xref: /openbmc/linux/include/net/sock.h (revision b96fc2f3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65 
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
71 
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 	return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89  * This structure really needs to be cleaned up.
90  * Most of it is for TCP, and not used by any of
91  * the other protocols.
92  */
93 
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 					printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106 
107 /* This is the per-socket lock.  The spinlock provides a synchronization
108  * between user contexts and software interrupt processing, whereas the
109  * mini-semaphore synchronizes multiple users amongst themselves.
110  */
111 typedef struct {
112 	spinlock_t		slock;
113 	int			owned;
114 	wait_queue_head_t	wq;
115 	/*
116 	 * We express the mutex-alike socket_lock semantics
117 	 * to the lock validator by explicitly managing
118 	 * the slock as a lock variant (in addition to
119 	 * the slock itself):
120 	 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 	struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125 
126 struct sock;
127 struct proto;
128 struct net;
129 
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132 
133 /**
134  *	struct sock_common - minimal network layer representation of sockets
135  *	@skc_daddr: Foreign IPv4 addr
136  *	@skc_rcv_saddr: Bound local IPv4 addr
137  *	@skc_hash: hash value used with various protocol lookup tables
138  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
139  *	@skc_dport: placeholder for inet_dport/tw_dport
140  *	@skc_num: placeholder for inet_num/tw_num
141  *	@skc_family: network address family
142  *	@skc_state: Connection state
143  *	@skc_reuse: %SO_REUSEADDR setting
144  *	@skc_reuseport: %SO_REUSEPORT setting
145  *	@skc_bound_dev_if: bound device index if != 0
146  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
147  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148  *	@skc_prot: protocol handlers inside a network family
149  *	@skc_net: reference to the network namespace of this socket
150  *	@skc_node: main hash linkage for various protocol lookup tables
151  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152  *	@skc_tx_queue_mapping: tx queue number for this connection
153  *	@skc_refcnt: reference count
154  *
155  *	This is the minimal network layer representation of sockets, the header
156  *	for struct sock and struct inet_timewait_sock.
157  */
158 struct sock_common {
159 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 	 * address on 64bit arches : cf INET_MATCH()
161 	 */
162 	union {
163 		__addrpair	skc_addrpair;
164 		struct {
165 			__be32	skc_daddr;
166 			__be32	skc_rcv_saddr;
167 		};
168 	};
169 	union  {
170 		unsigned int	skc_hash;
171 		__u16		skc_u16hashes[2];
172 	};
173 	/* skc_dport && skc_num must be grouped as well */
174 	union {
175 		__portpair	skc_portpair;
176 		struct {
177 			__be16	skc_dport;
178 			__u16	skc_num;
179 		};
180 	};
181 
182 	unsigned short		skc_family;
183 	volatile unsigned char	skc_state;
184 	unsigned char		skc_reuse:4;
185 	unsigned char		skc_reuseport:1;
186 	unsigned char		skc_ipv6only:1;
187 	unsigned char		skc_net_refcnt:1;
188 	int			skc_bound_dev_if;
189 	union {
190 		struct hlist_node	skc_bind_node;
191 		struct hlist_nulls_node skc_portaddr_node;
192 	};
193 	struct proto		*skc_prot;
194 	possible_net_t		skc_net;
195 
196 #if IS_ENABLED(CONFIG_IPV6)
197 	struct in6_addr		skc_v6_daddr;
198 	struct in6_addr		skc_v6_rcv_saddr;
199 #endif
200 
201 	atomic64_t		skc_cookie;
202 
203 	/*
204 	 * fields between dontcopy_begin/dontcopy_end
205 	 * are not copied in sock_copy()
206 	 */
207 	/* private: */
208 	int			skc_dontcopy_begin[0];
209 	/* public: */
210 	union {
211 		struct hlist_node	skc_node;
212 		struct hlist_nulls_node skc_nulls_node;
213 	};
214 	int			skc_tx_queue_mapping;
215 	atomic_t		skc_refcnt;
216 	/* private: */
217 	int                     skc_dontcopy_end[0];
218 	/* public: */
219 };
220 
221 struct cg_proto;
222 /**
223   *	struct sock - network layer representation of sockets
224   *	@__sk_common: shared layout with inet_timewait_sock
225   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
226   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
227   *	@sk_lock:	synchronizer
228   *	@sk_rcvbuf: size of receive buffer in bytes
229   *	@sk_wq: sock wait queue and async head
230   *	@sk_rx_dst: receive input route used by early demux
231   *	@sk_dst_cache: destination cache
232   *	@sk_dst_lock: destination cache lock
233   *	@sk_policy: flow policy
234   *	@sk_receive_queue: incoming packets
235   *	@sk_wmem_alloc: transmit queue bytes committed
236   *	@sk_write_queue: Packet sending queue
237   *	@sk_omem_alloc: "o" is "option" or "other"
238   *	@sk_wmem_queued: persistent queue size
239   *	@sk_forward_alloc: space allocated forward
240   *	@sk_napi_id: id of the last napi context to receive data for sk
241   *	@sk_ll_usec: usecs to busypoll when there is no data
242   *	@sk_allocation: allocation mode
243   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
244   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
245   *	@sk_sndbuf: size of send buffer in bytes
246   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
247   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
248   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
249   *	@sk_no_check_rx: allow zero checksum in RX packets
250   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
251   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
252   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
253   *	@sk_gso_max_size: Maximum GSO segment size to build
254   *	@sk_gso_max_segs: Maximum number of GSO segments
255   *	@sk_lingertime: %SO_LINGER l_linger setting
256   *	@sk_backlog: always used with the per-socket spinlock held
257   *	@sk_callback_lock: used with the callbacks in the end of this struct
258   *	@sk_error_queue: rarely used
259   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
260   *			  IPV6_ADDRFORM for instance)
261   *	@sk_err: last error
262   *	@sk_err_soft: errors that don't cause failure but are the cause of a
263   *		      persistent failure not just 'timed out'
264   *	@sk_drops: raw/udp drops counter
265   *	@sk_ack_backlog: current listen backlog
266   *	@sk_max_ack_backlog: listen backlog set in listen()
267   *	@sk_priority: %SO_PRIORITY setting
268   *	@sk_cgrp_prioidx: socket group's priority map index
269   *	@sk_type: socket type (%SOCK_STREAM, etc)
270   *	@sk_protocol: which protocol this socket belongs in this network family
271   *	@sk_peer_pid: &struct pid for this socket's peer
272   *	@sk_peer_cred: %SO_PEERCRED setting
273   *	@sk_rcvlowat: %SO_RCVLOWAT setting
274   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
275   *	@sk_sndtimeo: %SO_SNDTIMEO setting
276   *	@sk_rxhash: flow hash received from netif layer
277   *	@sk_incoming_cpu: record cpu processing incoming packets
278   *	@sk_txhash: computed flow hash for use on transmit
279   *	@sk_filter: socket filtering instructions
280   *	@sk_timer: sock cleanup timer
281   *	@sk_stamp: time stamp of last packet received
282   *	@sk_tsflags: SO_TIMESTAMPING socket options
283   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
284   *	@sk_socket: Identd and reporting IO signals
285   *	@sk_user_data: RPC layer private data
286   *	@sk_frag: cached page frag
287   *	@sk_peek_off: current peek_offset value
288   *	@sk_send_head: front of stuff to transmit
289   *	@sk_security: used by security modules
290   *	@sk_mark: generic packet mark
291   *	@sk_classid: this socket's cgroup classid
292   *	@sk_cgrp: this socket's cgroup-specific proto data
293   *	@sk_write_pending: a write to stream socket waits to start
294   *	@sk_state_change: callback to indicate change in the state of the sock
295   *	@sk_data_ready: callback to indicate there is data to be processed
296   *	@sk_write_space: callback to indicate there is bf sending space available
297   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298   *	@sk_backlog_rcv: callback to process the backlog
299   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
300  */
301 struct sock {
302 	/*
303 	 * Now struct inet_timewait_sock also uses sock_common, so please just
304 	 * don't add nothing before this first member (__sk_common) --acme
305 	 */
306 	struct sock_common	__sk_common;
307 #define sk_node			__sk_common.skc_node
308 #define sk_nulls_node		__sk_common.skc_nulls_node
309 #define sk_refcnt		__sk_common.skc_refcnt
310 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
311 
312 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
314 #define sk_hash			__sk_common.skc_hash
315 #define sk_portpair		__sk_common.skc_portpair
316 #define sk_num			__sk_common.skc_num
317 #define sk_dport		__sk_common.skc_dport
318 #define sk_addrpair		__sk_common.skc_addrpair
319 #define sk_daddr		__sk_common.skc_daddr
320 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
321 #define sk_family		__sk_common.skc_family
322 #define sk_state		__sk_common.skc_state
323 #define sk_reuse		__sk_common.skc_reuse
324 #define sk_reuseport		__sk_common.skc_reuseport
325 #define sk_ipv6only		__sk_common.skc_ipv6only
326 #define sk_net_refcnt		__sk_common.skc_net_refcnt
327 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
328 #define sk_bind_node		__sk_common.skc_bind_node
329 #define sk_prot			__sk_common.skc_prot
330 #define sk_net			__sk_common.skc_net
331 #define sk_v6_daddr		__sk_common.skc_v6_daddr
332 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
333 #define sk_cookie		__sk_common.skc_cookie
334 
335 	socket_lock_t		sk_lock;
336 	struct sk_buff_head	sk_receive_queue;
337 	/*
338 	 * The backlog queue is special, it is always used with
339 	 * the per-socket spinlock held and requires low latency
340 	 * access. Therefore we special case it's implementation.
341 	 * Note : rmem_alloc is in this structure to fill a hole
342 	 * on 64bit arches, not because its logically part of
343 	 * backlog.
344 	 */
345 	struct {
346 		atomic_t	rmem_alloc;
347 		int		len;
348 		struct sk_buff	*head;
349 		struct sk_buff	*tail;
350 	} sk_backlog;
351 #define sk_rmem_alloc sk_backlog.rmem_alloc
352 	int			sk_forward_alloc;
353 #ifdef CONFIG_RPS
354 	__u32			sk_rxhash;
355 #endif
356 	u16			sk_incoming_cpu;
357 	/* 16bit hole
358 	 * Warned : sk_incoming_cpu can be set from softirq,
359 	 * Do not use this hole without fully understanding possible issues.
360 	 */
361 
362 	__u32			sk_txhash;
363 #ifdef CONFIG_NET_RX_BUSY_POLL
364 	unsigned int		sk_napi_id;
365 	unsigned int		sk_ll_usec;
366 #endif
367 	atomic_t		sk_drops;
368 	int			sk_rcvbuf;
369 
370 	struct sk_filter __rcu	*sk_filter;
371 	struct socket_wq __rcu	*sk_wq;
372 
373 #ifdef CONFIG_XFRM
374 	struct xfrm_policy	*sk_policy[2];
375 #endif
376 	unsigned long 		sk_flags;
377 	struct dst_entry	*sk_rx_dst;
378 	struct dst_entry __rcu	*sk_dst_cache;
379 	spinlock_t		sk_dst_lock;
380 	atomic_t		sk_wmem_alloc;
381 	atomic_t		sk_omem_alloc;
382 	int			sk_sndbuf;
383 	struct sk_buff_head	sk_write_queue;
384 	kmemcheck_bitfield_begin(flags);
385 	unsigned int		sk_shutdown  : 2,
386 				sk_no_check_tx : 1,
387 				sk_no_check_rx : 1,
388 				sk_userlocks : 4,
389 				sk_protocol  : 8,
390 				sk_type      : 16;
391 	kmemcheck_bitfield_end(flags);
392 	int			sk_wmem_queued;
393 	gfp_t			sk_allocation;
394 	u32			sk_pacing_rate; /* bytes per second */
395 	u32			sk_max_pacing_rate;
396 	netdev_features_t	sk_route_caps;
397 	netdev_features_t	sk_route_nocaps;
398 	int			sk_gso_type;
399 	unsigned int		sk_gso_max_size;
400 	u16			sk_gso_max_segs;
401 	int			sk_rcvlowat;
402 	unsigned long	        sk_lingertime;
403 	struct sk_buff_head	sk_error_queue;
404 	struct proto		*sk_prot_creator;
405 	rwlock_t		sk_callback_lock;
406 	int			sk_err,
407 				sk_err_soft;
408 	u32			sk_ack_backlog;
409 	u32			sk_max_ack_backlog;
410 	__u32			sk_priority;
411 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
412 	__u32			sk_cgrp_prioidx;
413 #endif
414 	struct pid		*sk_peer_pid;
415 	const struct cred	*sk_peer_cred;
416 	long			sk_rcvtimeo;
417 	long			sk_sndtimeo;
418 	struct timer_list	sk_timer;
419 	ktime_t			sk_stamp;
420 	u16			sk_tsflags;
421 	u32			sk_tskey;
422 	struct socket		*sk_socket;
423 	void			*sk_user_data;
424 	struct page_frag	sk_frag;
425 	struct sk_buff		*sk_send_head;
426 	__s32			sk_peek_off;
427 	int			sk_write_pending;
428 #ifdef CONFIG_SECURITY
429 	void			*sk_security;
430 #endif
431 	__u32			sk_mark;
432 #ifdef CONFIG_CGROUP_NET_CLASSID
433 	u32			sk_classid;
434 #endif
435 	struct cg_proto		*sk_cgrp;
436 	void			(*sk_state_change)(struct sock *sk);
437 	void			(*sk_data_ready)(struct sock *sk);
438 	void			(*sk_write_space)(struct sock *sk);
439 	void			(*sk_error_report)(struct sock *sk);
440 	int			(*sk_backlog_rcv)(struct sock *sk,
441 						  struct sk_buff *skb);
442 	void                    (*sk_destruct)(struct sock *sk);
443 };
444 
445 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
446 
447 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
448 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
449 
450 /*
451  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
452  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
453  * on a socket means that the socket will reuse everybody else's port
454  * without looking at the other's sk_reuse value.
455  */
456 
457 #define SK_NO_REUSE	0
458 #define SK_CAN_REUSE	1
459 #define SK_FORCE_REUSE	2
460 
461 static inline int sk_peek_offset(struct sock *sk, int flags)
462 {
463 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
464 		return sk->sk_peek_off;
465 	else
466 		return 0;
467 }
468 
469 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
470 {
471 	if (sk->sk_peek_off >= 0) {
472 		if (sk->sk_peek_off >= val)
473 			sk->sk_peek_off -= val;
474 		else
475 			sk->sk_peek_off = 0;
476 	}
477 }
478 
479 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
480 {
481 	if (sk->sk_peek_off >= 0)
482 		sk->sk_peek_off += val;
483 }
484 
485 /*
486  * Hashed lists helper routines
487  */
488 static inline struct sock *sk_entry(const struct hlist_node *node)
489 {
490 	return hlist_entry(node, struct sock, sk_node);
491 }
492 
493 static inline struct sock *__sk_head(const struct hlist_head *head)
494 {
495 	return hlist_entry(head->first, struct sock, sk_node);
496 }
497 
498 static inline struct sock *sk_head(const struct hlist_head *head)
499 {
500 	return hlist_empty(head) ? NULL : __sk_head(head);
501 }
502 
503 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
504 {
505 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
506 }
507 
508 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
509 {
510 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
511 }
512 
513 static inline struct sock *sk_next(const struct sock *sk)
514 {
515 	return sk->sk_node.next ?
516 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
517 }
518 
519 static inline struct sock *sk_nulls_next(const struct sock *sk)
520 {
521 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
522 		hlist_nulls_entry(sk->sk_nulls_node.next,
523 				  struct sock, sk_nulls_node) :
524 		NULL;
525 }
526 
527 static inline bool sk_unhashed(const struct sock *sk)
528 {
529 	return hlist_unhashed(&sk->sk_node);
530 }
531 
532 static inline bool sk_hashed(const struct sock *sk)
533 {
534 	return !sk_unhashed(sk);
535 }
536 
537 static inline void sk_node_init(struct hlist_node *node)
538 {
539 	node->pprev = NULL;
540 }
541 
542 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
543 {
544 	node->pprev = NULL;
545 }
546 
547 static inline void __sk_del_node(struct sock *sk)
548 {
549 	__hlist_del(&sk->sk_node);
550 }
551 
552 /* NB: equivalent to hlist_del_init_rcu */
553 static inline bool __sk_del_node_init(struct sock *sk)
554 {
555 	if (sk_hashed(sk)) {
556 		__sk_del_node(sk);
557 		sk_node_init(&sk->sk_node);
558 		return true;
559 	}
560 	return false;
561 }
562 
563 /* Grab socket reference count. This operation is valid only
564    when sk is ALREADY grabbed f.e. it is found in hash table
565    or a list and the lookup is made under lock preventing hash table
566    modifications.
567  */
568 
569 static inline void sock_hold(struct sock *sk)
570 {
571 	atomic_inc(&sk->sk_refcnt);
572 }
573 
574 /* Ungrab socket in the context, which assumes that socket refcnt
575    cannot hit zero, f.e. it is true in context of any socketcall.
576  */
577 static inline void __sock_put(struct sock *sk)
578 {
579 	atomic_dec(&sk->sk_refcnt);
580 }
581 
582 static inline bool sk_del_node_init(struct sock *sk)
583 {
584 	bool rc = __sk_del_node_init(sk);
585 
586 	if (rc) {
587 		/* paranoid for a while -acme */
588 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
589 		__sock_put(sk);
590 	}
591 	return rc;
592 }
593 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
594 
595 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
596 {
597 	if (sk_hashed(sk)) {
598 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
599 		return true;
600 	}
601 	return false;
602 }
603 
604 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
605 {
606 	bool rc = __sk_nulls_del_node_init_rcu(sk);
607 
608 	if (rc) {
609 		/* paranoid for a while -acme */
610 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
611 		__sock_put(sk);
612 	}
613 	return rc;
614 }
615 
616 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
617 {
618 	hlist_add_head(&sk->sk_node, list);
619 }
620 
621 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
622 {
623 	sock_hold(sk);
624 	__sk_add_node(sk, list);
625 }
626 
627 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
628 {
629 	sock_hold(sk);
630 	hlist_add_head_rcu(&sk->sk_node, list);
631 }
632 
633 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
634 {
635 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
636 }
637 
638 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
639 {
640 	sock_hold(sk);
641 	__sk_nulls_add_node_rcu(sk, list);
642 }
643 
644 static inline void __sk_del_bind_node(struct sock *sk)
645 {
646 	__hlist_del(&sk->sk_bind_node);
647 }
648 
649 static inline void sk_add_bind_node(struct sock *sk,
650 					struct hlist_head *list)
651 {
652 	hlist_add_head(&sk->sk_bind_node, list);
653 }
654 
655 #define sk_for_each(__sk, list) \
656 	hlist_for_each_entry(__sk, list, sk_node)
657 #define sk_for_each_rcu(__sk, list) \
658 	hlist_for_each_entry_rcu(__sk, list, sk_node)
659 #define sk_nulls_for_each(__sk, node, list) \
660 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
661 #define sk_nulls_for_each_rcu(__sk, node, list) \
662 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
663 #define sk_for_each_from(__sk) \
664 	hlist_for_each_entry_from(__sk, sk_node)
665 #define sk_nulls_for_each_from(__sk, node) \
666 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
667 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
668 #define sk_for_each_safe(__sk, tmp, list) \
669 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
670 #define sk_for_each_bound(__sk, list) \
671 	hlist_for_each_entry(__sk, list, sk_bind_node)
672 
673 /**
674  * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
675  * @tpos:	the type * to use as a loop cursor.
676  * @pos:	the &struct hlist_node to use as a loop cursor.
677  * @head:	the head for your list.
678  * @offset:	offset of hlist_node within the struct.
679  *
680  */
681 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
682 	for (pos = (head)->first;					       \
683 	     (!is_a_nulls(pos)) &&					       \
684 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
685 	     pos = pos->next)
686 
687 static inline struct user_namespace *sk_user_ns(struct sock *sk)
688 {
689 	/* Careful only use this in a context where these parameters
690 	 * can not change and must all be valid, such as recvmsg from
691 	 * userspace.
692 	 */
693 	return sk->sk_socket->file->f_cred->user_ns;
694 }
695 
696 /* Sock flags */
697 enum sock_flags {
698 	SOCK_DEAD,
699 	SOCK_DONE,
700 	SOCK_URGINLINE,
701 	SOCK_KEEPOPEN,
702 	SOCK_LINGER,
703 	SOCK_DESTROY,
704 	SOCK_BROADCAST,
705 	SOCK_TIMESTAMP,
706 	SOCK_ZAPPED,
707 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
708 	SOCK_DBG, /* %SO_DEBUG setting */
709 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
710 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
711 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
712 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
713 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
714 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
715 	SOCK_FASYNC, /* fasync() active */
716 	SOCK_RXQ_OVFL,
717 	SOCK_ZEROCOPY, /* buffers from userspace */
718 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
719 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
720 		     * Will use last 4 bytes of packet sent from
721 		     * user-space instead.
722 		     */
723 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
724 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
725 };
726 
727 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
728 {
729 	nsk->sk_flags = osk->sk_flags;
730 }
731 
732 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
733 {
734 	__set_bit(flag, &sk->sk_flags);
735 }
736 
737 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
738 {
739 	__clear_bit(flag, &sk->sk_flags);
740 }
741 
742 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
743 {
744 	return test_bit(flag, &sk->sk_flags);
745 }
746 
747 #ifdef CONFIG_NET
748 extern struct static_key memalloc_socks;
749 static inline int sk_memalloc_socks(void)
750 {
751 	return static_key_false(&memalloc_socks);
752 }
753 #else
754 
755 static inline int sk_memalloc_socks(void)
756 {
757 	return 0;
758 }
759 
760 #endif
761 
762 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
763 {
764 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
765 }
766 
767 static inline void sk_acceptq_removed(struct sock *sk)
768 {
769 	sk->sk_ack_backlog--;
770 }
771 
772 static inline void sk_acceptq_added(struct sock *sk)
773 {
774 	sk->sk_ack_backlog++;
775 }
776 
777 static inline bool sk_acceptq_is_full(const struct sock *sk)
778 {
779 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
780 }
781 
782 /*
783  * Compute minimal free write space needed to queue new packets.
784  */
785 static inline int sk_stream_min_wspace(const struct sock *sk)
786 {
787 	return sk->sk_wmem_queued >> 1;
788 }
789 
790 static inline int sk_stream_wspace(const struct sock *sk)
791 {
792 	return sk->sk_sndbuf - sk->sk_wmem_queued;
793 }
794 
795 void sk_stream_write_space(struct sock *sk);
796 
797 /* OOB backlog add */
798 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
799 {
800 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
801 	skb_dst_force(skb);
802 
803 	if (!sk->sk_backlog.tail)
804 		sk->sk_backlog.head = skb;
805 	else
806 		sk->sk_backlog.tail->next = skb;
807 
808 	sk->sk_backlog.tail = skb;
809 	skb->next = NULL;
810 }
811 
812 /*
813  * Take into account size of receive queue and backlog queue
814  * Do not take into account this skb truesize,
815  * to allow even a single big packet to come.
816  */
817 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
818 {
819 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
820 
821 	return qsize > limit;
822 }
823 
824 /* The per-socket spinlock must be held here. */
825 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
826 					      unsigned int limit)
827 {
828 	if (sk_rcvqueues_full(sk, limit))
829 		return -ENOBUFS;
830 
831 	__sk_add_backlog(sk, skb);
832 	sk->sk_backlog.len += skb->truesize;
833 	return 0;
834 }
835 
836 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
837 
838 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
839 {
840 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
841 		return __sk_backlog_rcv(sk, skb);
842 
843 	return sk->sk_backlog_rcv(sk, skb);
844 }
845 
846 static inline void sk_incoming_cpu_update(struct sock *sk)
847 {
848 	sk->sk_incoming_cpu = raw_smp_processor_id();
849 }
850 
851 static inline void sock_rps_record_flow_hash(__u32 hash)
852 {
853 #ifdef CONFIG_RPS
854 	struct rps_sock_flow_table *sock_flow_table;
855 
856 	rcu_read_lock();
857 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
858 	rps_record_sock_flow(sock_flow_table, hash);
859 	rcu_read_unlock();
860 #endif
861 }
862 
863 static inline void sock_rps_record_flow(const struct sock *sk)
864 {
865 #ifdef CONFIG_RPS
866 	sock_rps_record_flow_hash(sk->sk_rxhash);
867 #endif
868 }
869 
870 static inline void sock_rps_save_rxhash(struct sock *sk,
871 					const struct sk_buff *skb)
872 {
873 #ifdef CONFIG_RPS
874 	if (unlikely(sk->sk_rxhash != skb->hash))
875 		sk->sk_rxhash = skb->hash;
876 #endif
877 }
878 
879 static inline void sock_rps_reset_rxhash(struct sock *sk)
880 {
881 #ifdef CONFIG_RPS
882 	sk->sk_rxhash = 0;
883 #endif
884 }
885 
886 #define sk_wait_event(__sk, __timeo, __condition)			\
887 	({	int __rc;						\
888 		release_sock(__sk);					\
889 		__rc = __condition;					\
890 		if (!__rc) {						\
891 			*(__timeo) = schedule_timeout(*(__timeo));	\
892 		}							\
893 		sched_annotate_sleep();						\
894 		lock_sock(__sk);					\
895 		__rc = __condition;					\
896 		__rc;							\
897 	})
898 
899 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
900 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
901 void sk_stream_wait_close(struct sock *sk, long timeo_p);
902 int sk_stream_error(struct sock *sk, int flags, int err);
903 void sk_stream_kill_queues(struct sock *sk);
904 void sk_set_memalloc(struct sock *sk);
905 void sk_clear_memalloc(struct sock *sk);
906 
907 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
908 
909 struct request_sock_ops;
910 struct timewait_sock_ops;
911 struct inet_hashinfo;
912 struct raw_hashinfo;
913 struct module;
914 
915 /*
916  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
917  * un-modified. Special care is taken when initializing object to zero.
918  */
919 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
920 {
921 	if (offsetof(struct sock, sk_node.next) != 0)
922 		memset(sk, 0, offsetof(struct sock, sk_node.next));
923 	memset(&sk->sk_node.pprev, 0,
924 	       size - offsetof(struct sock, sk_node.pprev));
925 }
926 
927 /* Networking protocol blocks we attach to sockets.
928  * socket layer -> transport layer interface
929  */
930 struct proto {
931 	void			(*close)(struct sock *sk,
932 					long timeout);
933 	int			(*connect)(struct sock *sk,
934 					struct sockaddr *uaddr,
935 					int addr_len);
936 	int			(*disconnect)(struct sock *sk, int flags);
937 
938 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
939 
940 	int			(*ioctl)(struct sock *sk, int cmd,
941 					 unsigned long arg);
942 	int			(*init)(struct sock *sk);
943 	void			(*destroy)(struct sock *sk);
944 	void			(*shutdown)(struct sock *sk, int how);
945 	int			(*setsockopt)(struct sock *sk, int level,
946 					int optname, char __user *optval,
947 					unsigned int optlen);
948 	int			(*getsockopt)(struct sock *sk, int level,
949 					int optname, char __user *optval,
950 					int __user *option);
951 #ifdef CONFIG_COMPAT
952 	int			(*compat_setsockopt)(struct sock *sk,
953 					int level,
954 					int optname, char __user *optval,
955 					unsigned int optlen);
956 	int			(*compat_getsockopt)(struct sock *sk,
957 					int level,
958 					int optname, char __user *optval,
959 					int __user *option);
960 	int			(*compat_ioctl)(struct sock *sk,
961 					unsigned int cmd, unsigned long arg);
962 #endif
963 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
964 					   size_t len);
965 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
966 					   size_t len, int noblock, int flags,
967 					   int *addr_len);
968 	int			(*sendpage)(struct sock *sk, struct page *page,
969 					int offset, size_t size, int flags);
970 	int			(*bind)(struct sock *sk,
971 					struct sockaddr *uaddr, int addr_len);
972 
973 	int			(*backlog_rcv) (struct sock *sk,
974 						struct sk_buff *skb);
975 
976 	void		(*release_cb)(struct sock *sk);
977 
978 	/* Keeping track of sk's, looking them up, and port selection methods. */
979 	void			(*hash)(struct sock *sk);
980 	void			(*unhash)(struct sock *sk);
981 	void			(*rehash)(struct sock *sk);
982 	int			(*get_port)(struct sock *sk, unsigned short snum);
983 	void			(*clear_sk)(struct sock *sk, int size);
984 
985 	/* Keeping track of sockets in use */
986 #ifdef CONFIG_PROC_FS
987 	unsigned int		inuse_idx;
988 #endif
989 
990 	bool			(*stream_memory_free)(const struct sock *sk);
991 	/* Memory pressure */
992 	void			(*enter_memory_pressure)(struct sock *sk);
993 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
994 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
995 	/*
996 	 * Pressure flag: try to collapse.
997 	 * Technical note: it is used by multiple contexts non atomically.
998 	 * All the __sk_mem_schedule() is of this nature: accounting
999 	 * is strict, actions are advisory and have some latency.
1000 	 */
1001 	int			*memory_pressure;
1002 	long			*sysctl_mem;
1003 	int			*sysctl_wmem;
1004 	int			*sysctl_rmem;
1005 	int			max_header;
1006 	bool			no_autobind;
1007 
1008 	struct kmem_cache	*slab;
1009 	unsigned int		obj_size;
1010 	int			slab_flags;
1011 
1012 	struct percpu_counter	*orphan_count;
1013 
1014 	struct request_sock_ops	*rsk_prot;
1015 	struct timewait_sock_ops *twsk_prot;
1016 
1017 	union {
1018 		struct inet_hashinfo	*hashinfo;
1019 		struct udp_table	*udp_table;
1020 		struct raw_hashinfo	*raw_hash;
1021 	} h;
1022 
1023 	struct module		*owner;
1024 
1025 	char			name[32];
1026 
1027 	struct list_head	node;
1028 #ifdef SOCK_REFCNT_DEBUG
1029 	atomic_t		socks;
1030 #endif
1031 #ifdef CONFIG_MEMCG_KMEM
1032 	/*
1033 	 * cgroup specific init/deinit functions. Called once for all
1034 	 * protocols that implement it, from cgroups populate function.
1035 	 * This function has to setup any files the protocol want to
1036 	 * appear in the kmem cgroup filesystem.
1037 	 */
1038 	int			(*init_cgroup)(struct mem_cgroup *memcg,
1039 					       struct cgroup_subsys *ss);
1040 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1041 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1042 #endif
1043 };
1044 
1045 int proto_register(struct proto *prot, int alloc_slab);
1046 void proto_unregister(struct proto *prot);
1047 
1048 #ifdef SOCK_REFCNT_DEBUG
1049 static inline void sk_refcnt_debug_inc(struct sock *sk)
1050 {
1051 	atomic_inc(&sk->sk_prot->socks);
1052 }
1053 
1054 static inline void sk_refcnt_debug_dec(struct sock *sk)
1055 {
1056 	atomic_dec(&sk->sk_prot->socks);
1057 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1058 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1059 }
1060 
1061 static inline void sk_refcnt_debug_release(const struct sock *sk)
1062 {
1063 	if (atomic_read(&sk->sk_refcnt) != 1)
1064 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1065 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1066 }
1067 #else /* SOCK_REFCNT_DEBUG */
1068 #define sk_refcnt_debug_inc(sk) do { } while (0)
1069 #define sk_refcnt_debug_dec(sk) do { } while (0)
1070 #define sk_refcnt_debug_release(sk) do { } while (0)
1071 #endif /* SOCK_REFCNT_DEBUG */
1072 
1073 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1074 extern struct static_key memcg_socket_limit_enabled;
1075 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1076 					       struct cg_proto *cg_proto)
1077 {
1078 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1079 }
1080 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1081 #else
1082 #define mem_cgroup_sockets_enabled 0
1083 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1084 					       struct cg_proto *cg_proto)
1085 {
1086 	return NULL;
1087 }
1088 #endif
1089 
1090 static inline bool sk_stream_memory_free(const struct sock *sk)
1091 {
1092 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1093 		return false;
1094 
1095 	return sk->sk_prot->stream_memory_free ?
1096 		sk->sk_prot->stream_memory_free(sk) : true;
1097 }
1098 
1099 static inline bool sk_stream_is_writeable(const struct sock *sk)
1100 {
1101 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1102 	       sk_stream_memory_free(sk);
1103 }
1104 
1105 
1106 static inline bool sk_has_memory_pressure(const struct sock *sk)
1107 {
1108 	return sk->sk_prot->memory_pressure != NULL;
1109 }
1110 
1111 static inline bool sk_under_memory_pressure(const struct sock *sk)
1112 {
1113 	if (!sk->sk_prot->memory_pressure)
1114 		return false;
1115 
1116 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1117 		return !!sk->sk_cgrp->memory_pressure;
1118 
1119 	return !!*sk->sk_prot->memory_pressure;
1120 }
1121 
1122 static inline void sk_leave_memory_pressure(struct sock *sk)
1123 {
1124 	int *memory_pressure = sk->sk_prot->memory_pressure;
1125 
1126 	if (!memory_pressure)
1127 		return;
1128 
1129 	if (*memory_pressure)
1130 		*memory_pressure = 0;
1131 
1132 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1133 		struct cg_proto *cg_proto = sk->sk_cgrp;
1134 		struct proto *prot = sk->sk_prot;
1135 
1136 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1137 			cg_proto->memory_pressure = 0;
1138 	}
1139 
1140 }
1141 
1142 static inline void sk_enter_memory_pressure(struct sock *sk)
1143 {
1144 	if (!sk->sk_prot->enter_memory_pressure)
1145 		return;
1146 
1147 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1148 		struct cg_proto *cg_proto = sk->sk_cgrp;
1149 		struct proto *prot = sk->sk_prot;
1150 
1151 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1152 			cg_proto->memory_pressure = 1;
1153 	}
1154 
1155 	sk->sk_prot->enter_memory_pressure(sk);
1156 }
1157 
1158 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1159 {
1160 	long *prot = sk->sk_prot->sysctl_mem;
1161 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1162 		prot = sk->sk_cgrp->sysctl_mem;
1163 	return prot[index];
1164 }
1165 
1166 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1167 					      unsigned long amt,
1168 					      int *parent_status)
1169 {
1170 	page_counter_charge(&prot->memory_allocated, amt);
1171 
1172 	if (page_counter_read(&prot->memory_allocated) >
1173 	    prot->memory_allocated.limit)
1174 		*parent_status = OVER_LIMIT;
1175 }
1176 
1177 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1178 					      unsigned long amt)
1179 {
1180 	page_counter_uncharge(&prot->memory_allocated, amt);
1181 }
1182 
1183 static inline long
1184 sk_memory_allocated(const struct sock *sk)
1185 {
1186 	struct proto *prot = sk->sk_prot;
1187 
1188 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1189 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1190 
1191 	return atomic_long_read(prot->memory_allocated);
1192 }
1193 
1194 static inline long
1195 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1196 {
1197 	struct proto *prot = sk->sk_prot;
1198 
1199 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1200 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1201 		/* update the root cgroup regardless */
1202 		atomic_long_add_return(amt, prot->memory_allocated);
1203 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1204 	}
1205 
1206 	return atomic_long_add_return(amt, prot->memory_allocated);
1207 }
1208 
1209 static inline void
1210 sk_memory_allocated_sub(struct sock *sk, int amt)
1211 {
1212 	struct proto *prot = sk->sk_prot;
1213 
1214 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1215 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1216 
1217 	atomic_long_sub(amt, prot->memory_allocated);
1218 }
1219 
1220 static inline void sk_sockets_allocated_dec(struct sock *sk)
1221 {
1222 	struct proto *prot = sk->sk_prot;
1223 
1224 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1225 		struct cg_proto *cg_proto = sk->sk_cgrp;
1226 
1227 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1228 			percpu_counter_dec(&cg_proto->sockets_allocated);
1229 	}
1230 
1231 	percpu_counter_dec(prot->sockets_allocated);
1232 }
1233 
1234 static inline void sk_sockets_allocated_inc(struct sock *sk)
1235 {
1236 	struct proto *prot = sk->sk_prot;
1237 
1238 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1239 		struct cg_proto *cg_proto = sk->sk_cgrp;
1240 
1241 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1242 			percpu_counter_inc(&cg_proto->sockets_allocated);
1243 	}
1244 
1245 	percpu_counter_inc(prot->sockets_allocated);
1246 }
1247 
1248 static inline int
1249 sk_sockets_allocated_read_positive(struct sock *sk)
1250 {
1251 	struct proto *prot = sk->sk_prot;
1252 
1253 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1254 		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1255 
1256 	return percpu_counter_read_positive(prot->sockets_allocated);
1257 }
1258 
1259 static inline int
1260 proto_sockets_allocated_sum_positive(struct proto *prot)
1261 {
1262 	return percpu_counter_sum_positive(prot->sockets_allocated);
1263 }
1264 
1265 static inline long
1266 proto_memory_allocated(struct proto *prot)
1267 {
1268 	return atomic_long_read(prot->memory_allocated);
1269 }
1270 
1271 static inline bool
1272 proto_memory_pressure(struct proto *prot)
1273 {
1274 	if (!prot->memory_pressure)
1275 		return false;
1276 	return !!*prot->memory_pressure;
1277 }
1278 
1279 
1280 #ifdef CONFIG_PROC_FS
1281 /* Called with local bh disabled */
1282 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1283 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1284 #else
1285 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1286 		int inc)
1287 {
1288 }
1289 #endif
1290 
1291 
1292 /* With per-bucket locks this operation is not-atomic, so that
1293  * this version is not worse.
1294  */
1295 static inline void __sk_prot_rehash(struct sock *sk)
1296 {
1297 	sk->sk_prot->unhash(sk);
1298 	sk->sk_prot->hash(sk);
1299 }
1300 
1301 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1302 
1303 /* About 10 seconds */
1304 #define SOCK_DESTROY_TIME (10*HZ)
1305 
1306 /* Sockets 0-1023 can't be bound to unless you are superuser */
1307 #define PROT_SOCK	1024
1308 
1309 #define SHUTDOWN_MASK	3
1310 #define RCV_SHUTDOWN	1
1311 #define SEND_SHUTDOWN	2
1312 
1313 #define SOCK_SNDBUF_LOCK	1
1314 #define SOCK_RCVBUF_LOCK	2
1315 #define SOCK_BINDADDR_LOCK	4
1316 #define SOCK_BINDPORT_LOCK	8
1317 
1318 struct socket_alloc {
1319 	struct socket socket;
1320 	struct inode vfs_inode;
1321 };
1322 
1323 static inline struct socket *SOCKET_I(struct inode *inode)
1324 {
1325 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1326 }
1327 
1328 static inline struct inode *SOCK_INODE(struct socket *socket)
1329 {
1330 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1331 }
1332 
1333 /*
1334  * Functions for memory accounting
1335  */
1336 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1337 void __sk_mem_reclaim(struct sock *sk, int amount);
1338 
1339 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1340 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1341 #define SK_MEM_SEND	0
1342 #define SK_MEM_RECV	1
1343 
1344 static inline int sk_mem_pages(int amt)
1345 {
1346 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1347 }
1348 
1349 static inline bool sk_has_account(struct sock *sk)
1350 {
1351 	/* return true if protocol supports memory accounting */
1352 	return !!sk->sk_prot->memory_allocated;
1353 }
1354 
1355 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1356 {
1357 	if (!sk_has_account(sk))
1358 		return true;
1359 	return size <= sk->sk_forward_alloc ||
1360 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1361 }
1362 
1363 static inline bool
1364 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1365 {
1366 	if (!sk_has_account(sk))
1367 		return true;
1368 	return size<= sk->sk_forward_alloc ||
1369 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1370 		skb_pfmemalloc(skb);
1371 }
1372 
1373 static inline void sk_mem_reclaim(struct sock *sk)
1374 {
1375 	if (!sk_has_account(sk))
1376 		return;
1377 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1378 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1379 }
1380 
1381 static inline void sk_mem_reclaim_partial(struct sock *sk)
1382 {
1383 	if (!sk_has_account(sk))
1384 		return;
1385 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1386 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1387 }
1388 
1389 static inline void sk_mem_charge(struct sock *sk, int size)
1390 {
1391 	if (!sk_has_account(sk))
1392 		return;
1393 	sk->sk_forward_alloc -= size;
1394 }
1395 
1396 static inline void sk_mem_uncharge(struct sock *sk, int size)
1397 {
1398 	if (!sk_has_account(sk))
1399 		return;
1400 	sk->sk_forward_alloc += size;
1401 }
1402 
1403 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1404 {
1405 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1406 	sk->sk_wmem_queued -= skb->truesize;
1407 	sk_mem_uncharge(sk, skb->truesize);
1408 	__kfree_skb(skb);
1409 }
1410 
1411 /* Used by processes to "lock" a socket state, so that
1412  * interrupts and bottom half handlers won't change it
1413  * from under us. It essentially blocks any incoming
1414  * packets, so that we won't get any new data or any
1415  * packets that change the state of the socket.
1416  *
1417  * While locked, BH processing will add new packets to
1418  * the backlog queue.  This queue is processed by the
1419  * owner of the socket lock right before it is released.
1420  *
1421  * Since ~2.3.5 it is also exclusive sleep lock serializing
1422  * accesses from user process context.
1423  */
1424 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1425 
1426 static inline void sock_release_ownership(struct sock *sk)
1427 {
1428 	sk->sk_lock.owned = 0;
1429 }
1430 
1431 /*
1432  * Macro so as to not evaluate some arguments when
1433  * lockdep is not enabled.
1434  *
1435  * Mark both the sk_lock and the sk_lock.slock as a
1436  * per-address-family lock class.
1437  */
1438 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1439 do {									\
1440 	sk->sk_lock.owned = 0;						\
1441 	init_waitqueue_head(&sk->sk_lock.wq);				\
1442 	spin_lock_init(&(sk)->sk_lock.slock);				\
1443 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1444 			sizeof((sk)->sk_lock));				\
1445 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1446 				(skey), (sname));				\
1447 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1448 } while (0)
1449 
1450 void lock_sock_nested(struct sock *sk, int subclass);
1451 
1452 static inline void lock_sock(struct sock *sk)
1453 {
1454 	lock_sock_nested(sk, 0);
1455 }
1456 
1457 void release_sock(struct sock *sk);
1458 
1459 /* BH context may only use the following locking interface. */
1460 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1461 #define bh_lock_sock_nested(__sk) \
1462 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1463 				SINGLE_DEPTH_NESTING)
1464 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1465 
1466 bool lock_sock_fast(struct sock *sk);
1467 /**
1468  * unlock_sock_fast - complement of lock_sock_fast
1469  * @sk: socket
1470  * @slow: slow mode
1471  *
1472  * fast unlock socket for user context.
1473  * If slow mode is on, we call regular release_sock()
1474  */
1475 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1476 {
1477 	if (slow)
1478 		release_sock(sk);
1479 	else
1480 		spin_unlock_bh(&sk->sk_lock.slock);
1481 }
1482 
1483 
1484 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1485 		      struct proto *prot, int kern);
1486 void sk_free(struct sock *sk);
1487 void sk_destruct(struct sock *sk);
1488 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1489 
1490 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1491 			     gfp_t priority);
1492 void sock_wfree(struct sk_buff *skb);
1493 void skb_orphan_partial(struct sk_buff *skb);
1494 void sock_rfree(struct sk_buff *skb);
1495 void sock_efree(struct sk_buff *skb);
1496 #ifdef CONFIG_INET
1497 void sock_edemux(struct sk_buff *skb);
1498 #else
1499 #define sock_edemux(skb) sock_efree(skb)
1500 #endif
1501 
1502 int sock_setsockopt(struct socket *sock, int level, int op,
1503 		    char __user *optval, unsigned int optlen);
1504 
1505 int sock_getsockopt(struct socket *sock, int level, int op,
1506 		    char __user *optval, int __user *optlen);
1507 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1508 				    int noblock, int *errcode);
1509 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1510 				     unsigned long data_len, int noblock,
1511 				     int *errcode, int max_page_order);
1512 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1513 void sock_kfree_s(struct sock *sk, void *mem, int size);
1514 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1515 void sk_send_sigurg(struct sock *sk);
1516 
1517 /*
1518  * Functions to fill in entries in struct proto_ops when a protocol
1519  * does not implement a particular function.
1520  */
1521 int sock_no_bind(struct socket *, struct sockaddr *, int);
1522 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1523 int sock_no_socketpair(struct socket *, struct socket *);
1524 int sock_no_accept(struct socket *, struct socket *, int);
1525 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1526 unsigned int sock_no_poll(struct file *, struct socket *,
1527 			  struct poll_table_struct *);
1528 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1529 int sock_no_listen(struct socket *, int);
1530 int sock_no_shutdown(struct socket *, int);
1531 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1532 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1533 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1534 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1535 int sock_no_mmap(struct file *file, struct socket *sock,
1536 		 struct vm_area_struct *vma);
1537 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1538 			 size_t size, int flags);
1539 
1540 /*
1541  * Functions to fill in entries in struct proto_ops when a protocol
1542  * uses the inet style.
1543  */
1544 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1545 				  char __user *optval, int __user *optlen);
1546 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1547 			int flags);
1548 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1549 				  char __user *optval, unsigned int optlen);
1550 int compat_sock_common_getsockopt(struct socket *sock, int level,
1551 		int optname, char __user *optval, int __user *optlen);
1552 int compat_sock_common_setsockopt(struct socket *sock, int level,
1553 		int optname, char __user *optval, unsigned int optlen);
1554 
1555 void sk_common_release(struct sock *sk);
1556 
1557 /*
1558  *	Default socket callbacks and setup code
1559  */
1560 
1561 /* Initialise core socket variables */
1562 void sock_init_data(struct socket *sock, struct sock *sk);
1563 
1564 /*
1565  * Socket reference counting postulates.
1566  *
1567  * * Each user of socket SHOULD hold a reference count.
1568  * * Each access point to socket (an hash table bucket, reference from a list,
1569  *   running timer, skb in flight MUST hold a reference count.
1570  * * When reference count hits 0, it means it will never increase back.
1571  * * When reference count hits 0, it means that no references from
1572  *   outside exist to this socket and current process on current CPU
1573  *   is last user and may/should destroy this socket.
1574  * * sk_free is called from any context: process, BH, IRQ. When
1575  *   it is called, socket has no references from outside -> sk_free
1576  *   may release descendant resources allocated by the socket, but
1577  *   to the time when it is called, socket is NOT referenced by any
1578  *   hash tables, lists etc.
1579  * * Packets, delivered from outside (from network or from another process)
1580  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1581  *   when they sit in queue. Otherwise, packets will leak to hole, when
1582  *   socket is looked up by one cpu and unhasing is made by another CPU.
1583  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1584  *   (leak to backlog). Packet socket does all the processing inside
1585  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1586  *   use separate SMP lock, so that they are prone too.
1587  */
1588 
1589 /* Ungrab socket and destroy it, if it was the last reference. */
1590 static inline void sock_put(struct sock *sk)
1591 {
1592 	if (atomic_dec_and_test(&sk->sk_refcnt))
1593 		sk_free(sk);
1594 }
1595 /* Generic version of sock_put(), dealing with all sockets
1596  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1597  */
1598 void sock_gen_put(struct sock *sk);
1599 
1600 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1601 
1602 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1603 {
1604 	sk->sk_tx_queue_mapping = tx_queue;
1605 }
1606 
1607 static inline void sk_tx_queue_clear(struct sock *sk)
1608 {
1609 	sk->sk_tx_queue_mapping = -1;
1610 }
1611 
1612 static inline int sk_tx_queue_get(const struct sock *sk)
1613 {
1614 	return sk ? sk->sk_tx_queue_mapping : -1;
1615 }
1616 
1617 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1618 {
1619 	sk_tx_queue_clear(sk);
1620 	sk->sk_socket = sock;
1621 }
1622 
1623 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1624 {
1625 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1626 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1627 }
1628 /* Detach socket from process context.
1629  * Announce socket dead, detach it from wait queue and inode.
1630  * Note that parent inode held reference count on this struct sock,
1631  * we do not release it in this function, because protocol
1632  * probably wants some additional cleanups or even continuing
1633  * to work with this socket (TCP).
1634  */
1635 static inline void sock_orphan(struct sock *sk)
1636 {
1637 	write_lock_bh(&sk->sk_callback_lock);
1638 	sock_set_flag(sk, SOCK_DEAD);
1639 	sk_set_socket(sk, NULL);
1640 	sk->sk_wq  = NULL;
1641 	write_unlock_bh(&sk->sk_callback_lock);
1642 }
1643 
1644 static inline void sock_graft(struct sock *sk, struct socket *parent)
1645 {
1646 	write_lock_bh(&sk->sk_callback_lock);
1647 	sk->sk_wq = parent->wq;
1648 	parent->sk = sk;
1649 	sk_set_socket(sk, parent);
1650 	security_sock_graft(sk, parent);
1651 	write_unlock_bh(&sk->sk_callback_lock);
1652 }
1653 
1654 kuid_t sock_i_uid(struct sock *sk);
1655 unsigned long sock_i_ino(struct sock *sk);
1656 
1657 static inline void sk_set_txhash(struct sock *sk)
1658 {
1659 	sk->sk_txhash = prandom_u32();
1660 
1661 	if (unlikely(!sk->sk_txhash))
1662 		sk->sk_txhash = 1;
1663 }
1664 
1665 static inline void sk_rethink_txhash(struct sock *sk)
1666 {
1667 	if (sk->sk_txhash)
1668 		sk_set_txhash(sk);
1669 }
1670 
1671 static inline struct dst_entry *
1672 __sk_dst_get(struct sock *sk)
1673 {
1674 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1675 						       lockdep_is_held(&sk->sk_lock.slock));
1676 }
1677 
1678 static inline struct dst_entry *
1679 sk_dst_get(struct sock *sk)
1680 {
1681 	struct dst_entry *dst;
1682 
1683 	rcu_read_lock();
1684 	dst = rcu_dereference(sk->sk_dst_cache);
1685 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1686 		dst = NULL;
1687 	rcu_read_unlock();
1688 	return dst;
1689 }
1690 
1691 static inline void dst_negative_advice(struct sock *sk)
1692 {
1693 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1694 
1695 	sk_rethink_txhash(sk);
1696 
1697 	if (dst && dst->ops->negative_advice) {
1698 		ndst = dst->ops->negative_advice(dst);
1699 
1700 		if (ndst != dst) {
1701 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1702 			sk_tx_queue_clear(sk);
1703 		}
1704 	}
1705 }
1706 
1707 static inline void
1708 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1709 {
1710 	struct dst_entry *old_dst;
1711 
1712 	sk_tx_queue_clear(sk);
1713 	/*
1714 	 * This can be called while sk is owned by the caller only,
1715 	 * with no state that can be checked in a rcu_dereference_check() cond
1716 	 */
1717 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1718 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1719 	dst_release(old_dst);
1720 }
1721 
1722 static inline void
1723 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1724 {
1725 	struct dst_entry *old_dst;
1726 
1727 	sk_tx_queue_clear(sk);
1728 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1729 	dst_release(old_dst);
1730 }
1731 
1732 static inline void
1733 __sk_dst_reset(struct sock *sk)
1734 {
1735 	__sk_dst_set(sk, NULL);
1736 }
1737 
1738 static inline void
1739 sk_dst_reset(struct sock *sk)
1740 {
1741 	sk_dst_set(sk, NULL);
1742 }
1743 
1744 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1745 
1746 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1747 
1748 bool sk_mc_loop(struct sock *sk);
1749 
1750 static inline bool sk_can_gso(const struct sock *sk)
1751 {
1752 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1753 }
1754 
1755 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1756 
1757 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1758 {
1759 	sk->sk_route_nocaps |= flags;
1760 	sk->sk_route_caps &= ~flags;
1761 }
1762 
1763 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1764 					   struct iov_iter *from, char *to,
1765 					   int copy, int offset)
1766 {
1767 	if (skb->ip_summed == CHECKSUM_NONE) {
1768 		__wsum csum = 0;
1769 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1770 			return -EFAULT;
1771 		skb->csum = csum_block_add(skb->csum, csum, offset);
1772 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1773 		if (copy_from_iter_nocache(to, copy, from) != copy)
1774 			return -EFAULT;
1775 	} else if (copy_from_iter(to, copy, from) != copy)
1776 		return -EFAULT;
1777 
1778 	return 0;
1779 }
1780 
1781 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1782 				       struct iov_iter *from, int copy)
1783 {
1784 	int err, offset = skb->len;
1785 
1786 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1787 				       copy, offset);
1788 	if (err)
1789 		__skb_trim(skb, offset);
1790 
1791 	return err;
1792 }
1793 
1794 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1795 					   struct sk_buff *skb,
1796 					   struct page *page,
1797 					   int off, int copy)
1798 {
1799 	int err;
1800 
1801 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1802 				       copy, skb->len);
1803 	if (err)
1804 		return err;
1805 
1806 	skb->len	     += copy;
1807 	skb->data_len	     += copy;
1808 	skb->truesize	     += copy;
1809 	sk->sk_wmem_queued   += copy;
1810 	sk_mem_charge(sk, copy);
1811 	return 0;
1812 }
1813 
1814 /**
1815  * sk_wmem_alloc_get - returns write allocations
1816  * @sk: socket
1817  *
1818  * Returns sk_wmem_alloc minus initial offset of one
1819  */
1820 static inline int sk_wmem_alloc_get(const struct sock *sk)
1821 {
1822 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1823 }
1824 
1825 /**
1826  * sk_rmem_alloc_get - returns read allocations
1827  * @sk: socket
1828  *
1829  * Returns sk_rmem_alloc
1830  */
1831 static inline int sk_rmem_alloc_get(const struct sock *sk)
1832 {
1833 	return atomic_read(&sk->sk_rmem_alloc);
1834 }
1835 
1836 /**
1837  * sk_has_allocations - check if allocations are outstanding
1838  * @sk: socket
1839  *
1840  * Returns true if socket has write or read allocations
1841  */
1842 static inline bool sk_has_allocations(const struct sock *sk)
1843 {
1844 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1845 }
1846 
1847 /**
1848  * wq_has_sleeper - check if there are any waiting processes
1849  * @wq: struct socket_wq
1850  *
1851  * Returns true if socket_wq has waiting processes
1852  *
1853  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1854  * barrier call. They were added due to the race found within the tcp code.
1855  *
1856  * Consider following tcp code paths:
1857  *
1858  * CPU1                  CPU2
1859  *
1860  * sys_select            receive packet
1861  *   ...                 ...
1862  *   __add_wait_queue    update tp->rcv_nxt
1863  *   ...                 ...
1864  *   tp->rcv_nxt check   sock_def_readable
1865  *   ...                 {
1866  *   schedule               rcu_read_lock();
1867  *                          wq = rcu_dereference(sk->sk_wq);
1868  *                          if (wq && waitqueue_active(&wq->wait))
1869  *                              wake_up_interruptible(&wq->wait)
1870  *                          ...
1871  *                       }
1872  *
1873  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1874  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1875  * could then endup calling schedule and sleep forever if there are no more
1876  * data on the socket.
1877  *
1878  */
1879 static inline bool wq_has_sleeper(struct socket_wq *wq)
1880 {
1881 	/* We need to be sure we are in sync with the
1882 	 * add_wait_queue modifications to the wait queue.
1883 	 *
1884 	 * This memory barrier is paired in the sock_poll_wait.
1885 	 */
1886 	smp_mb();
1887 	return wq && waitqueue_active(&wq->wait);
1888 }
1889 
1890 /**
1891  * sock_poll_wait - place memory barrier behind the poll_wait call.
1892  * @filp:           file
1893  * @wait_address:   socket wait queue
1894  * @p:              poll_table
1895  *
1896  * See the comments in the wq_has_sleeper function.
1897  */
1898 static inline void sock_poll_wait(struct file *filp,
1899 		wait_queue_head_t *wait_address, poll_table *p)
1900 {
1901 	if (!poll_does_not_wait(p) && wait_address) {
1902 		poll_wait(filp, wait_address, p);
1903 		/* We need to be sure we are in sync with the
1904 		 * socket flags modification.
1905 		 *
1906 		 * This memory barrier is paired in the wq_has_sleeper.
1907 		 */
1908 		smp_mb();
1909 	}
1910 }
1911 
1912 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1913 {
1914 	if (sk->sk_txhash) {
1915 		skb->l4_hash = 1;
1916 		skb->hash = sk->sk_txhash;
1917 	}
1918 }
1919 
1920 /*
1921  *	Queue a received datagram if it will fit. Stream and sequenced
1922  *	protocols can't normally use this as they need to fit buffers in
1923  *	and play with them.
1924  *
1925  *	Inlined as it's very short and called for pretty much every
1926  *	packet ever received.
1927  */
1928 
1929 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1930 {
1931 	skb_orphan(skb);
1932 	skb->sk = sk;
1933 	skb->destructor = sock_wfree;
1934 	skb_set_hash_from_sk(skb, sk);
1935 	/*
1936 	 * We used to take a refcount on sk, but following operation
1937 	 * is enough to guarantee sk_free() wont free this sock until
1938 	 * all in-flight packets are completed
1939 	 */
1940 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1941 }
1942 
1943 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1944 {
1945 	skb_orphan(skb);
1946 	skb->sk = sk;
1947 	skb->destructor = sock_rfree;
1948 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1949 	sk_mem_charge(sk, skb->truesize);
1950 }
1951 
1952 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1953 		    unsigned long expires);
1954 
1955 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1956 
1957 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1958 
1959 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1960 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1961 
1962 /*
1963  *	Recover an error report and clear atomically
1964  */
1965 
1966 static inline int sock_error(struct sock *sk)
1967 {
1968 	int err;
1969 	if (likely(!sk->sk_err))
1970 		return 0;
1971 	err = xchg(&sk->sk_err, 0);
1972 	return -err;
1973 }
1974 
1975 static inline unsigned long sock_wspace(struct sock *sk)
1976 {
1977 	int amt = 0;
1978 
1979 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1980 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1981 		if (amt < 0)
1982 			amt = 0;
1983 	}
1984 	return amt;
1985 }
1986 
1987 static inline void sk_wake_async(struct sock *sk, int how, int band)
1988 {
1989 	if (sock_flag(sk, SOCK_FASYNC))
1990 		sock_wake_async(sk->sk_socket, how, band);
1991 }
1992 
1993 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
1994  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
1995  * Note: for send buffers, TCP works better if we can build two skbs at
1996  * minimum.
1997  */
1998 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
1999 
2000 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2001 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2002 
2003 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2004 {
2005 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2006 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2007 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2008 	}
2009 }
2010 
2011 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2012 				    bool force_schedule);
2013 
2014 /**
2015  * sk_page_frag - return an appropriate page_frag
2016  * @sk: socket
2017  *
2018  * If socket allocation mode allows current thread to sleep, it means its
2019  * safe to use the per task page_frag instead of the per socket one.
2020  */
2021 static inline struct page_frag *sk_page_frag(struct sock *sk)
2022 {
2023 	if (sk->sk_allocation & __GFP_WAIT)
2024 		return &current->task_frag;
2025 
2026 	return &sk->sk_frag;
2027 }
2028 
2029 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2030 
2031 /*
2032  *	Default write policy as shown to user space via poll/select/SIGIO
2033  */
2034 static inline bool sock_writeable(const struct sock *sk)
2035 {
2036 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2037 }
2038 
2039 static inline gfp_t gfp_any(void)
2040 {
2041 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2042 }
2043 
2044 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2045 {
2046 	return noblock ? 0 : sk->sk_rcvtimeo;
2047 }
2048 
2049 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2050 {
2051 	return noblock ? 0 : sk->sk_sndtimeo;
2052 }
2053 
2054 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2055 {
2056 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2057 }
2058 
2059 /* Alas, with timeout socket operations are not restartable.
2060  * Compare this to poll().
2061  */
2062 static inline int sock_intr_errno(long timeo)
2063 {
2064 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2065 }
2066 
2067 struct sock_skb_cb {
2068 	u32 dropcount;
2069 };
2070 
2071 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2072  * using skb->cb[] would keep using it directly and utilize its
2073  * alignement guarantee.
2074  */
2075 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2076 			    sizeof(struct sock_skb_cb)))
2077 
2078 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2079 			    SOCK_SKB_CB_OFFSET))
2080 
2081 #define sock_skb_cb_check_size(size) \
2082 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2083 
2084 static inline void
2085 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2086 {
2087 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2088 }
2089 
2090 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2091 			   struct sk_buff *skb);
2092 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2093 			     struct sk_buff *skb);
2094 
2095 static inline void
2096 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2097 {
2098 	ktime_t kt = skb->tstamp;
2099 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2100 
2101 	/*
2102 	 * generate control messages if
2103 	 * - receive time stamping in software requested
2104 	 * - software time stamp available and wanted
2105 	 * - hardware time stamps available and wanted
2106 	 */
2107 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2108 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2109 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2110 	    (hwtstamps->hwtstamp.tv64 &&
2111 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2112 		__sock_recv_timestamp(msg, sk, skb);
2113 	else
2114 		sk->sk_stamp = kt;
2115 
2116 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2117 		__sock_recv_wifi_status(msg, sk, skb);
2118 }
2119 
2120 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2121 			      struct sk_buff *skb);
2122 
2123 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2124 					  struct sk_buff *skb)
2125 {
2126 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2127 			   (1UL << SOCK_RCVTSTAMP))
2128 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2129 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2130 
2131 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2132 		__sock_recv_ts_and_drops(msg, sk, skb);
2133 	else
2134 		sk->sk_stamp = skb->tstamp;
2135 }
2136 
2137 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2138 
2139 /**
2140  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2141  * @sk:		socket sending this packet
2142  * @tx_flags:	completed with instructions for time stamping
2143  *
2144  * Note : callers should take care of initial *tx_flags value (usually 0)
2145  */
2146 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2147 {
2148 	if (unlikely(sk->sk_tsflags))
2149 		__sock_tx_timestamp(sk, tx_flags);
2150 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2151 		*tx_flags |= SKBTX_WIFI_STATUS;
2152 }
2153 
2154 /**
2155  * sk_eat_skb - Release a skb if it is no longer needed
2156  * @sk: socket to eat this skb from
2157  * @skb: socket buffer to eat
2158  *
2159  * This routine must be called with interrupts disabled or with the socket
2160  * locked so that the sk_buff queue operation is ok.
2161 */
2162 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2163 {
2164 	__skb_unlink(skb, &sk->sk_receive_queue);
2165 	__kfree_skb(skb);
2166 }
2167 
2168 static inline
2169 struct net *sock_net(const struct sock *sk)
2170 {
2171 	return read_pnet(&sk->sk_net);
2172 }
2173 
2174 static inline
2175 void sock_net_set(struct sock *sk, struct net *net)
2176 {
2177 	write_pnet(&sk->sk_net, net);
2178 }
2179 
2180 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2181 {
2182 	if (skb->sk) {
2183 		struct sock *sk = skb->sk;
2184 
2185 		skb->destructor = NULL;
2186 		skb->sk = NULL;
2187 		return sk;
2188 	}
2189 	return NULL;
2190 }
2191 
2192 /* This helper checks if a socket is a full socket,
2193  * ie _not_ a timewait or request socket.
2194  */
2195 static inline bool sk_fullsock(const struct sock *sk)
2196 {
2197 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2198 }
2199 
2200 void sock_enable_timestamp(struct sock *sk, int flag);
2201 int sock_get_timestamp(struct sock *, struct timeval __user *);
2202 int sock_get_timestampns(struct sock *, struct timespec __user *);
2203 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2204 		       int type);
2205 
2206 bool sk_ns_capable(const struct sock *sk,
2207 		   struct user_namespace *user_ns, int cap);
2208 bool sk_capable(const struct sock *sk, int cap);
2209 bool sk_net_capable(const struct sock *sk, int cap);
2210 
2211 extern __u32 sysctl_wmem_max;
2212 extern __u32 sysctl_rmem_max;
2213 
2214 extern int sysctl_tstamp_allow_data;
2215 extern int sysctl_optmem_max;
2216 
2217 extern __u32 sysctl_wmem_default;
2218 extern __u32 sysctl_rmem_default;
2219 
2220 #endif	/* _SOCK_H */
2221