_table *sock_flow_table; 827 828 rcu_read_lock(); 829 sock_flow_table = rcu_dereference(rps_sock_flow_table); 830 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash); 831 rcu_read_unlock(); 832 #endif 833 } 834 835 static inline void sock_rps_reset_flow(const struct sock *sk) 836 { 837 #ifdef CONFIG_RPS 838 struct rps_sock_flow_table *sock_flow_table; 839 840 rcu_read_lock(); 841 sock_flow_table = rcu_dereference(rps_sock_flow_table); 842 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash); 843 rcu_read_unlock(); 844 #endif 845 } 846 847 static inline void sock_rps_save_rxhash(struct sock *sk, 848 const struct sk_buff *skb) 849 { 850 #ifdef CONFIG_RPS 851 if (unlikely(sk->sk_rxhash != skb->rxhash)) { 852 sock_rps_reset_flow(sk); 853 sk->sk_rxhash = skb->rxhash; 854 } 855 #endif 856 } 857 858 static inline void sock_rps_reset_rxhash(struct sock *sk) 859 { 860 #ifdef CONFIG_RPS 861 sock_rps_reset_flow(sk); 862 sk->sk_rxhash = 0; 863 #endif 864 } 865 866 #define sk_wait_event(__sk, __timeo, __condition) \ 867 ({ int __rc; \ 868 release_sock(__sk); \ 869 __rc = __condition; \ 870 if (!__rc) { \ 871 *(__timeo) = schedule_timeout(*(__timeo)); \ 872 } \ 873 lock_sock(__sk); \ 874 __rc = __condition; \ 875 __rc; \ 876 }) 877 878 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 879 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 880 void sk_stream_wait_close(struct sock *sk, long timeo_p); 881 int sk_stream_error(struct sock *sk, int flags, int err); 882 void sk_stream_kill_queues(struct sock *sk); 883 void sk_set_memalloc(struct sock *sk); 884 void sk_clear_memalloc(struct sock *sk); 885 886 int sk_wait_data(struct sock *sk, long *timeo); 887 888 struct request_sock_ops; 889 struct timewait_sock_ops; 890 struct inet_hashinfo; 891 struct raw_hashinfo; 892 struct module; 893 894 /* 895 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 896 * un-modified. Special care is taken when initializing object to zero. 897 */ 898 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 899 { 900 if (offsetof(struct sock, sk_node.next) != 0) 901 memset(sk, 0, offsetof(struct sock, sk_node.next)); 902 memset(&sk->sk_node.pprev, 0, 903 size - offsetof(struct sock, sk_node.pprev)); 904 } 905 906 /* Networking protocol blocks we attach to sockets. 907 * socket layer -> transport layer interface 908 * transport -> network interface is defined by struct inet_proto 909 */ 910 struct proto { 911 void (*close)(struct sock *sk, 912 long timeout); 913 int (*connect)(struct sock *sk, 914 struct sockaddr *uaddr, 915 int addr_len); 916 int (*disconnect)(struct sock *sk, int flags); 917 918 struct sock * (*accept)(struct sock *sk, int flags, int *err); 919 920 int (*ioctl)(struct sock *sk, int cmd, 921 unsigned long arg); 922 int (*init)(struct sock *sk); 923 void (*destroy)(struct sock *sk); 924 void (*shutdown)(struct sock *sk, int how); 925 int (*setsockopt)(struct sock *sk, int level, 926 int optname, char __user *optval, 927 unsigned int optlen); 928 int (*getsockopt)(struct sock *sk, int level, 929 int optname, char __user *optval, 930 int __user *option); 931 #ifdef CONFIG_COMPAT 932 int (*compat_setsockopt)(struct sock *sk, 933 int level, 934 int optname, char __user *optval, 935 unsigned int optlen); 936 int (*compat_getsockopt)(struct sock *sk, 937 int level, 938 int optname, char __user *optval, 939 int __user *option); 940 int (*compat_ioctl)(struct sock *sk, 941 unsigned int cmd, unsigned long arg); 942 #endif 943 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 944 struct msghdr *msg, size_t len); 945 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 946 struct msghdr *msg, 947 size_t len, int noblock, int flags, 948 int *addr_len); 949 int (*sendpage)(struct sock *sk, struct page *page, 950 int offset, size_t size, int flags); 951 int (*bind)(struct sock *sk, 952 struct sockaddr *uaddr, int addr_len); 953 954 int (*backlog_rcv) (struct sock *sk, 955 struct sk_buff *skb); 956 957 void (*release_cb)(struct sock *sk); 958 void (*mtu_reduced)(struct sock *sk); 959 960 /* Keeping track of sk's, looking them up, and port selection methods. */ 961 void (*hash)(struct sock *sk); 962 void (*unhash)(struct sock *sk); 963 void (*rehash)(struct sock *sk); 964 int (*get_port)(struct sock *sk, unsigned short snum); 965 void (*clear_sk)(struct sock *sk, int size); 966 967 /* Keeping track of sockets in use */ 968 #ifdef CONFIG_PROC_FS 969 unsigned int inuse_idx; 970 #endif 971 972 bool (*stream_memory_free)(const struct sock *sk); 973 /* Memory pressure */ 974 void (*enter_memory_pressure)(struct sock *sk); 975 atomic_long_t *memory_allocated; /* Current allocated memory. */ 976 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 977 /* 978 * Pressure flag: try to collapse. 979 * Technical note: it is used by multiple contexts non atomically. 980 * All the __sk_mem_schedule() is of this nature: accounting 981 * is strict, actions are advisory and have some latency. 982 */ 983 int *memory_pressure; 984 long *sysctl_mem; 985 int *sysctl_wmem; 986 int *sysctl_rmem; 987 int max_header; 988 bool no_autobind; 989 990 struct kmem_cache *slab; 991 unsigned int obj_size; 992 int slab_flags; 993 994 struct percpu_counter *orphan_count; 995 996 struct request_sock_ops *rsk_prot; 997 struct timewait_sock_ops *twsk_prot; 998 999 union { 1000 struct inet_hashinfo *hashinfo; 1001 struct udp_table *udp_table; 1002 struct raw_hashinfo *raw_hash; 1003 } h; 1004 1005 struct module *owner; 1006 1007 char name[32]; 1008 1009 struct list_head node; 1010 #ifdef SOCK_REFCNT_DEBUG 1011 atomic_t socks; 1012 #endif 1013 #ifdef CONFIG_MEMCG_KMEM 1014 /* 1015 * cgroup specific init/deinit functions. Called once for all 1016 * protocols that implement it, from cgroups populate function. 1017 * This function has to setup any files the protocol want to 1018 * appear in the kmem cgroup filesystem. 1019 */ 1020 int (*init_cgroup)(struct mem_cgroup *memcg, 1021 struct cgroup_subsys *ss); 1022 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1023 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1024 #endif 1025 }; 1026 1027 /* 1028 * Bits in struct cg_proto.flags 1029 */ 1030 enum cg_proto_flags { 1031 /* Currently active and new sockets should be assigned to cgroups */ 1032 MEMCG_SOCK_ACTIVE, 1033 /* It was ever activated; we must disarm static keys on destruction */ 1034 MEMCG_SOCK_ACTIVATED, 1035 }; 1036 1037 struct cg_proto { 1038 struct res_counter memory_allocated; /* Current allocated memory. */ 1039 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1040 int memory_pressure; 1041 long sysctl_mem[3]; 1042 unsigned long flags; 1043 /* 1044 * memcg field is used to find which memcg we belong directly 1045 * Each memcg struct can hold more than one cg_proto, so container_of 1046 * won't really cut. 1047 * 1048 * The elegant solution would be having an inverse function to 1049 * proto_cgroup in struct proto, but that means polluting the structure 1050 * for everybody, instead of just for memcg users. 1051 */ 1052 struct mem_cgroup *memcg; 1053 }; 1054 1055 int proto_register(struct proto *prot, int alloc_slab); 1056 void proto_unregister(struct proto *prot); 1057 1058 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1059 { 1060 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1061 } 1062 1063 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 1064 { 1065 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1066 } 1067 1068 #ifdef SOCK_REFCNT_DEBUG 1069 static inline void sk_refcnt_debug_inc(struct sock *sk) 1070 { 1071 atomic_inc(&sk->sk_prot->socks); 1072 } 1073 1074 static inline void sk_refcnt_debug_dec(struct sock *sk) 1075 { 1076 atomic_dec(&sk->sk_prot->socks); 1077 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1078 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1079 } 1080 1081 static inline void sk_refcnt_debug_release(const struct sock *sk) 1082 { 1083 if (atomic_read(&sk->sk_refcnt) != 1) 1084 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1085 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1086 } 1087 #else /* SOCK_REFCNT_DEBUG */ 1088 #define sk_refcnt_debug_inc(sk) do { } while (0) 1089 #define sk_refcnt_debug_dec(sk) do { } while (0) 1090 #define sk_refcnt_debug_release(sk) do { } while (0) 1091 #endif /* SOCK_REFCNT_DEBUG */ 1092 1093 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1094 extern struct static_key memcg_socket_limit_enabled; 1095 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1096 struct cg_proto *cg_proto) 1097 { 1098 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1099 } 1100 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1101 #else 1102 #define mem_cgroup_sockets_enabled 0 1103 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1104 struct cg_proto *cg_proto) 1105 { 1106 return NULL; 1107 } 1108 #endif 1109 1110 static inline bool sk_stream_memory_free(const struct sock *sk) 1111 { 1112 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1113 return false; 1114 1115 return sk->sk_prot->stream_memory_free ? 1116 sk->sk_prot->stream_memory_free(sk) : true; 1117 } 1118 1119 static inline bool sk_stream_is_writeable(const struct sock *sk) 1120 { 1121 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1122 sk_stream_memory_free(sk); 1123 } 1124 1125 1126 static inline bool sk_has_memory_pressure(const struct sock *sk) 1127 { 1128 return sk->sk_prot->memory_pressure != NULL; 1129 } 1130 1131 static inline bool sk_under_memory_pressure(const struct sock *sk) 1132 { 1133 if (!sk->sk_prot->memory_pressure) 1134 return false; 1135 1136 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1137 return !!sk->sk_cgrp->memory_pressure; 1138 1139 return !!*sk->sk_prot->memory_pressure; 1140 } 1141 1142 static inline void sk_leave_memory_pressure(struct sock *sk) 1143 { 1144 int *memory_pressure = sk->sk_prot->memory_pressure; 1145 1146 if (!memory_pressure) 1147 return; 1148 1149 if (*memory_pressure) 1150 *memory_pressure = 0; 1151 1152 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1153 struct cg_proto *cg_proto = sk->sk_cgrp; 1154 struct proto *prot = sk->sk_prot; 1155 1156 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1157 cg_proto->memory_pressure = 0; 1158 } 1159 1160 } 1161 1162 static inline void sk_enter_memory_pressure(struct sock *sk) 1163 { 1164 if (!sk->sk_prot->enter_memory_pressure) 1165 return; 1166 1167 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1168 struct cg_proto *cg_proto = sk->sk_cgrp; 1169 struct proto *prot = sk->sk_prot; 1170 1171 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1172 cg_proto->memory_pressure = 1; 1173 } 1174 1175 sk->sk_prot->enter_memory_pressure(sk); 1176 } 1177 1178 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1179 { 1180 long *prot = sk->sk_prot->sysctl_mem; 1181 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1182 prot = sk->sk_cgrp->sysctl_mem; 1183 return prot[index]; 1184 } 1185 1186 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1187 unsigned long amt, 1188 int *parent_status) 1189 { 1190 struct res_counter *fail; 1191 int ret; 1192 1193 ret = res_counter_charge_nofail(&prot->memory_allocated, 1194 amt << PAGE_SHIFT, &fail); 1195 if (ret < 0) 1196 *parent_status = OVER_LIMIT; 1197 } 1198 1199 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1200 unsigned long amt) 1201 { 1202 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT); 1203 } 1204 1205 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1206 { 1207 u64 ret; 1208 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE); 1209 return ret >> PAGE_SHIFT; 1210 } 1211 1212 static inline long 1213 sk_memory_allocated(const struct sock *sk) 1214 { 1215 struct proto *prot = sk->sk_prot; 1216 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1217 return memcg_memory_allocated_read(sk->sk_cgrp); 1218 1219 return atomic_long_read(prot->memory_allocated); 1220 } 1221 1222 static inline long 1223 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1224 { 1225 struct proto *prot = sk->sk_prot; 1226 1227 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1228 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1229 /* update the root cgroup regardless */ 1230 atomic_long_add_return(amt, prot->memory_allocated); 1231 return memcg_memory_allocated_read(sk->sk_cgrp); 1232 } 1233 1234 return atomic_long_add_return(amt, prot->memory_allocated); 1235 } 1236 1237 static inline void 1238 sk_memory_allocated_sub(struct sock *sk, int amt) 1239 { 1240 struct proto *prot = sk->sk_prot; 1241 1242 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1243 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1244 1245 atomic_long_sub(amt, prot->memory_allocated); 1246 } 1247 1248 static inline void sk_sockets_allocated_dec(struct sock *sk) 1249 { 1250 struct proto *prot = sk->sk_prot; 1251 1252 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1253 struct cg_proto *cg_proto = sk->sk_cgrp; 1254 1255 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1256 percpu_counter_dec(&cg_proto->sockets_allocated); 1257 } 1258 1259 percpu_counter_dec(prot->sockets_allocated); 1260 } 1261 1262 static inline void sk_sockets_allocated_inc(struct sock *sk) 1263 { 1264 struct proto *prot = sk->sk_prot; 1265 1266 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1267 struct cg_proto *cg_proto = sk->sk_cgrp; 1268 1269 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1270 percpu_counter_inc(&cg_proto->sockets_allocated); 1271 } 1272 1273 percpu_counter_inc(prot->sockets_allocated); 1274 } 1275 1276 static inline int 1277 sk_sockets_allocated_read_positive(struct sock *sk) 1278 { 1279 struct proto *prot = sk->sk_prot; 1280 1281 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1282 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1283 1284 return percpu_counter_read_positive(prot->sockets_allocated); 1285 } 1286 1287 static inline int 1288 proto_sockets_allocated_sum_positive(struct proto *prot) 1289 { 1290 return percpu_counter_sum_positive(prot->sockets_allocated); 1291 } 1292 1293 static inline long 1294 proto_memory_allocated(struct proto *prot) 1295 { 1296 return atomic_long_read(prot->memory_allocated); 1297 } 1298 1299 static inline bool 1300 proto_memory_pressure(struct proto *prot) 1301 { 1302 if (!prot->memory_pressure) 1303 return false; 1304 return !!*prot->memory_pressure; 1305 } 1306 1307 1308 #ifdef CONFIG_PROC_FS 1309 /* Called with local bh disabled */ 1310 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1311 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1312 #else 1313 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1314 int inc) 1315 { 1316 } 1317 #endif 1318 1319 1320 /* With per-bucket locks this operation is not-atomic, so that 1321 * this version is not worse. 1322 */ 1323 static inline void __sk_prot_rehash(struct sock *sk) 1324 { 1325 sk->sk_prot->unhash(sk); 1326 sk->sk_prot->hash(sk); 1327 } 1328 1329 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1330 1331 /* About 10 seconds */ 1332 #define SOCK_DESTROY_TIME (10*HZ) 1333 1334 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1335 #define PROT_SOCK 1024 1336 1337 #define SHUTDOWN_MASK 3 1338 #define RCV_SHUTDOWN 1 1339 #define SEND_SHUTDOWN 2 1340 1341 #define SOCK_SNDBUF_LOCK 1 1342 #define SOCK_RCVBUF_LOCK 2 1343 #define SOCK_BINDADDR_LOCK 4 1344 #define SOCK_BINDPORT_LOCK 8 1345 1346 /* sock_iocb: used to kick off async processing of socket ios */ 1347 struct sock_iocb { 1348 struct list_head list; 1349 1350 int flags; 1351 int size; 1352 struct socket *sock; 1353 struct sock *sk; 1354 struct scm_cookie *scm; 1355 struct msghdr *msg, async_msg; 1356 struct kiocb *kiocb; 1357 }; 1358 1359 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1360 { 1361 return (struct sock_iocb *)iocb->private; 1362 } 1363 1364 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1365 { 1366 return si->kiocb; 1367 } 1368 1369 struct socket_alloc { 1370 struct socket socket; 1371 struct inode vfs_inode; 1372 }; 1373 1374 static inline struct socket *SOCKET_I(struct inode *inode) 1375 { 1376 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1377 } 1378 1379 static inline struct inode *SOCK_INODE(struct socket *socket) 1380 { 1381 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1382 } 1383 1384 /* 1385 * Functions for memory accounting 1386 */ 1387 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1388 void __sk_mem_reclaim(struct sock *sk); 1389 1390 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1391 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1392 #define SK_MEM_SEND 0 1393 #define SK_MEM_RECV 1 1394 1395 static inline int sk_mem_pages(int amt) 1396 { 1397 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1398 } 1399 1400 static inline bool sk_has_account(struct sock *sk) 1401 { 1402 /* return true if protocol supports memory accounting */ 1403 return !!sk->sk_prot->memory_allocated; 1404 } 1405 1406 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1407 { 1408 if (!sk_has_account(sk)) 1409 return true; 1410 return size <= sk->sk_forward_alloc || 1411 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1412 } 1413 1414 static inline bool 1415 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1416 { 1417 if (!sk_has_account(sk)) 1418 return true; 1419 return size<= sk->sk_forward_alloc || 1420 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1421 skb_pfmemalloc(skb); 1422 } 1423 1424 static inline void sk_mem_reclaim(struct sock *sk) 1425 { 1426 if (!sk_has_account(sk)) 1427 return; 1428 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1429 __sk_mem_reclaim(sk); 1430 } 1431 1432 static inline void sk_mem_reclaim_partial(struct sock *sk) 1433 { 1434 if (!sk_has_account(sk)) 1435 return; 1436 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1437 __sk_mem_reclaim(sk); 1438 } 1439 1440 static inline void sk_mem_charge(struct sock *sk, int size) 1441 { 1442 if (!sk_has_account(sk)) 1443 return; 1444 sk->sk_forward_alloc -= size; 1445 } 1446 1447 static inline void sk_mem_uncharge(struct sock *sk, int size) 1448 { 1449 if (!sk_has_account(sk)) 1450 return; 1451 sk->sk_forward_alloc += size; 1452 } 1453 1454 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1455 { 1456 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1457 sk->sk_wmem_queued -= skb->truesize; 1458 sk_mem_uncharge(sk, skb->truesize); 1459 __kfree_skb(skb); 1460 } 1461 1462 /* Used by processes to "lock" a socket state, so that 1463 * interrupts and bottom half handlers won't change it 1464 * from under us. It essentially blocks any incoming 1465 * packets, so that we won't get any new data or any 1466 * packets that change the state of the socket. 1467 * 1468 * While locked, BH processing will add new packets to 1469 * the backlog queue. This queue is processed by the 1470 * owner of the socket lock right before it is released. 1471 * 1472 * Since ~2.3.5 it is also exclusive sleep lock serializing 1473 * accesses from user process context. 1474 */ 1475 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1476 1477 /* 1478 * Macro so as to not evaluate some arguments when 1479 * lockdep is not enabled. 1480 * 1481 * Mark both the sk_lock and the sk_lock.slock as a 1482 * per-address-family lock class. 1483 */ 1484 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1485 do { \ 1486 sk->sk_lock.owned = 0; \ 1487 init_waitqueue_head(&sk->sk_lock.wq); \ 1488 spin_lock_init(&(sk)->sk_lock.slock); \ 1489 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1490 sizeof((sk)->sk_lock)); \ 1491 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1492 (skey), (sname)); \ 1493 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1494 } while (0) 1495 1496 void lock_sock_nested(struct sock *sk, int subclass); 1497 1498 static inline void lock_sock(struct sock *sk) 1499 { 1500 lock_sock_nested(sk, 0); 1501 } 1502 1503 void release_sock(struct sock *sk); 1504 1505 /* BH context may only use the following locking interface. */ 1506 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1507 #define bh_lock_sock_nested(__sk) \ 1508 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1509 SINGLE_DEPTH_NESTING) 1510 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1511 1512 bool lock_sock_fast(struct sock *sk); 1513 /** 1514 * unlock_sock_fast - complement of lock_sock_fast 1515 * @sk: socket 1516 * @slow: slow mode 1517 * 1518 * fast unlock socket for user context. 1519 * If slow mode is on, we call regular release_sock() 1520 */ 1521 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1522 { 1523 if (slow) 1524 release_sock(sk); 1525 else 1526 spin_unlock_bh(&sk->sk_lock.slock); 1527 } 1528 1529 1530 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1531 struct proto *prot); 1532 void sk_free(struct sock *sk); 1533 void sk_release_kernel(struct sock *sk); 1534 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1535 1536 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1537 gfp_t priority); 1538 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, 1539 gfp_t priority); 1540 void sock_wfree(struct sk_buff *skb); 1541 void skb_orphan_partial(struct sk_buff *skb); 1542 void sock_rfree(struct sk_buff *skb); 1543 void sock_edemux(struct sk_buff *skb); 1544 1545 int sock_setsockopt(struct socket *sock, int level, int op, 1546 char __user *optval, unsigned int optlen); 1547 1548 int sock_getsockopt(struct socket *sock, int level, int op, 1549 char __user *optval, int __user *optlen); 1550 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1551 int noblock, int *errcode); 1552 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1553 unsigned long data_len, int noblock, 1554 int *errcode, int max_page_order); 1555 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1556 void sock_kfree_s(struct sock *sk, void *mem, int size); 1557 void sk_send_sigurg(struct sock *sk); 1558 1559 /* 1560 * Functions to fill in entries in struct proto_ops when a protocol 1561 * does not implement a particular function. 1562 */ 1563 int sock_no_bind(struct socket *, struct sockaddr *, int); 1564 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1565 int sock_no_socketpair(struct socket *, struct socket *); 1566 int sock_no_accept(struct socket *, struct socket *, int); 1567 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1568 unsigned int sock_no_poll(struct file *, struct socket *, 1569 struct poll_table_struct *); 1570 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1571 int sock_no_listen(struct socket *, int); 1572 int sock_no_shutdown(struct socket *, int); 1573 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1574 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1575 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); 1576 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, 1577 int); 1578 int sock_no_mmap(struct file *file, struct socket *sock, 1579 struct vm_area_struct *vma); 1580 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1581 size_t size, int flags); 1582 1583 /* 1584 * Functions to fill in entries in struct proto_ops when a protocol 1585 * uses the inet style. 1586 */ 1587 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1588 char __user *optval, int __user *optlen); 1589 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1590 struct msghdr *msg, size_t size, int flags); 1591 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1592 char __user *optval, unsigned int optlen); 1593 int compat_sock_common_getsockopt(struct socket *sock, int level, 1594 int optname, char __user *optval, int __user *optlen); 1595 int compat_sock_common_setsockopt(struct socket *sock, int level, 1596 int optname, char __user *optval, unsigned int optlen); 1597 1598 void sk_common_release(struct sock *sk); 1599 1600 /* 1601 * Default socket callbacks and setup code 1602 */ 1603 1604 /* Initialise core socket variables */ 1605 void sock_init_data(struct socket *sock, struct sock *sk); 1606 1607 void sk_filter_release_rcu(struct rcu_head *rcu); 1608 1609 /** 1610 * sk_filter_release - release a socket filter 1611 * @fp: filter to remove 1612 * 1613 * Remove a filter from a socket and release its resources. 1614 */ 1615 1616 static inline void sk_filter_release(struct sk_filter *fp) 1617 { 1618 if (atomic_dec_and_test(&fp->refcnt)) 1619 call_rcu(&fp->rcu, sk_filter_release_rcu); 1620 } 1621 1622 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1623 { 1624 atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc); 1625 sk_filter_release(fp); 1626 } 1627 1628 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1629 { 1630 atomic_inc(&fp->refcnt); 1631 atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc); 1632 } 1633 1634 /* 1635 * Socket reference counting postulates. 1636 * 1637 * * Each user of socket SHOULD hold a reference count. 1638 * * Each access point to socket (an hash table bucket, reference from a list, 1639 * running timer, skb in flight MUST hold a reference count. 1640 * * When reference count hits 0, it means it will never increase back. 1641 * * When reference count hits 0, it means that no references from 1642 * outside exist to this socket and current process on current CPU 1643 * is last user and may/should destroy this socket. 1644 * * sk_free is called from any context: process, BH, IRQ. When 1645 * it is called, socket has no references from outside -> sk_free 1646 * may release descendant resources allocated by the socket, but 1647 * to the time when it is called, socket is NOT referenced by any 1648 * hash tables, lists etc. 1649 * * Packets, delivered from outside (from network or from another process) 1650 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1651 * when they sit in queue. Otherwise, packets will leak to hole, when 1652 * socket is looked up by one cpu and unhasing is made by another CPU. 1653 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1654 * (leak to backlog). Packet socket does all the processing inside 1655 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1656 * use separate SMP lock, so that they are prone too. 1657 */ 1658 1659 /* Ungrab socket and destroy it, if it was the last reference. */ 1660 static inline void sock_put(struct sock *sk) 1661 { 1662 if (atomic_dec_and_test(&sk->sk_refcnt)) 1663 sk_free(sk); 1664 } 1665 /* Generic version of sock_put(), dealing with all sockets 1666 * (TCP_TIMEWAIT, ESTABLISHED...) 1667 */ 1668 void sock_gen_put(struct sock *sk); 1669 1670 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1671 1672 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1673 { 1674 sk->sk_tx_queue_mapping = tx_queue; 1675 } 1676 1677 static inline void sk_tx_queue_clear(struct sock *sk) 1678 { 1679 sk->sk_tx_queue_mapping = -1; 1680 } 1681 1682 static inline int sk_tx_queue_get(const struct sock *sk) 1683 { 1684 return sk ? sk->sk_tx_queue_mapping : -1; 1685 } 1686 1687 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1688 { 1689 sk_tx_queue_clear(sk); 1690 sk->sk_socket = sock; 1691 } 1692 1693 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1694 { 1695 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1696 return &rcu_dereference_raw(sk->sk_wq)->wait; 1697 } 1698 /* Detach socket from process context. 1699 * Announce socket dead, detach it from wait queue and inode. 1700 * Note that parent inode held reference count on this struct sock, 1701 * we do not release it in this function, because protocol 1702 * probably wants some additional cleanups or even continuing 1703 * to work with this socket (TCP). 1704 */ 1705 static inline void sock_orphan(struct sock *sk) 1706 { 1707 write_lock_bh(&sk->sk_callback_lock); 1708 sock_set_flag(sk, SOCK_DEAD); 1709 sk_set_socket(sk, NULL); 1710 sk->sk_wq = NULL; 1711 write_unlock_bh(&sk->sk_callback_lock); 1712 } 1713 1714 static inline void sock_graft(struct sock *sk, struct socket *parent) 1715 { 1716 write_lock_bh(&sk->sk_callback_lock); 1717 sk->sk_wq = parent->wq; 1718 parent->sk = sk; 1719 sk_set_socket(sk, parent); 1720 security_sock_graft(sk, parent); 1721 write_unlock_bh(&sk->sk_callback_lock); 1722 } 1723 1724 kuid_t sock_i_uid(struct sock *sk); 1725 unsigned long sock_i_ino(struct sock *sk); 1726 1727 static inline struct dst_entry * 1728 __sk_dst_get(struct sock *sk) 1729 { 1730 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1731 lockdep_is_held(&sk->sk_lock.slock)); 1732 } 1733 1734 static inline struct dst_entry * 1735 sk_dst_get(struct sock *sk) 1736 { 1737 struct dst_entry *dst; 1738 1739 rcu_read_lock(); 1740 dst = rcu_dereference(sk->sk_dst_cache); 1741 if (dst) 1742 dst_hold(dst); 1743 rcu_read_unlock(); 1744 return dst; 1745 } 1746 1747 static inline void dst_negative_advice(struct sock *sk) 1748 { 1749 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1750 1751 if (dst && dst->ops->negative_advice) { 1752 ndst = dst->ops->negative_advice(dst); 1753 1754 if (ndst != dst) { 1755 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1756 sk_tx_queue_clear(sk); 1757 } 1758 } 1759 } 1760 1761 static inline void 1762 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1763 { 1764 struct dst_entry *old_dst; 1765 1766 sk_tx_queue_clear(sk); 1767 /* 1768 * This can be called while sk is owned by the caller only, 1769 * with no state that can be checked in a rcu_dereference_check() cond 1770 */ 1771 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1772 rcu_assign_pointer(sk->sk_dst_cache, dst); 1773 dst_release(old_dst); 1774 } 1775 1776 static inline void 1777 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1778 { 1779 spin_lock(&sk->sk_dst_lock); 1780 __sk_dst_set(sk, dst); 1781 spin_unlock(&sk->sk_dst_lock); 1782 } 1783 1784 static inline void 1785 __sk_dst_reset(struct sock *sk) 1786 { 1787 __sk_dst_set(sk, NULL); 1788 } 1789 1790 static inline void 1791 sk_dst_reset(struct sock *sk) 1792 { 1793 spin_lock(&sk->sk_dst_lock); 1794 __sk_dst_reset(sk); 1795 spin_unlock(&sk->sk_dst_lock); 1796 } 1797 1798 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1799 1800 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1801 1802 static inline bool sk_can_gso(const struct sock *sk) 1803 { 1804 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1805 } 1806 1807 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1808 1809 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1810 { 1811 sk->sk_route_nocaps |= flags; 1812 sk->sk_route_caps &= ~flags; 1813 } 1814 1815 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1816 char __user *from, char *to, 1817 int copy, int offset) 1818 { 1819 if (skb->ip_summed == CHECKSUM_NONE) { 1820 int err = 0; 1821 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1822 if (err) 1823 return err; 1824 skb->csum = csum_block_add(skb->csum, csum, offset); 1825 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1826 if (!access_ok(VERIFY_READ, from, copy) || 1827 __copy_from_user_nocache(to, from, copy)) 1828 return -EFAULT; 1829 } else if (copy_from_user(to, from, copy)) 1830 return -EFAULT; 1831 1832 return 0; 1833 } 1834 1835 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1836 char __user *from, int copy) 1837 { 1838 int err, offset = skb->len; 1839 1840 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1841 copy, offset); 1842 if (err) 1843 __skb_trim(skb, offset); 1844 1845 return err; 1846 } 1847 1848 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1849 struct sk_buff *skb, 1850 struct page *page, 1851 int off, int copy) 1852 { 1853 int err; 1854 1855 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1856 copy, skb->len); 1857 if (err) 1858 return err; 1859 1860 skb->len += copy; 1861 skb->data_len += copy; 1862 skb->truesize += copy; 1863 sk->sk_wmem_queued += copy; 1864 sk_mem_charge(sk, copy); 1865 return 0; 1866 } 1867 1868 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1869 struct sk_buff *skb, struct page *page, 1870 int off, int copy) 1871 { 1872 if (skb->ip_summed == CHECKSUM_NONE) { 1873 int err = 0; 1874 __wsum csum = csum_and_copy_from_user(from, 1875 page_address(page) + off, 1876 copy, 0, &err); 1877 if (err) 1878 return err; 1879 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1880 } else if (copy_from_user(page_address(page) + off, from, copy)) 1881 return -EFAULT; 1882 1883 skb->len += copy; 1884 skb->data_len += copy; 1885 skb->truesize += copy; 1886 sk->sk_wmem_queued += copy; 1887 sk_mem_charge(sk, copy); 1888 return 0; 1889 } 1890 1891 /** 1892 * sk_wmem_alloc_get - returns write allocations 1893 * @sk: socket 1894 * 1895 * Returns sk_wmem_alloc minus initial offset of one 1896 */ 1897 static inline int sk_wmem_alloc_get(const struct sock *sk) 1898 { 1899 return atomic_read(&sk->sk_wmem_alloc) - 1; 1900 } 1901 1902 /** 1903 * sk_rmem_alloc_get - returns read allocations 1904 * @sk: socket 1905 * 1906 * Returns sk_rmem_alloc 1907 */ 1908 static inline int sk_rmem_alloc_get(const struct sock *sk) 1909 { 1910 return atomic_read(&sk->sk_rmem_alloc); 1911 } 1912 1913 /** 1914 * sk_has_allocations - check if allocations are outstanding 1915 * @sk: socket 1916 * 1917 * Returns true if socket has write or read allocations 1918 */ 1919 static inline bool sk_has_allocations(const struct sock *sk) 1920 { 1921 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1922 } 1923 1924 /** 1925 * wq_has_sleeper - check if there are any waiting processes 1926 * @wq: struct socket_wq 1927 * 1928 * Returns true if socket_wq has waiting processes 1929 * 1930 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1931 * barrier call. They were added due to the race found within the tcp code. 1932 * 1933 * Consider following tcp code paths: 1934 * 1935 * CPU1 CPU2 1936 * 1937 * sys_select receive packet 1938 * ... ... 1939 * __add_wait_queue update tp->rcv_nxt 1940 * ... ... 1941 * tp->rcv_nxt check sock_def_readable 1942 * ... { 1943 * schedule rcu_read_lock(); 1944 * wq = rcu_dereference(sk->sk_wq); 1945 * if (wq && waitqueue_active(&wq->wait)) 1946 * wake_up_interruptible(&wq->wait) 1947 * ... 1948 * } 1949 * 1950 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1951 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1952 * could then endup calling schedule and sleep forever if there are no more 1953 * data on the socket. 1954 * 1955 */ 1956 static inline bool wq_has_sleeper(struct socket_wq *wq) 1957 { 1958 /* We need to be sure we are in sync with the 1959 * add_wait_queue modifications to the wait queue. 1960 * 1961 * This memory barrier is paired in the sock_poll_wait. 1962 */ 1963 smp_mb(); 1964 return wq && waitqueue_active(&wq->wait); 1965 } 1966 1967 /** 1968 * sock_poll_wait - place memory barrier behind the poll_wait call. 1969 * @filp: file 1970 * @wait_address: socket wait queue 1971 * @p: poll_table 1972 * 1973 * See the comments in the wq_has_sleeper function. 1974 */ 1975 static inline void sock_poll_wait(struct file *filp, 1976 wait_queue_head_t *wait_address, poll_table *p) 1977 { 1978 if (!poll_does_not_wait(p) && wait_address) { 1979 poll_wait(filp, wait_address, p); 1980 /* We need to be sure we are in sync with the 1981 * socket flags modification. 1982 * 1983 * This memory barrier is paired in the wq_has_sleeper. 1984 */ 1985 smp_mb(); 1986 } 1987 } 1988 1989 /* 1990 * Queue a received datagram if it will fit. Stream and sequenced 1991 * protocols can't normally use this as they need to fit buffers in 1992 * and play with them. 1993 * 1994 * Inlined as it's very short and called for pretty much every 1995 * packet ever received. 1996 */ 1997 1998 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1999 { 2000 skb_orphan(skb); 2001 skb->sk = sk; 2002 skb->destructor = sock_wfree; 2003 /* 2004 * We used to take a refcount on sk, but following operation 2005 * is enough to guarantee sk_free() wont free this sock until 2006 * all in-flight packets are completed 2007 */ 2008 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 2009 } 2010 2011 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2012 { 2013 skb_orphan(skb); 2014 skb->sk = sk; 2015 skb->destructor = sock_rfree; 2016 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2017 sk_mem_charge(sk, skb->truesize); 2018 } 2019 2020 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2021 unsigned long expires); 2022 2023 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2024 2025 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2026 2027 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2028 2029 /* 2030 * Recover an error report and clear atomically 2031 */ 2032 2033 static inline int sock_error(struct sock *sk) 2034 { 2035 int err; 2036 if (likely(!sk->sk_err)) 2037 return 0; 2038 err = xchg(&sk->sk_err, 0); 2039 return -err; 2040 } 2041 2042 static inline unsigned long sock_wspace(struct sock *sk) 2043 { 2044 int amt = 0; 2045 2046 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2047 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2048 if (amt < 0) 2049 amt = 0; 2050 } 2051 return amt; 2052 } 2053 2054 static inline void sk_wake_async(struct sock *sk, int how, int band) 2055 { 2056 if (sock_flag(sk, SOCK_FASYNC)) 2057 sock_wake_async(sk->sk_socket, how, band); 2058 } 2059 2060 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2061 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2062 * Note: for send buffers, TCP works better if we can build two skbs at 2063 * minimum. 2064 */ 2065 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2066 2067 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2068 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2069 2070 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2071 { 2072 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2073 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2074 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2075 } 2076 } 2077 2078 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2079 2080 /** 2081 * sk_page_frag - return an appropriate page_frag 2082 * @sk: socket 2083 * 2084 * If socket allocation mode allows current thread to sleep, it means its 2085 * safe to use the per task page_frag instead of the per socket one. 2086 */ 2087 static inline struct page_frag *sk_page_frag(struct sock *sk) 2088 { 2089 if (sk->sk_allocation & __GFP_WAIT) 2090 return ¤t->task_frag; 2091 2092 return &sk->sk_frag; 2093 } 2094 2095 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2096 2097 /* 2098 * Default write policy as shown to user space via poll/select/SIGIO 2099 */ 2100 static inline bool sock_writeable(const struct sock *sk) 2101 { 2102 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2103 } 2104 2105 static inline gfp_t gfp_any(void) 2106 { 2107 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2108 } 2109 2110 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2111 { 2112 return noblock ? 0 : sk->sk_rcvtimeo; 2113 } 2114 2115 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2116 { 2117 return noblock ? 0 : sk->sk_sndtimeo; 2118 } 2119 2120 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2121 { 2122 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2123 } 2124 2125 /* Alas, with timeout socket operations are not restartable. 2126 * Compare this to poll(). 2127 */ 2128 static inline int sock_intr_errno(long timeo) 2129 { 2130 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2131 } 2132 2133 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2134 struct sk_buff *skb); 2135 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2136 struct sk_buff *skb); 2137 2138 static inline void 2139 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2140 { 2141 ktime_t kt = skb->tstamp; 2142 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2143 2144 /* 2145 * generate control messages if 2146 * - receive time stamping in software requested (SOCK_RCVTSTAMP 2147 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 2148 * - software time stamp available and wanted 2149 * (SOCK_TIMESTAMPING_SOFTWARE) 2150 * - hardware time stamps available and wanted 2151 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 2152 * SOCK_TIMESTAMPING_RAW_HARDWARE) 2153 */ 2154 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2155 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 2156 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 2157 (hwtstamps->hwtstamp.tv64 && 2158 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 2159 (hwtstamps->syststamp.tv64 && 2160 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 2161 __sock_recv_timestamp(msg, sk, skb); 2162 else 2163 sk->sk_stamp = kt; 2164 2165 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2166 __sock_recv_wifi_status(msg, sk, skb); 2167 } 2168 2169 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2170 struct sk_buff *skb); 2171 2172 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2173 struct sk_buff *skb) 2174 { 2175 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2176 (1UL << SOCK_RCVTSTAMP) | \ 2177 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 2178 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 2179 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 2180 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 2181 2182 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 2183 __sock_recv_ts_and_drops(msg, sk, skb); 2184 else 2185 sk->sk_stamp = skb->tstamp; 2186 } 2187 2188 /** 2189 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2190 * @sk: socket sending this packet 2191 * @tx_flags: filled with instructions for time stamping 2192 * 2193 * Currently only depends on SOCK_TIMESTAMPING* flags. 2194 */ 2195 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2196 2197 /** 2198 * sk_eat_skb - Release a skb if it is no longer needed 2199 * @sk: socket to eat this skb from 2200 * @skb: socket buffer to eat 2201 * @copied_early: flag indicating whether DMA operations copied this data early 2202 * 2203 * This routine must be called with interrupts disabled or with the socket 2204 * locked so that the sk_buff queue operation is ok. 2205 */ 2206 #ifdef CONFIG_NET_DMA 2207 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2208 { 2209 __skb_unlink(skb, &sk->sk_receive_queue); 2210 if (!copied_early) 2211 __kfree_skb(skb); 2212 else 2213 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2214 } 2215 #else 2216 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2217 { 2218 __skb_unlink(skb, &sk->sk_receive_queue); 2219 __kfree_skb(skb); 2220 } 2221 #endif 2222 2223 static inline 2224 struct net *sock_net(const struct sock *sk) 2225 { 2226 return read_pnet(&sk->sk_net); 2227 } 2228 2229 static inline 2230 void sock_net_set(struct sock *sk, struct net *net) 2231 { 2232 write_pnet(&sk->sk_net, net); 2233 } 2234 2235 /* 2236 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2237 * They should not hold a reference to a namespace in order to allow 2238 * to stop it. 2239 * Sockets after sk_change_net should be released using sk_release_kernel 2240 */ 2241 static inline void sk_change_net(struct sock *sk, struct net *net) 2242 { 2243 put_net(sock_net(sk)); 2244 sock_net_set(sk, hold_net(net)); 2245 } 2246 2247 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2248 { 2249 if (skb->sk) { 2250 struct sock *sk = skb->sk; 2251 2252 skb->destructor = NULL; 2253 skb->sk = NULL; 2254 return sk; 2255 } 2256 return NULL; 2257 } 2258 2259 void sock_enable_timestamp(struct sock *sk, int flag); 2260 int sock_get_timestamp(struct sock *, struct timeval __user *); 2261 int sock_get_timestampns(struct sock *, struct timespec __user *); 2262 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2263 int type); 2264 2265 /* 2266 * Enable debug/info messages 2267 */ 2268 extern int net_msg_warn; 2269 #define NETDEBUG(fmt, args...) \ 2270 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2271 2272 #define LIMIT_NETDEBUG(fmt, args...) \ 2273 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2274 2275 extern __u32 sysctl_wmem_max; 2276 extern __u32 sysctl_rmem_max; 2277 2278 extern int sysctl_optmem_max; 2279 2280 extern __u32 sysctl_wmem_default; 2281 extern __u32 sysctl_rmem_default; 2282 2283 #endif /* _SOCK_H */ 2284