xref: /openbmc/linux/include/net/sock.h (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
59 
60 #include <linux/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
63 
64 /*
65  * This structure really needs to be cleaned up.
66  * Most of it is for TCP, and not used by any of
67  * the other protocols.
68  */
69 
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 					printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
79 {
80 }
81 #endif
82 
83 /* This is the per-socket lock.  The spinlock provides a synchronization
84  * between user contexts and software interrupt processing, whereas the
85  * mini-semaphore synchronizes multiple users amongst themselves.
86  */
87 typedef struct {
88 	spinlock_t		slock;
89 	int			owned;
90 	wait_queue_head_t	wq;
91 	/*
92 	 * We express the mutex-alike socket_lock semantics
93 	 * to the lock validator by explicitly managing
94 	 * the slock as a lock variant (in addition to
95 	 * the slock itself):
96 	 */
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 	struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
101 
102 struct sock;
103 struct proto;
104 struct net;
105 
106 /**
107  *	struct sock_common - minimal network layer representation of sockets
108  *	@skc_daddr: Foreign IPv4 addr
109  *	@skc_rcv_saddr: Bound local IPv4 addr
110  *	@skc_hash: hash value used with various protocol lookup tables
111  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *	@skc_family: network address family
113  *	@skc_state: Connection state
114  *	@skc_reuse: %SO_REUSEADDR setting
115  *	@skc_bound_dev_if: bound device index if != 0
116  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
117  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
118  *	@skc_prot: protocol handlers inside a network family
119  *	@skc_net: reference to the network namespace of this socket
120  *	@skc_node: main hash linkage for various protocol lookup tables
121  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
122  *	@skc_tx_queue_mapping: tx queue number for this connection
123  *	@skc_refcnt: reference count
124  *
125  *	This is the minimal network layer representation of sockets, the header
126  *	for struct sock and struct inet_timewait_sock.
127  */
128 struct sock_common {
129 	/* skc_daddr and skc_rcv_saddr must be grouped :
130 	 * cf INET_MATCH() and INET_TW_MATCH()
131 	 */
132 	__be32			skc_daddr;
133 	__be32			skc_rcv_saddr;
134 
135 	union  {
136 		unsigned int	skc_hash;
137 		__u16		skc_u16hashes[2];
138 	};
139 	unsigned short		skc_family;
140 	volatile unsigned char	skc_state;
141 	unsigned char		skc_reuse;
142 	int			skc_bound_dev_if;
143 	union {
144 		struct hlist_node	skc_bind_node;
145 		struct hlist_nulls_node skc_portaddr_node;
146 	};
147 	struct proto		*skc_prot;
148 #ifdef CONFIG_NET_NS
149 	struct net	 	*skc_net;
150 #endif
151 	/*
152 	 * fields between dontcopy_begin/dontcopy_end
153 	 * are not copied in sock_copy()
154 	 */
155 	int			skc_dontcopy_begin[0];
156 	union {
157 		struct hlist_node	skc_node;
158 		struct hlist_nulls_node skc_nulls_node;
159 	};
160 	int			skc_tx_queue_mapping;
161 	atomic_t		skc_refcnt;
162 	int                     skc_dontcopy_end[0];
163 };
164 
165 /**
166   *	struct sock - network layer representation of sockets
167   *	@__sk_common: shared layout with inet_timewait_sock
168   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
169   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
170   *	@sk_lock:	synchronizer
171   *	@sk_rcvbuf: size of receive buffer in bytes
172   *	@sk_wq: sock wait queue and async head
173   *	@sk_dst_cache: destination cache
174   *	@sk_dst_lock: destination cache lock
175   *	@sk_policy: flow policy
176   *	@sk_rmem_alloc: receive queue bytes committed
177   *	@sk_receive_queue: incoming packets
178   *	@sk_wmem_alloc: transmit queue bytes committed
179   *	@sk_write_queue: Packet sending queue
180   *	@sk_async_wait_queue: DMA copied packets
181   *	@sk_omem_alloc: "o" is "option" or "other"
182   *	@sk_wmem_queued: persistent queue size
183   *	@sk_forward_alloc: space allocated forward
184   *	@sk_allocation: allocation mode
185   *	@sk_sndbuf: size of send buffer in bytes
186   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
187   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
188   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
189   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
190   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
191   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
192   *	@sk_gso_max_size: Maximum GSO segment size to build
193   *	@sk_lingertime: %SO_LINGER l_linger setting
194   *	@sk_backlog: always used with the per-socket spinlock held
195   *	@sk_callback_lock: used with the callbacks in the end of this struct
196   *	@sk_error_queue: rarely used
197   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
198   *			  IPV6_ADDRFORM for instance)
199   *	@sk_err: last error
200   *	@sk_err_soft: errors that don't cause failure but are the cause of a
201   *		      persistent failure not just 'timed out'
202   *	@sk_drops: raw/udp drops counter
203   *	@sk_ack_backlog: current listen backlog
204   *	@sk_max_ack_backlog: listen backlog set in listen()
205   *	@sk_priority: %SO_PRIORITY setting
206   *	@sk_type: socket type (%SOCK_STREAM, etc)
207   *	@sk_protocol: which protocol this socket belongs in this network family
208   *	@sk_peer_pid: &struct pid for this socket's peer
209   *	@sk_peer_cred: %SO_PEERCRED setting
210   *	@sk_rcvlowat: %SO_RCVLOWAT setting
211   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
212   *	@sk_sndtimeo: %SO_SNDTIMEO setting
213   *	@sk_rxhash: flow hash received from netif layer
214   *	@sk_filter: socket filtering instructions
215   *	@sk_protinfo: private area, net family specific, when not using slab
216   *	@sk_timer: sock cleanup timer
217   *	@sk_stamp: time stamp of last packet received
218   *	@sk_socket: Identd and reporting IO signals
219   *	@sk_user_data: RPC layer private data
220   *	@sk_sndmsg_page: cached page for sendmsg
221   *	@sk_sndmsg_off: cached offset for sendmsg
222   *	@sk_send_head: front of stuff to transmit
223   *	@sk_security: used by security modules
224   *	@sk_mark: generic packet mark
225   *	@sk_classid: this socket's cgroup classid
226   *	@sk_write_pending: a write to stream socket waits to start
227   *	@sk_state_change: callback to indicate change in the state of the sock
228   *	@sk_data_ready: callback to indicate there is data to be processed
229   *	@sk_write_space: callback to indicate there is bf sending space available
230   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
231   *	@sk_backlog_rcv: callback to process the backlog
232   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
233  */
234 struct sock {
235 	/*
236 	 * Now struct inet_timewait_sock also uses sock_common, so please just
237 	 * don't add nothing before this first member (__sk_common) --acme
238 	 */
239 	struct sock_common	__sk_common;
240 #define sk_node			__sk_common.skc_node
241 #define sk_nulls_node		__sk_common.skc_nulls_node
242 #define sk_refcnt		__sk_common.skc_refcnt
243 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
244 
245 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
246 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
247 #define sk_hash			__sk_common.skc_hash
248 #define sk_family		__sk_common.skc_family
249 #define sk_state		__sk_common.skc_state
250 #define sk_reuse		__sk_common.skc_reuse
251 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
252 #define sk_bind_node		__sk_common.skc_bind_node
253 #define sk_prot			__sk_common.skc_prot
254 #define sk_net			__sk_common.skc_net
255 	socket_lock_t		sk_lock;
256 	struct sk_buff_head	sk_receive_queue;
257 	/*
258 	 * The backlog queue is special, it is always used with
259 	 * the per-socket spinlock held and requires low latency
260 	 * access. Therefore we special case it's implementation.
261 	 * Note : rmem_alloc is in this structure to fill a hole
262 	 * on 64bit arches, not because its logically part of
263 	 * backlog.
264 	 */
265 	struct {
266 		atomic_t	rmem_alloc;
267 		int		len;
268 		struct sk_buff	*head;
269 		struct sk_buff	*tail;
270 	} sk_backlog;
271 #define sk_rmem_alloc sk_backlog.rmem_alloc
272 	int			sk_forward_alloc;
273 #ifdef CONFIG_RPS
274 	__u32			sk_rxhash;
275 #endif
276 	atomic_t		sk_drops;
277 	int			sk_rcvbuf;
278 
279 	struct sk_filter __rcu	*sk_filter;
280 	struct socket_wq	*sk_wq;
281 
282 #ifdef CONFIG_NET_DMA
283 	struct sk_buff_head	sk_async_wait_queue;
284 #endif
285 
286 #ifdef CONFIG_XFRM
287 	struct xfrm_policy	*sk_policy[2];
288 #endif
289 	unsigned long 		sk_flags;
290 	struct dst_entry	*sk_dst_cache;
291 	spinlock_t		sk_dst_lock;
292 	atomic_t		sk_wmem_alloc;
293 	atomic_t		sk_omem_alloc;
294 	int			sk_sndbuf;
295 	struct sk_buff_head	sk_write_queue;
296 	kmemcheck_bitfield_begin(flags);
297 	unsigned int		sk_shutdown  : 2,
298 				sk_no_check  : 2,
299 				sk_userlocks : 4,
300 				sk_protocol  : 8,
301 				sk_type      : 16;
302 	kmemcheck_bitfield_end(flags);
303 	int			sk_wmem_queued;
304 	gfp_t			sk_allocation;
305 	int			sk_route_caps;
306 	int			sk_route_nocaps;
307 	int			sk_gso_type;
308 	unsigned int		sk_gso_max_size;
309 	int			sk_rcvlowat;
310 	unsigned long	        sk_lingertime;
311 	struct sk_buff_head	sk_error_queue;
312 	struct proto		*sk_prot_creator;
313 	rwlock_t		sk_callback_lock;
314 	int			sk_err,
315 				sk_err_soft;
316 	unsigned short		sk_ack_backlog;
317 	unsigned short		sk_max_ack_backlog;
318 	__u32			sk_priority;
319 	struct pid		*sk_peer_pid;
320 	const struct cred	*sk_peer_cred;
321 	long			sk_rcvtimeo;
322 	long			sk_sndtimeo;
323 	void			*sk_protinfo;
324 	struct timer_list	sk_timer;
325 	ktime_t			sk_stamp;
326 	struct socket		*sk_socket;
327 	void			*sk_user_data;
328 	struct page		*sk_sndmsg_page;
329 	struct sk_buff		*sk_send_head;
330 	__u32			sk_sndmsg_off;
331 	int			sk_write_pending;
332 #ifdef CONFIG_SECURITY
333 	void			*sk_security;
334 #endif
335 	__u32			sk_mark;
336 	u32			sk_classid;
337 	void			(*sk_state_change)(struct sock *sk);
338 	void			(*sk_data_ready)(struct sock *sk, int bytes);
339 	void			(*sk_write_space)(struct sock *sk);
340 	void			(*sk_error_report)(struct sock *sk);
341   	int			(*sk_backlog_rcv)(struct sock *sk,
342 						  struct sk_buff *skb);
343 	void                    (*sk_destruct)(struct sock *sk);
344 };
345 
346 /*
347  * Hashed lists helper routines
348  */
349 static inline struct sock *sk_entry(const struct hlist_node *node)
350 {
351 	return hlist_entry(node, struct sock, sk_node);
352 }
353 
354 static inline struct sock *__sk_head(const struct hlist_head *head)
355 {
356 	return hlist_entry(head->first, struct sock, sk_node);
357 }
358 
359 static inline struct sock *sk_head(const struct hlist_head *head)
360 {
361 	return hlist_empty(head) ? NULL : __sk_head(head);
362 }
363 
364 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
365 {
366 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
367 }
368 
369 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
370 {
371 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
372 }
373 
374 static inline struct sock *sk_next(const struct sock *sk)
375 {
376 	return sk->sk_node.next ?
377 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
378 }
379 
380 static inline struct sock *sk_nulls_next(const struct sock *sk)
381 {
382 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
383 		hlist_nulls_entry(sk->sk_nulls_node.next,
384 				  struct sock, sk_nulls_node) :
385 		NULL;
386 }
387 
388 static inline int sk_unhashed(const struct sock *sk)
389 {
390 	return hlist_unhashed(&sk->sk_node);
391 }
392 
393 static inline int sk_hashed(const struct sock *sk)
394 {
395 	return !sk_unhashed(sk);
396 }
397 
398 static __inline__ void sk_node_init(struct hlist_node *node)
399 {
400 	node->pprev = NULL;
401 }
402 
403 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
404 {
405 	node->pprev = NULL;
406 }
407 
408 static __inline__ void __sk_del_node(struct sock *sk)
409 {
410 	__hlist_del(&sk->sk_node);
411 }
412 
413 /* NB: equivalent to hlist_del_init_rcu */
414 static __inline__ int __sk_del_node_init(struct sock *sk)
415 {
416 	if (sk_hashed(sk)) {
417 		__sk_del_node(sk);
418 		sk_node_init(&sk->sk_node);
419 		return 1;
420 	}
421 	return 0;
422 }
423 
424 /* Grab socket reference count. This operation is valid only
425    when sk is ALREADY grabbed f.e. it is found in hash table
426    or a list and the lookup is made under lock preventing hash table
427    modifications.
428  */
429 
430 static inline void sock_hold(struct sock *sk)
431 {
432 	atomic_inc(&sk->sk_refcnt);
433 }
434 
435 /* Ungrab socket in the context, which assumes that socket refcnt
436    cannot hit zero, f.e. it is true in context of any socketcall.
437  */
438 static inline void __sock_put(struct sock *sk)
439 {
440 	atomic_dec(&sk->sk_refcnt);
441 }
442 
443 static __inline__ int sk_del_node_init(struct sock *sk)
444 {
445 	int rc = __sk_del_node_init(sk);
446 
447 	if (rc) {
448 		/* paranoid for a while -acme */
449 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
450 		__sock_put(sk);
451 	}
452 	return rc;
453 }
454 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
455 
456 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
457 {
458 	if (sk_hashed(sk)) {
459 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
460 		return 1;
461 	}
462 	return 0;
463 }
464 
465 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
466 {
467 	int rc = __sk_nulls_del_node_init_rcu(sk);
468 
469 	if (rc) {
470 		/* paranoid for a while -acme */
471 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
472 		__sock_put(sk);
473 	}
474 	return rc;
475 }
476 
477 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
478 {
479 	hlist_add_head(&sk->sk_node, list);
480 }
481 
482 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
483 {
484 	sock_hold(sk);
485 	__sk_add_node(sk, list);
486 }
487 
488 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
489 {
490 	sock_hold(sk);
491 	hlist_add_head_rcu(&sk->sk_node, list);
492 }
493 
494 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
495 {
496 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
497 }
498 
499 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
500 {
501 	sock_hold(sk);
502 	__sk_nulls_add_node_rcu(sk, list);
503 }
504 
505 static __inline__ void __sk_del_bind_node(struct sock *sk)
506 {
507 	__hlist_del(&sk->sk_bind_node);
508 }
509 
510 static __inline__ void sk_add_bind_node(struct sock *sk,
511 					struct hlist_head *list)
512 {
513 	hlist_add_head(&sk->sk_bind_node, list);
514 }
515 
516 #define sk_for_each(__sk, node, list) \
517 	hlist_for_each_entry(__sk, node, list, sk_node)
518 #define sk_for_each_rcu(__sk, node, list) \
519 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
520 #define sk_nulls_for_each(__sk, node, list) \
521 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
522 #define sk_nulls_for_each_rcu(__sk, node, list) \
523 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
524 #define sk_for_each_from(__sk, node) \
525 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
526 		hlist_for_each_entry_from(__sk, node, sk_node)
527 #define sk_nulls_for_each_from(__sk, node) \
528 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
529 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
530 #define sk_for_each_safe(__sk, node, tmp, list) \
531 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
532 #define sk_for_each_bound(__sk, node, list) \
533 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
534 
535 /* Sock flags */
536 enum sock_flags {
537 	SOCK_DEAD,
538 	SOCK_DONE,
539 	SOCK_URGINLINE,
540 	SOCK_KEEPOPEN,
541 	SOCK_LINGER,
542 	SOCK_DESTROY,
543 	SOCK_BROADCAST,
544 	SOCK_TIMESTAMP,
545 	SOCK_ZAPPED,
546 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
547 	SOCK_DBG, /* %SO_DEBUG setting */
548 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
549 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
550 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
551 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
552 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
553 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
554 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
555 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
556 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
557 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
558 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
559 	SOCK_FASYNC, /* fasync() active */
560 	SOCK_RXQ_OVFL,
561 };
562 
563 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
564 {
565 	nsk->sk_flags = osk->sk_flags;
566 }
567 
568 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
569 {
570 	__set_bit(flag, &sk->sk_flags);
571 }
572 
573 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
574 {
575 	__clear_bit(flag, &sk->sk_flags);
576 }
577 
578 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
579 {
580 	return test_bit(flag, &sk->sk_flags);
581 }
582 
583 static inline void sk_acceptq_removed(struct sock *sk)
584 {
585 	sk->sk_ack_backlog--;
586 }
587 
588 static inline void sk_acceptq_added(struct sock *sk)
589 {
590 	sk->sk_ack_backlog++;
591 }
592 
593 static inline int sk_acceptq_is_full(struct sock *sk)
594 {
595 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
596 }
597 
598 /*
599  * Compute minimal free write space needed to queue new packets.
600  */
601 static inline int sk_stream_min_wspace(struct sock *sk)
602 {
603 	return sk->sk_wmem_queued >> 1;
604 }
605 
606 static inline int sk_stream_wspace(struct sock *sk)
607 {
608 	return sk->sk_sndbuf - sk->sk_wmem_queued;
609 }
610 
611 extern void sk_stream_write_space(struct sock *sk);
612 
613 static inline int sk_stream_memory_free(struct sock *sk)
614 {
615 	return sk->sk_wmem_queued < sk->sk_sndbuf;
616 }
617 
618 /* OOB backlog add */
619 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
620 {
621 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
622 	skb_dst_force(skb);
623 
624 	if (!sk->sk_backlog.tail)
625 		sk->sk_backlog.head = skb;
626 	else
627 		sk->sk_backlog.tail->next = skb;
628 
629 	sk->sk_backlog.tail = skb;
630 	skb->next = NULL;
631 }
632 
633 /*
634  * Take into account size of receive queue and backlog queue
635  */
636 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
637 {
638 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
639 
640 	return qsize + skb->truesize > sk->sk_rcvbuf;
641 }
642 
643 /* The per-socket spinlock must be held here. */
644 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
645 {
646 	if (sk_rcvqueues_full(sk, skb))
647 		return -ENOBUFS;
648 
649 	__sk_add_backlog(sk, skb);
650 	sk->sk_backlog.len += skb->truesize;
651 	return 0;
652 }
653 
654 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
655 {
656 	return sk->sk_backlog_rcv(sk, skb);
657 }
658 
659 static inline void sock_rps_record_flow(const struct sock *sk)
660 {
661 #ifdef CONFIG_RPS
662 	struct rps_sock_flow_table *sock_flow_table;
663 
664 	rcu_read_lock();
665 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
666 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
667 	rcu_read_unlock();
668 #endif
669 }
670 
671 static inline void sock_rps_reset_flow(const struct sock *sk)
672 {
673 #ifdef CONFIG_RPS
674 	struct rps_sock_flow_table *sock_flow_table;
675 
676 	rcu_read_lock();
677 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
678 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
679 	rcu_read_unlock();
680 #endif
681 }
682 
683 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
684 {
685 #ifdef CONFIG_RPS
686 	if (unlikely(sk->sk_rxhash != rxhash)) {
687 		sock_rps_reset_flow(sk);
688 		sk->sk_rxhash = rxhash;
689 	}
690 #endif
691 }
692 
693 #define sk_wait_event(__sk, __timeo, __condition)			\
694 	({	int __rc;						\
695 		release_sock(__sk);					\
696 		__rc = __condition;					\
697 		if (!__rc) {						\
698 			*(__timeo) = schedule_timeout(*(__timeo));	\
699 		}							\
700 		lock_sock(__sk);					\
701 		__rc = __condition;					\
702 		__rc;							\
703 	})
704 
705 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
706 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
707 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
708 extern int sk_stream_error(struct sock *sk, int flags, int err);
709 extern void sk_stream_kill_queues(struct sock *sk);
710 
711 extern int sk_wait_data(struct sock *sk, long *timeo);
712 
713 struct request_sock_ops;
714 struct timewait_sock_ops;
715 struct inet_hashinfo;
716 struct raw_hashinfo;
717 
718 /* Networking protocol blocks we attach to sockets.
719  * socket layer -> transport layer interface
720  * transport -> network interface is defined by struct inet_proto
721  */
722 struct proto {
723 	void			(*close)(struct sock *sk,
724 					long timeout);
725 	int			(*connect)(struct sock *sk,
726 				        struct sockaddr *uaddr,
727 					int addr_len);
728 	int			(*disconnect)(struct sock *sk, int flags);
729 
730 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
731 
732 	int			(*ioctl)(struct sock *sk, int cmd,
733 					 unsigned long arg);
734 	int			(*init)(struct sock *sk);
735 	void			(*destroy)(struct sock *sk);
736 	void			(*shutdown)(struct sock *sk, int how);
737 	int			(*setsockopt)(struct sock *sk, int level,
738 					int optname, char __user *optval,
739 					unsigned int optlen);
740 	int			(*getsockopt)(struct sock *sk, int level,
741 					int optname, char __user *optval,
742 					int __user *option);
743 #ifdef CONFIG_COMPAT
744 	int			(*compat_setsockopt)(struct sock *sk,
745 					int level,
746 					int optname, char __user *optval,
747 					unsigned int optlen);
748 	int			(*compat_getsockopt)(struct sock *sk,
749 					int level,
750 					int optname, char __user *optval,
751 					int __user *option);
752 #endif
753 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
754 					   struct msghdr *msg, size_t len);
755 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
756 					   struct msghdr *msg,
757 					size_t len, int noblock, int flags,
758 					int *addr_len);
759 	int			(*sendpage)(struct sock *sk, struct page *page,
760 					int offset, size_t size, int flags);
761 	int			(*bind)(struct sock *sk,
762 					struct sockaddr *uaddr, int addr_len);
763 
764 	int			(*backlog_rcv) (struct sock *sk,
765 						struct sk_buff *skb);
766 
767 	/* Keeping track of sk's, looking them up, and port selection methods. */
768 	void			(*hash)(struct sock *sk);
769 	void			(*unhash)(struct sock *sk);
770 	void			(*rehash)(struct sock *sk);
771 	int			(*get_port)(struct sock *sk, unsigned short snum);
772 	void			(*clear_sk)(struct sock *sk, int size);
773 
774 	/* Keeping track of sockets in use */
775 #ifdef CONFIG_PROC_FS
776 	unsigned int		inuse_idx;
777 #endif
778 
779 	/* Memory pressure */
780 	void			(*enter_memory_pressure)(struct sock *sk);
781 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
782 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
783 	/*
784 	 * Pressure flag: try to collapse.
785 	 * Technical note: it is used by multiple contexts non atomically.
786 	 * All the __sk_mem_schedule() is of this nature: accounting
787 	 * is strict, actions are advisory and have some latency.
788 	 */
789 	int			*memory_pressure;
790 	long			*sysctl_mem;
791 	int			*sysctl_wmem;
792 	int			*sysctl_rmem;
793 	int			max_header;
794 	bool			no_autobind;
795 
796 	struct kmem_cache	*slab;
797 	unsigned int		obj_size;
798 	int			slab_flags;
799 
800 	struct percpu_counter	*orphan_count;
801 
802 	struct request_sock_ops	*rsk_prot;
803 	struct timewait_sock_ops *twsk_prot;
804 
805 	union {
806 		struct inet_hashinfo	*hashinfo;
807 		struct udp_table	*udp_table;
808 		struct raw_hashinfo	*raw_hash;
809 	} h;
810 
811 	struct module		*owner;
812 
813 	char			name[32];
814 
815 	struct list_head	node;
816 #ifdef SOCK_REFCNT_DEBUG
817 	atomic_t		socks;
818 #endif
819 };
820 
821 extern int proto_register(struct proto *prot, int alloc_slab);
822 extern void proto_unregister(struct proto *prot);
823 
824 #ifdef SOCK_REFCNT_DEBUG
825 static inline void sk_refcnt_debug_inc(struct sock *sk)
826 {
827 	atomic_inc(&sk->sk_prot->socks);
828 }
829 
830 static inline void sk_refcnt_debug_dec(struct sock *sk)
831 {
832 	atomic_dec(&sk->sk_prot->socks);
833 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
834 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
835 }
836 
837 static inline void sk_refcnt_debug_release(const struct sock *sk)
838 {
839 	if (atomic_read(&sk->sk_refcnt) != 1)
840 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
841 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
842 }
843 #else /* SOCK_REFCNT_DEBUG */
844 #define sk_refcnt_debug_inc(sk) do { } while (0)
845 #define sk_refcnt_debug_dec(sk) do { } while (0)
846 #define sk_refcnt_debug_release(sk) do { } while (0)
847 #endif /* SOCK_REFCNT_DEBUG */
848 
849 
850 #ifdef CONFIG_PROC_FS
851 /* Called with local bh disabled */
852 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
853 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
854 #else
855 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
856 		int inc)
857 {
858 }
859 #endif
860 
861 
862 /* With per-bucket locks this operation is not-atomic, so that
863  * this version is not worse.
864  */
865 static inline void __sk_prot_rehash(struct sock *sk)
866 {
867 	sk->sk_prot->unhash(sk);
868 	sk->sk_prot->hash(sk);
869 }
870 
871 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
872 
873 /* About 10 seconds */
874 #define SOCK_DESTROY_TIME (10*HZ)
875 
876 /* Sockets 0-1023 can't be bound to unless you are superuser */
877 #define PROT_SOCK	1024
878 
879 #define SHUTDOWN_MASK	3
880 #define RCV_SHUTDOWN	1
881 #define SEND_SHUTDOWN	2
882 
883 #define SOCK_SNDBUF_LOCK	1
884 #define SOCK_RCVBUF_LOCK	2
885 #define SOCK_BINDADDR_LOCK	4
886 #define SOCK_BINDPORT_LOCK	8
887 
888 /* sock_iocb: used to kick off async processing of socket ios */
889 struct sock_iocb {
890 	struct list_head	list;
891 
892 	int			flags;
893 	int			size;
894 	struct socket		*sock;
895 	struct sock		*sk;
896 	struct scm_cookie	*scm;
897 	struct msghdr		*msg, async_msg;
898 	struct kiocb		*kiocb;
899 };
900 
901 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
902 {
903 	return (struct sock_iocb *)iocb->private;
904 }
905 
906 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
907 {
908 	return si->kiocb;
909 }
910 
911 struct socket_alloc {
912 	struct socket socket;
913 	struct inode vfs_inode;
914 };
915 
916 static inline struct socket *SOCKET_I(struct inode *inode)
917 {
918 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
919 }
920 
921 static inline struct inode *SOCK_INODE(struct socket *socket)
922 {
923 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
924 }
925 
926 /*
927  * Functions for memory accounting
928  */
929 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
930 extern void __sk_mem_reclaim(struct sock *sk);
931 
932 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
933 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
934 #define SK_MEM_SEND	0
935 #define SK_MEM_RECV	1
936 
937 static inline int sk_mem_pages(int amt)
938 {
939 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
940 }
941 
942 static inline int sk_has_account(struct sock *sk)
943 {
944 	/* return true if protocol supports memory accounting */
945 	return !!sk->sk_prot->memory_allocated;
946 }
947 
948 static inline int sk_wmem_schedule(struct sock *sk, int size)
949 {
950 	if (!sk_has_account(sk))
951 		return 1;
952 	return size <= sk->sk_forward_alloc ||
953 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
954 }
955 
956 static inline int sk_rmem_schedule(struct sock *sk, int size)
957 {
958 	if (!sk_has_account(sk))
959 		return 1;
960 	return size <= sk->sk_forward_alloc ||
961 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
962 }
963 
964 static inline void sk_mem_reclaim(struct sock *sk)
965 {
966 	if (!sk_has_account(sk))
967 		return;
968 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
969 		__sk_mem_reclaim(sk);
970 }
971 
972 static inline void sk_mem_reclaim_partial(struct sock *sk)
973 {
974 	if (!sk_has_account(sk))
975 		return;
976 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
977 		__sk_mem_reclaim(sk);
978 }
979 
980 static inline void sk_mem_charge(struct sock *sk, int size)
981 {
982 	if (!sk_has_account(sk))
983 		return;
984 	sk->sk_forward_alloc -= size;
985 }
986 
987 static inline void sk_mem_uncharge(struct sock *sk, int size)
988 {
989 	if (!sk_has_account(sk))
990 		return;
991 	sk->sk_forward_alloc += size;
992 }
993 
994 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
995 {
996 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
997 	sk->sk_wmem_queued -= skb->truesize;
998 	sk_mem_uncharge(sk, skb->truesize);
999 	__kfree_skb(skb);
1000 }
1001 
1002 /* Used by processes to "lock" a socket state, so that
1003  * interrupts and bottom half handlers won't change it
1004  * from under us. It essentially blocks any incoming
1005  * packets, so that we won't get any new data or any
1006  * packets that change the state of the socket.
1007  *
1008  * While locked, BH processing will add new packets to
1009  * the backlog queue.  This queue is processed by the
1010  * owner of the socket lock right before it is released.
1011  *
1012  * Since ~2.3.5 it is also exclusive sleep lock serializing
1013  * accesses from user process context.
1014  */
1015 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1016 
1017 /*
1018  * Macro so as to not evaluate some arguments when
1019  * lockdep is not enabled.
1020  *
1021  * Mark both the sk_lock and the sk_lock.slock as a
1022  * per-address-family lock class.
1023  */
1024 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1025 do {									\
1026 	sk->sk_lock.owned = 0;						\
1027 	init_waitqueue_head(&sk->sk_lock.wq);				\
1028 	spin_lock_init(&(sk)->sk_lock.slock);				\
1029 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1030 			sizeof((sk)->sk_lock));				\
1031 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1032 		       	(skey), (sname));				\
1033 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1034 } while (0)
1035 
1036 extern void lock_sock_nested(struct sock *sk, int subclass);
1037 
1038 static inline void lock_sock(struct sock *sk)
1039 {
1040 	lock_sock_nested(sk, 0);
1041 }
1042 
1043 extern void release_sock(struct sock *sk);
1044 
1045 /* BH context may only use the following locking interface. */
1046 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1047 #define bh_lock_sock_nested(__sk) \
1048 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1049 				SINGLE_DEPTH_NESTING)
1050 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1051 
1052 extern bool lock_sock_fast(struct sock *sk);
1053 /**
1054  * unlock_sock_fast - complement of lock_sock_fast
1055  * @sk: socket
1056  * @slow: slow mode
1057  *
1058  * fast unlock socket for user context.
1059  * If slow mode is on, we call regular release_sock()
1060  */
1061 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1062 {
1063 	if (slow)
1064 		release_sock(sk);
1065 	else
1066 		spin_unlock_bh(&sk->sk_lock.slock);
1067 }
1068 
1069 
1070 extern struct sock		*sk_alloc(struct net *net, int family,
1071 					  gfp_t priority,
1072 					  struct proto *prot);
1073 extern void			sk_free(struct sock *sk);
1074 extern void			sk_release_kernel(struct sock *sk);
1075 extern struct sock		*sk_clone(const struct sock *sk,
1076 					  const gfp_t priority);
1077 
1078 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1079 					      unsigned long size, int force,
1080 					      gfp_t priority);
1081 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1082 					      unsigned long size, int force,
1083 					      gfp_t priority);
1084 extern void			sock_wfree(struct sk_buff *skb);
1085 extern void			sock_rfree(struct sk_buff *skb);
1086 
1087 extern int			sock_setsockopt(struct socket *sock, int level,
1088 						int op, char __user *optval,
1089 						unsigned int optlen);
1090 
1091 extern int			sock_getsockopt(struct socket *sock, int level,
1092 						int op, char __user *optval,
1093 						int __user *optlen);
1094 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1095 						     unsigned long size,
1096 						     int noblock,
1097 						     int *errcode);
1098 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1099 						      unsigned long header_len,
1100 						      unsigned long data_len,
1101 						      int noblock,
1102 						      int *errcode);
1103 extern void *sock_kmalloc(struct sock *sk, int size,
1104 			  gfp_t priority);
1105 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1106 extern void sk_send_sigurg(struct sock *sk);
1107 
1108 #ifdef CONFIG_CGROUPS
1109 extern void sock_update_classid(struct sock *sk);
1110 #else
1111 static inline void sock_update_classid(struct sock *sk)
1112 {
1113 }
1114 #endif
1115 
1116 /*
1117  * Functions to fill in entries in struct proto_ops when a protocol
1118  * does not implement a particular function.
1119  */
1120 extern int                      sock_no_bind(struct socket *,
1121 					     struct sockaddr *, int);
1122 extern int                      sock_no_connect(struct socket *,
1123 						struct sockaddr *, int, int);
1124 extern int                      sock_no_socketpair(struct socket *,
1125 						   struct socket *);
1126 extern int                      sock_no_accept(struct socket *,
1127 					       struct socket *, int);
1128 extern int                      sock_no_getname(struct socket *,
1129 						struct sockaddr *, int *, int);
1130 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1131 					     struct poll_table_struct *);
1132 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1133 					      unsigned long);
1134 extern int			sock_no_listen(struct socket *, int);
1135 extern int                      sock_no_shutdown(struct socket *, int);
1136 extern int			sock_no_getsockopt(struct socket *, int , int,
1137 						   char __user *, int __user *);
1138 extern int			sock_no_setsockopt(struct socket *, int, int,
1139 						   char __user *, unsigned int);
1140 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1141 						struct msghdr *, size_t);
1142 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1143 						struct msghdr *, size_t, int);
1144 extern int			sock_no_mmap(struct file *file,
1145 					     struct socket *sock,
1146 					     struct vm_area_struct *vma);
1147 extern ssize_t			sock_no_sendpage(struct socket *sock,
1148 						struct page *page,
1149 						int offset, size_t size,
1150 						int flags);
1151 
1152 /*
1153  * Functions to fill in entries in struct proto_ops when a protocol
1154  * uses the inet style.
1155  */
1156 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1157 				  char __user *optval, int __user *optlen);
1158 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1159 			       struct msghdr *msg, size_t size, int flags);
1160 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1161 				  char __user *optval, unsigned int optlen);
1162 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1163 		int optname, char __user *optval, int __user *optlen);
1164 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1165 		int optname, char __user *optval, unsigned int optlen);
1166 
1167 extern void sk_common_release(struct sock *sk);
1168 
1169 /*
1170  *	Default socket callbacks and setup code
1171  */
1172 
1173 /* Initialise core socket variables */
1174 extern void sock_init_data(struct socket *sock, struct sock *sk);
1175 
1176 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1177 
1178 /**
1179  *	sk_filter_release - release a socket filter
1180  *	@fp: filter to remove
1181  *
1182  *	Remove a filter from a socket and release its resources.
1183  */
1184 
1185 static inline void sk_filter_release(struct sk_filter *fp)
1186 {
1187 	if (atomic_dec_and_test(&fp->refcnt))
1188 		call_rcu_bh(&fp->rcu, sk_filter_release_rcu);
1189 }
1190 
1191 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1192 {
1193 	unsigned int size = sk_filter_len(fp);
1194 
1195 	atomic_sub(size, &sk->sk_omem_alloc);
1196 	sk_filter_release(fp);
1197 }
1198 
1199 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1200 {
1201 	atomic_inc(&fp->refcnt);
1202 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1203 }
1204 
1205 /*
1206  * Socket reference counting postulates.
1207  *
1208  * * Each user of socket SHOULD hold a reference count.
1209  * * Each access point to socket (an hash table bucket, reference from a list,
1210  *   running timer, skb in flight MUST hold a reference count.
1211  * * When reference count hits 0, it means it will never increase back.
1212  * * When reference count hits 0, it means that no references from
1213  *   outside exist to this socket and current process on current CPU
1214  *   is last user and may/should destroy this socket.
1215  * * sk_free is called from any context: process, BH, IRQ. When
1216  *   it is called, socket has no references from outside -> sk_free
1217  *   may release descendant resources allocated by the socket, but
1218  *   to the time when it is called, socket is NOT referenced by any
1219  *   hash tables, lists etc.
1220  * * Packets, delivered from outside (from network or from another process)
1221  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1222  *   when they sit in queue. Otherwise, packets will leak to hole, when
1223  *   socket is looked up by one cpu and unhasing is made by another CPU.
1224  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1225  *   (leak to backlog). Packet socket does all the processing inside
1226  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1227  *   use separate SMP lock, so that they are prone too.
1228  */
1229 
1230 /* Ungrab socket and destroy it, if it was the last reference. */
1231 static inline void sock_put(struct sock *sk)
1232 {
1233 	if (atomic_dec_and_test(&sk->sk_refcnt))
1234 		sk_free(sk);
1235 }
1236 
1237 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1238 			  const int nested);
1239 
1240 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1241 {
1242 	sk->sk_tx_queue_mapping = tx_queue;
1243 }
1244 
1245 static inline void sk_tx_queue_clear(struct sock *sk)
1246 {
1247 	sk->sk_tx_queue_mapping = -1;
1248 }
1249 
1250 static inline int sk_tx_queue_get(const struct sock *sk)
1251 {
1252 	return sk ? sk->sk_tx_queue_mapping : -1;
1253 }
1254 
1255 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1256 {
1257 	sk_tx_queue_clear(sk);
1258 	sk->sk_socket = sock;
1259 }
1260 
1261 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1262 {
1263 	return &sk->sk_wq->wait;
1264 }
1265 /* Detach socket from process context.
1266  * Announce socket dead, detach it from wait queue and inode.
1267  * Note that parent inode held reference count on this struct sock,
1268  * we do not release it in this function, because protocol
1269  * probably wants some additional cleanups or even continuing
1270  * to work with this socket (TCP).
1271  */
1272 static inline void sock_orphan(struct sock *sk)
1273 {
1274 	write_lock_bh(&sk->sk_callback_lock);
1275 	sock_set_flag(sk, SOCK_DEAD);
1276 	sk_set_socket(sk, NULL);
1277 	sk->sk_wq  = NULL;
1278 	write_unlock_bh(&sk->sk_callback_lock);
1279 }
1280 
1281 static inline void sock_graft(struct sock *sk, struct socket *parent)
1282 {
1283 	write_lock_bh(&sk->sk_callback_lock);
1284 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1285 	parent->sk = sk;
1286 	sk_set_socket(sk, parent);
1287 	security_sock_graft(sk, parent);
1288 	write_unlock_bh(&sk->sk_callback_lock);
1289 }
1290 
1291 extern int sock_i_uid(struct sock *sk);
1292 extern unsigned long sock_i_ino(struct sock *sk);
1293 
1294 static inline struct dst_entry *
1295 __sk_dst_get(struct sock *sk)
1296 {
1297 	return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1298 						       sock_owned_by_user(sk) ||
1299 						       lockdep_is_held(&sk->sk_lock.slock));
1300 }
1301 
1302 static inline struct dst_entry *
1303 sk_dst_get(struct sock *sk)
1304 {
1305 	struct dst_entry *dst;
1306 
1307 	rcu_read_lock();
1308 	dst = rcu_dereference(sk->sk_dst_cache);
1309 	if (dst)
1310 		dst_hold(dst);
1311 	rcu_read_unlock();
1312 	return dst;
1313 }
1314 
1315 extern void sk_reset_txq(struct sock *sk);
1316 
1317 static inline void dst_negative_advice(struct sock *sk)
1318 {
1319 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1320 
1321 	if (dst && dst->ops->negative_advice) {
1322 		ndst = dst->ops->negative_advice(dst);
1323 
1324 		if (ndst != dst) {
1325 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1326 			sk_reset_txq(sk);
1327 		}
1328 	}
1329 }
1330 
1331 static inline void
1332 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1333 {
1334 	struct dst_entry *old_dst;
1335 
1336 	sk_tx_queue_clear(sk);
1337 	/*
1338 	 * This can be called while sk is owned by the caller only,
1339 	 * with no state that can be checked in a rcu_dereference_check() cond
1340 	 */
1341 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1342 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1343 	dst_release(old_dst);
1344 }
1345 
1346 static inline void
1347 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1348 {
1349 	spin_lock(&sk->sk_dst_lock);
1350 	__sk_dst_set(sk, dst);
1351 	spin_unlock(&sk->sk_dst_lock);
1352 }
1353 
1354 static inline void
1355 __sk_dst_reset(struct sock *sk)
1356 {
1357 	__sk_dst_set(sk, NULL);
1358 }
1359 
1360 static inline void
1361 sk_dst_reset(struct sock *sk)
1362 {
1363 	spin_lock(&sk->sk_dst_lock);
1364 	__sk_dst_reset(sk);
1365 	spin_unlock(&sk->sk_dst_lock);
1366 }
1367 
1368 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1369 
1370 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1371 
1372 static inline int sk_can_gso(const struct sock *sk)
1373 {
1374 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1375 }
1376 
1377 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1378 
1379 static inline void sk_nocaps_add(struct sock *sk, int flags)
1380 {
1381 	sk->sk_route_nocaps |= flags;
1382 	sk->sk_route_caps &= ~flags;
1383 }
1384 
1385 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1386 				   struct sk_buff *skb, struct page *page,
1387 				   int off, int copy)
1388 {
1389 	if (skb->ip_summed == CHECKSUM_NONE) {
1390 		int err = 0;
1391 		__wsum csum = csum_and_copy_from_user(from,
1392 						     page_address(page) + off,
1393 							    copy, 0, &err);
1394 		if (err)
1395 			return err;
1396 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1397 	} else if (copy_from_user(page_address(page) + off, from, copy))
1398 		return -EFAULT;
1399 
1400 	skb->len	     += copy;
1401 	skb->data_len	     += copy;
1402 	skb->truesize	     += copy;
1403 	sk->sk_wmem_queued   += copy;
1404 	sk_mem_charge(sk, copy);
1405 	return 0;
1406 }
1407 
1408 /**
1409  * sk_wmem_alloc_get - returns write allocations
1410  * @sk: socket
1411  *
1412  * Returns sk_wmem_alloc minus initial offset of one
1413  */
1414 static inline int sk_wmem_alloc_get(const struct sock *sk)
1415 {
1416 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1417 }
1418 
1419 /**
1420  * sk_rmem_alloc_get - returns read allocations
1421  * @sk: socket
1422  *
1423  * Returns sk_rmem_alloc
1424  */
1425 static inline int sk_rmem_alloc_get(const struct sock *sk)
1426 {
1427 	return atomic_read(&sk->sk_rmem_alloc);
1428 }
1429 
1430 /**
1431  * sk_has_allocations - check if allocations are outstanding
1432  * @sk: socket
1433  *
1434  * Returns true if socket has write or read allocations
1435  */
1436 static inline int sk_has_allocations(const struct sock *sk)
1437 {
1438 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1439 }
1440 
1441 /**
1442  * wq_has_sleeper - check if there are any waiting processes
1443  * @wq: struct socket_wq
1444  *
1445  * Returns true if socket_wq has waiting processes
1446  *
1447  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1448  * barrier call. They were added due to the race found within the tcp code.
1449  *
1450  * Consider following tcp code paths:
1451  *
1452  * CPU1                  CPU2
1453  *
1454  * sys_select            receive packet
1455  *   ...                 ...
1456  *   __add_wait_queue    update tp->rcv_nxt
1457  *   ...                 ...
1458  *   tp->rcv_nxt check   sock_def_readable
1459  *   ...                 {
1460  *   schedule               rcu_read_lock();
1461  *                          wq = rcu_dereference(sk->sk_wq);
1462  *                          if (wq && waitqueue_active(&wq->wait))
1463  *                              wake_up_interruptible(&wq->wait)
1464  *                          ...
1465  *                       }
1466  *
1467  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1468  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1469  * could then endup calling schedule and sleep forever if there are no more
1470  * data on the socket.
1471  *
1472  */
1473 static inline bool wq_has_sleeper(struct socket_wq *wq)
1474 {
1475 
1476 	/*
1477 	 * We need to be sure we are in sync with the
1478 	 * add_wait_queue modifications to the wait queue.
1479 	 *
1480 	 * This memory barrier is paired in the sock_poll_wait.
1481 	 */
1482 	smp_mb();
1483 	return wq && waitqueue_active(&wq->wait);
1484 }
1485 
1486 /**
1487  * sock_poll_wait - place memory barrier behind the poll_wait call.
1488  * @filp:           file
1489  * @wait_address:   socket wait queue
1490  * @p:              poll_table
1491  *
1492  * See the comments in the wq_has_sleeper function.
1493  */
1494 static inline void sock_poll_wait(struct file *filp,
1495 		wait_queue_head_t *wait_address, poll_table *p)
1496 {
1497 	if (p && wait_address) {
1498 		poll_wait(filp, wait_address, p);
1499 		/*
1500 		 * We need to be sure we are in sync with the
1501 		 * socket flags modification.
1502 		 *
1503 		 * This memory barrier is paired in the wq_has_sleeper.
1504 		*/
1505 		smp_mb();
1506 	}
1507 }
1508 
1509 /*
1510  * 	Queue a received datagram if it will fit. Stream and sequenced
1511  *	protocols can't normally use this as they need to fit buffers in
1512  *	and play with them.
1513  *
1514  * 	Inlined as it's very short and called for pretty much every
1515  *	packet ever received.
1516  */
1517 
1518 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1519 {
1520 	skb_orphan(skb);
1521 	skb->sk = sk;
1522 	skb->destructor = sock_wfree;
1523 	/*
1524 	 * We used to take a refcount on sk, but following operation
1525 	 * is enough to guarantee sk_free() wont free this sock until
1526 	 * all in-flight packets are completed
1527 	 */
1528 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1529 }
1530 
1531 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1532 {
1533 	skb_orphan(skb);
1534 	skb->sk = sk;
1535 	skb->destructor = sock_rfree;
1536 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1537 	sk_mem_charge(sk, skb->truesize);
1538 }
1539 
1540 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1541 			   unsigned long expires);
1542 
1543 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1544 
1545 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1546 
1547 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1548 
1549 /*
1550  *	Recover an error report and clear atomically
1551  */
1552 
1553 static inline int sock_error(struct sock *sk)
1554 {
1555 	int err;
1556 	if (likely(!sk->sk_err))
1557 		return 0;
1558 	err = xchg(&sk->sk_err, 0);
1559 	return -err;
1560 }
1561 
1562 static inline unsigned long sock_wspace(struct sock *sk)
1563 {
1564 	int amt = 0;
1565 
1566 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1567 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1568 		if (amt < 0)
1569 			amt = 0;
1570 	}
1571 	return amt;
1572 }
1573 
1574 static inline void sk_wake_async(struct sock *sk, int how, int band)
1575 {
1576 	if (sock_flag(sk, SOCK_FASYNC))
1577 		sock_wake_async(sk->sk_socket, how, band);
1578 }
1579 
1580 #define SOCK_MIN_SNDBUF 2048
1581 /*
1582  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1583  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1584  */
1585 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1586 
1587 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1588 {
1589 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1590 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1591 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1592 	}
1593 }
1594 
1595 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1596 
1597 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1598 {
1599 	struct page *page = NULL;
1600 
1601 	page = alloc_pages(sk->sk_allocation, 0);
1602 	if (!page) {
1603 		sk->sk_prot->enter_memory_pressure(sk);
1604 		sk_stream_moderate_sndbuf(sk);
1605 	}
1606 	return page;
1607 }
1608 
1609 /*
1610  *	Default write policy as shown to user space via poll/select/SIGIO
1611  */
1612 static inline int sock_writeable(const struct sock *sk)
1613 {
1614 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1615 }
1616 
1617 static inline gfp_t gfp_any(void)
1618 {
1619 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1620 }
1621 
1622 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1623 {
1624 	return noblock ? 0 : sk->sk_rcvtimeo;
1625 }
1626 
1627 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1628 {
1629 	return noblock ? 0 : sk->sk_sndtimeo;
1630 }
1631 
1632 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1633 {
1634 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1635 }
1636 
1637 /* Alas, with timeout socket operations are not restartable.
1638  * Compare this to poll().
1639  */
1640 static inline int sock_intr_errno(long timeo)
1641 {
1642 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1643 }
1644 
1645 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1646 	struct sk_buff *skb);
1647 
1648 static __inline__ void
1649 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1650 {
1651 	ktime_t kt = skb->tstamp;
1652 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1653 
1654 	/*
1655 	 * generate control messages if
1656 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1657 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1658 	 * - software time stamp available and wanted
1659 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1660 	 * - hardware time stamps available and wanted
1661 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1662 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1663 	 */
1664 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1665 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1666 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1667 	    (hwtstamps->hwtstamp.tv64 &&
1668 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1669 	    (hwtstamps->syststamp.tv64 &&
1670 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1671 		__sock_recv_timestamp(msg, sk, skb);
1672 	else
1673 		sk->sk_stamp = kt;
1674 }
1675 
1676 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1677 				     struct sk_buff *skb);
1678 
1679 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1680 					  struct sk_buff *skb)
1681 {
1682 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1683 			   (1UL << SOCK_RCVTSTAMP)			| \
1684 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1685 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1686 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1687 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1688 
1689 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1690 		__sock_recv_ts_and_drops(msg, sk, skb);
1691 	else
1692 		sk->sk_stamp = skb->tstamp;
1693 }
1694 
1695 /**
1696  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1697  * @sk:		socket sending this packet
1698  * @tx_flags:	filled with instructions for time stamping
1699  *
1700  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1701  * parameters are invalid.
1702  */
1703 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1704 
1705 /**
1706  * sk_eat_skb - Release a skb if it is no longer needed
1707  * @sk: socket to eat this skb from
1708  * @skb: socket buffer to eat
1709  * @copied_early: flag indicating whether DMA operations copied this data early
1710  *
1711  * This routine must be called with interrupts disabled or with the socket
1712  * locked so that the sk_buff queue operation is ok.
1713 */
1714 #ifdef CONFIG_NET_DMA
1715 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1716 {
1717 	__skb_unlink(skb, &sk->sk_receive_queue);
1718 	if (!copied_early)
1719 		__kfree_skb(skb);
1720 	else
1721 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1722 }
1723 #else
1724 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1725 {
1726 	__skb_unlink(skb, &sk->sk_receive_queue);
1727 	__kfree_skb(skb);
1728 }
1729 #endif
1730 
1731 static inline
1732 struct net *sock_net(const struct sock *sk)
1733 {
1734 	return read_pnet(&sk->sk_net);
1735 }
1736 
1737 static inline
1738 void sock_net_set(struct sock *sk, struct net *net)
1739 {
1740 	write_pnet(&sk->sk_net, net);
1741 }
1742 
1743 /*
1744  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1745  * They should not hold a referrence to a namespace in order to allow
1746  * to stop it.
1747  * Sockets after sk_change_net should be released using sk_release_kernel
1748  */
1749 static inline void sk_change_net(struct sock *sk, struct net *net)
1750 {
1751 	put_net(sock_net(sk));
1752 	sock_net_set(sk, hold_net(net));
1753 }
1754 
1755 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1756 {
1757 	if (unlikely(skb->sk)) {
1758 		struct sock *sk = skb->sk;
1759 
1760 		skb->destructor = NULL;
1761 		skb->sk = NULL;
1762 		return sk;
1763 	}
1764 	return NULL;
1765 }
1766 
1767 extern void sock_enable_timestamp(struct sock *sk, int flag);
1768 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1769 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1770 
1771 /*
1772  *	Enable debug/info messages
1773  */
1774 extern int net_msg_warn;
1775 #define NETDEBUG(fmt, args...) \
1776 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1777 
1778 #define LIMIT_NETDEBUG(fmt, args...) \
1779 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1780 
1781 extern __u32 sysctl_wmem_max;
1782 extern __u32 sysctl_rmem_max;
1783 
1784 extern void sk_init(void);
1785 
1786 extern int sysctl_optmem_max;
1787 
1788 extern __u32 sysctl_wmem_default;
1789 extern __u32 sysctl_rmem_default;
1790 
1791 #endif	/* _SOCK_H */
1792