xref: /openbmc/linux/include/net/sock.h (revision bc000245)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 	return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88  * This structure really needs to be cleaned up.
89  * Most of it is for TCP, and not used by any of
90  * the other protocols.
91  */
92 
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 					printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105 
106 /* This is the per-socket lock.  The spinlock provides a synchronization
107  * between user contexts and software interrupt processing, whereas the
108  * mini-semaphore synchronizes multiple users amongst themselves.
109  */
110 typedef struct {
111 	spinlock_t		slock;
112 	int			owned;
113 	wait_queue_head_t	wq;
114 	/*
115 	 * We express the mutex-alike socket_lock semantics
116 	 * to the lock validator by explicitly managing
117 	 * the slock as a lock variant (in addition to
118 	 * the slock itself):
119 	 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 	struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124 
125 struct sock;
126 struct proto;
127 struct net;
128 
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131 
132 /**
133  *	struct sock_common - minimal network layer representation of sockets
134  *	@skc_daddr: Foreign IPv4 addr
135  *	@skc_rcv_saddr: Bound local IPv4 addr
136  *	@skc_hash: hash value used with various protocol lookup tables
137  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
138  *	@skc_dport: placeholder for inet_dport/tw_dport
139  *	@skc_num: placeholder for inet_num/tw_num
140  *	@skc_family: network address family
141  *	@skc_state: Connection state
142  *	@skc_reuse: %SO_REUSEADDR setting
143  *	@skc_reuseport: %SO_REUSEPORT setting
144  *	@skc_bound_dev_if: bound device index if != 0
145  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
146  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147  *	@skc_prot: protocol handlers inside a network family
148  *	@skc_net: reference to the network namespace of this socket
149  *	@skc_node: main hash linkage for various protocol lookup tables
150  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151  *	@skc_tx_queue_mapping: tx queue number for this connection
152  *	@skc_refcnt: reference count
153  *
154  *	This is the minimal network layer representation of sockets, the header
155  *	for struct sock and struct inet_timewait_sock.
156  */
157 struct sock_common {
158 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 	 * address on 64bit arches : cf INET_MATCH()
160 	 */
161 	union {
162 		__addrpair	skc_addrpair;
163 		struct {
164 			__be32	skc_daddr;
165 			__be32	skc_rcv_saddr;
166 		};
167 	};
168 	union  {
169 		unsigned int	skc_hash;
170 		__u16		skc_u16hashes[2];
171 	};
172 	/* skc_dport && skc_num must be grouped as well */
173 	union {
174 		__portpair	skc_portpair;
175 		struct {
176 			__be16	skc_dport;
177 			__u16	skc_num;
178 		};
179 	};
180 
181 	unsigned short		skc_family;
182 	volatile unsigned char	skc_state;
183 	unsigned char		skc_reuse:4;
184 	unsigned char		skc_reuseport:4;
185 	int			skc_bound_dev_if;
186 	union {
187 		struct hlist_node	skc_bind_node;
188 		struct hlist_nulls_node skc_portaddr_node;
189 	};
190 	struct proto		*skc_prot;
191 #ifdef CONFIG_NET_NS
192 	struct net	 	*skc_net;
193 #endif
194 
195 #if IS_ENABLED(CONFIG_IPV6)
196 	struct in6_addr		skc_v6_daddr;
197 	struct in6_addr		skc_v6_rcv_saddr;
198 #endif
199 
200 	/*
201 	 * fields between dontcopy_begin/dontcopy_end
202 	 * are not copied in sock_copy()
203 	 */
204 	/* private: */
205 	int			skc_dontcopy_begin[0];
206 	/* public: */
207 	union {
208 		struct hlist_node	skc_node;
209 		struct hlist_nulls_node skc_nulls_node;
210 	};
211 	int			skc_tx_queue_mapping;
212 	atomic_t		skc_refcnt;
213 	/* private: */
214 	int                     skc_dontcopy_end[0];
215 	/* public: */
216 };
217 
218 struct cg_proto;
219 /**
220   *	struct sock - network layer representation of sockets
221   *	@__sk_common: shared layout with inet_timewait_sock
222   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
223   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
224   *	@sk_lock:	synchronizer
225   *	@sk_rcvbuf: size of receive buffer in bytes
226   *	@sk_wq: sock wait queue and async head
227   *	@sk_rx_dst: receive input route used by early demux
228   *	@sk_dst_cache: destination cache
229   *	@sk_dst_lock: destination cache lock
230   *	@sk_policy: flow policy
231   *	@sk_receive_queue: incoming packets
232   *	@sk_wmem_alloc: transmit queue bytes committed
233   *	@sk_write_queue: Packet sending queue
234   *	@sk_async_wait_queue: DMA copied packets
235   *	@sk_omem_alloc: "o" is "option" or "other"
236   *	@sk_wmem_queued: persistent queue size
237   *	@sk_forward_alloc: space allocated forward
238   *	@sk_napi_id: id of the last napi context to receive data for sk
239   *	@sk_ll_usec: usecs to busypoll when there is no data
240   *	@sk_allocation: allocation mode
241   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
242   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
243   *	@sk_sndbuf: size of send buffer in bytes
244   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
245   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
246   *	@sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
247   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
248   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
249   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
250   *	@sk_gso_max_size: Maximum GSO segment size to build
251   *	@sk_gso_max_segs: Maximum number of GSO segments
252   *	@sk_lingertime: %SO_LINGER l_linger setting
253   *	@sk_backlog: always used with the per-socket spinlock held
254   *	@sk_callback_lock: used with the callbacks in the end of this struct
255   *	@sk_error_queue: rarely used
256   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
257   *			  IPV6_ADDRFORM for instance)
258   *	@sk_err: last error
259   *	@sk_err_soft: errors that don't cause failure but are the cause of a
260   *		      persistent failure not just 'timed out'
261   *	@sk_drops: raw/udp drops counter
262   *	@sk_ack_backlog: current listen backlog
263   *	@sk_max_ack_backlog: listen backlog set in listen()
264   *	@sk_priority: %SO_PRIORITY setting
265   *	@sk_cgrp_prioidx: socket group's priority map index
266   *	@sk_type: socket type (%SOCK_STREAM, etc)
267   *	@sk_protocol: which protocol this socket belongs in this network family
268   *	@sk_peer_pid: &struct pid for this socket's peer
269   *	@sk_peer_cred: %SO_PEERCRED setting
270   *	@sk_rcvlowat: %SO_RCVLOWAT setting
271   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
272   *	@sk_sndtimeo: %SO_SNDTIMEO setting
273   *	@sk_rxhash: flow hash received from netif layer
274   *	@sk_filter: socket filtering instructions
275   *	@sk_protinfo: private area, net family specific, when not using slab
276   *	@sk_timer: sock cleanup timer
277   *	@sk_stamp: time stamp of last packet received
278   *	@sk_socket: Identd and reporting IO signals
279   *	@sk_user_data: RPC layer private data
280   *	@sk_frag: cached page frag
281   *	@sk_peek_off: current peek_offset value
282   *	@sk_send_head: front of stuff to transmit
283   *	@sk_security: used by security modules
284   *	@sk_mark: generic packet mark
285   *	@sk_classid: this socket's cgroup classid
286   *	@sk_cgrp: this socket's cgroup-specific proto data
287   *	@sk_write_pending: a write to stream socket waits to start
288   *	@sk_state_change: callback to indicate change in the state of the sock
289   *	@sk_data_ready: callback to indicate there is data to be processed
290   *	@sk_write_space: callback to indicate there is bf sending space available
291   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
292   *	@sk_backlog_rcv: callback to process the backlog
293   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
294  */
295 struct sock {
296 	/*
297 	 * Now struct inet_timewait_sock also uses sock_common, so please just
298 	 * don't add nothing before this first member (__sk_common) --acme
299 	 */
300 	struct sock_common	__sk_common;
301 #define sk_node			__sk_common.skc_node
302 #define sk_nulls_node		__sk_common.skc_nulls_node
303 #define sk_refcnt		__sk_common.skc_refcnt
304 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
305 
306 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
307 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
308 #define sk_hash			__sk_common.skc_hash
309 #define sk_portpair		__sk_common.skc_portpair
310 #define sk_num			__sk_common.skc_num
311 #define sk_dport		__sk_common.skc_dport
312 #define sk_addrpair		__sk_common.skc_addrpair
313 #define sk_daddr		__sk_common.skc_daddr
314 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
315 #define sk_family		__sk_common.skc_family
316 #define sk_state		__sk_common.skc_state
317 #define sk_reuse		__sk_common.skc_reuse
318 #define sk_reuseport		__sk_common.skc_reuseport
319 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
320 #define sk_bind_node		__sk_common.skc_bind_node
321 #define sk_prot			__sk_common.skc_prot
322 #define sk_net			__sk_common.skc_net
323 #define sk_v6_daddr		__sk_common.skc_v6_daddr
324 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
325 
326 	socket_lock_t		sk_lock;
327 	struct sk_buff_head	sk_receive_queue;
328 	/*
329 	 * The backlog queue is special, it is always used with
330 	 * the per-socket spinlock held and requires low latency
331 	 * access. Therefore we special case it's implementation.
332 	 * Note : rmem_alloc is in this structure to fill a hole
333 	 * on 64bit arches, not because its logically part of
334 	 * backlog.
335 	 */
336 	struct {
337 		atomic_t	rmem_alloc;
338 		int		len;
339 		struct sk_buff	*head;
340 		struct sk_buff	*tail;
341 	} sk_backlog;
342 #define sk_rmem_alloc sk_backlog.rmem_alloc
343 	int			sk_forward_alloc;
344 #ifdef CONFIG_RPS
345 	__u32			sk_rxhash;
346 #endif
347 #ifdef CONFIG_NET_RX_BUSY_POLL
348 	unsigned int		sk_napi_id;
349 	unsigned int		sk_ll_usec;
350 #endif
351 	atomic_t		sk_drops;
352 	int			sk_rcvbuf;
353 
354 	struct sk_filter __rcu	*sk_filter;
355 	struct socket_wq __rcu	*sk_wq;
356 
357 #ifdef CONFIG_NET_DMA
358 	struct sk_buff_head	sk_async_wait_queue;
359 #endif
360 
361 #ifdef CONFIG_XFRM
362 	struct xfrm_policy	*sk_policy[2];
363 #endif
364 	unsigned long 		sk_flags;
365 	struct dst_entry	*sk_rx_dst;
366 	struct dst_entry __rcu	*sk_dst_cache;
367 	spinlock_t		sk_dst_lock;
368 	atomic_t		sk_wmem_alloc;
369 	atomic_t		sk_omem_alloc;
370 	int			sk_sndbuf;
371 	struct sk_buff_head	sk_write_queue;
372 	kmemcheck_bitfield_begin(flags);
373 	unsigned int		sk_shutdown  : 2,
374 				sk_no_check  : 2,
375 				sk_userlocks : 4,
376 				sk_protocol  : 8,
377 				sk_type      : 16;
378 	kmemcheck_bitfield_end(flags);
379 	int			sk_wmem_queued;
380 	gfp_t			sk_allocation;
381 	u32			sk_pacing_rate; /* bytes per second */
382 	u32			sk_max_pacing_rate;
383 	netdev_features_t	sk_route_caps;
384 	netdev_features_t	sk_route_nocaps;
385 	int			sk_gso_type;
386 	unsigned int		sk_gso_max_size;
387 	u16			sk_gso_max_segs;
388 	int			sk_rcvlowat;
389 	unsigned long	        sk_lingertime;
390 	struct sk_buff_head	sk_error_queue;
391 	struct proto		*sk_prot_creator;
392 	rwlock_t		sk_callback_lock;
393 	int			sk_err,
394 				sk_err_soft;
395 	unsigned short		sk_ack_backlog;
396 	unsigned short		sk_max_ack_backlog;
397 	__u32			sk_priority;
398 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
399 	__u32			sk_cgrp_prioidx;
400 #endif
401 	struct pid		*sk_peer_pid;
402 	const struct cred	*sk_peer_cred;
403 	long			sk_rcvtimeo;
404 	long			sk_sndtimeo;
405 	void			*sk_protinfo;
406 	struct timer_list	sk_timer;
407 	ktime_t			sk_stamp;
408 	struct socket		*sk_socket;
409 	void			*sk_user_data;
410 	struct page_frag	sk_frag;
411 	struct sk_buff		*sk_send_head;
412 	__s32			sk_peek_off;
413 	int			sk_write_pending;
414 #ifdef CONFIG_SECURITY
415 	void			*sk_security;
416 #endif
417 	__u32			sk_mark;
418 	u32			sk_classid;
419 	struct cg_proto		*sk_cgrp;
420 	void			(*sk_state_change)(struct sock *sk);
421 	void			(*sk_data_ready)(struct sock *sk, int bytes);
422 	void			(*sk_write_space)(struct sock *sk);
423 	void			(*sk_error_report)(struct sock *sk);
424 	int			(*sk_backlog_rcv)(struct sock *sk,
425 						  struct sk_buff *skb);
426 	void                    (*sk_destruct)(struct sock *sk);
427 };
428 
429 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
430 
431 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
432 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
433 
434 /*
435  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
436  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
437  * on a socket means that the socket will reuse everybody else's port
438  * without looking at the other's sk_reuse value.
439  */
440 
441 #define SK_NO_REUSE	0
442 #define SK_CAN_REUSE	1
443 #define SK_FORCE_REUSE	2
444 
445 static inline int sk_peek_offset(struct sock *sk, int flags)
446 {
447 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
448 		return sk->sk_peek_off;
449 	else
450 		return 0;
451 }
452 
453 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
454 {
455 	if (sk->sk_peek_off >= 0) {
456 		if (sk->sk_peek_off >= val)
457 			sk->sk_peek_off -= val;
458 		else
459 			sk->sk_peek_off = 0;
460 	}
461 }
462 
463 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
464 {
465 	if (sk->sk_peek_off >= 0)
466 		sk->sk_peek_off += val;
467 }
468 
469 /*
470  * Hashed lists helper routines
471  */
472 static inline struct sock *sk_entry(const struct hlist_node *node)
473 {
474 	return hlist_entry(node, struct sock, sk_node);
475 }
476 
477 static inline struct sock *__sk_head(const struct hlist_head *head)
478 {
479 	return hlist_entry(head->first, struct sock, sk_node);
480 }
481 
482 static inline struct sock *sk_head(const struct hlist_head *head)
483 {
484 	return hlist_empty(head) ? NULL : __sk_head(head);
485 }
486 
487 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
488 {
489 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
490 }
491 
492 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
493 {
494 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
495 }
496 
497 static inline struct sock *sk_next(const struct sock *sk)
498 {
499 	return sk->sk_node.next ?
500 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
501 }
502 
503 static inline struct sock *sk_nulls_next(const struct sock *sk)
504 {
505 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
506 		hlist_nulls_entry(sk->sk_nulls_node.next,
507 				  struct sock, sk_nulls_node) :
508 		NULL;
509 }
510 
511 static inline bool sk_unhashed(const struct sock *sk)
512 {
513 	return hlist_unhashed(&sk->sk_node);
514 }
515 
516 static inline bool sk_hashed(const struct sock *sk)
517 {
518 	return !sk_unhashed(sk);
519 }
520 
521 static inline void sk_node_init(struct hlist_node *node)
522 {
523 	node->pprev = NULL;
524 }
525 
526 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
527 {
528 	node->pprev = NULL;
529 }
530 
531 static inline void __sk_del_node(struct sock *sk)
532 {
533 	__hlist_del(&sk->sk_node);
534 }
535 
536 /* NB: equivalent to hlist_del_init_rcu */
537 static inline bool __sk_del_node_init(struct sock *sk)
538 {
539 	if (sk_hashed(sk)) {
540 		__sk_del_node(sk);
541 		sk_node_init(&sk->sk_node);
542 		return true;
543 	}
544 	return false;
545 }
546 
547 /* Grab socket reference count. This operation is valid only
548    when sk is ALREADY grabbed f.e. it is found in hash table
549    or a list and the lookup is made under lock preventing hash table
550    modifications.
551  */
552 
553 static inline void sock_hold(struct sock *sk)
554 {
555 	atomic_inc(&sk->sk_refcnt);
556 }
557 
558 /* Ungrab socket in the context, which assumes that socket refcnt
559    cannot hit zero, f.e. it is true in context of any socketcall.
560  */
561 static inline void __sock_put(struct sock *sk)
562 {
563 	atomic_dec(&sk->sk_refcnt);
564 }
565 
566 static inline bool sk_del_node_init(struct sock *sk)
567 {
568 	bool rc = __sk_del_node_init(sk);
569 
570 	if (rc) {
571 		/* paranoid for a while -acme */
572 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
573 		__sock_put(sk);
574 	}
575 	return rc;
576 }
577 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
578 
579 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
580 {
581 	if (sk_hashed(sk)) {
582 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
583 		return true;
584 	}
585 	return false;
586 }
587 
588 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
589 {
590 	bool rc = __sk_nulls_del_node_init_rcu(sk);
591 
592 	if (rc) {
593 		/* paranoid for a while -acme */
594 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
595 		__sock_put(sk);
596 	}
597 	return rc;
598 }
599 
600 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
601 {
602 	hlist_add_head(&sk->sk_node, list);
603 }
604 
605 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
606 {
607 	sock_hold(sk);
608 	__sk_add_node(sk, list);
609 }
610 
611 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
612 {
613 	sock_hold(sk);
614 	hlist_add_head_rcu(&sk->sk_node, list);
615 }
616 
617 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
618 {
619 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
620 }
621 
622 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
623 {
624 	sock_hold(sk);
625 	__sk_nulls_add_node_rcu(sk, list);
626 }
627 
628 static inline void __sk_del_bind_node(struct sock *sk)
629 {
630 	__hlist_del(&sk->sk_bind_node);
631 }
632 
633 static inline void sk_add_bind_node(struct sock *sk,
634 					struct hlist_head *list)
635 {
636 	hlist_add_head(&sk->sk_bind_node, list);
637 }
638 
639 #define sk_for_each(__sk, list) \
640 	hlist_for_each_entry(__sk, list, sk_node)
641 #define sk_for_each_rcu(__sk, list) \
642 	hlist_for_each_entry_rcu(__sk, list, sk_node)
643 #define sk_nulls_for_each(__sk, node, list) \
644 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
645 #define sk_nulls_for_each_rcu(__sk, node, list) \
646 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
647 #define sk_for_each_from(__sk) \
648 	hlist_for_each_entry_from(__sk, sk_node)
649 #define sk_nulls_for_each_from(__sk, node) \
650 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
651 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
652 #define sk_for_each_safe(__sk, tmp, list) \
653 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
654 #define sk_for_each_bound(__sk, list) \
655 	hlist_for_each_entry(__sk, list, sk_bind_node)
656 
657 static inline struct user_namespace *sk_user_ns(struct sock *sk)
658 {
659 	/* Careful only use this in a context where these parameters
660 	 * can not change and must all be valid, such as recvmsg from
661 	 * userspace.
662 	 */
663 	return sk->sk_socket->file->f_cred->user_ns;
664 }
665 
666 /* Sock flags */
667 enum sock_flags {
668 	SOCK_DEAD,
669 	SOCK_DONE,
670 	SOCK_URGINLINE,
671 	SOCK_KEEPOPEN,
672 	SOCK_LINGER,
673 	SOCK_DESTROY,
674 	SOCK_BROADCAST,
675 	SOCK_TIMESTAMP,
676 	SOCK_ZAPPED,
677 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
678 	SOCK_DBG, /* %SO_DEBUG setting */
679 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
680 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
681 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
682 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
683 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
684 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
685 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
686 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
687 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
688 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
689 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
690 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
691 	SOCK_FASYNC, /* fasync() active */
692 	SOCK_RXQ_OVFL,
693 	SOCK_ZEROCOPY, /* buffers from userspace */
694 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
695 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
696 		     * Will use last 4 bytes of packet sent from
697 		     * user-space instead.
698 		     */
699 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
700 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
701 };
702 
703 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
704 {
705 	nsk->sk_flags = osk->sk_flags;
706 }
707 
708 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
709 {
710 	__set_bit(flag, &sk->sk_flags);
711 }
712 
713 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
714 {
715 	__clear_bit(flag, &sk->sk_flags);
716 }
717 
718 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
719 {
720 	return test_bit(flag, &sk->sk_flags);
721 }
722 
723 #ifdef CONFIG_NET
724 extern struct static_key memalloc_socks;
725 static inline int sk_memalloc_socks(void)
726 {
727 	return static_key_false(&memalloc_socks);
728 }
729 #else
730 
731 static inline int sk_memalloc_socks(void)
732 {
733 	return 0;
734 }
735 
736 #endif
737 
738 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
739 {
740 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
741 }
742 
743 static inline void sk_acceptq_removed(struct sock *sk)
744 {
745 	sk->sk_ack_backlog--;
746 }
747 
748 static inline void sk_acceptq_added(struct sock *sk)
749 {
750 	sk->sk_ack_backlog++;
751 }
752 
753 static inline bool sk_acceptq_is_full(const struct sock *sk)
754 {
755 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
756 }
757 
758 /*
759  * Compute minimal free write space needed to queue new packets.
760  */
761 static inline int sk_stream_min_wspace(const struct sock *sk)
762 {
763 	return sk->sk_wmem_queued >> 1;
764 }
765 
766 static inline int sk_stream_wspace(const struct sock *sk)
767 {
768 	return sk->sk_sndbuf - sk->sk_wmem_queued;
769 }
770 
771 void sk_stream_write_space(struct sock *sk);
772 
773 /* OOB backlog add */
774 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
775 {
776 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
777 	skb_dst_force(skb);
778 
779 	if (!sk->sk_backlog.tail)
780 		sk->sk_backlog.head = skb;
781 	else
782 		sk->sk_backlog.tail->next = skb;
783 
784 	sk->sk_backlog.tail = skb;
785 	skb->next = NULL;
786 }
787 
788 /*
789  * Take into account size of receive queue and backlog queue
790  * Do not take into account this skb truesize,
791  * to allow even a single big packet to come.
792  */
793 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
794 				     unsigned int limit)
795 {
796 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
797 
798 	return qsize > limit;
799 }
800 
801 /* The per-socket spinlock must be held here. */
802 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
803 					      unsigned int limit)
804 {
805 	if (sk_rcvqueues_full(sk, skb, limit))
806 		return -ENOBUFS;
807 
808 	__sk_add_backlog(sk, skb);
809 	sk->sk_backlog.len += skb->truesize;
810 	return 0;
811 }
812 
813 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
814 
815 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
816 {
817 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
818 		return __sk_backlog_rcv(sk, skb);
819 
820 	return sk->sk_backlog_rcv(sk, skb);
821 }
822 
823 static inline void sock_rps_record_flow(const struct sock *sk)
824 {
825 #ifdef CONFIG_RPS
826 	struct rps_sock_flow_table *sock_flow_table;
827 
828 	rcu_read_lock();
829 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
830 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
831 	rcu_read_unlock();
832 #endif
833 }
834 
835 static inline void sock_rps_reset_flow(const struct sock *sk)
836 {
837 #ifdef CONFIG_RPS
838 	struct rps_sock_flow_table *sock_flow_table;
839 
840 	rcu_read_lock();
841 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
842 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
843 	rcu_read_unlock();
844 #endif
845 }
846 
847 static inline void sock_rps_save_rxhash(struct sock *sk,
848 					const struct sk_buff *skb)
849 {
850 #ifdef CONFIG_RPS
851 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
852 		sock_rps_reset_flow(sk);
853 		sk->sk_rxhash = skb->rxhash;
854 	}
855 #endif
856 }
857 
858 static inline void sock_rps_reset_rxhash(struct sock *sk)
859 {
860 #ifdef CONFIG_RPS
861 	sock_rps_reset_flow(sk);
862 	sk->sk_rxhash = 0;
863 #endif
864 }
865 
866 #define sk_wait_event(__sk, __timeo, __condition)			\
867 	({	int __rc;						\
868 		release_sock(__sk);					\
869 		__rc = __condition;					\
870 		if (!__rc) {						\
871 			*(__timeo) = schedule_timeout(*(__timeo));	\
872 		}							\
873 		lock_sock(__sk);					\
874 		__rc = __condition;					\
875 		__rc;							\
876 	})
877 
878 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
879 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
880 void sk_stream_wait_close(struct sock *sk, long timeo_p);
881 int sk_stream_error(struct sock *sk, int flags, int err);
882 void sk_stream_kill_queues(struct sock *sk);
883 void sk_set_memalloc(struct sock *sk);
884 void sk_clear_memalloc(struct sock *sk);
885 
886 int sk_wait_data(struct sock *sk, long *timeo);
887 
888 struct request_sock_ops;
889 struct timewait_sock_ops;
890 struct inet_hashinfo;
891 struct raw_hashinfo;
892 struct module;
893 
894 /*
895  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
896  * un-modified. Special care is taken when initializing object to zero.
897  */
898 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
899 {
900 	if (offsetof(struct sock, sk_node.next) != 0)
901 		memset(sk, 0, offsetof(struct sock, sk_node.next));
902 	memset(&sk->sk_node.pprev, 0,
903 	       size - offsetof(struct sock, sk_node.pprev));
904 }
905 
906 /* Networking protocol blocks we attach to sockets.
907  * socket layer -> transport layer interface
908  * transport -> network interface is defined by struct inet_proto
909  */
910 struct proto {
911 	void			(*close)(struct sock *sk,
912 					long timeout);
913 	int			(*connect)(struct sock *sk,
914 					struct sockaddr *uaddr,
915 					int addr_len);
916 	int			(*disconnect)(struct sock *sk, int flags);
917 
918 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
919 
920 	int			(*ioctl)(struct sock *sk, int cmd,
921 					 unsigned long arg);
922 	int			(*init)(struct sock *sk);
923 	void			(*destroy)(struct sock *sk);
924 	void			(*shutdown)(struct sock *sk, int how);
925 	int			(*setsockopt)(struct sock *sk, int level,
926 					int optname, char __user *optval,
927 					unsigned int optlen);
928 	int			(*getsockopt)(struct sock *sk, int level,
929 					int optname, char __user *optval,
930 					int __user *option);
931 #ifdef CONFIG_COMPAT
932 	int			(*compat_setsockopt)(struct sock *sk,
933 					int level,
934 					int optname, char __user *optval,
935 					unsigned int optlen);
936 	int			(*compat_getsockopt)(struct sock *sk,
937 					int level,
938 					int optname, char __user *optval,
939 					int __user *option);
940 	int			(*compat_ioctl)(struct sock *sk,
941 					unsigned int cmd, unsigned long arg);
942 #endif
943 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
944 					   struct msghdr *msg, size_t len);
945 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
946 					   struct msghdr *msg,
947 					   size_t len, int noblock, int flags,
948 					   int *addr_len);
949 	int			(*sendpage)(struct sock *sk, struct page *page,
950 					int offset, size_t size, int flags);
951 	int			(*bind)(struct sock *sk,
952 					struct sockaddr *uaddr, int addr_len);
953 
954 	int			(*backlog_rcv) (struct sock *sk,
955 						struct sk_buff *skb);
956 
957 	void		(*release_cb)(struct sock *sk);
958 	void		(*mtu_reduced)(struct sock *sk);
959 
960 	/* Keeping track of sk's, looking them up, and port selection methods. */
961 	void			(*hash)(struct sock *sk);
962 	void			(*unhash)(struct sock *sk);
963 	void			(*rehash)(struct sock *sk);
964 	int			(*get_port)(struct sock *sk, unsigned short snum);
965 	void			(*clear_sk)(struct sock *sk, int size);
966 
967 	/* Keeping track of sockets in use */
968 #ifdef CONFIG_PROC_FS
969 	unsigned int		inuse_idx;
970 #endif
971 
972 	bool			(*stream_memory_free)(const struct sock *sk);
973 	/* Memory pressure */
974 	void			(*enter_memory_pressure)(struct sock *sk);
975 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
976 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
977 	/*
978 	 * Pressure flag: try to collapse.
979 	 * Technical note: it is used by multiple contexts non atomically.
980 	 * All the __sk_mem_schedule() is of this nature: accounting
981 	 * is strict, actions are advisory and have some latency.
982 	 */
983 	int			*memory_pressure;
984 	long			*sysctl_mem;
985 	int			*sysctl_wmem;
986 	int			*sysctl_rmem;
987 	int			max_header;
988 	bool			no_autobind;
989 
990 	struct kmem_cache	*slab;
991 	unsigned int		obj_size;
992 	int			slab_flags;
993 
994 	struct percpu_counter	*orphan_count;
995 
996 	struct request_sock_ops	*rsk_prot;
997 	struct timewait_sock_ops *twsk_prot;
998 
999 	union {
1000 		struct inet_hashinfo	*hashinfo;
1001 		struct udp_table	*udp_table;
1002 		struct raw_hashinfo	*raw_hash;
1003 	} h;
1004 
1005 	struct module		*owner;
1006 
1007 	char			name[32];
1008 
1009 	struct list_head	node;
1010 #ifdef SOCK_REFCNT_DEBUG
1011 	atomic_t		socks;
1012 #endif
1013 #ifdef CONFIG_MEMCG_KMEM
1014 	/*
1015 	 * cgroup specific init/deinit functions. Called once for all
1016 	 * protocols that implement it, from cgroups populate function.
1017 	 * This function has to setup any files the protocol want to
1018 	 * appear in the kmem cgroup filesystem.
1019 	 */
1020 	int			(*init_cgroup)(struct mem_cgroup *memcg,
1021 					       struct cgroup_subsys *ss);
1022 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1023 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1024 #endif
1025 };
1026 
1027 /*
1028  * Bits in struct cg_proto.flags
1029  */
1030 enum cg_proto_flags {
1031 	/* Currently active and new sockets should be assigned to cgroups */
1032 	MEMCG_SOCK_ACTIVE,
1033 	/* It was ever activated; we must disarm static keys on destruction */
1034 	MEMCG_SOCK_ACTIVATED,
1035 };
1036 
1037 struct cg_proto {
1038 	struct res_counter	memory_allocated;	/* Current allocated memory. */
1039 	struct percpu_counter	sockets_allocated;	/* Current number of sockets. */
1040 	int			memory_pressure;
1041 	long			sysctl_mem[3];
1042 	unsigned long		flags;
1043 	/*
1044 	 * memcg field is used to find which memcg we belong directly
1045 	 * Each memcg struct can hold more than one cg_proto, so container_of
1046 	 * won't really cut.
1047 	 *
1048 	 * The elegant solution would be having an inverse function to
1049 	 * proto_cgroup in struct proto, but that means polluting the structure
1050 	 * for everybody, instead of just for memcg users.
1051 	 */
1052 	struct mem_cgroup	*memcg;
1053 };
1054 
1055 int proto_register(struct proto *prot, int alloc_slab);
1056 void proto_unregister(struct proto *prot);
1057 
1058 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1059 {
1060 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1061 }
1062 
1063 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1064 {
1065 	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1066 }
1067 
1068 #ifdef SOCK_REFCNT_DEBUG
1069 static inline void sk_refcnt_debug_inc(struct sock *sk)
1070 {
1071 	atomic_inc(&sk->sk_prot->socks);
1072 }
1073 
1074 static inline void sk_refcnt_debug_dec(struct sock *sk)
1075 {
1076 	atomic_dec(&sk->sk_prot->socks);
1077 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1078 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1079 }
1080 
1081 static inline void sk_refcnt_debug_release(const struct sock *sk)
1082 {
1083 	if (atomic_read(&sk->sk_refcnt) != 1)
1084 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1085 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1086 }
1087 #else /* SOCK_REFCNT_DEBUG */
1088 #define sk_refcnt_debug_inc(sk) do { } while (0)
1089 #define sk_refcnt_debug_dec(sk) do { } while (0)
1090 #define sk_refcnt_debug_release(sk) do { } while (0)
1091 #endif /* SOCK_REFCNT_DEBUG */
1092 
1093 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1094 extern struct static_key memcg_socket_limit_enabled;
1095 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1096 					       struct cg_proto *cg_proto)
1097 {
1098 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1099 }
1100 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1101 #else
1102 #define mem_cgroup_sockets_enabled 0
1103 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1104 					       struct cg_proto *cg_proto)
1105 {
1106 	return NULL;
1107 }
1108 #endif
1109 
1110 static inline bool sk_stream_memory_free(const struct sock *sk)
1111 {
1112 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1113 		return false;
1114 
1115 	return sk->sk_prot->stream_memory_free ?
1116 		sk->sk_prot->stream_memory_free(sk) : true;
1117 }
1118 
1119 static inline bool sk_stream_is_writeable(const struct sock *sk)
1120 {
1121 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1122 	       sk_stream_memory_free(sk);
1123 }
1124 
1125 
1126 static inline bool sk_has_memory_pressure(const struct sock *sk)
1127 {
1128 	return sk->sk_prot->memory_pressure != NULL;
1129 }
1130 
1131 static inline bool sk_under_memory_pressure(const struct sock *sk)
1132 {
1133 	if (!sk->sk_prot->memory_pressure)
1134 		return false;
1135 
1136 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1137 		return !!sk->sk_cgrp->memory_pressure;
1138 
1139 	return !!*sk->sk_prot->memory_pressure;
1140 }
1141 
1142 static inline void sk_leave_memory_pressure(struct sock *sk)
1143 {
1144 	int *memory_pressure = sk->sk_prot->memory_pressure;
1145 
1146 	if (!memory_pressure)
1147 		return;
1148 
1149 	if (*memory_pressure)
1150 		*memory_pressure = 0;
1151 
1152 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1153 		struct cg_proto *cg_proto = sk->sk_cgrp;
1154 		struct proto *prot = sk->sk_prot;
1155 
1156 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1157 			cg_proto->memory_pressure = 0;
1158 	}
1159 
1160 }
1161 
1162 static inline void sk_enter_memory_pressure(struct sock *sk)
1163 {
1164 	if (!sk->sk_prot->enter_memory_pressure)
1165 		return;
1166 
1167 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1168 		struct cg_proto *cg_proto = sk->sk_cgrp;
1169 		struct proto *prot = sk->sk_prot;
1170 
1171 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1172 			cg_proto->memory_pressure = 1;
1173 	}
1174 
1175 	sk->sk_prot->enter_memory_pressure(sk);
1176 }
1177 
1178 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1179 {
1180 	long *prot = sk->sk_prot->sysctl_mem;
1181 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1182 		prot = sk->sk_cgrp->sysctl_mem;
1183 	return prot[index];
1184 }
1185 
1186 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1187 					      unsigned long amt,
1188 					      int *parent_status)
1189 {
1190 	struct res_counter *fail;
1191 	int ret;
1192 
1193 	ret = res_counter_charge_nofail(&prot->memory_allocated,
1194 					amt << PAGE_SHIFT, &fail);
1195 	if (ret < 0)
1196 		*parent_status = OVER_LIMIT;
1197 }
1198 
1199 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1200 					      unsigned long amt)
1201 {
1202 	res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
1203 }
1204 
1205 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1206 {
1207 	u64 ret;
1208 	ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
1209 	return ret >> PAGE_SHIFT;
1210 }
1211 
1212 static inline long
1213 sk_memory_allocated(const struct sock *sk)
1214 {
1215 	struct proto *prot = sk->sk_prot;
1216 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1217 		return memcg_memory_allocated_read(sk->sk_cgrp);
1218 
1219 	return atomic_long_read(prot->memory_allocated);
1220 }
1221 
1222 static inline long
1223 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1224 {
1225 	struct proto *prot = sk->sk_prot;
1226 
1227 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1228 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1229 		/* update the root cgroup regardless */
1230 		atomic_long_add_return(amt, prot->memory_allocated);
1231 		return memcg_memory_allocated_read(sk->sk_cgrp);
1232 	}
1233 
1234 	return atomic_long_add_return(amt, prot->memory_allocated);
1235 }
1236 
1237 static inline void
1238 sk_memory_allocated_sub(struct sock *sk, int amt)
1239 {
1240 	struct proto *prot = sk->sk_prot;
1241 
1242 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1243 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1244 
1245 	atomic_long_sub(amt, prot->memory_allocated);
1246 }
1247 
1248 static inline void sk_sockets_allocated_dec(struct sock *sk)
1249 {
1250 	struct proto *prot = sk->sk_prot;
1251 
1252 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1253 		struct cg_proto *cg_proto = sk->sk_cgrp;
1254 
1255 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1256 			percpu_counter_dec(&cg_proto->sockets_allocated);
1257 	}
1258 
1259 	percpu_counter_dec(prot->sockets_allocated);
1260 }
1261 
1262 static inline void sk_sockets_allocated_inc(struct sock *sk)
1263 {
1264 	struct proto *prot = sk->sk_prot;
1265 
1266 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1267 		struct cg_proto *cg_proto = sk->sk_cgrp;
1268 
1269 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1270 			percpu_counter_inc(&cg_proto->sockets_allocated);
1271 	}
1272 
1273 	percpu_counter_inc(prot->sockets_allocated);
1274 }
1275 
1276 static inline int
1277 sk_sockets_allocated_read_positive(struct sock *sk)
1278 {
1279 	struct proto *prot = sk->sk_prot;
1280 
1281 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1282 		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1283 
1284 	return percpu_counter_read_positive(prot->sockets_allocated);
1285 }
1286 
1287 static inline int
1288 proto_sockets_allocated_sum_positive(struct proto *prot)
1289 {
1290 	return percpu_counter_sum_positive(prot->sockets_allocated);
1291 }
1292 
1293 static inline long
1294 proto_memory_allocated(struct proto *prot)
1295 {
1296 	return atomic_long_read(prot->memory_allocated);
1297 }
1298 
1299 static inline bool
1300 proto_memory_pressure(struct proto *prot)
1301 {
1302 	if (!prot->memory_pressure)
1303 		return false;
1304 	return !!*prot->memory_pressure;
1305 }
1306 
1307 
1308 #ifdef CONFIG_PROC_FS
1309 /* Called with local bh disabled */
1310 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1311 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1312 #else
1313 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1314 		int inc)
1315 {
1316 }
1317 #endif
1318 
1319 
1320 /* With per-bucket locks this operation is not-atomic, so that
1321  * this version is not worse.
1322  */
1323 static inline void __sk_prot_rehash(struct sock *sk)
1324 {
1325 	sk->sk_prot->unhash(sk);
1326 	sk->sk_prot->hash(sk);
1327 }
1328 
1329 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1330 
1331 /* About 10 seconds */
1332 #define SOCK_DESTROY_TIME (10*HZ)
1333 
1334 /* Sockets 0-1023 can't be bound to unless you are superuser */
1335 #define PROT_SOCK	1024
1336 
1337 #define SHUTDOWN_MASK	3
1338 #define RCV_SHUTDOWN	1
1339 #define SEND_SHUTDOWN	2
1340 
1341 #define SOCK_SNDBUF_LOCK	1
1342 #define SOCK_RCVBUF_LOCK	2
1343 #define SOCK_BINDADDR_LOCK	4
1344 #define SOCK_BINDPORT_LOCK	8
1345 
1346 /* sock_iocb: used to kick off async processing of socket ios */
1347 struct sock_iocb {
1348 	struct list_head	list;
1349 
1350 	int			flags;
1351 	int			size;
1352 	struct socket		*sock;
1353 	struct sock		*sk;
1354 	struct scm_cookie	*scm;
1355 	struct msghdr		*msg, async_msg;
1356 	struct kiocb		*kiocb;
1357 };
1358 
1359 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1360 {
1361 	return (struct sock_iocb *)iocb->private;
1362 }
1363 
1364 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1365 {
1366 	return si->kiocb;
1367 }
1368 
1369 struct socket_alloc {
1370 	struct socket socket;
1371 	struct inode vfs_inode;
1372 };
1373 
1374 static inline struct socket *SOCKET_I(struct inode *inode)
1375 {
1376 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1377 }
1378 
1379 static inline struct inode *SOCK_INODE(struct socket *socket)
1380 {
1381 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1382 }
1383 
1384 /*
1385  * Functions for memory accounting
1386  */
1387 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1388 void __sk_mem_reclaim(struct sock *sk);
1389 
1390 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1391 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1392 #define SK_MEM_SEND	0
1393 #define SK_MEM_RECV	1
1394 
1395 static inline int sk_mem_pages(int amt)
1396 {
1397 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1398 }
1399 
1400 static inline bool sk_has_account(struct sock *sk)
1401 {
1402 	/* return true if protocol supports memory accounting */
1403 	return !!sk->sk_prot->memory_allocated;
1404 }
1405 
1406 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1407 {
1408 	if (!sk_has_account(sk))
1409 		return true;
1410 	return size <= sk->sk_forward_alloc ||
1411 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1412 }
1413 
1414 static inline bool
1415 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1416 {
1417 	if (!sk_has_account(sk))
1418 		return true;
1419 	return size<= sk->sk_forward_alloc ||
1420 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1421 		skb_pfmemalloc(skb);
1422 }
1423 
1424 static inline void sk_mem_reclaim(struct sock *sk)
1425 {
1426 	if (!sk_has_account(sk))
1427 		return;
1428 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1429 		__sk_mem_reclaim(sk);
1430 }
1431 
1432 static inline void sk_mem_reclaim_partial(struct sock *sk)
1433 {
1434 	if (!sk_has_account(sk))
1435 		return;
1436 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1437 		__sk_mem_reclaim(sk);
1438 }
1439 
1440 static inline void sk_mem_charge(struct sock *sk, int size)
1441 {
1442 	if (!sk_has_account(sk))
1443 		return;
1444 	sk->sk_forward_alloc -= size;
1445 }
1446 
1447 static inline void sk_mem_uncharge(struct sock *sk, int size)
1448 {
1449 	if (!sk_has_account(sk))
1450 		return;
1451 	sk->sk_forward_alloc += size;
1452 }
1453 
1454 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1455 {
1456 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1457 	sk->sk_wmem_queued -= skb->truesize;
1458 	sk_mem_uncharge(sk, skb->truesize);
1459 	__kfree_skb(skb);
1460 }
1461 
1462 /* Used by processes to "lock" a socket state, so that
1463  * interrupts and bottom half handlers won't change it
1464  * from under us. It essentially blocks any incoming
1465  * packets, so that we won't get any new data or any
1466  * packets that change the state of the socket.
1467  *
1468  * While locked, BH processing will add new packets to
1469  * the backlog queue.  This queue is processed by the
1470  * owner of the socket lock right before it is released.
1471  *
1472  * Since ~2.3.5 it is also exclusive sleep lock serializing
1473  * accesses from user process context.
1474  */
1475 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1476 
1477 /*
1478  * Macro so as to not evaluate some arguments when
1479  * lockdep is not enabled.
1480  *
1481  * Mark both the sk_lock and the sk_lock.slock as a
1482  * per-address-family lock class.
1483  */
1484 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1485 do {									\
1486 	sk->sk_lock.owned = 0;						\
1487 	init_waitqueue_head(&sk->sk_lock.wq);				\
1488 	spin_lock_init(&(sk)->sk_lock.slock);				\
1489 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1490 			sizeof((sk)->sk_lock));				\
1491 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1492 				(skey), (sname));				\
1493 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1494 } while (0)
1495 
1496 void lock_sock_nested(struct sock *sk, int subclass);
1497 
1498 static inline void lock_sock(struct sock *sk)
1499 {
1500 	lock_sock_nested(sk, 0);
1501 }
1502 
1503 void release_sock(struct sock *sk);
1504 
1505 /* BH context may only use the following locking interface. */
1506 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1507 #define bh_lock_sock_nested(__sk) \
1508 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1509 				SINGLE_DEPTH_NESTING)
1510 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1511 
1512 bool lock_sock_fast(struct sock *sk);
1513 /**
1514  * unlock_sock_fast - complement of lock_sock_fast
1515  * @sk: socket
1516  * @slow: slow mode
1517  *
1518  * fast unlock socket for user context.
1519  * If slow mode is on, we call regular release_sock()
1520  */
1521 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1522 {
1523 	if (slow)
1524 		release_sock(sk);
1525 	else
1526 		spin_unlock_bh(&sk->sk_lock.slock);
1527 }
1528 
1529 
1530 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1531 		      struct proto *prot);
1532 void sk_free(struct sock *sk);
1533 void sk_release_kernel(struct sock *sk);
1534 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1535 
1536 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1537 			     gfp_t priority);
1538 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1539 			     gfp_t priority);
1540 void sock_wfree(struct sk_buff *skb);
1541 void skb_orphan_partial(struct sk_buff *skb);
1542 void sock_rfree(struct sk_buff *skb);
1543 void sock_edemux(struct sk_buff *skb);
1544 
1545 int sock_setsockopt(struct socket *sock, int level, int op,
1546 		    char __user *optval, unsigned int optlen);
1547 
1548 int sock_getsockopt(struct socket *sock, int level, int op,
1549 		    char __user *optval, int __user *optlen);
1550 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1551 				    int noblock, int *errcode);
1552 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1553 				     unsigned long data_len, int noblock,
1554 				     int *errcode, int max_page_order);
1555 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1556 void sock_kfree_s(struct sock *sk, void *mem, int size);
1557 void sk_send_sigurg(struct sock *sk);
1558 
1559 /*
1560  * Functions to fill in entries in struct proto_ops when a protocol
1561  * does not implement a particular function.
1562  */
1563 int sock_no_bind(struct socket *, struct sockaddr *, int);
1564 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1565 int sock_no_socketpair(struct socket *, struct socket *);
1566 int sock_no_accept(struct socket *, struct socket *, int);
1567 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1568 unsigned int sock_no_poll(struct file *, struct socket *,
1569 			  struct poll_table_struct *);
1570 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1571 int sock_no_listen(struct socket *, int);
1572 int sock_no_shutdown(struct socket *, int);
1573 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1574 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1575 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1576 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1577 		    int);
1578 int sock_no_mmap(struct file *file, struct socket *sock,
1579 		 struct vm_area_struct *vma);
1580 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1581 			 size_t size, int flags);
1582 
1583 /*
1584  * Functions to fill in entries in struct proto_ops when a protocol
1585  * uses the inet style.
1586  */
1587 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1588 				  char __user *optval, int __user *optlen);
1589 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1590 			       struct msghdr *msg, size_t size, int flags);
1591 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1592 				  char __user *optval, unsigned int optlen);
1593 int compat_sock_common_getsockopt(struct socket *sock, int level,
1594 		int optname, char __user *optval, int __user *optlen);
1595 int compat_sock_common_setsockopt(struct socket *sock, int level,
1596 		int optname, char __user *optval, unsigned int optlen);
1597 
1598 void sk_common_release(struct sock *sk);
1599 
1600 /*
1601  *	Default socket callbacks and setup code
1602  */
1603 
1604 /* Initialise core socket variables */
1605 void sock_init_data(struct socket *sock, struct sock *sk);
1606 
1607 void sk_filter_release_rcu(struct rcu_head *rcu);
1608 
1609 /**
1610  *	sk_filter_release - release a socket filter
1611  *	@fp: filter to remove
1612  *
1613  *	Remove a filter from a socket and release its resources.
1614  */
1615 
1616 static inline void sk_filter_release(struct sk_filter *fp)
1617 {
1618 	if (atomic_dec_and_test(&fp->refcnt))
1619 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1620 }
1621 
1622 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1623 {
1624 	atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1625 	sk_filter_release(fp);
1626 }
1627 
1628 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1629 {
1630 	atomic_inc(&fp->refcnt);
1631 	atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1632 }
1633 
1634 /*
1635  * Socket reference counting postulates.
1636  *
1637  * * Each user of socket SHOULD hold a reference count.
1638  * * Each access point to socket (an hash table bucket, reference from a list,
1639  *   running timer, skb in flight MUST hold a reference count.
1640  * * When reference count hits 0, it means it will never increase back.
1641  * * When reference count hits 0, it means that no references from
1642  *   outside exist to this socket and current process on current CPU
1643  *   is last user and may/should destroy this socket.
1644  * * sk_free is called from any context: process, BH, IRQ. When
1645  *   it is called, socket has no references from outside -> sk_free
1646  *   may release descendant resources allocated by the socket, but
1647  *   to the time when it is called, socket is NOT referenced by any
1648  *   hash tables, lists etc.
1649  * * Packets, delivered from outside (from network or from another process)
1650  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1651  *   when they sit in queue. Otherwise, packets will leak to hole, when
1652  *   socket is looked up by one cpu and unhasing is made by another CPU.
1653  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1654  *   (leak to backlog). Packet socket does all the processing inside
1655  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1656  *   use separate SMP lock, so that they are prone too.
1657  */
1658 
1659 /* Ungrab socket and destroy it, if it was the last reference. */
1660 static inline void sock_put(struct sock *sk)
1661 {
1662 	if (atomic_dec_and_test(&sk->sk_refcnt))
1663 		sk_free(sk);
1664 }
1665 /* Generic version of sock_put(), dealing with all sockets
1666  * (TCP_TIMEWAIT, ESTABLISHED...)
1667  */
1668 void sock_gen_put(struct sock *sk);
1669 
1670 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1671 
1672 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1673 {
1674 	sk->sk_tx_queue_mapping = tx_queue;
1675 }
1676 
1677 static inline void sk_tx_queue_clear(struct sock *sk)
1678 {
1679 	sk->sk_tx_queue_mapping = -1;
1680 }
1681 
1682 static inline int sk_tx_queue_get(const struct sock *sk)
1683 {
1684 	return sk ? sk->sk_tx_queue_mapping : -1;
1685 }
1686 
1687 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1688 {
1689 	sk_tx_queue_clear(sk);
1690 	sk->sk_socket = sock;
1691 }
1692 
1693 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1694 {
1695 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1696 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1697 }
1698 /* Detach socket from process context.
1699  * Announce socket dead, detach it from wait queue and inode.
1700  * Note that parent inode held reference count on this struct sock,
1701  * we do not release it in this function, because protocol
1702  * probably wants some additional cleanups or even continuing
1703  * to work with this socket (TCP).
1704  */
1705 static inline void sock_orphan(struct sock *sk)
1706 {
1707 	write_lock_bh(&sk->sk_callback_lock);
1708 	sock_set_flag(sk, SOCK_DEAD);
1709 	sk_set_socket(sk, NULL);
1710 	sk->sk_wq  = NULL;
1711 	write_unlock_bh(&sk->sk_callback_lock);
1712 }
1713 
1714 static inline void sock_graft(struct sock *sk, struct socket *parent)
1715 {
1716 	write_lock_bh(&sk->sk_callback_lock);
1717 	sk->sk_wq = parent->wq;
1718 	parent->sk = sk;
1719 	sk_set_socket(sk, parent);
1720 	security_sock_graft(sk, parent);
1721 	write_unlock_bh(&sk->sk_callback_lock);
1722 }
1723 
1724 kuid_t sock_i_uid(struct sock *sk);
1725 unsigned long sock_i_ino(struct sock *sk);
1726 
1727 static inline struct dst_entry *
1728 __sk_dst_get(struct sock *sk)
1729 {
1730 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1731 						       lockdep_is_held(&sk->sk_lock.slock));
1732 }
1733 
1734 static inline struct dst_entry *
1735 sk_dst_get(struct sock *sk)
1736 {
1737 	struct dst_entry *dst;
1738 
1739 	rcu_read_lock();
1740 	dst = rcu_dereference(sk->sk_dst_cache);
1741 	if (dst)
1742 		dst_hold(dst);
1743 	rcu_read_unlock();
1744 	return dst;
1745 }
1746 
1747 static inline void dst_negative_advice(struct sock *sk)
1748 {
1749 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1750 
1751 	if (dst && dst->ops->negative_advice) {
1752 		ndst = dst->ops->negative_advice(dst);
1753 
1754 		if (ndst != dst) {
1755 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1756 			sk_tx_queue_clear(sk);
1757 		}
1758 	}
1759 }
1760 
1761 static inline void
1762 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1763 {
1764 	struct dst_entry *old_dst;
1765 
1766 	sk_tx_queue_clear(sk);
1767 	/*
1768 	 * This can be called while sk is owned by the caller only,
1769 	 * with no state that can be checked in a rcu_dereference_check() cond
1770 	 */
1771 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1772 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1773 	dst_release(old_dst);
1774 }
1775 
1776 static inline void
1777 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1778 {
1779 	spin_lock(&sk->sk_dst_lock);
1780 	__sk_dst_set(sk, dst);
1781 	spin_unlock(&sk->sk_dst_lock);
1782 }
1783 
1784 static inline void
1785 __sk_dst_reset(struct sock *sk)
1786 {
1787 	__sk_dst_set(sk, NULL);
1788 }
1789 
1790 static inline void
1791 sk_dst_reset(struct sock *sk)
1792 {
1793 	spin_lock(&sk->sk_dst_lock);
1794 	__sk_dst_reset(sk);
1795 	spin_unlock(&sk->sk_dst_lock);
1796 }
1797 
1798 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1799 
1800 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1801 
1802 static inline bool sk_can_gso(const struct sock *sk)
1803 {
1804 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1805 }
1806 
1807 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1808 
1809 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1810 {
1811 	sk->sk_route_nocaps |= flags;
1812 	sk->sk_route_caps &= ~flags;
1813 }
1814 
1815 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1816 					   char __user *from, char *to,
1817 					   int copy, int offset)
1818 {
1819 	if (skb->ip_summed == CHECKSUM_NONE) {
1820 		int err = 0;
1821 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1822 		if (err)
1823 			return err;
1824 		skb->csum = csum_block_add(skb->csum, csum, offset);
1825 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1826 		if (!access_ok(VERIFY_READ, from, copy) ||
1827 		    __copy_from_user_nocache(to, from, copy))
1828 			return -EFAULT;
1829 	} else if (copy_from_user(to, from, copy))
1830 		return -EFAULT;
1831 
1832 	return 0;
1833 }
1834 
1835 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1836 				       char __user *from, int copy)
1837 {
1838 	int err, offset = skb->len;
1839 
1840 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1841 				       copy, offset);
1842 	if (err)
1843 		__skb_trim(skb, offset);
1844 
1845 	return err;
1846 }
1847 
1848 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1849 					   struct sk_buff *skb,
1850 					   struct page *page,
1851 					   int off, int copy)
1852 {
1853 	int err;
1854 
1855 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1856 				       copy, skb->len);
1857 	if (err)
1858 		return err;
1859 
1860 	skb->len	     += copy;
1861 	skb->data_len	     += copy;
1862 	skb->truesize	     += copy;
1863 	sk->sk_wmem_queued   += copy;
1864 	sk_mem_charge(sk, copy);
1865 	return 0;
1866 }
1867 
1868 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1869 				   struct sk_buff *skb, struct page *page,
1870 				   int off, int copy)
1871 {
1872 	if (skb->ip_summed == CHECKSUM_NONE) {
1873 		int err = 0;
1874 		__wsum csum = csum_and_copy_from_user(from,
1875 						     page_address(page) + off,
1876 							    copy, 0, &err);
1877 		if (err)
1878 			return err;
1879 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1880 	} else if (copy_from_user(page_address(page) + off, from, copy))
1881 		return -EFAULT;
1882 
1883 	skb->len	     += copy;
1884 	skb->data_len	     += copy;
1885 	skb->truesize	     += copy;
1886 	sk->sk_wmem_queued   += copy;
1887 	sk_mem_charge(sk, copy);
1888 	return 0;
1889 }
1890 
1891 /**
1892  * sk_wmem_alloc_get - returns write allocations
1893  * @sk: socket
1894  *
1895  * Returns sk_wmem_alloc minus initial offset of one
1896  */
1897 static inline int sk_wmem_alloc_get(const struct sock *sk)
1898 {
1899 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1900 }
1901 
1902 /**
1903  * sk_rmem_alloc_get - returns read allocations
1904  * @sk: socket
1905  *
1906  * Returns sk_rmem_alloc
1907  */
1908 static inline int sk_rmem_alloc_get(const struct sock *sk)
1909 {
1910 	return atomic_read(&sk->sk_rmem_alloc);
1911 }
1912 
1913 /**
1914  * sk_has_allocations - check if allocations are outstanding
1915  * @sk: socket
1916  *
1917  * Returns true if socket has write or read allocations
1918  */
1919 static inline bool sk_has_allocations(const struct sock *sk)
1920 {
1921 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1922 }
1923 
1924 /**
1925  * wq_has_sleeper - check if there are any waiting processes
1926  * @wq: struct socket_wq
1927  *
1928  * Returns true if socket_wq has waiting processes
1929  *
1930  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1931  * barrier call. They were added due to the race found within the tcp code.
1932  *
1933  * Consider following tcp code paths:
1934  *
1935  * CPU1                  CPU2
1936  *
1937  * sys_select            receive packet
1938  *   ...                 ...
1939  *   __add_wait_queue    update tp->rcv_nxt
1940  *   ...                 ...
1941  *   tp->rcv_nxt check   sock_def_readable
1942  *   ...                 {
1943  *   schedule               rcu_read_lock();
1944  *                          wq = rcu_dereference(sk->sk_wq);
1945  *                          if (wq && waitqueue_active(&wq->wait))
1946  *                              wake_up_interruptible(&wq->wait)
1947  *                          ...
1948  *                       }
1949  *
1950  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1951  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1952  * could then endup calling schedule and sleep forever if there are no more
1953  * data on the socket.
1954  *
1955  */
1956 static inline bool wq_has_sleeper(struct socket_wq *wq)
1957 {
1958 	/* We need to be sure we are in sync with the
1959 	 * add_wait_queue modifications to the wait queue.
1960 	 *
1961 	 * This memory barrier is paired in the sock_poll_wait.
1962 	 */
1963 	smp_mb();
1964 	return wq && waitqueue_active(&wq->wait);
1965 }
1966 
1967 /**
1968  * sock_poll_wait - place memory barrier behind the poll_wait call.
1969  * @filp:           file
1970  * @wait_address:   socket wait queue
1971  * @p:              poll_table
1972  *
1973  * See the comments in the wq_has_sleeper function.
1974  */
1975 static inline void sock_poll_wait(struct file *filp,
1976 		wait_queue_head_t *wait_address, poll_table *p)
1977 {
1978 	if (!poll_does_not_wait(p) && wait_address) {
1979 		poll_wait(filp, wait_address, p);
1980 		/* We need to be sure we are in sync with the
1981 		 * socket flags modification.
1982 		 *
1983 		 * This memory barrier is paired in the wq_has_sleeper.
1984 		 */
1985 		smp_mb();
1986 	}
1987 }
1988 
1989 /*
1990  *	Queue a received datagram if it will fit. Stream and sequenced
1991  *	protocols can't normally use this as they need to fit buffers in
1992  *	and play with them.
1993  *
1994  *	Inlined as it's very short and called for pretty much every
1995  *	packet ever received.
1996  */
1997 
1998 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1999 {
2000 	skb_orphan(skb);
2001 	skb->sk = sk;
2002 	skb->destructor = sock_wfree;
2003 	/*
2004 	 * We used to take a refcount on sk, but following operation
2005 	 * is enough to guarantee sk_free() wont free this sock until
2006 	 * all in-flight packets are completed
2007 	 */
2008 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2009 }
2010 
2011 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2012 {
2013 	skb_orphan(skb);
2014 	skb->sk = sk;
2015 	skb->destructor = sock_rfree;
2016 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2017 	sk_mem_charge(sk, skb->truesize);
2018 }
2019 
2020 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2021 		    unsigned long expires);
2022 
2023 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2024 
2025 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2026 
2027 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2028 
2029 /*
2030  *	Recover an error report and clear atomically
2031  */
2032 
2033 static inline int sock_error(struct sock *sk)
2034 {
2035 	int err;
2036 	if (likely(!sk->sk_err))
2037 		return 0;
2038 	err = xchg(&sk->sk_err, 0);
2039 	return -err;
2040 }
2041 
2042 static inline unsigned long sock_wspace(struct sock *sk)
2043 {
2044 	int amt = 0;
2045 
2046 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2047 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2048 		if (amt < 0)
2049 			amt = 0;
2050 	}
2051 	return amt;
2052 }
2053 
2054 static inline void sk_wake_async(struct sock *sk, int how, int band)
2055 {
2056 	if (sock_flag(sk, SOCK_FASYNC))
2057 		sock_wake_async(sk->sk_socket, how, band);
2058 }
2059 
2060 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2061  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2062  * Note: for send buffers, TCP works better if we can build two skbs at
2063  * minimum.
2064  */
2065 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2066 
2067 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2068 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2069 
2070 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2071 {
2072 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2073 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2074 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2075 	}
2076 }
2077 
2078 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2079 
2080 /**
2081  * sk_page_frag - return an appropriate page_frag
2082  * @sk: socket
2083  *
2084  * If socket allocation mode allows current thread to sleep, it means its
2085  * safe to use the per task page_frag instead of the per socket one.
2086  */
2087 static inline struct page_frag *sk_page_frag(struct sock *sk)
2088 {
2089 	if (sk->sk_allocation & __GFP_WAIT)
2090 		return &current->task_frag;
2091 
2092 	return &sk->sk_frag;
2093 }
2094 
2095 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2096 
2097 /*
2098  *	Default write policy as shown to user space via poll/select/SIGIO
2099  */
2100 static inline bool sock_writeable(const struct sock *sk)
2101 {
2102 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2103 }
2104 
2105 static inline gfp_t gfp_any(void)
2106 {
2107 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2108 }
2109 
2110 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2111 {
2112 	return noblock ? 0 : sk->sk_rcvtimeo;
2113 }
2114 
2115 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2116 {
2117 	return noblock ? 0 : sk->sk_sndtimeo;
2118 }
2119 
2120 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2121 {
2122 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2123 }
2124 
2125 /* Alas, with timeout socket operations are not restartable.
2126  * Compare this to poll().
2127  */
2128 static inline int sock_intr_errno(long timeo)
2129 {
2130 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2131 }
2132 
2133 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2134 			   struct sk_buff *skb);
2135 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2136 			     struct sk_buff *skb);
2137 
2138 static inline void
2139 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2140 {
2141 	ktime_t kt = skb->tstamp;
2142 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2143 
2144 	/*
2145 	 * generate control messages if
2146 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2147 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2148 	 * - software time stamp available and wanted
2149 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2150 	 * - hardware time stamps available and wanted
2151 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2152 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2153 	 */
2154 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2155 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2156 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2157 	    (hwtstamps->hwtstamp.tv64 &&
2158 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2159 	    (hwtstamps->syststamp.tv64 &&
2160 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2161 		__sock_recv_timestamp(msg, sk, skb);
2162 	else
2163 		sk->sk_stamp = kt;
2164 
2165 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2166 		__sock_recv_wifi_status(msg, sk, skb);
2167 }
2168 
2169 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2170 			      struct sk_buff *skb);
2171 
2172 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2173 					  struct sk_buff *skb)
2174 {
2175 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2176 			   (1UL << SOCK_RCVTSTAMP)			| \
2177 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2178 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2179 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)	| \
2180 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2181 
2182 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2183 		__sock_recv_ts_and_drops(msg, sk, skb);
2184 	else
2185 		sk->sk_stamp = skb->tstamp;
2186 }
2187 
2188 /**
2189  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2190  * @sk:		socket sending this packet
2191  * @tx_flags:	filled with instructions for time stamping
2192  *
2193  * Currently only depends on SOCK_TIMESTAMPING* flags.
2194  */
2195 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2196 
2197 /**
2198  * sk_eat_skb - Release a skb if it is no longer needed
2199  * @sk: socket to eat this skb from
2200  * @skb: socket buffer to eat
2201  * @copied_early: flag indicating whether DMA operations copied this data early
2202  *
2203  * This routine must be called with interrupts disabled or with the socket
2204  * locked so that the sk_buff queue operation is ok.
2205 */
2206 #ifdef CONFIG_NET_DMA
2207 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2208 {
2209 	__skb_unlink(skb, &sk->sk_receive_queue);
2210 	if (!copied_early)
2211 		__kfree_skb(skb);
2212 	else
2213 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2214 }
2215 #else
2216 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2217 {
2218 	__skb_unlink(skb, &sk->sk_receive_queue);
2219 	__kfree_skb(skb);
2220 }
2221 #endif
2222 
2223 static inline
2224 struct net *sock_net(const struct sock *sk)
2225 {
2226 	return read_pnet(&sk->sk_net);
2227 }
2228 
2229 static inline
2230 void sock_net_set(struct sock *sk, struct net *net)
2231 {
2232 	write_pnet(&sk->sk_net, net);
2233 }
2234 
2235 /*
2236  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2237  * They should not hold a reference to a namespace in order to allow
2238  * to stop it.
2239  * Sockets after sk_change_net should be released using sk_release_kernel
2240  */
2241 static inline void sk_change_net(struct sock *sk, struct net *net)
2242 {
2243 	put_net(sock_net(sk));
2244 	sock_net_set(sk, hold_net(net));
2245 }
2246 
2247 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2248 {
2249 	if (skb->sk) {
2250 		struct sock *sk = skb->sk;
2251 
2252 		skb->destructor = NULL;
2253 		skb->sk = NULL;
2254 		return sk;
2255 	}
2256 	return NULL;
2257 }
2258 
2259 void sock_enable_timestamp(struct sock *sk, int flag);
2260 int sock_get_timestamp(struct sock *, struct timeval __user *);
2261 int sock_get_timestampns(struct sock *, struct timespec __user *);
2262 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2263 		       int type);
2264 
2265 /*
2266  *	Enable debug/info messages
2267  */
2268 extern int net_msg_warn;
2269 #define NETDEBUG(fmt, args...) \
2270 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2271 
2272 #define LIMIT_NETDEBUG(fmt, args...) \
2273 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2274 
2275 extern __u32 sysctl_wmem_max;
2276 extern __u32 sysctl_rmem_max;
2277 
2278 extern int sysctl_optmem_max;
2279 
2280 extern __u32 sysctl_wmem_default;
2281 extern __u32 sysctl_rmem_default;
2282 
2283 #endif	/* _SOCK_H */
2284