xref: /openbmc/linux/include/net/sock.h (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57 
58 #include <asm/atomic.h>
59 #include <net/dst.h>
60 #include <net/checksum.h>
61 
62 /*
63  * This structure really needs to be cleaned up.
64  * Most of it is for TCP, and not used by any of
65  * the other protocols.
66  */
67 
68 /* Define this to get the SOCK_DBG debugging facility. */
69 #define SOCK_DEBUGGING
70 #ifdef SOCK_DEBUGGING
71 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
72 					printk(KERN_DEBUG msg); } while (0)
73 #else
74 /* Validate arguments and do nothing */
75 static void inline int __attribute__ ((format (printf, 2, 3)))
76 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
77 {
78 }
79 #endif
80 
81 /* This is the per-socket lock.  The spinlock provides a synchronization
82  * between user contexts and software interrupt processing, whereas the
83  * mini-semaphore synchronizes multiple users amongst themselves.
84  */
85 typedef struct {
86 	spinlock_t		slock;
87 	int			owned;
88 	wait_queue_head_t	wq;
89 	/*
90 	 * We express the mutex-alike socket_lock semantics
91 	 * to the lock validator by explicitly managing
92 	 * the slock as a lock variant (in addition to
93 	 * the slock itself):
94 	 */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 	struct lockdep_map dep_map;
97 #endif
98 } socket_lock_t;
99 
100 struct sock;
101 struct proto;
102 struct net;
103 
104 /**
105  *	struct sock_common - minimal network layer representation of sockets
106  *	@skc_family: network address family
107  *	@skc_state: Connection state
108  *	@skc_reuse: %SO_REUSEADDR setting
109  *	@skc_bound_dev_if: bound device index if != 0
110  *	@skc_node: main hash linkage for various protocol lookup tables
111  *	@skc_nulls_node: main hash linkage for UDP/UDP-Lite protocol
112  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
113  *	@skc_refcnt: reference count
114  *	@skc_hash: hash value used with various protocol lookup tables
115  *	@skc_prot: protocol handlers inside a network family
116  *	@skc_net: reference to the network namespace of this socket
117  *
118  *	This is the minimal network layer representation of sockets, the header
119  *	for struct sock and struct inet_timewait_sock.
120  */
121 struct sock_common {
122 	unsigned short		skc_family;
123 	volatile unsigned char	skc_state;
124 	unsigned char		skc_reuse;
125 	int			skc_bound_dev_if;
126 	union {
127 		struct hlist_node	skc_node;
128 		struct hlist_nulls_node skc_nulls_node;
129 	};
130 	struct hlist_node	skc_bind_node;
131 	atomic_t		skc_refcnt;
132 	unsigned int		skc_hash;
133 	struct proto		*skc_prot;
134 #ifdef CONFIG_NET_NS
135 	struct net	 	*skc_net;
136 #endif
137 };
138 
139 /**
140   *	struct sock - network layer representation of sockets
141   *	@__sk_common: shared layout with inet_timewait_sock
142   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
143   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
144   *	@sk_lock:	synchronizer
145   *	@sk_rcvbuf: size of receive buffer in bytes
146   *	@sk_sleep: sock wait queue
147   *	@sk_dst_cache: destination cache
148   *	@sk_dst_lock: destination cache lock
149   *	@sk_policy: flow policy
150   *	@sk_rmem_alloc: receive queue bytes committed
151   *	@sk_receive_queue: incoming packets
152   *	@sk_wmem_alloc: transmit queue bytes committed
153   *	@sk_write_queue: Packet sending queue
154   *	@sk_async_wait_queue: DMA copied packets
155   *	@sk_omem_alloc: "o" is "option" or "other"
156   *	@sk_wmem_queued: persistent queue size
157   *	@sk_forward_alloc: space allocated forward
158   *	@sk_allocation: allocation mode
159   *	@sk_sndbuf: size of send buffer in bytes
160   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
161   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
162   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
163   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
164   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
165   *	@sk_gso_max_size: Maximum GSO segment size to build
166   *	@sk_lingertime: %SO_LINGER l_linger setting
167   *	@sk_backlog: always used with the per-socket spinlock held
168   *	@sk_callback_lock: used with the callbacks in the end of this struct
169   *	@sk_error_queue: rarely used
170   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
171   *			  IPV6_ADDRFORM for instance)
172   *	@sk_err: last error
173   *	@sk_err_soft: errors that don't cause failure but are the cause of a
174   *		      persistent failure not just 'timed out'
175   *	@sk_drops: raw/udp drops counter
176   *	@sk_ack_backlog: current listen backlog
177   *	@sk_max_ack_backlog: listen backlog set in listen()
178   *	@sk_priority: %SO_PRIORITY setting
179   *	@sk_type: socket type (%SOCK_STREAM, etc)
180   *	@sk_protocol: which protocol this socket belongs in this network family
181   *	@sk_peercred: %SO_PEERCRED setting
182   *	@sk_rcvlowat: %SO_RCVLOWAT setting
183   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
184   *	@sk_sndtimeo: %SO_SNDTIMEO setting
185   *	@sk_filter: socket filtering instructions
186   *	@sk_protinfo: private area, net family specific, when not using slab
187   *	@sk_timer: sock cleanup timer
188   *	@sk_stamp: time stamp of last packet received
189   *	@sk_socket: Identd and reporting IO signals
190   *	@sk_user_data: RPC layer private data
191   *	@sk_sndmsg_page: cached page for sendmsg
192   *	@sk_sndmsg_off: cached offset for sendmsg
193   *	@sk_send_head: front of stuff to transmit
194   *	@sk_security: used by security modules
195   *	@sk_mark: generic packet mark
196   *	@sk_write_pending: a write to stream socket waits to start
197   *	@sk_state_change: callback to indicate change in the state of the sock
198   *	@sk_data_ready: callback to indicate there is data to be processed
199   *	@sk_write_space: callback to indicate there is bf sending space available
200   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
201   *	@sk_backlog_rcv: callback to process the backlog
202   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
203  */
204 struct sock {
205 	/*
206 	 * Now struct inet_timewait_sock also uses sock_common, so please just
207 	 * don't add nothing before this first member (__sk_common) --acme
208 	 */
209 	struct sock_common	__sk_common;
210 #define sk_family		__sk_common.skc_family
211 #define sk_state		__sk_common.skc_state
212 #define sk_reuse		__sk_common.skc_reuse
213 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
214 #define sk_node			__sk_common.skc_node
215 #define sk_nulls_node		__sk_common.skc_nulls_node
216 #define sk_bind_node		__sk_common.skc_bind_node
217 #define sk_refcnt		__sk_common.skc_refcnt
218 #define sk_hash			__sk_common.skc_hash
219 #define sk_prot			__sk_common.skc_prot
220 #define sk_net			__sk_common.skc_net
221 	unsigned char		sk_shutdown : 2,
222 				sk_no_check : 2,
223 				sk_userlocks : 4;
224 	unsigned char		sk_protocol;
225 	unsigned short		sk_type;
226 	int			sk_rcvbuf;
227 	socket_lock_t		sk_lock;
228 	/*
229 	 * The backlog queue is special, it is always used with
230 	 * the per-socket spinlock held and requires low latency
231 	 * access. Therefore we special case it's implementation.
232 	 */
233 	struct {
234 		struct sk_buff *head;
235 		struct sk_buff *tail;
236 	} sk_backlog;
237 	wait_queue_head_t	*sk_sleep;
238 	struct dst_entry	*sk_dst_cache;
239 #ifdef CONFIG_XFRM
240 	struct xfrm_policy	*sk_policy[2];
241 #endif
242 	rwlock_t		sk_dst_lock;
243 	atomic_t		sk_rmem_alloc;
244 	atomic_t		sk_wmem_alloc;
245 	atomic_t		sk_omem_alloc;
246 	int			sk_sndbuf;
247 	struct sk_buff_head	sk_receive_queue;
248 	struct sk_buff_head	sk_write_queue;
249 #ifdef CONFIG_NET_DMA
250 	struct sk_buff_head	sk_async_wait_queue;
251 #endif
252 	int			sk_wmem_queued;
253 	int			sk_forward_alloc;
254 	gfp_t			sk_allocation;
255 	int			sk_route_caps;
256 	int			sk_gso_type;
257 	unsigned int		sk_gso_max_size;
258 	int			sk_rcvlowat;
259 	unsigned long 		sk_flags;
260 	unsigned long	        sk_lingertime;
261 	struct sk_buff_head	sk_error_queue;
262 	struct proto		*sk_prot_creator;
263 	rwlock_t		sk_callback_lock;
264 	int			sk_err,
265 				sk_err_soft;
266 	atomic_t		sk_drops;
267 	unsigned short		sk_ack_backlog;
268 	unsigned short		sk_max_ack_backlog;
269 	__u32			sk_priority;
270 	struct ucred		sk_peercred;
271 	long			sk_rcvtimeo;
272 	long			sk_sndtimeo;
273 	struct sk_filter      	*sk_filter;
274 	void			*sk_protinfo;
275 	struct timer_list	sk_timer;
276 	ktime_t			sk_stamp;
277 	struct socket		*sk_socket;
278 	void			*sk_user_data;
279 	struct page		*sk_sndmsg_page;
280 	struct sk_buff		*sk_send_head;
281 	__u32			sk_sndmsg_off;
282 	int			sk_write_pending;
283 #ifdef CONFIG_SECURITY
284 	void			*sk_security;
285 #endif
286 	__u32			sk_mark;
287 	/* XXX 4 bytes hole on 64 bit */
288 	void			(*sk_state_change)(struct sock *sk);
289 	void			(*sk_data_ready)(struct sock *sk, int bytes);
290 	void			(*sk_write_space)(struct sock *sk);
291 	void			(*sk_error_report)(struct sock *sk);
292   	int			(*sk_backlog_rcv)(struct sock *sk,
293 						  struct sk_buff *skb);
294 	void                    (*sk_destruct)(struct sock *sk);
295 };
296 
297 /*
298  * Hashed lists helper routines
299  */
300 static inline struct sock *__sk_head(const struct hlist_head *head)
301 {
302 	return hlist_entry(head->first, struct sock, sk_node);
303 }
304 
305 static inline struct sock *sk_head(const struct hlist_head *head)
306 {
307 	return hlist_empty(head) ? NULL : __sk_head(head);
308 }
309 
310 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
311 {
312 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
313 }
314 
315 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
316 {
317 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
318 }
319 
320 static inline struct sock *sk_next(const struct sock *sk)
321 {
322 	return sk->sk_node.next ?
323 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
324 }
325 
326 static inline struct sock *sk_nulls_next(const struct sock *sk)
327 {
328 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
329 		hlist_nulls_entry(sk->sk_nulls_node.next,
330 				  struct sock, sk_nulls_node) :
331 		NULL;
332 }
333 
334 static inline int sk_unhashed(const struct sock *sk)
335 {
336 	return hlist_unhashed(&sk->sk_node);
337 }
338 
339 static inline int sk_hashed(const struct sock *sk)
340 {
341 	return !sk_unhashed(sk);
342 }
343 
344 static __inline__ void sk_node_init(struct hlist_node *node)
345 {
346 	node->pprev = NULL;
347 }
348 
349 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
350 {
351 	node->pprev = NULL;
352 }
353 
354 static __inline__ void __sk_del_node(struct sock *sk)
355 {
356 	__hlist_del(&sk->sk_node);
357 }
358 
359 static __inline__ int __sk_del_node_init(struct sock *sk)
360 {
361 	if (sk_hashed(sk)) {
362 		__sk_del_node(sk);
363 		sk_node_init(&sk->sk_node);
364 		return 1;
365 	}
366 	return 0;
367 }
368 
369 /* Grab socket reference count. This operation is valid only
370    when sk is ALREADY grabbed f.e. it is found in hash table
371    or a list and the lookup is made under lock preventing hash table
372    modifications.
373  */
374 
375 static inline void sock_hold(struct sock *sk)
376 {
377 	atomic_inc(&sk->sk_refcnt);
378 }
379 
380 /* Ungrab socket in the context, which assumes that socket refcnt
381    cannot hit zero, f.e. it is true in context of any socketcall.
382  */
383 static inline void __sock_put(struct sock *sk)
384 {
385 	atomic_dec(&sk->sk_refcnt);
386 }
387 
388 static __inline__ int sk_del_node_init(struct sock *sk)
389 {
390 	int rc = __sk_del_node_init(sk);
391 
392 	if (rc) {
393 		/* paranoid for a while -acme */
394 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
395 		__sock_put(sk);
396 	}
397 	return rc;
398 }
399 
400 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
401 {
402 	if (sk_hashed(sk)) {
403 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
404 		return 1;
405 	}
406 	return 0;
407 }
408 
409 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
410 {
411 	int rc = __sk_nulls_del_node_init_rcu(sk);
412 
413 	if (rc) {
414 		/* paranoid for a while -acme */
415 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
416 		__sock_put(sk);
417 	}
418 	return rc;
419 }
420 
421 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
422 {
423 	hlist_add_head(&sk->sk_node, list);
424 }
425 
426 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
427 {
428 	sock_hold(sk);
429 	__sk_add_node(sk, list);
430 }
431 
432 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
433 {
434 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
435 }
436 
437 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
438 {
439 	sock_hold(sk);
440 	__sk_nulls_add_node_rcu(sk, list);
441 }
442 
443 static __inline__ void __sk_del_bind_node(struct sock *sk)
444 {
445 	__hlist_del(&sk->sk_bind_node);
446 }
447 
448 static __inline__ void sk_add_bind_node(struct sock *sk,
449 					struct hlist_head *list)
450 {
451 	hlist_add_head(&sk->sk_bind_node, list);
452 }
453 
454 #define sk_for_each(__sk, node, list) \
455 	hlist_for_each_entry(__sk, node, list, sk_node)
456 #define sk_nulls_for_each(__sk, node, list) \
457 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
458 #define sk_nulls_for_each_rcu(__sk, node, list) \
459 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
460 #define sk_for_each_from(__sk, node) \
461 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
462 		hlist_for_each_entry_from(__sk, node, sk_node)
463 #define sk_nulls_for_each_from(__sk, node) \
464 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
465 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
466 #define sk_for_each_continue(__sk, node) \
467 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
468 		hlist_for_each_entry_continue(__sk, node, sk_node)
469 #define sk_for_each_safe(__sk, node, tmp, list) \
470 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
471 #define sk_for_each_bound(__sk, node, list) \
472 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
473 
474 /* Sock flags */
475 enum sock_flags {
476 	SOCK_DEAD,
477 	SOCK_DONE,
478 	SOCK_URGINLINE,
479 	SOCK_KEEPOPEN,
480 	SOCK_LINGER,
481 	SOCK_DESTROY,
482 	SOCK_BROADCAST,
483 	SOCK_TIMESTAMP,
484 	SOCK_ZAPPED,
485 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
486 	SOCK_DBG, /* %SO_DEBUG setting */
487 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
488 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
489 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
490 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
491 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
492 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
493 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
494 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
495 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
496 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
497 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
498 };
499 
500 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
501 {
502 	nsk->sk_flags = osk->sk_flags;
503 }
504 
505 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
506 {
507 	__set_bit(flag, &sk->sk_flags);
508 }
509 
510 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
511 {
512 	__clear_bit(flag, &sk->sk_flags);
513 }
514 
515 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
516 {
517 	return test_bit(flag, &sk->sk_flags);
518 }
519 
520 static inline void sk_acceptq_removed(struct sock *sk)
521 {
522 	sk->sk_ack_backlog--;
523 }
524 
525 static inline void sk_acceptq_added(struct sock *sk)
526 {
527 	sk->sk_ack_backlog++;
528 }
529 
530 static inline int sk_acceptq_is_full(struct sock *sk)
531 {
532 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
533 }
534 
535 /*
536  * Compute minimal free write space needed to queue new packets.
537  */
538 static inline int sk_stream_min_wspace(struct sock *sk)
539 {
540 	return sk->sk_wmem_queued >> 1;
541 }
542 
543 static inline int sk_stream_wspace(struct sock *sk)
544 {
545 	return sk->sk_sndbuf - sk->sk_wmem_queued;
546 }
547 
548 extern void sk_stream_write_space(struct sock *sk);
549 
550 static inline int sk_stream_memory_free(struct sock *sk)
551 {
552 	return sk->sk_wmem_queued < sk->sk_sndbuf;
553 }
554 
555 /* The per-socket spinlock must be held here. */
556 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
557 {
558 	if (!sk->sk_backlog.tail) {
559 		sk->sk_backlog.head = sk->sk_backlog.tail = skb;
560 	} else {
561 		sk->sk_backlog.tail->next = skb;
562 		sk->sk_backlog.tail = skb;
563 	}
564 	skb->next = NULL;
565 }
566 
567 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
568 {
569 	return sk->sk_backlog_rcv(sk, skb);
570 }
571 
572 #define sk_wait_event(__sk, __timeo, __condition)			\
573 	({	int __rc;						\
574 		release_sock(__sk);					\
575 		__rc = __condition;					\
576 		if (!__rc) {						\
577 			*(__timeo) = schedule_timeout(*(__timeo));	\
578 		}							\
579 		lock_sock(__sk);					\
580 		__rc = __condition;					\
581 		__rc;							\
582 	})
583 
584 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
585 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
586 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
587 extern int sk_stream_error(struct sock *sk, int flags, int err);
588 extern void sk_stream_kill_queues(struct sock *sk);
589 
590 extern int sk_wait_data(struct sock *sk, long *timeo);
591 
592 struct request_sock_ops;
593 struct timewait_sock_ops;
594 struct inet_hashinfo;
595 struct raw_hashinfo;
596 
597 /* Networking protocol blocks we attach to sockets.
598  * socket layer -> transport layer interface
599  * transport -> network interface is defined by struct inet_proto
600  */
601 struct proto {
602 	void			(*close)(struct sock *sk,
603 					long timeout);
604 	int			(*connect)(struct sock *sk,
605 				        struct sockaddr *uaddr,
606 					int addr_len);
607 	int			(*disconnect)(struct sock *sk, int flags);
608 
609 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
610 
611 	int			(*ioctl)(struct sock *sk, int cmd,
612 					 unsigned long arg);
613 	int			(*init)(struct sock *sk);
614 	void			(*destroy)(struct sock *sk);
615 	void			(*shutdown)(struct sock *sk, int how);
616 	int			(*setsockopt)(struct sock *sk, int level,
617 					int optname, char __user *optval,
618 					int optlen);
619 	int			(*getsockopt)(struct sock *sk, int level,
620 					int optname, char __user *optval,
621 					int __user *option);
622 #ifdef CONFIG_COMPAT
623 	int			(*compat_setsockopt)(struct sock *sk,
624 					int level,
625 					int optname, char __user *optval,
626 					int optlen);
627 	int			(*compat_getsockopt)(struct sock *sk,
628 					int level,
629 					int optname, char __user *optval,
630 					int __user *option);
631 #endif
632 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
633 					   struct msghdr *msg, size_t len);
634 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
635 					   struct msghdr *msg,
636 					size_t len, int noblock, int flags,
637 					int *addr_len);
638 	int			(*sendpage)(struct sock *sk, struct page *page,
639 					int offset, size_t size, int flags);
640 	int			(*bind)(struct sock *sk,
641 					struct sockaddr *uaddr, int addr_len);
642 
643 	int			(*backlog_rcv) (struct sock *sk,
644 						struct sk_buff *skb);
645 
646 	/* Keeping track of sk's, looking them up, and port selection methods. */
647 	void			(*hash)(struct sock *sk);
648 	void			(*unhash)(struct sock *sk);
649 	int			(*get_port)(struct sock *sk, unsigned short snum);
650 
651 	/* Keeping track of sockets in use */
652 #ifdef CONFIG_PROC_FS
653 	unsigned int		inuse_idx;
654 #endif
655 
656 	/* Memory pressure */
657 	void			(*enter_memory_pressure)(struct sock *sk);
658 	atomic_t		*memory_allocated;	/* Current allocated memory. */
659 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
660 	/*
661 	 * Pressure flag: try to collapse.
662 	 * Technical note: it is used by multiple contexts non atomically.
663 	 * All the __sk_mem_schedule() is of this nature: accounting
664 	 * is strict, actions are advisory and have some latency.
665 	 */
666 	int			*memory_pressure;
667 	int			*sysctl_mem;
668 	int			*sysctl_wmem;
669 	int			*sysctl_rmem;
670 	int			max_header;
671 
672 	struct kmem_cache	*slab;
673 	unsigned int		obj_size;
674 	int			slab_flags;
675 
676 	struct percpu_counter	*orphan_count;
677 
678 	struct request_sock_ops	*rsk_prot;
679 	struct timewait_sock_ops *twsk_prot;
680 
681 	union {
682 		struct inet_hashinfo	*hashinfo;
683 		struct udp_table	*udp_table;
684 		struct raw_hashinfo	*raw_hash;
685 	} h;
686 
687 	struct module		*owner;
688 
689 	char			name[32];
690 
691 	struct list_head	node;
692 #ifdef SOCK_REFCNT_DEBUG
693 	atomic_t		socks;
694 #endif
695 };
696 
697 extern int proto_register(struct proto *prot, int alloc_slab);
698 extern void proto_unregister(struct proto *prot);
699 
700 #ifdef SOCK_REFCNT_DEBUG
701 static inline void sk_refcnt_debug_inc(struct sock *sk)
702 {
703 	atomic_inc(&sk->sk_prot->socks);
704 }
705 
706 static inline void sk_refcnt_debug_dec(struct sock *sk)
707 {
708 	atomic_dec(&sk->sk_prot->socks);
709 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
710 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
711 }
712 
713 static inline void sk_refcnt_debug_release(const struct sock *sk)
714 {
715 	if (atomic_read(&sk->sk_refcnt) != 1)
716 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
717 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
718 }
719 #else /* SOCK_REFCNT_DEBUG */
720 #define sk_refcnt_debug_inc(sk) do { } while (0)
721 #define sk_refcnt_debug_dec(sk) do { } while (0)
722 #define sk_refcnt_debug_release(sk) do { } while (0)
723 #endif /* SOCK_REFCNT_DEBUG */
724 
725 
726 #ifdef CONFIG_PROC_FS
727 /* Called with local bh disabled */
728 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
729 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
730 #else
731 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
732 		int inc)
733 {
734 }
735 #endif
736 
737 
738 /* With per-bucket locks this operation is not-atomic, so that
739  * this version is not worse.
740  */
741 static inline void __sk_prot_rehash(struct sock *sk)
742 {
743 	sk->sk_prot->unhash(sk);
744 	sk->sk_prot->hash(sk);
745 }
746 
747 /* About 10 seconds */
748 #define SOCK_DESTROY_TIME (10*HZ)
749 
750 /* Sockets 0-1023 can't be bound to unless you are superuser */
751 #define PROT_SOCK	1024
752 
753 #define SHUTDOWN_MASK	3
754 #define RCV_SHUTDOWN	1
755 #define SEND_SHUTDOWN	2
756 
757 #define SOCK_SNDBUF_LOCK	1
758 #define SOCK_RCVBUF_LOCK	2
759 #define SOCK_BINDADDR_LOCK	4
760 #define SOCK_BINDPORT_LOCK	8
761 
762 /* sock_iocb: used to kick off async processing of socket ios */
763 struct sock_iocb {
764 	struct list_head	list;
765 
766 	int			flags;
767 	int			size;
768 	struct socket		*sock;
769 	struct sock		*sk;
770 	struct scm_cookie	*scm;
771 	struct msghdr		*msg, async_msg;
772 	struct kiocb		*kiocb;
773 };
774 
775 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
776 {
777 	return (struct sock_iocb *)iocb->private;
778 }
779 
780 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
781 {
782 	return si->kiocb;
783 }
784 
785 struct socket_alloc {
786 	struct socket socket;
787 	struct inode vfs_inode;
788 };
789 
790 static inline struct socket *SOCKET_I(struct inode *inode)
791 {
792 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
793 }
794 
795 static inline struct inode *SOCK_INODE(struct socket *socket)
796 {
797 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
798 }
799 
800 /*
801  * Functions for memory accounting
802  */
803 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
804 extern void __sk_mem_reclaim(struct sock *sk);
805 
806 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
807 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
808 #define SK_MEM_SEND	0
809 #define SK_MEM_RECV	1
810 
811 static inline int sk_mem_pages(int amt)
812 {
813 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
814 }
815 
816 static inline int sk_has_account(struct sock *sk)
817 {
818 	/* return true if protocol supports memory accounting */
819 	return !!sk->sk_prot->memory_allocated;
820 }
821 
822 static inline int sk_wmem_schedule(struct sock *sk, int size)
823 {
824 	if (!sk_has_account(sk))
825 		return 1;
826 	return size <= sk->sk_forward_alloc ||
827 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
828 }
829 
830 static inline int sk_rmem_schedule(struct sock *sk, int size)
831 {
832 	if (!sk_has_account(sk))
833 		return 1;
834 	return size <= sk->sk_forward_alloc ||
835 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
836 }
837 
838 static inline void sk_mem_reclaim(struct sock *sk)
839 {
840 	if (!sk_has_account(sk))
841 		return;
842 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
843 		__sk_mem_reclaim(sk);
844 }
845 
846 static inline void sk_mem_reclaim_partial(struct sock *sk)
847 {
848 	if (!sk_has_account(sk))
849 		return;
850 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
851 		__sk_mem_reclaim(sk);
852 }
853 
854 static inline void sk_mem_charge(struct sock *sk, int size)
855 {
856 	if (!sk_has_account(sk))
857 		return;
858 	sk->sk_forward_alloc -= size;
859 }
860 
861 static inline void sk_mem_uncharge(struct sock *sk, int size)
862 {
863 	if (!sk_has_account(sk))
864 		return;
865 	sk->sk_forward_alloc += size;
866 }
867 
868 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
869 {
870 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
871 	sk->sk_wmem_queued -= skb->truesize;
872 	sk_mem_uncharge(sk, skb->truesize);
873 	__kfree_skb(skb);
874 }
875 
876 /* Used by processes to "lock" a socket state, so that
877  * interrupts and bottom half handlers won't change it
878  * from under us. It essentially blocks any incoming
879  * packets, so that we won't get any new data or any
880  * packets that change the state of the socket.
881  *
882  * While locked, BH processing will add new packets to
883  * the backlog queue.  This queue is processed by the
884  * owner of the socket lock right before it is released.
885  *
886  * Since ~2.3.5 it is also exclusive sleep lock serializing
887  * accesses from user process context.
888  */
889 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
890 
891 /*
892  * Macro so as to not evaluate some arguments when
893  * lockdep is not enabled.
894  *
895  * Mark both the sk_lock and the sk_lock.slock as a
896  * per-address-family lock class.
897  */
898 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
899 do {									\
900 	sk->sk_lock.owned = 0;						\
901 	init_waitqueue_head(&sk->sk_lock.wq);				\
902 	spin_lock_init(&(sk)->sk_lock.slock);				\
903 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
904 			sizeof((sk)->sk_lock));				\
905 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
906 		       	(skey), (sname));				\
907 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
908 } while (0)
909 
910 extern void lock_sock_nested(struct sock *sk, int subclass);
911 
912 static inline void lock_sock(struct sock *sk)
913 {
914 	lock_sock_nested(sk, 0);
915 }
916 
917 extern void release_sock(struct sock *sk);
918 
919 /* BH context may only use the following locking interface. */
920 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
921 #define bh_lock_sock_nested(__sk) \
922 				spin_lock_nested(&((__sk)->sk_lock.slock), \
923 				SINGLE_DEPTH_NESTING)
924 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
925 
926 extern struct sock		*sk_alloc(struct net *net, int family,
927 					  gfp_t priority,
928 					  struct proto *prot);
929 extern void			sk_free(struct sock *sk);
930 extern void			sk_release_kernel(struct sock *sk);
931 extern struct sock		*sk_clone(const struct sock *sk,
932 					  const gfp_t priority);
933 
934 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
935 					      unsigned long size, int force,
936 					      gfp_t priority);
937 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
938 					      unsigned long size, int force,
939 					      gfp_t priority);
940 extern void			sock_wfree(struct sk_buff *skb);
941 extern void			sock_rfree(struct sk_buff *skb);
942 
943 extern int			sock_setsockopt(struct socket *sock, int level,
944 						int op, char __user *optval,
945 						int optlen);
946 
947 extern int			sock_getsockopt(struct socket *sock, int level,
948 						int op, char __user *optval,
949 						int __user *optlen);
950 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
951 						     unsigned long size,
952 						     int noblock,
953 						     int *errcode);
954 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
955 						      unsigned long header_len,
956 						      unsigned long data_len,
957 						      int noblock,
958 						      int *errcode);
959 extern void *sock_kmalloc(struct sock *sk, int size,
960 			  gfp_t priority);
961 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
962 extern void sk_send_sigurg(struct sock *sk);
963 
964 /*
965  * Functions to fill in entries in struct proto_ops when a protocol
966  * does not implement a particular function.
967  */
968 extern int                      sock_no_bind(struct socket *,
969 					     struct sockaddr *, int);
970 extern int                      sock_no_connect(struct socket *,
971 						struct sockaddr *, int, int);
972 extern int                      sock_no_socketpair(struct socket *,
973 						   struct socket *);
974 extern int                      sock_no_accept(struct socket *,
975 					       struct socket *, int);
976 extern int                      sock_no_getname(struct socket *,
977 						struct sockaddr *, int *, int);
978 extern unsigned int             sock_no_poll(struct file *, struct socket *,
979 					     struct poll_table_struct *);
980 extern int                      sock_no_ioctl(struct socket *, unsigned int,
981 					      unsigned long);
982 extern int			sock_no_listen(struct socket *, int);
983 extern int                      sock_no_shutdown(struct socket *, int);
984 extern int			sock_no_getsockopt(struct socket *, int , int,
985 						   char __user *, int __user *);
986 extern int			sock_no_setsockopt(struct socket *, int, int,
987 						   char __user *, int);
988 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
989 						struct msghdr *, size_t);
990 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
991 						struct msghdr *, size_t, int);
992 extern int			sock_no_mmap(struct file *file,
993 					     struct socket *sock,
994 					     struct vm_area_struct *vma);
995 extern ssize_t			sock_no_sendpage(struct socket *sock,
996 						struct page *page,
997 						int offset, size_t size,
998 						int flags);
999 
1000 /*
1001  * Functions to fill in entries in struct proto_ops when a protocol
1002  * uses the inet style.
1003  */
1004 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1005 				  char __user *optval, int __user *optlen);
1006 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1007 			       struct msghdr *msg, size_t size, int flags);
1008 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1009 				  char __user *optval, int optlen);
1010 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1011 		int optname, char __user *optval, int __user *optlen);
1012 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1013 		int optname, char __user *optval, int optlen);
1014 
1015 extern void sk_common_release(struct sock *sk);
1016 
1017 /*
1018  *	Default socket callbacks and setup code
1019  */
1020 
1021 /* Initialise core socket variables */
1022 extern void sock_init_data(struct socket *sock, struct sock *sk);
1023 
1024 /**
1025  *	sk_filter_release: Release a socket filter
1026  *	@fp: filter to remove
1027  *
1028  *	Remove a filter from a socket and release its resources.
1029  */
1030 
1031 static inline void sk_filter_release(struct sk_filter *fp)
1032 {
1033 	if (atomic_dec_and_test(&fp->refcnt))
1034 		kfree(fp);
1035 }
1036 
1037 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1038 {
1039 	unsigned int size = sk_filter_len(fp);
1040 
1041 	atomic_sub(size, &sk->sk_omem_alloc);
1042 	sk_filter_release(fp);
1043 }
1044 
1045 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1046 {
1047 	atomic_inc(&fp->refcnt);
1048 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1049 }
1050 
1051 /*
1052  * Socket reference counting postulates.
1053  *
1054  * * Each user of socket SHOULD hold a reference count.
1055  * * Each access point to socket (an hash table bucket, reference from a list,
1056  *   running timer, skb in flight MUST hold a reference count.
1057  * * When reference count hits 0, it means it will never increase back.
1058  * * When reference count hits 0, it means that no references from
1059  *   outside exist to this socket and current process on current CPU
1060  *   is last user and may/should destroy this socket.
1061  * * sk_free is called from any context: process, BH, IRQ. When
1062  *   it is called, socket has no references from outside -> sk_free
1063  *   may release descendant resources allocated by the socket, but
1064  *   to the time when it is called, socket is NOT referenced by any
1065  *   hash tables, lists etc.
1066  * * Packets, delivered from outside (from network or from another process)
1067  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1068  *   when they sit in queue. Otherwise, packets will leak to hole, when
1069  *   socket is looked up by one cpu and unhasing is made by another CPU.
1070  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1071  *   (leak to backlog). Packet socket does all the processing inside
1072  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1073  *   use separate SMP lock, so that they are prone too.
1074  */
1075 
1076 /* Ungrab socket and destroy it, if it was the last reference. */
1077 static inline void sock_put(struct sock *sk)
1078 {
1079 	if (atomic_dec_and_test(&sk->sk_refcnt))
1080 		sk_free(sk);
1081 }
1082 
1083 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1084 			  const int nested);
1085 
1086 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1087 {
1088 	sk->sk_socket = sock;
1089 }
1090 
1091 /* Detach socket from process context.
1092  * Announce socket dead, detach it from wait queue and inode.
1093  * Note that parent inode held reference count on this struct sock,
1094  * we do not release it in this function, because protocol
1095  * probably wants some additional cleanups or even continuing
1096  * to work with this socket (TCP).
1097  */
1098 static inline void sock_orphan(struct sock *sk)
1099 {
1100 	write_lock_bh(&sk->sk_callback_lock);
1101 	sock_set_flag(sk, SOCK_DEAD);
1102 	sk_set_socket(sk, NULL);
1103 	sk->sk_sleep  = NULL;
1104 	write_unlock_bh(&sk->sk_callback_lock);
1105 }
1106 
1107 static inline void sock_graft(struct sock *sk, struct socket *parent)
1108 {
1109 	write_lock_bh(&sk->sk_callback_lock);
1110 	sk->sk_sleep = &parent->wait;
1111 	parent->sk = sk;
1112 	sk_set_socket(sk, parent);
1113 	security_sock_graft(sk, parent);
1114 	write_unlock_bh(&sk->sk_callback_lock);
1115 }
1116 
1117 extern int sock_i_uid(struct sock *sk);
1118 extern unsigned long sock_i_ino(struct sock *sk);
1119 
1120 static inline struct dst_entry *
1121 __sk_dst_get(struct sock *sk)
1122 {
1123 	return sk->sk_dst_cache;
1124 }
1125 
1126 static inline struct dst_entry *
1127 sk_dst_get(struct sock *sk)
1128 {
1129 	struct dst_entry *dst;
1130 
1131 	read_lock(&sk->sk_dst_lock);
1132 	dst = sk->sk_dst_cache;
1133 	if (dst)
1134 		dst_hold(dst);
1135 	read_unlock(&sk->sk_dst_lock);
1136 	return dst;
1137 }
1138 
1139 static inline void
1140 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1141 {
1142 	struct dst_entry *old_dst;
1143 
1144 	old_dst = sk->sk_dst_cache;
1145 	sk->sk_dst_cache = dst;
1146 	dst_release(old_dst);
1147 }
1148 
1149 static inline void
1150 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1151 {
1152 	write_lock(&sk->sk_dst_lock);
1153 	__sk_dst_set(sk, dst);
1154 	write_unlock(&sk->sk_dst_lock);
1155 }
1156 
1157 static inline void
1158 __sk_dst_reset(struct sock *sk)
1159 {
1160 	struct dst_entry *old_dst;
1161 
1162 	old_dst = sk->sk_dst_cache;
1163 	sk->sk_dst_cache = NULL;
1164 	dst_release(old_dst);
1165 }
1166 
1167 static inline void
1168 sk_dst_reset(struct sock *sk)
1169 {
1170 	write_lock(&sk->sk_dst_lock);
1171 	__sk_dst_reset(sk);
1172 	write_unlock(&sk->sk_dst_lock);
1173 }
1174 
1175 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1176 
1177 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1178 
1179 static inline int sk_can_gso(const struct sock *sk)
1180 {
1181 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1182 }
1183 
1184 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1185 
1186 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1187 				   struct sk_buff *skb, struct page *page,
1188 				   int off, int copy)
1189 {
1190 	if (skb->ip_summed == CHECKSUM_NONE) {
1191 		int err = 0;
1192 		__wsum csum = csum_and_copy_from_user(from,
1193 						     page_address(page) + off,
1194 							    copy, 0, &err);
1195 		if (err)
1196 			return err;
1197 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1198 	} else if (copy_from_user(page_address(page) + off, from, copy))
1199 		return -EFAULT;
1200 
1201 	skb->len	     += copy;
1202 	skb->data_len	     += copy;
1203 	skb->truesize	     += copy;
1204 	sk->sk_wmem_queued   += copy;
1205 	sk_mem_charge(sk, copy);
1206 	return 0;
1207 }
1208 
1209 /*
1210  * 	Queue a received datagram if it will fit. Stream and sequenced
1211  *	protocols can't normally use this as they need to fit buffers in
1212  *	and play with them.
1213  *
1214  * 	Inlined as it's very short and called for pretty much every
1215  *	packet ever received.
1216  */
1217 
1218 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1219 {
1220 	sock_hold(sk);
1221 	skb->sk = sk;
1222 	skb->destructor = sock_wfree;
1223 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1224 }
1225 
1226 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1227 {
1228 	skb->sk = sk;
1229 	skb->destructor = sock_rfree;
1230 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1231 	sk_mem_charge(sk, skb->truesize);
1232 }
1233 
1234 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1235 			   unsigned long expires);
1236 
1237 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1238 
1239 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1240 
1241 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1242 {
1243 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1244 	   number of warnings when compiling with -W --ANK
1245 	 */
1246 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1247 	    (unsigned)sk->sk_rcvbuf)
1248 		return -ENOMEM;
1249 	skb_set_owner_r(skb, sk);
1250 	skb_queue_tail(&sk->sk_error_queue, skb);
1251 	if (!sock_flag(sk, SOCK_DEAD))
1252 		sk->sk_data_ready(sk, skb->len);
1253 	return 0;
1254 }
1255 
1256 /*
1257  *	Recover an error report and clear atomically
1258  */
1259 
1260 static inline int sock_error(struct sock *sk)
1261 {
1262 	int err;
1263 	if (likely(!sk->sk_err))
1264 		return 0;
1265 	err = xchg(&sk->sk_err, 0);
1266 	return -err;
1267 }
1268 
1269 static inline unsigned long sock_wspace(struct sock *sk)
1270 {
1271 	int amt = 0;
1272 
1273 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1274 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1275 		if (amt < 0)
1276 			amt = 0;
1277 	}
1278 	return amt;
1279 }
1280 
1281 static inline void sk_wake_async(struct sock *sk, int how, int band)
1282 {
1283 	if (sk->sk_socket && sk->sk_socket->fasync_list)
1284 		sock_wake_async(sk->sk_socket, how, band);
1285 }
1286 
1287 #define SOCK_MIN_SNDBUF 2048
1288 #define SOCK_MIN_RCVBUF 256
1289 
1290 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1291 {
1292 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1293 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1294 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1295 	}
1296 }
1297 
1298 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1299 
1300 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1301 {
1302 	struct page *page = NULL;
1303 
1304 	page = alloc_pages(sk->sk_allocation, 0);
1305 	if (!page) {
1306 		sk->sk_prot->enter_memory_pressure(sk);
1307 		sk_stream_moderate_sndbuf(sk);
1308 	}
1309 	return page;
1310 }
1311 
1312 /*
1313  *	Default write policy as shown to user space via poll/select/SIGIO
1314  */
1315 static inline int sock_writeable(const struct sock *sk)
1316 {
1317 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1318 }
1319 
1320 static inline gfp_t gfp_any(void)
1321 {
1322 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1323 }
1324 
1325 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1326 {
1327 	return noblock ? 0 : sk->sk_rcvtimeo;
1328 }
1329 
1330 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1331 {
1332 	return noblock ? 0 : sk->sk_sndtimeo;
1333 }
1334 
1335 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1336 {
1337 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1338 }
1339 
1340 /* Alas, with timeout socket operations are not restartable.
1341  * Compare this to poll().
1342  */
1343 static inline int sock_intr_errno(long timeo)
1344 {
1345 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1346 }
1347 
1348 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1349 	struct sk_buff *skb);
1350 
1351 static __inline__ void
1352 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1353 {
1354 	ktime_t kt = skb->tstamp;
1355 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1356 
1357 	/*
1358 	 * generate control messages if
1359 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1360 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1361 	 * - software time stamp available and wanted
1362 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1363 	 * - hardware time stamps available and wanted
1364 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1365 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1366 	 */
1367 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1368 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1369 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1370 	    (hwtstamps->hwtstamp.tv64 &&
1371 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1372 	    (hwtstamps->syststamp.tv64 &&
1373 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1374 		__sock_recv_timestamp(msg, sk, skb);
1375 	else
1376 		sk->sk_stamp = kt;
1377 }
1378 
1379 /**
1380  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1381  * @msg:	outgoing packet
1382  * @sk:		socket sending this packet
1383  * @shtx:	filled with instructions for time stamping
1384  *
1385  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1386  * parameters are invalid.
1387  */
1388 extern int sock_tx_timestamp(struct msghdr *msg,
1389 			     struct sock *sk,
1390 			     union skb_shared_tx *shtx);
1391 
1392 
1393 /**
1394  * sk_eat_skb - Release a skb if it is no longer needed
1395  * @sk: socket to eat this skb from
1396  * @skb: socket buffer to eat
1397  * @copied_early: flag indicating whether DMA operations copied this data early
1398  *
1399  * This routine must be called with interrupts disabled or with the socket
1400  * locked so that the sk_buff queue operation is ok.
1401 */
1402 #ifdef CONFIG_NET_DMA
1403 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1404 {
1405 	__skb_unlink(skb, &sk->sk_receive_queue);
1406 	if (!copied_early)
1407 		__kfree_skb(skb);
1408 	else
1409 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1410 }
1411 #else
1412 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1413 {
1414 	__skb_unlink(skb, &sk->sk_receive_queue);
1415 	__kfree_skb(skb);
1416 }
1417 #endif
1418 
1419 static inline
1420 struct net *sock_net(const struct sock *sk)
1421 {
1422 #ifdef CONFIG_NET_NS
1423 	return sk->sk_net;
1424 #else
1425 	return &init_net;
1426 #endif
1427 }
1428 
1429 static inline
1430 void sock_net_set(struct sock *sk, struct net *net)
1431 {
1432 #ifdef CONFIG_NET_NS
1433 	sk->sk_net = net;
1434 #endif
1435 }
1436 
1437 /*
1438  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1439  * They should not hold a referrence to a namespace in order to allow
1440  * to stop it.
1441  * Sockets after sk_change_net should be released using sk_release_kernel
1442  */
1443 static inline void sk_change_net(struct sock *sk, struct net *net)
1444 {
1445 	put_net(sock_net(sk));
1446 	sock_net_set(sk, hold_net(net));
1447 }
1448 
1449 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1450 {
1451 	if (unlikely(skb->sk)) {
1452 		struct sock *sk = skb->sk;
1453 
1454 		skb->destructor = NULL;
1455 		skb->sk = NULL;
1456 		return sk;
1457 	}
1458 	return NULL;
1459 }
1460 
1461 extern void sock_enable_timestamp(struct sock *sk, int flag);
1462 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1463 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1464 
1465 /*
1466  *	Enable debug/info messages
1467  */
1468 extern int net_msg_warn;
1469 #define NETDEBUG(fmt, args...) \
1470 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1471 
1472 #define LIMIT_NETDEBUG(fmt, args...) \
1473 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1474 
1475 extern __u32 sysctl_wmem_max;
1476 extern __u32 sysctl_rmem_max;
1477 
1478 extern void sk_init(void);
1479 
1480 extern int sysctl_optmem_max;
1481 
1482 extern __u32 sysctl_wmem_default;
1483 extern __u32 sysctl_rmem_default;
1484 
1485 #endif	/* _SOCK_H */
1486