1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/kernel.h> 44 #include <linux/list.h> 45 #include <linux/list_nulls.h> 46 #include <linux/timer.h> 47 #include <linux/cache.h> 48 #include <linux/module.h> 49 #include <linux/lockdep.h> 50 #include <linux/netdevice.h> 51 #include <linux/skbuff.h> /* struct sk_buff */ 52 #include <linux/mm.h> 53 #include <linux/security.h> 54 #include <linux/slab.h> 55 56 #include <linux/filter.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/poll.h> 59 60 #include <linux/atomic.h> 61 #include <net/dst.h> 62 #include <net/checksum.h> 63 64 /* 65 * This structure really needs to be cleaned up. 66 * Most of it is for TCP, and not used by any of 67 * the other protocols. 68 */ 69 70 /* Define this to get the SOCK_DBG debugging facility. */ 71 #define SOCK_DEBUGGING 72 #ifdef SOCK_DEBUGGING 73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 74 printk(KERN_DEBUG msg); } while (0) 75 #else 76 /* Validate arguments and do nothing */ 77 static inline void __attribute__ ((format (printf, 2, 3))) 78 SOCK_DEBUG(struct sock *sk, const char *msg, ...) 79 { 80 } 81 #endif 82 83 /* This is the per-socket lock. The spinlock provides a synchronization 84 * between user contexts and software interrupt processing, whereas the 85 * mini-semaphore synchronizes multiple users amongst themselves. 86 */ 87 typedef struct { 88 spinlock_t slock; 89 int owned; 90 wait_queue_head_t wq; 91 /* 92 * We express the mutex-alike socket_lock semantics 93 * to the lock validator by explicitly managing 94 * the slock as a lock variant (in addition to 95 * the slock itself): 96 */ 97 #ifdef CONFIG_DEBUG_LOCK_ALLOC 98 struct lockdep_map dep_map; 99 #endif 100 } socket_lock_t; 101 102 struct sock; 103 struct proto; 104 struct net; 105 106 /** 107 * struct sock_common - minimal network layer representation of sockets 108 * @skc_daddr: Foreign IPv4 addr 109 * @skc_rcv_saddr: Bound local IPv4 addr 110 * @skc_hash: hash value used with various protocol lookup tables 111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 112 * @skc_family: network address family 113 * @skc_state: Connection state 114 * @skc_reuse: %SO_REUSEADDR setting 115 * @skc_bound_dev_if: bound device index if != 0 116 * @skc_bind_node: bind hash linkage for various protocol lookup tables 117 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 118 * @skc_prot: protocol handlers inside a network family 119 * @skc_net: reference to the network namespace of this socket 120 * @skc_node: main hash linkage for various protocol lookup tables 121 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 122 * @skc_tx_queue_mapping: tx queue number for this connection 123 * @skc_refcnt: reference count 124 * 125 * This is the minimal network layer representation of sockets, the header 126 * for struct sock and struct inet_timewait_sock. 127 */ 128 struct sock_common { 129 /* skc_daddr and skc_rcv_saddr must be grouped : 130 * cf INET_MATCH() and INET_TW_MATCH() 131 */ 132 __be32 skc_daddr; 133 __be32 skc_rcv_saddr; 134 135 union { 136 unsigned int skc_hash; 137 __u16 skc_u16hashes[2]; 138 }; 139 unsigned short skc_family; 140 volatile unsigned char skc_state; 141 unsigned char skc_reuse; 142 int skc_bound_dev_if; 143 union { 144 struct hlist_node skc_bind_node; 145 struct hlist_nulls_node skc_portaddr_node; 146 }; 147 struct proto *skc_prot; 148 #ifdef CONFIG_NET_NS 149 struct net *skc_net; 150 #endif 151 /* 152 * fields between dontcopy_begin/dontcopy_end 153 * are not copied in sock_copy() 154 */ 155 int skc_dontcopy_begin[0]; 156 union { 157 struct hlist_node skc_node; 158 struct hlist_nulls_node skc_nulls_node; 159 }; 160 int skc_tx_queue_mapping; 161 atomic_t skc_refcnt; 162 int skc_dontcopy_end[0]; 163 }; 164 165 /** 166 * struct sock - network layer representation of sockets 167 * @__sk_common: shared layout with inet_timewait_sock 168 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 169 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 170 * @sk_lock: synchronizer 171 * @sk_rcvbuf: size of receive buffer in bytes 172 * @sk_wq: sock wait queue and async head 173 * @sk_dst_cache: destination cache 174 * @sk_dst_lock: destination cache lock 175 * @sk_policy: flow policy 176 * @sk_rmem_alloc: receive queue bytes committed 177 * @sk_receive_queue: incoming packets 178 * @sk_wmem_alloc: transmit queue bytes committed 179 * @sk_write_queue: Packet sending queue 180 * @sk_async_wait_queue: DMA copied packets 181 * @sk_omem_alloc: "o" is "option" or "other" 182 * @sk_wmem_queued: persistent queue size 183 * @sk_forward_alloc: space allocated forward 184 * @sk_allocation: allocation mode 185 * @sk_sndbuf: size of send buffer in bytes 186 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 187 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 188 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 189 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 190 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 191 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 192 * @sk_gso_max_size: Maximum GSO segment size to build 193 * @sk_lingertime: %SO_LINGER l_linger setting 194 * @sk_backlog: always used with the per-socket spinlock held 195 * @sk_callback_lock: used with the callbacks in the end of this struct 196 * @sk_error_queue: rarely used 197 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 198 * IPV6_ADDRFORM for instance) 199 * @sk_err: last error 200 * @sk_err_soft: errors that don't cause failure but are the cause of a 201 * persistent failure not just 'timed out' 202 * @sk_drops: raw/udp drops counter 203 * @sk_ack_backlog: current listen backlog 204 * @sk_max_ack_backlog: listen backlog set in listen() 205 * @sk_priority: %SO_PRIORITY setting 206 * @sk_type: socket type (%SOCK_STREAM, etc) 207 * @sk_protocol: which protocol this socket belongs in this network family 208 * @sk_peer_pid: &struct pid for this socket's peer 209 * @sk_peer_cred: %SO_PEERCRED setting 210 * @sk_rcvlowat: %SO_RCVLOWAT setting 211 * @sk_rcvtimeo: %SO_RCVTIMEO setting 212 * @sk_sndtimeo: %SO_SNDTIMEO setting 213 * @sk_rxhash: flow hash received from netif layer 214 * @sk_filter: socket filtering instructions 215 * @sk_protinfo: private area, net family specific, when not using slab 216 * @sk_timer: sock cleanup timer 217 * @sk_stamp: time stamp of last packet received 218 * @sk_socket: Identd and reporting IO signals 219 * @sk_user_data: RPC layer private data 220 * @sk_sndmsg_page: cached page for sendmsg 221 * @sk_sndmsg_off: cached offset for sendmsg 222 * @sk_send_head: front of stuff to transmit 223 * @sk_security: used by security modules 224 * @sk_mark: generic packet mark 225 * @sk_classid: this socket's cgroup classid 226 * @sk_write_pending: a write to stream socket waits to start 227 * @sk_state_change: callback to indicate change in the state of the sock 228 * @sk_data_ready: callback to indicate there is data to be processed 229 * @sk_write_space: callback to indicate there is bf sending space available 230 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 231 * @sk_backlog_rcv: callback to process the backlog 232 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 233 */ 234 struct sock { 235 /* 236 * Now struct inet_timewait_sock also uses sock_common, so please just 237 * don't add nothing before this first member (__sk_common) --acme 238 */ 239 struct sock_common __sk_common; 240 #define sk_node __sk_common.skc_node 241 #define sk_nulls_node __sk_common.skc_nulls_node 242 #define sk_refcnt __sk_common.skc_refcnt 243 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 244 245 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 246 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 247 #define sk_hash __sk_common.skc_hash 248 #define sk_family __sk_common.skc_family 249 #define sk_state __sk_common.skc_state 250 #define sk_reuse __sk_common.skc_reuse 251 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 252 #define sk_bind_node __sk_common.skc_bind_node 253 #define sk_prot __sk_common.skc_prot 254 #define sk_net __sk_common.skc_net 255 socket_lock_t sk_lock; 256 struct sk_buff_head sk_receive_queue; 257 /* 258 * The backlog queue is special, it is always used with 259 * the per-socket spinlock held and requires low latency 260 * access. Therefore we special case it's implementation. 261 * Note : rmem_alloc is in this structure to fill a hole 262 * on 64bit arches, not because its logically part of 263 * backlog. 264 */ 265 struct { 266 atomic_t rmem_alloc; 267 int len; 268 struct sk_buff *head; 269 struct sk_buff *tail; 270 } sk_backlog; 271 #define sk_rmem_alloc sk_backlog.rmem_alloc 272 int sk_forward_alloc; 273 #ifdef CONFIG_RPS 274 __u32 sk_rxhash; 275 #endif 276 atomic_t sk_drops; 277 int sk_rcvbuf; 278 279 struct sk_filter __rcu *sk_filter; 280 struct socket_wq *sk_wq; 281 282 #ifdef CONFIG_NET_DMA 283 struct sk_buff_head sk_async_wait_queue; 284 #endif 285 286 #ifdef CONFIG_XFRM 287 struct xfrm_policy *sk_policy[2]; 288 #endif 289 unsigned long sk_flags; 290 struct dst_entry *sk_dst_cache; 291 spinlock_t sk_dst_lock; 292 atomic_t sk_wmem_alloc; 293 atomic_t sk_omem_alloc; 294 int sk_sndbuf; 295 struct sk_buff_head sk_write_queue; 296 kmemcheck_bitfield_begin(flags); 297 unsigned int sk_shutdown : 2, 298 sk_no_check : 2, 299 sk_userlocks : 4, 300 sk_protocol : 8, 301 sk_type : 16; 302 kmemcheck_bitfield_end(flags); 303 int sk_wmem_queued; 304 gfp_t sk_allocation; 305 int sk_route_caps; 306 int sk_route_nocaps; 307 int sk_gso_type; 308 unsigned int sk_gso_max_size; 309 int sk_rcvlowat; 310 unsigned long sk_lingertime; 311 struct sk_buff_head sk_error_queue; 312 struct proto *sk_prot_creator; 313 rwlock_t sk_callback_lock; 314 int sk_err, 315 sk_err_soft; 316 unsigned short sk_ack_backlog; 317 unsigned short sk_max_ack_backlog; 318 __u32 sk_priority; 319 struct pid *sk_peer_pid; 320 const struct cred *sk_peer_cred; 321 long sk_rcvtimeo; 322 long sk_sndtimeo; 323 void *sk_protinfo; 324 struct timer_list sk_timer; 325 ktime_t sk_stamp; 326 struct socket *sk_socket; 327 void *sk_user_data; 328 struct page *sk_sndmsg_page; 329 struct sk_buff *sk_send_head; 330 __u32 sk_sndmsg_off; 331 int sk_write_pending; 332 #ifdef CONFIG_SECURITY 333 void *sk_security; 334 #endif 335 __u32 sk_mark; 336 u32 sk_classid; 337 void (*sk_state_change)(struct sock *sk); 338 void (*sk_data_ready)(struct sock *sk, int bytes); 339 void (*sk_write_space)(struct sock *sk); 340 void (*sk_error_report)(struct sock *sk); 341 int (*sk_backlog_rcv)(struct sock *sk, 342 struct sk_buff *skb); 343 void (*sk_destruct)(struct sock *sk); 344 }; 345 346 /* 347 * Hashed lists helper routines 348 */ 349 static inline struct sock *sk_entry(const struct hlist_node *node) 350 { 351 return hlist_entry(node, struct sock, sk_node); 352 } 353 354 static inline struct sock *__sk_head(const struct hlist_head *head) 355 { 356 return hlist_entry(head->first, struct sock, sk_node); 357 } 358 359 static inline struct sock *sk_head(const struct hlist_head *head) 360 { 361 return hlist_empty(head) ? NULL : __sk_head(head); 362 } 363 364 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 365 { 366 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 367 } 368 369 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 370 { 371 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 372 } 373 374 static inline struct sock *sk_next(const struct sock *sk) 375 { 376 return sk->sk_node.next ? 377 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 378 } 379 380 static inline struct sock *sk_nulls_next(const struct sock *sk) 381 { 382 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 383 hlist_nulls_entry(sk->sk_nulls_node.next, 384 struct sock, sk_nulls_node) : 385 NULL; 386 } 387 388 static inline int sk_unhashed(const struct sock *sk) 389 { 390 return hlist_unhashed(&sk->sk_node); 391 } 392 393 static inline int sk_hashed(const struct sock *sk) 394 { 395 return !sk_unhashed(sk); 396 } 397 398 static __inline__ void sk_node_init(struct hlist_node *node) 399 { 400 node->pprev = NULL; 401 } 402 403 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node) 404 { 405 node->pprev = NULL; 406 } 407 408 static __inline__ void __sk_del_node(struct sock *sk) 409 { 410 __hlist_del(&sk->sk_node); 411 } 412 413 /* NB: equivalent to hlist_del_init_rcu */ 414 static __inline__ int __sk_del_node_init(struct sock *sk) 415 { 416 if (sk_hashed(sk)) { 417 __sk_del_node(sk); 418 sk_node_init(&sk->sk_node); 419 return 1; 420 } 421 return 0; 422 } 423 424 /* Grab socket reference count. This operation is valid only 425 when sk is ALREADY grabbed f.e. it is found in hash table 426 or a list and the lookup is made under lock preventing hash table 427 modifications. 428 */ 429 430 static inline void sock_hold(struct sock *sk) 431 { 432 atomic_inc(&sk->sk_refcnt); 433 } 434 435 /* Ungrab socket in the context, which assumes that socket refcnt 436 cannot hit zero, f.e. it is true in context of any socketcall. 437 */ 438 static inline void __sock_put(struct sock *sk) 439 { 440 atomic_dec(&sk->sk_refcnt); 441 } 442 443 static __inline__ int sk_del_node_init(struct sock *sk) 444 { 445 int rc = __sk_del_node_init(sk); 446 447 if (rc) { 448 /* paranoid for a while -acme */ 449 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 450 __sock_put(sk); 451 } 452 return rc; 453 } 454 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 455 456 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk) 457 { 458 if (sk_hashed(sk)) { 459 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 460 return 1; 461 } 462 return 0; 463 } 464 465 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk) 466 { 467 int rc = __sk_nulls_del_node_init_rcu(sk); 468 469 if (rc) { 470 /* paranoid for a while -acme */ 471 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 472 __sock_put(sk); 473 } 474 return rc; 475 } 476 477 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 478 { 479 hlist_add_head(&sk->sk_node, list); 480 } 481 482 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 483 { 484 sock_hold(sk); 485 __sk_add_node(sk, list); 486 } 487 488 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 489 { 490 sock_hold(sk); 491 hlist_add_head_rcu(&sk->sk_node, list); 492 } 493 494 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 495 { 496 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 497 } 498 499 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 500 { 501 sock_hold(sk); 502 __sk_nulls_add_node_rcu(sk, list); 503 } 504 505 static __inline__ void __sk_del_bind_node(struct sock *sk) 506 { 507 __hlist_del(&sk->sk_bind_node); 508 } 509 510 static __inline__ void sk_add_bind_node(struct sock *sk, 511 struct hlist_head *list) 512 { 513 hlist_add_head(&sk->sk_bind_node, list); 514 } 515 516 #define sk_for_each(__sk, node, list) \ 517 hlist_for_each_entry(__sk, node, list, sk_node) 518 #define sk_for_each_rcu(__sk, node, list) \ 519 hlist_for_each_entry_rcu(__sk, node, list, sk_node) 520 #define sk_nulls_for_each(__sk, node, list) \ 521 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 522 #define sk_nulls_for_each_rcu(__sk, node, list) \ 523 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 524 #define sk_for_each_from(__sk, node) \ 525 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 526 hlist_for_each_entry_from(__sk, node, sk_node) 527 #define sk_nulls_for_each_from(__sk, node) \ 528 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 529 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 530 #define sk_for_each_safe(__sk, node, tmp, list) \ 531 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 532 #define sk_for_each_bound(__sk, node, list) \ 533 hlist_for_each_entry(__sk, node, list, sk_bind_node) 534 535 /* Sock flags */ 536 enum sock_flags { 537 SOCK_DEAD, 538 SOCK_DONE, 539 SOCK_URGINLINE, 540 SOCK_KEEPOPEN, 541 SOCK_LINGER, 542 SOCK_DESTROY, 543 SOCK_BROADCAST, 544 SOCK_TIMESTAMP, 545 SOCK_ZAPPED, 546 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 547 SOCK_DBG, /* %SO_DEBUG setting */ 548 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 549 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 550 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 551 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 552 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 553 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 554 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 555 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 556 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 557 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 558 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 559 SOCK_FASYNC, /* fasync() active */ 560 SOCK_RXQ_OVFL, 561 }; 562 563 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 564 { 565 nsk->sk_flags = osk->sk_flags; 566 } 567 568 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 569 { 570 __set_bit(flag, &sk->sk_flags); 571 } 572 573 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 574 { 575 __clear_bit(flag, &sk->sk_flags); 576 } 577 578 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 579 { 580 return test_bit(flag, &sk->sk_flags); 581 } 582 583 static inline void sk_acceptq_removed(struct sock *sk) 584 { 585 sk->sk_ack_backlog--; 586 } 587 588 static inline void sk_acceptq_added(struct sock *sk) 589 { 590 sk->sk_ack_backlog++; 591 } 592 593 static inline int sk_acceptq_is_full(struct sock *sk) 594 { 595 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 596 } 597 598 /* 599 * Compute minimal free write space needed to queue new packets. 600 */ 601 static inline int sk_stream_min_wspace(struct sock *sk) 602 { 603 return sk->sk_wmem_queued >> 1; 604 } 605 606 static inline int sk_stream_wspace(struct sock *sk) 607 { 608 return sk->sk_sndbuf - sk->sk_wmem_queued; 609 } 610 611 extern void sk_stream_write_space(struct sock *sk); 612 613 static inline int sk_stream_memory_free(struct sock *sk) 614 { 615 return sk->sk_wmem_queued < sk->sk_sndbuf; 616 } 617 618 /* OOB backlog add */ 619 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 620 { 621 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 622 skb_dst_force(skb); 623 624 if (!sk->sk_backlog.tail) 625 sk->sk_backlog.head = skb; 626 else 627 sk->sk_backlog.tail->next = skb; 628 629 sk->sk_backlog.tail = skb; 630 skb->next = NULL; 631 } 632 633 /* 634 * Take into account size of receive queue and backlog queue 635 */ 636 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb) 637 { 638 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 639 640 return qsize + skb->truesize > sk->sk_rcvbuf; 641 } 642 643 /* The per-socket spinlock must be held here. */ 644 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb) 645 { 646 if (sk_rcvqueues_full(sk, skb)) 647 return -ENOBUFS; 648 649 __sk_add_backlog(sk, skb); 650 sk->sk_backlog.len += skb->truesize; 651 return 0; 652 } 653 654 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 655 { 656 return sk->sk_backlog_rcv(sk, skb); 657 } 658 659 static inline void sock_rps_record_flow(const struct sock *sk) 660 { 661 #ifdef CONFIG_RPS 662 struct rps_sock_flow_table *sock_flow_table; 663 664 rcu_read_lock(); 665 sock_flow_table = rcu_dereference(rps_sock_flow_table); 666 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash); 667 rcu_read_unlock(); 668 #endif 669 } 670 671 static inline void sock_rps_reset_flow(const struct sock *sk) 672 { 673 #ifdef CONFIG_RPS 674 struct rps_sock_flow_table *sock_flow_table; 675 676 rcu_read_lock(); 677 sock_flow_table = rcu_dereference(rps_sock_flow_table); 678 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash); 679 rcu_read_unlock(); 680 #endif 681 } 682 683 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash) 684 { 685 #ifdef CONFIG_RPS 686 if (unlikely(sk->sk_rxhash != rxhash)) { 687 sock_rps_reset_flow(sk); 688 sk->sk_rxhash = rxhash; 689 } 690 #endif 691 } 692 693 #define sk_wait_event(__sk, __timeo, __condition) \ 694 ({ int __rc; \ 695 release_sock(__sk); \ 696 __rc = __condition; \ 697 if (!__rc) { \ 698 *(__timeo) = schedule_timeout(*(__timeo)); \ 699 } \ 700 lock_sock(__sk); \ 701 __rc = __condition; \ 702 __rc; \ 703 }) 704 705 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 706 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 707 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 708 extern int sk_stream_error(struct sock *sk, int flags, int err); 709 extern void sk_stream_kill_queues(struct sock *sk); 710 711 extern int sk_wait_data(struct sock *sk, long *timeo); 712 713 struct request_sock_ops; 714 struct timewait_sock_ops; 715 struct inet_hashinfo; 716 struct raw_hashinfo; 717 718 /* Networking protocol blocks we attach to sockets. 719 * socket layer -> transport layer interface 720 * transport -> network interface is defined by struct inet_proto 721 */ 722 struct proto { 723 void (*close)(struct sock *sk, 724 long timeout); 725 int (*connect)(struct sock *sk, 726 struct sockaddr *uaddr, 727 int addr_len); 728 int (*disconnect)(struct sock *sk, int flags); 729 730 struct sock * (*accept) (struct sock *sk, int flags, int *err); 731 732 int (*ioctl)(struct sock *sk, int cmd, 733 unsigned long arg); 734 int (*init)(struct sock *sk); 735 void (*destroy)(struct sock *sk); 736 void (*shutdown)(struct sock *sk, int how); 737 int (*setsockopt)(struct sock *sk, int level, 738 int optname, char __user *optval, 739 unsigned int optlen); 740 int (*getsockopt)(struct sock *sk, int level, 741 int optname, char __user *optval, 742 int __user *option); 743 #ifdef CONFIG_COMPAT 744 int (*compat_setsockopt)(struct sock *sk, 745 int level, 746 int optname, char __user *optval, 747 unsigned int optlen); 748 int (*compat_getsockopt)(struct sock *sk, 749 int level, 750 int optname, char __user *optval, 751 int __user *option); 752 #endif 753 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 754 struct msghdr *msg, size_t len); 755 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 756 struct msghdr *msg, 757 size_t len, int noblock, int flags, 758 int *addr_len); 759 int (*sendpage)(struct sock *sk, struct page *page, 760 int offset, size_t size, int flags); 761 int (*bind)(struct sock *sk, 762 struct sockaddr *uaddr, int addr_len); 763 764 int (*backlog_rcv) (struct sock *sk, 765 struct sk_buff *skb); 766 767 /* Keeping track of sk's, looking them up, and port selection methods. */ 768 void (*hash)(struct sock *sk); 769 void (*unhash)(struct sock *sk); 770 void (*rehash)(struct sock *sk); 771 int (*get_port)(struct sock *sk, unsigned short snum); 772 void (*clear_sk)(struct sock *sk, int size); 773 774 /* Keeping track of sockets in use */ 775 #ifdef CONFIG_PROC_FS 776 unsigned int inuse_idx; 777 #endif 778 779 /* Memory pressure */ 780 void (*enter_memory_pressure)(struct sock *sk); 781 atomic_long_t *memory_allocated; /* Current allocated memory. */ 782 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 783 /* 784 * Pressure flag: try to collapse. 785 * Technical note: it is used by multiple contexts non atomically. 786 * All the __sk_mem_schedule() is of this nature: accounting 787 * is strict, actions are advisory and have some latency. 788 */ 789 int *memory_pressure; 790 long *sysctl_mem; 791 int *sysctl_wmem; 792 int *sysctl_rmem; 793 int max_header; 794 bool no_autobind; 795 796 struct kmem_cache *slab; 797 unsigned int obj_size; 798 int slab_flags; 799 800 struct percpu_counter *orphan_count; 801 802 struct request_sock_ops *rsk_prot; 803 struct timewait_sock_ops *twsk_prot; 804 805 union { 806 struct inet_hashinfo *hashinfo; 807 struct udp_table *udp_table; 808 struct raw_hashinfo *raw_hash; 809 } h; 810 811 struct module *owner; 812 813 char name[32]; 814 815 struct list_head node; 816 #ifdef SOCK_REFCNT_DEBUG 817 atomic_t socks; 818 #endif 819 }; 820 821 extern int proto_register(struct proto *prot, int alloc_slab); 822 extern void proto_unregister(struct proto *prot); 823 824 #ifdef SOCK_REFCNT_DEBUG 825 static inline void sk_refcnt_debug_inc(struct sock *sk) 826 { 827 atomic_inc(&sk->sk_prot->socks); 828 } 829 830 static inline void sk_refcnt_debug_dec(struct sock *sk) 831 { 832 atomic_dec(&sk->sk_prot->socks); 833 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 834 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 835 } 836 837 static inline void sk_refcnt_debug_release(const struct sock *sk) 838 { 839 if (atomic_read(&sk->sk_refcnt) != 1) 840 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 841 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 842 } 843 #else /* SOCK_REFCNT_DEBUG */ 844 #define sk_refcnt_debug_inc(sk) do { } while (0) 845 #define sk_refcnt_debug_dec(sk) do { } while (0) 846 #define sk_refcnt_debug_release(sk) do { } while (0) 847 #endif /* SOCK_REFCNT_DEBUG */ 848 849 850 #ifdef CONFIG_PROC_FS 851 /* Called with local bh disabled */ 852 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 853 extern int sock_prot_inuse_get(struct net *net, struct proto *proto); 854 #else 855 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot, 856 int inc) 857 { 858 } 859 #endif 860 861 862 /* With per-bucket locks this operation is not-atomic, so that 863 * this version is not worse. 864 */ 865 static inline void __sk_prot_rehash(struct sock *sk) 866 { 867 sk->sk_prot->unhash(sk); 868 sk->sk_prot->hash(sk); 869 } 870 871 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 872 873 /* About 10 seconds */ 874 #define SOCK_DESTROY_TIME (10*HZ) 875 876 /* Sockets 0-1023 can't be bound to unless you are superuser */ 877 #define PROT_SOCK 1024 878 879 #define SHUTDOWN_MASK 3 880 #define RCV_SHUTDOWN 1 881 #define SEND_SHUTDOWN 2 882 883 #define SOCK_SNDBUF_LOCK 1 884 #define SOCK_RCVBUF_LOCK 2 885 #define SOCK_BINDADDR_LOCK 4 886 #define SOCK_BINDPORT_LOCK 8 887 888 /* sock_iocb: used to kick off async processing of socket ios */ 889 struct sock_iocb { 890 struct list_head list; 891 892 int flags; 893 int size; 894 struct socket *sock; 895 struct sock *sk; 896 struct scm_cookie *scm; 897 struct msghdr *msg, async_msg; 898 struct kiocb *kiocb; 899 }; 900 901 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 902 { 903 return (struct sock_iocb *)iocb->private; 904 } 905 906 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 907 { 908 return si->kiocb; 909 } 910 911 struct socket_alloc { 912 struct socket socket; 913 struct inode vfs_inode; 914 }; 915 916 static inline struct socket *SOCKET_I(struct inode *inode) 917 { 918 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 919 } 920 921 static inline struct inode *SOCK_INODE(struct socket *socket) 922 { 923 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 924 } 925 926 /* 927 * Functions for memory accounting 928 */ 929 extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 930 extern void __sk_mem_reclaim(struct sock *sk); 931 932 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 933 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 934 #define SK_MEM_SEND 0 935 #define SK_MEM_RECV 1 936 937 static inline int sk_mem_pages(int amt) 938 { 939 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 940 } 941 942 static inline int sk_has_account(struct sock *sk) 943 { 944 /* return true if protocol supports memory accounting */ 945 return !!sk->sk_prot->memory_allocated; 946 } 947 948 static inline int sk_wmem_schedule(struct sock *sk, int size) 949 { 950 if (!sk_has_account(sk)) 951 return 1; 952 return size <= sk->sk_forward_alloc || 953 __sk_mem_schedule(sk, size, SK_MEM_SEND); 954 } 955 956 static inline int sk_rmem_schedule(struct sock *sk, int size) 957 { 958 if (!sk_has_account(sk)) 959 return 1; 960 return size <= sk->sk_forward_alloc || 961 __sk_mem_schedule(sk, size, SK_MEM_RECV); 962 } 963 964 static inline void sk_mem_reclaim(struct sock *sk) 965 { 966 if (!sk_has_account(sk)) 967 return; 968 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 969 __sk_mem_reclaim(sk); 970 } 971 972 static inline void sk_mem_reclaim_partial(struct sock *sk) 973 { 974 if (!sk_has_account(sk)) 975 return; 976 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 977 __sk_mem_reclaim(sk); 978 } 979 980 static inline void sk_mem_charge(struct sock *sk, int size) 981 { 982 if (!sk_has_account(sk)) 983 return; 984 sk->sk_forward_alloc -= size; 985 } 986 987 static inline void sk_mem_uncharge(struct sock *sk, int size) 988 { 989 if (!sk_has_account(sk)) 990 return; 991 sk->sk_forward_alloc += size; 992 } 993 994 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 995 { 996 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 997 sk->sk_wmem_queued -= skb->truesize; 998 sk_mem_uncharge(sk, skb->truesize); 999 __kfree_skb(skb); 1000 } 1001 1002 /* Used by processes to "lock" a socket state, so that 1003 * interrupts and bottom half handlers won't change it 1004 * from under us. It essentially blocks any incoming 1005 * packets, so that we won't get any new data or any 1006 * packets that change the state of the socket. 1007 * 1008 * While locked, BH processing will add new packets to 1009 * the backlog queue. This queue is processed by the 1010 * owner of the socket lock right before it is released. 1011 * 1012 * Since ~2.3.5 it is also exclusive sleep lock serializing 1013 * accesses from user process context. 1014 */ 1015 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1016 1017 /* 1018 * Macro so as to not evaluate some arguments when 1019 * lockdep is not enabled. 1020 * 1021 * Mark both the sk_lock and the sk_lock.slock as a 1022 * per-address-family lock class. 1023 */ 1024 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1025 do { \ 1026 sk->sk_lock.owned = 0; \ 1027 init_waitqueue_head(&sk->sk_lock.wq); \ 1028 spin_lock_init(&(sk)->sk_lock.slock); \ 1029 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1030 sizeof((sk)->sk_lock)); \ 1031 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1032 (skey), (sname)); \ 1033 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1034 } while (0) 1035 1036 extern void lock_sock_nested(struct sock *sk, int subclass); 1037 1038 static inline void lock_sock(struct sock *sk) 1039 { 1040 lock_sock_nested(sk, 0); 1041 } 1042 1043 extern void release_sock(struct sock *sk); 1044 1045 /* BH context may only use the following locking interface. */ 1046 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1047 #define bh_lock_sock_nested(__sk) \ 1048 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1049 SINGLE_DEPTH_NESTING) 1050 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1051 1052 extern bool lock_sock_fast(struct sock *sk); 1053 /** 1054 * unlock_sock_fast - complement of lock_sock_fast 1055 * @sk: socket 1056 * @slow: slow mode 1057 * 1058 * fast unlock socket for user context. 1059 * If slow mode is on, we call regular release_sock() 1060 */ 1061 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1062 { 1063 if (slow) 1064 release_sock(sk); 1065 else 1066 spin_unlock_bh(&sk->sk_lock.slock); 1067 } 1068 1069 1070 extern struct sock *sk_alloc(struct net *net, int family, 1071 gfp_t priority, 1072 struct proto *prot); 1073 extern void sk_free(struct sock *sk); 1074 extern void sk_release_kernel(struct sock *sk); 1075 extern struct sock *sk_clone(const struct sock *sk, 1076 const gfp_t priority); 1077 1078 extern struct sk_buff *sock_wmalloc(struct sock *sk, 1079 unsigned long size, int force, 1080 gfp_t priority); 1081 extern struct sk_buff *sock_rmalloc(struct sock *sk, 1082 unsigned long size, int force, 1083 gfp_t priority); 1084 extern void sock_wfree(struct sk_buff *skb); 1085 extern void sock_rfree(struct sk_buff *skb); 1086 1087 extern int sock_setsockopt(struct socket *sock, int level, 1088 int op, char __user *optval, 1089 unsigned int optlen); 1090 1091 extern int sock_getsockopt(struct socket *sock, int level, 1092 int op, char __user *optval, 1093 int __user *optlen); 1094 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1095 unsigned long size, 1096 int noblock, 1097 int *errcode); 1098 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 1099 unsigned long header_len, 1100 unsigned long data_len, 1101 int noblock, 1102 int *errcode); 1103 extern void *sock_kmalloc(struct sock *sk, int size, 1104 gfp_t priority); 1105 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 1106 extern void sk_send_sigurg(struct sock *sk); 1107 1108 #ifdef CONFIG_CGROUPS 1109 extern void sock_update_classid(struct sock *sk); 1110 #else 1111 static inline void sock_update_classid(struct sock *sk) 1112 { 1113 } 1114 #endif 1115 1116 /* 1117 * Functions to fill in entries in struct proto_ops when a protocol 1118 * does not implement a particular function. 1119 */ 1120 extern int sock_no_bind(struct socket *, 1121 struct sockaddr *, int); 1122 extern int sock_no_connect(struct socket *, 1123 struct sockaddr *, int, int); 1124 extern int sock_no_socketpair(struct socket *, 1125 struct socket *); 1126 extern int sock_no_accept(struct socket *, 1127 struct socket *, int); 1128 extern int sock_no_getname(struct socket *, 1129 struct sockaddr *, int *, int); 1130 extern unsigned int sock_no_poll(struct file *, struct socket *, 1131 struct poll_table_struct *); 1132 extern int sock_no_ioctl(struct socket *, unsigned int, 1133 unsigned long); 1134 extern int sock_no_listen(struct socket *, int); 1135 extern int sock_no_shutdown(struct socket *, int); 1136 extern int sock_no_getsockopt(struct socket *, int , int, 1137 char __user *, int __user *); 1138 extern int sock_no_setsockopt(struct socket *, int, int, 1139 char __user *, unsigned int); 1140 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 1141 struct msghdr *, size_t); 1142 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 1143 struct msghdr *, size_t, int); 1144 extern int sock_no_mmap(struct file *file, 1145 struct socket *sock, 1146 struct vm_area_struct *vma); 1147 extern ssize_t sock_no_sendpage(struct socket *sock, 1148 struct page *page, 1149 int offset, size_t size, 1150 int flags); 1151 1152 /* 1153 * Functions to fill in entries in struct proto_ops when a protocol 1154 * uses the inet style. 1155 */ 1156 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 1157 char __user *optval, int __user *optlen); 1158 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1159 struct msghdr *msg, size_t size, int flags); 1160 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 1161 char __user *optval, unsigned int optlen); 1162 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 1163 int optname, char __user *optval, int __user *optlen); 1164 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 1165 int optname, char __user *optval, unsigned int optlen); 1166 1167 extern void sk_common_release(struct sock *sk); 1168 1169 /* 1170 * Default socket callbacks and setup code 1171 */ 1172 1173 /* Initialise core socket variables */ 1174 extern void sock_init_data(struct socket *sock, struct sock *sk); 1175 1176 extern void sk_filter_release_rcu(struct rcu_head *rcu); 1177 1178 /** 1179 * sk_filter_release - release a socket filter 1180 * @fp: filter to remove 1181 * 1182 * Remove a filter from a socket and release its resources. 1183 */ 1184 1185 static inline void sk_filter_release(struct sk_filter *fp) 1186 { 1187 if (atomic_dec_and_test(&fp->refcnt)) 1188 call_rcu_bh(&fp->rcu, sk_filter_release_rcu); 1189 } 1190 1191 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1192 { 1193 unsigned int size = sk_filter_len(fp); 1194 1195 atomic_sub(size, &sk->sk_omem_alloc); 1196 sk_filter_release(fp); 1197 } 1198 1199 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1200 { 1201 atomic_inc(&fp->refcnt); 1202 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 1203 } 1204 1205 /* 1206 * Socket reference counting postulates. 1207 * 1208 * * Each user of socket SHOULD hold a reference count. 1209 * * Each access point to socket (an hash table bucket, reference from a list, 1210 * running timer, skb in flight MUST hold a reference count. 1211 * * When reference count hits 0, it means it will never increase back. 1212 * * When reference count hits 0, it means that no references from 1213 * outside exist to this socket and current process on current CPU 1214 * is last user and may/should destroy this socket. 1215 * * sk_free is called from any context: process, BH, IRQ. When 1216 * it is called, socket has no references from outside -> sk_free 1217 * may release descendant resources allocated by the socket, but 1218 * to the time when it is called, socket is NOT referenced by any 1219 * hash tables, lists etc. 1220 * * Packets, delivered from outside (from network or from another process) 1221 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1222 * when they sit in queue. Otherwise, packets will leak to hole, when 1223 * socket is looked up by one cpu and unhasing is made by another CPU. 1224 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1225 * (leak to backlog). Packet socket does all the processing inside 1226 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1227 * use separate SMP lock, so that they are prone too. 1228 */ 1229 1230 /* Ungrab socket and destroy it, if it was the last reference. */ 1231 static inline void sock_put(struct sock *sk) 1232 { 1233 if (atomic_dec_and_test(&sk->sk_refcnt)) 1234 sk_free(sk); 1235 } 1236 1237 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1238 const int nested); 1239 1240 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1241 { 1242 sk->sk_tx_queue_mapping = tx_queue; 1243 } 1244 1245 static inline void sk_tx_queue_clear(struct sock *sk) 1246 { 1247 sk->sk_tx_queue_mapping = -1; 1248 } 1249 1250 static inline int sk_tx_queue_get(const struct sock *sk) 1251 { 1252 return sk ? sk->sk_tx_queue_mapping : -1; 1253 } 1254 1255 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1256 { 1257 sk_tx_queue_clear(sk); 1258 sk->sk_socket = sock; 1259 } 1260 1261 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1262 { 1263 return &sk->sk_wq->wait; 1264 } 1265 /* Detach socket from process context. 1266 * Announce socket dead, detach it from wait queue and inode. 1267 * Note that parent inode held reference count on this struct sock, 1268 * we do not release it in this function, because protocol 1269 * probably wants some additional cleanups or even continuing 1270 * to work with this socket (TCP). 1271 */ 1272 static inline void sock_orphan(struct sock *sk) 1273 { 1274 write_lock_bh(&sk->sk_callback_lock); 1275 sock_set_flag(sk, SOCK_DEAD); 1276 sk_set_socket(sk, NULL); 1277 sk->sk_wq = NULL; 1278 write_unlock_bh(&sk->sk_callback_lock); 1279 } 1280 1281 static inline void sock_graft(struct sock *sk, struct socket *parent) 1282 { 1283 write_lock_bh(&sk->sk_callback_lock); 1284 rcu_assign_pointer(sk->sk_wq, parent->wq); 1285 parent->sk = sk; 1286 sk_set_socket(sk, parent); 1287 security_sock_graft(sk, parent); 1288 write_unlock_bh(&sk->sk_callback_lock); 1289 } 1290 1291 extern int sock_i_uid(struct sock *sk); 1292 extern unsigned long sock_i_ino(struct sock *sk); 1293 1294 static inline struct dst_entry * 1295 __sk_dst_get(struct sock *sk) 1296 { 1297 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() || 1298 sock_owned_by_user(sk) || 1299 lockdep_is_held(&sk->sk_lock.slock)); 1300 } 1301 1302 static inline struct dst_entry * 1303 sk_dst_get(struct sock *sk) 1304 { 1305 struct dst_entry *dst; 1306 1307 rcu_read_lock(); 1308 dst = rcu_dereference(sk->sk_dst_cache); 1309 if (dst) 1310 dst_hold(dst); 1311 rcu_read_unlock(); 1312 return dst; 1313 } 1314 1315 extern void sk_reset_txq(struct sock *sk); 1316 1317 static inline void dst_negative_advice(struct sock *sk) 1318 { 1319 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1320 1321 if (dst && dst->ops->negative_advice) { 1322 ndst = dst->ops->negative_advice(dst); 1323 1324 if (ndst != dst) { 1325 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1326 sk_reset_txq(sk); 1327 } 1328 } 1329 } 1330 1331 static inline void 1332 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1333 { 1334 struct dst_entry *old_dst; 1335 1336 sk_tx_queue_clear(sk); 1337 /* 1338 * This can be called while sk is owned by the caller only, 1339 * with no state that can be checked in a rcu_dereference_check() cond 1340 */ 1341 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1342 rcu_assign_pointer(sk->sk_dst_cache, dst); 1343 dst_release(old_dst); 1344 } 1345 1346 static inline void 1347 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1348 { 1349 spin_lock(&sk->sk_dst_lock); 1350 __sk_dst_set(sk, dst); 1351 spin_unlock(&sk->sk_dst_lock); 1352 } 1353 1354 static inline void 1355 __sk_dst_reset(struct sock *sk) 1356 { 1357 __sk_dst_set(sk, NULL); 1358 } 1359 1360 static inline void 1361 sk_dst_reset(struct sock *sk) 1362 { 1363 spin_lock(&sk->sk_dst_lock); 1364 __sk_dst_reset(sk); 1365 spin_unlock(&sk->sk_dst_lock); 1366 } 1367 1368 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1369 1370 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1371 1372 static inline int sk_can_gso(const struct sock *sk) 1373 { 1374 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1375 } 1376 1377 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1378 1379 static inline void sk_nocaps_add(struct sock *sk, int flags) 1380 { 1381 sk->sk_route_nocaps |= flags; 1382 sk->sk_route_caps &= ~flags; 1383 } 1384 1385 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1386 struct sk_buff *skb, struct page *page, 1387 int off, int copy) 1388 { 1389 if (skb->ip_summed == CHECKSUM_NONE) { 1390 int err = 0; 1391 __wsum csum = csum_and_copy_from_user(from, 1392 page_address(page) + off, 1393 copy, 0, &err); 1394 if (err) 1395 return err; 1396 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1397 } else if (copy_from_user(page_address(page) + off, from, copy)) 1398 return -EFAULT; 1399 1400 skb->len += copy; 1401 skb->data_len += copy; 1402 skb->truesize += copy; 1403 sk->sk_wmem_queued += copy; 1404 sk_mem_charge(sk, copy); 1405 return 0; 1406 } 1407 1408 /** 1409 * sk_wmem_alloc_get - returns write allocations 1410 * @sk: socket 1411 * 1412 * Returns sk_wmem_alloc minus initial offset of one 1413 */ 1414 static inline int sk_wmem_alloc_get(const struct sock *sk) 1415 { 1416 return atomic_read(&sk->sk_wmem_alloc) - 1; 1417 } 1418 1419 /** 1420 * sk_rmem_alloc_get - returns read allocations 1421 * @sk: socket 1422 * 1423 * Returns sk_rmem_alloc 1424 */ 1425 static inline int sk_rmem_alloc_get(const struct sock *sk) 1426 { 1427 return atomic_read(&sk->sk_rmem_alloc); 1428 } 1429 1430 /** 1431 * sk_has_allocations - check if allocations are outstanding 1432 * @sk: socket 1433 * 1434 * Returns true if socket has write or read allocations 1435 */ 1436 static inline int sk_has_allocations(const struct sock *sk) 1437 { 1438 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1439 } 1440 1441 /** 1442 * wq_has_sleeper - check if there are any waiting processes 1443 * @wq: struct socket_wq 1444 * 1445 * Returns true if socket_wq has waiting processes 1446 * 1447 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1448 * barrier call. They were added due to the race found within the tcp code. 1449 * 1450 * Consider following tcp code paths: 1451 * 1452 * CPU1 CPU2 1453 * 1454 * sys_select receive packet 1455 * ... ... 1456 * __add_wait_queue update tp->rcv_nxt 1457 * ... ... 1458 * tp->rcv_nxt check sock_def_readable 1459 * ... { 1460 * schedule rcu_read_lock(); 1461 * wq = rcu_dereference(sk->sk_wq); 1462 * if (wq && waitqueue_active(&wq->wait)) 1463 * wake_up_interruptible(&wq->wait) 1464 * ... 1465 * } 1466 * 1467 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1468 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1469 * could then endup calling schedule and sleep forever if there are no more 1470 * data on the socket. 1471 * 1472 */ 1473 static inline bool wq_has_sleeper(struct socket_wq *wq) 1474 { 1475 1476 /* 1477 * We need to be sure we are in sync with the 1478 * add_wait_queue modifications to the wait queue. 1479 * 1480 * This memory barrier is paired in the sock_poll_wait. 1481 */ 1482 smp_mb(); 1483 return wq && waitqueue_active(&wq->wait); 1484 } 1485 1486 /** 1487 * sock_poll_wait - place memory barrier behind the poll_wait call. 1488 * @filp: file 1489 * @wait_address: socket wait queue 1490 * @p: poll_table 1491 * 1492 * See the comments in the wq_has_sleeper function. 1493 */ 1494 static inline void sock_poll_wait(struct file *filp, 1495 wait_queue_head_t *wait_address, poll_table *p) 1496 { 1497 if (p && wait_address) { 1498 poll_wait(filp, wait_address, p); 1499 /* 1500 * We need to be sure we are in sync with the 1501 * socket flags modification. 1502 * 1503 * This memory barrier is paired in the wq_has_sleeper. 1504 */ 1505 smp_mb(); 1506 } 1507 } 1508 1509 /* 1510 * Queue a received datagram if it will fit. Stream and sequenced 1511 * protocols can't normally use this as they need to fit buffers in 1512 * and play with them. 1513 * 1514 * Inlined as it's very short and called for pretty much every 1515 * packet ever received. 1516 */ 1517 1518 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1519 { 1520 skb_orphan(skb); 1521 skb->sk = sk; 1522 skb->destructor = sock_wfree; 1523 /* 1524 * We used to take a refcount on sk, but following operation 1525 * is enough to guarantee sk_free() wont free this sock until 1526 * all in-flight packets are completed 1527 */ 1528 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1529 } 1530 1531 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1532 { 1533 skb_orphan(skb); 1534 skb->sk = sk; 1535 skb->destructor = sock_rfree; 1536 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1537 sk_mem_charge(sk, skb->truesize); 1538 } 1539 1540 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1541 unsigned long expires); 1542 1543 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1544 1545 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1546 1547 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1548 1549 /* 1550 * Recover an error report and clear atomically 1551 */ 1552 1553 static inline int sock_error(struct sock *sk) 1554 { 1555 int err; 1556 if (likely(!sk->sk_err)) 1557 return 0; 1558 err = xchg(&sk->sk_err, 0); 1559 return -err; 1560 } 1561 1562 static inline unsigned long sock_wspace(struct sock *sk) 1563 { 1564 int amt = 0; 1565 1566 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1567 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1568 if (amt < 0) 1569 amt = 0; 1570 } 1571 return amt; 1572 } 1573 1574 static inline void sk_wake_async(struct sock *sk, int how, int band) 1575 { 1576 if (sock_flag(sk, SOCK_FASYNC)) 1577 sock_wake_async(sk->sk_socket, how, band); 1578 } 1579 1580 #define SOCK_MIN_SNDBUF 2048 1581 /* 1582 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need 1583 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak 1584 */ 1585 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff)) 1586 1587 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1588 { 1589 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1590 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 1591 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1592 } 1593 } 1594 1595 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 1596 1597 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1598 { 1599 struct page *page = NULL; 1600 1601 page = alloc_pages(sk->sk_allocation, 0); 1602 if (!page) { 1603 sk->sk_prot->enter_memory_pressure(sk); 1604 sk_stream_moderate_sndbuf(sk); 1605 } 1606 return page; 1607 } 1608 1609 /* 1610 * Default write policy as shown to user space via poll/select/SIGIO 1611 */ 1612 static inline int sock_writeable(const struct sock *sk) 1613 { 1614 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 1615 } 1616 1617 static inline gfp_t gfp_any(void) 1618 { 1619 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1620 } 1621 1622 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1623 { 1624 return noblock ? 0 : sk->sk_rcvtimeo; 1625 } 1626 1627 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1628 { 1629 return noblock ? 0 : sk->sk_sndtimeo; 1630 } 1631 1632 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1633 { 1634 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1635 } 1636 1637 /* Alas, with timeout socket operations are not restartable. 1638 * Compare this to poll(). 1639 */ 1640 static inline int sock_intr_errno(long timeo) 1641 { 1642 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1643 } 1644 1645 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 1646 struct sk_buff *skb); 1647 1648 static __inline__ void 1649 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1650 { 1651 ktime_t kt = skb->tstamp; 1652 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 1653 1654 /* 1655 * generate control messages if 1656 * - receive time stamping in software requested (SOCK_RCVTSTAMP 1657 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 1658 * - software time stamp available and wanted 1659 * (SOCK_TIMESTAMPING_SOFTWARE) 1660 * - hardware time stamps available and wanted 1661 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 1662 * SOCK_TIMESTAMPING_RAW_HARDWARE) 1663 */ 1664 if (sock_flag(sk, SOCK_RCVTSTAMP) || 1665 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 1666 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 1667 (hwtstamps->hwtstamp.tv64 && 1668 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 1669 (hwtstamps->syststamp.tv64 && 1670 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 1671 __sock_recv_timestamp(msg, sk, skb); 1672 else 1673 sk->sk_stamp = kt; 1674 } 1675 1676 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 1677 struct sk_buff *skb); 1678 1679 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 1680 struct sk_buff *skb) 1681 { 1682 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 1683 (1UL << SOCK_RCVTSTAMP) | \ 1684 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 1685 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 1686 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 1687 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 1688 1689 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 1690 __sock_recv_ts_and_drops(msg, sk, skb); 1691 else 1692 sk->sk_stamp = skb->tstamp; 1693 } 1694 1695 /** 1696 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 1697 * @sk: socket sending this packet 1698 * @tx_flags: filled with instructions for time stamping 1699 * 1700 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if 1701 * parameters are invalid. 1702 */ 1703 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 1704 1705 /** 1706 * sk_eat_skb - Release a skb if it is no longer needed 1707 * @sk: socket to eat this skb from 1708 * @skb: socket buffer to eat 1709 * @copied_early: flag indicating whether DMA operations copied this data early 1710 * 1711 * This routine must be called with interrupts disabled or with the socket 1712 * locked so that the sk_buff queue operation is ok. 1713 */ 1714 #ifdef CONFIG_NET_DMA 1715 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1716 { 1717 __skb_unlink(skb, &sk->sk_receive_queue); 1718 if (!copied_early) 1719 __kfree_skb(skb); 1720 else 1721 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1722 } 1723 #else 1724 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1725 { 1726 __skb_unlink(skb, &sk->sk_receive_queue); 1727 __kfree_skb(skb); 1728 } 1729 #endif 1730 1731 static inline 1732 struct net *sock_net(const struct sock *sk) 1733 { 1734 return read_pnet(&sk->sk_net); 1735 } 1736 1737 static inline 1738 void sock_net_set(struct sock *sk, struct net *net) 1739 { 1740 write_pnet(&sk->sk_net, net); 1741 } 1742 1743 /* 1744 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 1745 * They should not hold a referrence to a namespace in order to allow 1746 * to stop it. 1747 * Sockets after sk_change_net should be released using sk_release_kernel 1748 */ 1749 static inline void sk_change_net(struct sock *sk, struct net *net) 1750 { 1751 put_net(sock_net(sk)); 1752 sock_net_set(sk, hold_net(net)); 1753 } 1754 1755 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 1756 { 1757 if (unlikely(skb->sk)) { 1758 struct sock *sk = skb->sk; 1759 1760 skb->destructor = NULL; 1761 skb->sk = NULL; 1762 return sk; 1763 } 1764 return NULL; 1765 } 1766 1767 extern void sock_enable_timestamp(struct sock *sk, int flag); 1768 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1769 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 1770 1771 /* 1772 * Enable debug/info messages 1773 */ 1774 extern int net_msg_warn; 1775 #define NETDEBUG(fmt, args...) \ 1776 do { if (net_msg_warn) printk(fmt,##args); } while (0) 1777 1778 #define LIMIT_NETDEBUG(fmt, args...) \ 1779 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 1780 1781 extern __u32 sysctl_wmem_max; 1782 extern __u32 sysctl_rmem_max; 1783 1784 extern void sk_init(void); 1785 1786 extern int sysctl_optmem_max; 1787 1788 extern __u32 sysctl_wmem_default; 1789 extern __u32 sysctl_rmem_default; 1790 1791 #endif /* _SOCK_H */ 1792