1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 #include <linux/sockptr.h> 63 #include <linux/indirect_call_wrapper.h> 64 #include <linux/atomic.h> 65 #include <linux/refcount.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 72 /* 73 * This structure really needs to be cleaned up. 74 * Most of it is for TCP, and not used by any of 75 * the other protocols. 76 */ 77 78 /* Define this to get the SOCK_DBG debugging facility. */ 79 #define SOCK_DEBUGGING 80 #ifdef SOCK_DEBUGGING 81 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 82 printk(KERN_DEBUG msg); } while (0) 83 #else 84 /* Validate arguments and do nothing */ 85 static inline __printf(2, 3) 86 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 87 { 88 } 89 #endif 90 91 /* This is the per-socket lock. The spinlock provides a synchronization 92 * between user contexts and software interrupt processing, whereas the 93 * mini-semaphore synchronizes multiple users amongst themselves. 94 */ 95 typedef struct { 96 spinlock_t slock; 97 int owned; 98 wait_queue_head_t wq; 99 /* 100 * We express the mutex-alike socket_lock semantics 101 * to the lock validator by explicitly managing 102 * the slock as a lock variant (in addition to 103 * the slock itself): 104 */ 105 #ifdef CONFIG_DEBUG_LOCK_ALLOC 106 struct lockdep_map dep_map; 107 #endif 108 } socket_lock_t; 109 110 struct sock; 111 struct proto; 112 struct net; 113 114 typedef __u32 __bitwise __portpair; 115 typedef __u64 __bitwise __addrpair; 116 117 /** 118 * struct sock_common - minimal network layer representation of sockets 119 * @skc_daddr: Foreign IPv4 addr 120 * @skc_rcv_saddr: Bound local IPv4 addr 121 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 122 * @skc_hash: hash value used with various protocol lookup tables 123 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 124 * @skc_dport: placeholder for inet_dport/tw_dport 125 * @skc_num: placeholder for inet_num/tw_num 126 * @skc_portpair: __u32 union of @skc_dport & @skc_num 127 * @skc_family: network address family 128 * @skc_state: Connection state 129 * @skc_reuse: %SO_REUSEADDR setting 130 * @skc_reuseport: %SO_REUSEPORT setting 131 * @skc_ipv6only: socket is IPV6 only 132 * @skc_net_refcnt: socket is using net ref counting 133 * @skc_bound_dev_if: bound device index if != 0 134 * @skc_bind_node: bind hash linkage for various protocol lookup tables 135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 136 * @skc_prot: protocol handlers inside a network family 137 * @skc_net: reference to the network namespace of this socket 138 * @skc_v6_daddr: IPV6 destination address 139 * @skc_v6_rcv_saddr: IPV6 source address 140 * @skc_cookie: socket's cookie value 141 * @skc_node: main hash linkage for various protocol lookup tables 142 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 143 * @skc_tx_queue_mapping: tx queue number for this connection 144 * @skc_rx_queue_mapping: rx queue number for this connection 145 * @skc_flags: place holder for sk_flags 146 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 147 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 148 * @skc_listener: connection request listener socket (aka rsk_listener) 149 * [union with @skc_flags] 150 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 151 * [union with @skc_flags] 152 * @skc_incoming_cpu: record/match cpu processing incoming packets 153 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 154 * [union with @skc_incoming_cpu] 155 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 156 * [union with @skc_incoming_cpu] 157 * @skc_refcnt: reference count 158 * 159 * This is the minimal network layer representation of sockets, the header 160 * for struct sock and struct inet_timewait_sock. 161 */ 162 struct sock_common { 163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 164 * address on 64bit arches : cf INET_MATCH() 165 */ 166 union { 167 __addrpair skc_addrpair; 168 struct { 169 __be32 skc_daddr; 170 __be32 skc_rcv_saddr; 171 }; 172 }; 173 union { 174 unsigned int skc_hash; 175 __u16 skc_u16hashes[2]; 176 }; 177 /* skc_dport && skc_num must be grouped as well */ 178 union { 179 __portpair skc_portpair; 180 struct { 181 __be16 skc_dport; 182 __u16 skc_num; 183 }; 184 }; 185 186 unsigned short skc_family; 187 volatile unsigned char skc_state; 188 unsigned char skc_reuse:4; 189 unsigned char skc_reuseport:1; 190 unsigned char skc_ipv6only:1; 191 unsigned char skc_net_refcnt:1; 192 int skc_bound_dev_if; 193 union { 194 struct hlist_node skc_bind_node; 195 struct hlist_node skc_portaddr_node; 196 }; 197 struct proto *skc_prot; 198 possible_net_t skc_net; 199 200 #if IS_ENABLED(CONFIG_IPV6) 201 struct in6_addr skc_v6_daddr; 202 struct in6_addr skc_v6_rcv_saddr; 203 #endif 204 205 atomic64_t skc_cookie; 206 207 /* following fields are padding to force 208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 209 * assuming IPV6 is enabled. We use this padding differently 210 * for different kind of 'sockets' 211 */ 212 union { 213 unsigned long skc_flags; 214 struct sock *skc_listener; /* request_sock */ 215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 216 }; 217 /* 218 * fields between dontcopy_begin/dontcopy_end 219 * are not copied in sock_copy() 220 */ 221 /* private: */ 222 int skc_dontcopy_begin[0]; 223 /* public: */ 224 union { 225 struct hlist_node skc_node; 226 struct hlist_nulls_node skc_nulls_node; 227 }; 228 unsigned short skc_tx_queue_mapping; 229 #ifdef CONFIG_XPS 230 unsigned short skc_rx_queue_mapping; 231 #endif 232 union { 233 int skc_incoming_cpu; 234 u32 skc_rcv_wnd; 235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 236 }; 237 238 refcount_t skc_refcnt; 239 /* private: */ 240 int skc_dontcopy_end[0]; 241 union { 242 u32 skc_rxhash; 243 u32 skc_window_clamp; 244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 245 }; 246 /* public: */ 247 }; 248 249 struct bpf_local_storage; 250 251 /** 252 * struct sock - network layer representation of sockets 253 * @__sk_common: shared layout with inet_timewait_sock 254 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 255 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 256 * @sk_lock: synchronizer 257 * @sk_kern_sock: True if sock is using kernel lock classes 258 * @sk_rcvbuf: size of receive buffer in bytes 259 * @sk_wq: sock wait queue and async head 260 * @sk_rx_dst: receive input route used by early demux 261 * @sk_dst_cache: destination cache 262 * @sk_dst_pending_confirm: need to confirm neighbour 263 * @sk_policy: flow policy 264 * @sk_rx_skb_cache: cache copy of recently accessed RX skb 265 * @sk_receive_queue: incoming packets 266 * @sk_wmem_alloc: transmit queue bytes committed 267 * @sk_tsq_flags: TCP Small Queues flags 268 * @sk_write_queue: Packet sending queue 269 * @sk_omem_alloc: "o" is "option" or "other" 270 * @sk_wmem_queued: persistent queue size 271 * @sk_forward_alloc: space allocated forward 272 * @sk_napi_id: id of the last napi context to receive data for sk 273 * @sk_ll_usec: usecs to busypoll when there is no data 274 * @sk_allocation: allocation mode 275 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 276 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 277 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 278 * @sk_sndbuf: size of send buffer in bytes 279 * @__sk_flags_offset: empty field used to determine location of bitfield 280 * @sk_padding: unused element for alignment 281 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 282 * @sk_no_check_rx: allow zero checksum in RX packets 283 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 284 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 285 * @sk_route_forced_caps: static, forced route capabilities 286 * (set in tcp_init_sock()) 287 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 288 * @sk_gso_max_size: Maximum GSO segment size to build 289 * @sk_gso_max_segs: Maximum number of GSO segments 290 * @sk_pacing_shift: scaling factor for TCP Small Queues 291 * @sk_lingertime: %SO_LINGER l_linger setting 292 * @sk_backlog: always used with the per-socket spinlock held 293 * @sk_callback_lock: used with the callbacks in the end of this struct 294 * @sk_error_queue: rarely used 295 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 296 * IPV6_ADDRFORM for instance) 297 * @sk_err: last error 298 * @sk_err_soft: errors that don't cause failure but are the cause of a 299 * persistent failure not just 'timed out' 300 * @sk_drops: raw/udp drops counter 301 * @sk_ack_backlog: current listen backlog 302 * @sk_max_ack_backlog: listen backlog set in listen() 303 * @sk_uid: user id of owner 304 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 305 * @sk_busy_poll_budget: napi processing budget when busypolling 306 * @sk_priority: %SO_PRIORITY setting 307 * @sk_type: socket type (%SOCK_STREAM, etc) 308 * @sk_protocol: which protocol this socket belongs in this network family 309 * @sk_peer_pid: &struct pid for this socket's peer 310 * @sk_peer_cred: %SO_PEERCRED setting 311 * @sk_rcvlowat: %SO_RCVLOWAT setting 312 * @sk_rcvtimeo: %SO_RCVTIMEO setting 313 * @sk_sndtimeo: %SO_SNDTIMEO setting 314 * @sk_txhash: computed flow hash for use on transmit 315 * @sk_filter: socket filtering instructions 316 * @sk_timer: sock cleanup timer 317 * @sk_stamp: time stamp of last packet received 318 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 319 * @sk_tsflags: SO_TIMESTAMPING socket options 320 * @sk_tskey: counter to disambiguate concurrent tstamp requests 321 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 322 * @sk_socket: Identd and reporting IO signals 323 * @sk_user_data: RPC layer private data 324 * @sk_frag: cached page frag 325 * @sk_peek_off: current peek_offset value 326 * @sk_send_head: front of stuff to transmit 327 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 328 * @sk_tx_skb_cache: cache copy of recently accessed TX skb 329 * @sk_security: used by security modules 330 * @sk_mark: generic packet mark 331 * @sk_cgrp_data: cgroup data for this cgroup 332 * @sk_memcg: this socket's memory cgroup association 333 * @sk_write_pending: a write to stream socket waits to start 334 * @sk_state_change: callback to indicate change in the state of the sock 335 * @sk_data_ready: callback to indicate there is data to be processed 336 * @sk_write_space: callback to indicate there is bf sending space available 337 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 338 * @sk_backlog_rcv: callback to process the backlog 339 * @sk_validate_xmit_skb: ptr to an optional validate function 340 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 341 * @sk_reuseport_cb: reuseport group container 342 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 343 * @sk_rcu: used during RCU grace period 344 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 345 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 346 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 347 * @sk_txtime_unused: unused txtime flags 348 */ 349 struct sock { 350 /* 351 * Now struct inet_timewait_sock also uses sock_common, so please just 352 * don't add nothing before this first member (__sk_common) --acme 353 */ 354 struct sock_common __sk_common; 355 #define sk_node __sk_common.skc_node 356 #define sk_nulls_node __sk_common.skc_nulls_node 357 #define sk_refcnt __sk_common.skc_refcnt 358 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 359 #ifdef CONFIG_XPS 360 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 361 #endif 362 363 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 364 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 365 #define sk_hash __sk_common.skc_hash 366 #define sk_portpair __sk_common.skc_portpair 367 #define sk_num __sk_common.skc_num 368 #define sk_dport __sk_common.skc_dport 369 #define sk_addrpair __sk_common.skc_addrpair 370 #define sk_daddr __sk_common.skc_daddr 371 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 372 #define sk_family __sk_common.skc_family 373 #define sk_state __sk_common.skc_state 374 #define sk_reuse __sk_common.skc_reuse 375 #define sk_reuseport __sk_common.skc_reuseport 376 #define sk_ipv6only __sk_common.skc_ipv6only 377 #define sk_net_refcnt __sk_common.skc_net_refcnt 378 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 379 #define sk_bind_node __sk_common.skc_bind_node 380 #define sk_prot __sk_common.skc_prot 381 #define sk_net __sk_common.skc_net 382 #define sk_v6_daddr __sk_common.skc_v6_daddr 383 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 384 #define sk_cookie __sk_common.skc_cookie 385 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 386 #define sk_flags __sk_common.skc_flags 387 #define sk_rxhash __sk_common.skc_rxhash 388 389 socket_lock_t sk_lock; 390 atomic_t sk_drops; 391 int sk_rcvlowat; 392 struct sk_buff_head sk_error_queue; 393 struct sk_buff *sk_rx_skb_cache; 394 struct sk_buff_head sk_receive_queue; 395 /* 396 * The backlog queue is special, it is always used with 397 * the per-socket spinlock held and requires low latency 398 * access. Therefore we special case it's implementation. 399 * Note : rmem_alloc is in this structure to fill a hole 400 * on 64bit arches, not because its logically part of 401 * backlog. 402 */ 403 struct { 404 atomic_t rmem_alloc; 405 int len; 406 struct sk_buff *head; 407 struct sk_buff *tail; 408 } sk_backlog; 409 #define sk_rmem_alloc sk_backlog.rmem_alloc 410 411 int sk_forward_alloc; 412 #ifdef CONFIG_NET_RX_BUSY_POLL 413 unsigned int sk_ll_usec; 414 /* ===== mostly read cache line ===== */ 415 unsigned int sk_napi_id; 416 #endif 417 int sk_rcvbuf; 418 419 struct sk_filter __rcu *sk_filter; 420 union { 421 struct socket_wq __rcu *sk_wq; 422 /* private: */ 423 struct socket_wq *sk_wq_raw; 424 /* public: */ 425 }; 426 #ifdef CONFIG_XFRM 427 struct xfrm_policy __rcu *sk_policy[2]; 428 #endif 429 struct dst_entry *sk_rx_dst; 430 struct dst_entry __rcu *sk_dst_cache; 431 atomic_t sk_omem_alloc; 432 int sk_sndbuf; 433 434 /* ===== cache line for TX ===== */ 435 int sk_wmem_queued; 436 refcount_t sk_wmem_alloc; 437 unsigned long sk_tsq_flags; 438 union { 439 struct sk_buff *sk_send_head; 440 struct rb_root tcp_rtx_queue; 441 }; 442 struct sk_buff *sk_tx_skb_cache; 443 struct sk_buff_head sk_write_queue; 444 __s32 sk_peek_off; 445 int sk_write_pending; 446 __u32 sk_dst_pending_confirm; 447 u32 sk_pacing_status; /* see enum sk_pacing */ 448 long sk_sndtimeo; 449 struct timer_list sk_timer; 450 __u32 sk_priority; 451 __u32 sk_mark; 452 unsigned long sk_pacing_rate; /* bytes per second */ 453 unsigned long sk_max_pacing_rate; 454 struct page_frag sk_frag; 455 netdev_features_t sk_route_caps; 456 netdev_features_t sk_route_nocaps; 457 netdev_features_t sk_route_forced_caps; 458 int sk_gso_type; 459 unsigned int sk_gso_max_size; 460 gfp_t sk_allocation; 461 __u32 sk_txhash; 462 463 /* 464 * Because of non atomicity rules, all 465 * changes are protected by socket lock. 466 */ 467 u8 sk_padding : 1, 468 sk_kern_sock : 1, 469 sk_no_check_tx : 1, 470 sk_no_check_rx : 1, 471 sk_userlocks : 4; 472 u8 sk_pacing_shift; 473 u16 sk_type; 474 u16 sk_protocol; 475 u16 sk_gso_max_segs; 476 unsigned long sk_lingertime; 477 struct proto *sk_prot_creator; 478 rwlock_t sk_callback_lock; 479 int sk_err, 480 sk_err_soft; 481 u32 sk_ack_backlog; 482 u32 sk_max_ack_backlog; 483 kuid_t sk_uid; 484 #ifdef CONFIG_NET_RX_BUSY_POLL 485 u8 sk_prefer_busy_poll; 486 u16 sk_busy_poll_budget; 487 #endif 488 struct pid *sk_peer_pid; 489 const struct cred *sk_peer_cred; 490 long sk_rcvtimeo; 491 ktime_t sk_stamp; 492 #if BITS_PER_LONG==32 493 seqlock_t sk_stamp_seq; 494 #endif 495 u16 sk_tsflags; 496 u8 sk_shutdown; 497 u32 sk_tskey; 498 atomic_t sk_zckey; 499 500 u8 sk_clockid; 501 u8 sk_txtime_deadline_mode : 1, 502 sk_txtime_report_errors : 1, 503 sk_txtime_unused : 6; 504 505 struct socket *sk_socket; 506 void *sk_user_data; 507 #ifdef CONFIG_SECURITY 508 void *sk_security; 509 #endif 510 struct sock_cgroup_data sk_cgrp_data; 511 struct mem_cgroup *sk_memcg; 512 void (*sk_state_change)(struct sock *sk); 513 void (*sk_data_ready)(struct sock *sk); 514 void (*sk_write_space)(struct sock *sk); 515 void (*sk_error_report)(struct sock *sk); 516 int (*sk_backlog_rcv)(struct sock *sk, 517 struct sk_buff *skb); 518 #ifdef CONFIG_SOCK_VALIDATE_XMIT 519 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 520 struct net_device *dev, 521 struct sk_buff *skb); 522 #endif 523 void (*sk_destruct)(struct sock *sk); 524 struct sock_reuseport __rcu *sk_reuseport_cb; 525 #ifdef CONFIG_BPF_SYSCALL 526 struct bpf_local_storage __rcu *sk_bpf_storage; 527 #endif 528 struct rcu_head sk_rcu; 529 }; 530 531 enum sk_pacing { 532 SK_PACING_NONE = 0, 533 SK_PACING_NEEDED = 1, 534 SK_PACING_FQ = 2, 535 }; 536 537 /* Pointer stored in sk_user_data might not be suitable for copying 538 * when cloning the socket. For instance, it can point to a reference 539 * counted object. sk_user_data bottom bit is set if pointer must not 540 * be copied. 541 */ 542 #define SK_USER_DATA_NOCOPY 1UL 543 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ 544 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) 545 546 /** 547 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 548 * @sk: socket 549 */ 550 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 551 { 552 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 553 } 554 555 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 556 557 #define rcu_dereference_sk_user_data(sk) \ 558 ({ \ 559 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 560 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 561 }) 562 #define rcu_assign_sk_user_data(sk, ptr) \ 563 ({ \ 564 uintptr_t __tmp = (uintptr_t)(ptr); \ 565 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 566 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 567 }) 568 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 569 ({ \ 570 uintptr_t __tmp = (uintptr_t)(ptr); \ 571 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 572 rcu_assign_pointer(__sk_user_data((sk)), \ 573 __tmp | SK_USER_DATA_NOCOPY); \ 574 }) 575 576 /* 577 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 578 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 579 * on a socket means that the socket will reuse everybody else's port 580 * without looking at the other's sk_reuse value. 581 */ 582 583 #define SK_NO_REUSE 0 584 #define SK_CAN_REUSE 1 585 #define SK_FORCE_REUSE 2 586 587 int sk_set_peek_off(struct sock *sk, int val); 588 589 static inline int sk_peek_offset(struct sock *sk, int flags) 590 { 591 if (unlikely(flags & MSG_PEEK)) { 592 return READ_ONCE(sk->sk_peek_off); 593 } 594 595 return 0; 596 } 597 598 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 599 { 600 s32 off = READ_ONCE(sk->sk_peek_off); 601 602 if (unlikely(off >= 0)) { 603 off = max_t(s32, off - val, 0); 604 WRITE_ONCE(sk->sk_peek_off, off); 605 } 606 } 607 608 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 609 { 610 sk_peek_offset_bwd(sk, -val); 611 } 612 613 /* 614 * Hashed lists helper routines 615 */ 616 static inline struct sock *sk_entry(const struct hlist_node *node) 617 { 618 return hlist_entry(node, struct sock, sk_node); 619 } 620 621 static inline struct sock *__sk_head(const struct hlist_head *head) 622 { 623 return hlist_entry(head->first, struct sock, sk_node); 624 } 625 626 static inline struct sock *sk_head(const struct hlist_head *head) 627 { 628 return hlist_empty(head) ? NULL : __sk_head(head); 629 } 630 631 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 632 { 633 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 634 } 635 636 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 637 { 638 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 639 } 640 641 static inline struct sock *sk_next(const struct sock *sk) 642 { 643 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 644 } 645 646 static inline struct sock *sk_nulls_next(const struct sock *sk) 647 { 648 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 649 hlist_nulls_entry(sk->sk_nulls_node.next, 650 struct sock, sk_nulls_node) : 651 NULL; 652 } 653 654 static inline bool sk_unhashed(const struct sock *sk) 655 { 656 return hlist_unhashed(&sk->sk_node); 657 } 658 659 static inline bool sk_hashed(const struct sock *sk) 660 { 661 return !sk_unhashed(sk); 662 } 663 664 static inline void sk_node_init(struct hlist_node *node) 665 { 666 node->pprev = NULL; 667 } 668 669 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 670 { 671 node->pprev = NULL; 672 } 673 674 static inline void __sk_del_node(struct sock *sk) 675 { 676 __hlist_del(&sk->sk_node); 677 } 678 679 /* NB: equivalent to hlist_del_init_rcu */ 680 static inline bool __sk_del_node_init(struct sock *sk) 681 { 682 if (sk_hashed(sk)) { 683 __sk_del_node(sk); 684 sk_node_init(&sk->sk_node); 685 return true; 686 } 687 return false; 688 } 689 690 /* Grab socket reference count. This operation is valid only 691 when sk is ALREADY grabbed f.e. it is found in hash table 692 or a list and the lookup is made under lock preventing hash table 693 modifications. 694 */ 695 696 static __always_inline void sock_hold(struct sock *sk) 697 { 698 refcount_inc(&sk->sk_refcnt); 699 } 700 701 /* Ungrab socket in the context, which assumes that socket refcnt 702 cannot hit zero, f.e. it is true in context of any socketcall. 703 */ 704 static __always_inline void __sock_put(struct sock *sk) 705 { 706 refcount_dec(&sk->sk_refcnt); 707 } 708 709 static inline bool sk_del_node_init(struct sock *sk) 710 { 711 bool rc = __sk_del_node_init(sk); 712 713 if (rc) { 714 /* paranoid for a while -acme */ 715 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 716 __sock_put(sk); 717 } 718 return rc; 719 } 720 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 721 722 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 723 { 724 if (sk_hashed(sk)) { 725 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 726 return true; 727 } 728 return false; 729 } 730 731 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 732 { 733 bool rc = __sk_nulls_del_node_init_rcu(sk); 734 735 if (rc) { 736 /* paranoid for a while -acme */ 737 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 738 __sock_put(sk); 739 } 740 return rc; 741 } 742 743 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 744 { 745 hlist_add_head(&sk->sk_node, list); 746 } 747 748 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 749 { 750 sock_hold(sk); 751 __sk_add_node(sk, list); 752 } 753 754 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 755 { 756 sock_hold(sk); 757 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 758 sk->sk_family == AF_INET6) 759 hlist_add_tail_rcu(&sk->sk_node, list); 760 else 761 hlist_add_head_rcu(&sk->sk_node, list); 762 } 763 764 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 765 { 766 sock_hold(sk); 767 hlist_add_tail_rcu(&sk->sk_node, list); 768 } 769 770 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 771 { 772 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 773 } 774 775 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 776 { 777 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 778 } 779 780 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 781 { 782 sock_hold(sk); 783 __sk_nulls_add_node_rcu(sk, list); 784 } 785 786 static inline void __sk_del_bind_node(struct sock *sk) 787 { 788 __hlist_del(&sk->sk_bind_node); 789 } 790 791 static inline void sk_add_bind_node(struct sock *sk, 792 struct hlist_head *list) 793 { 794 hlist_add_head(&sk->sk_bind_node, list); 795 } 796 797 #define sk_for_each(__sk, list) \ 798 hlist_for_each_entry(__sk, list, sk_node) 799 #define sk_for_each_rcu(__sk, list) \ 800 hlist_for_each_entry_rcu(__sk, list, sk_node) 801 #define sk_nulls_for_each(__sk, node, list) \ 802 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 803 #define sk_nulls_for_each_rcu(__sk, node, list) \ 804 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 805 #define sk_for_each_from(__sk) \ 806 hlist_for_each_entry_from(__sk, sk_node) 807 #define sk_nulls_for_each_from(__sk, node) \ 808 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 809 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 810 #define sk_for_each_safe(__sk, tmp, list) \ 811 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 812 #define sk_for_each_bound(__sk, list) \ 813 hlist_for_each_entry(__sk, list, sk_bind_node) 814 815 /** 816 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 817 * @tpos: the type * to use as a loop cursor. 818 * @pos: the &struct hlist_node to use as a loop cursor. 819 * @head: the head for your list. 820 * @offset: offset of hlist_node within the struct. 821 * 822 */ 823 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 824 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 825 pos != NULL && \ 826 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 827 pos = rcu_dereference(hlist_next_rcu(pos))) 828 829 static inline struct user_namespace *sk_user_ns(struct sock *sk) 830 { 831 /* Careful only use this in a context where these parameters 832 * can not change and must all be valid, such as recvmsg from 833 * userspace. 834 */ 835 return sk->sk_socket->file->f_cred->user_ns; 836 } 837 838 /* Sock flags */ 839 enum sock_flags { 840 SOCK_DEAD, 841 SOCK_DONE, 842 SOCK_URGINLINE, 843 SOCK_KEEPOPEN, 844 SOCK_LINGER, 845 SOCK_DESTROY, 846 SOCK_BROADCAST, 847 SOCK_TIMESTAMP, 848 SOCK_ZAPPED, 849 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 850 SOCK_DBG, /* %SO_DEBUG setting */ 851 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 852 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 853 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 854 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 855 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 856 SOCK_FASYNC, /* fasync() active */ 857 SOCK_RXQ_OVFL, 858 SOCK_ZEROCOPY, /* buffers from userspace */ 859 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 860 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 861 * Will use last 4 bytes of packet sent from 862 * user-space instead. 863 */ 864 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 865 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 866 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 867 SOCK_TXTIME, 868 SOCK_XDP, /* XDP is attached */ 869 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 870 }; 871 872 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 873 874 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 875 { 876 nsk->sk_flags = osk->sk_flags; 877 } 878 879 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 880 { 881 __set_bit(flag, &sk->sk_flags); 882 } 883 884 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 885 { 886 __clear_bit(flag, &sk->sk_flags); 887 } 888 889 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 890 int valbool) 891 { 892 if (valbool) 893 sock_set_flag(sk, bit); 894 else 895 sock_reset_flag(sk, bit); 896 } 897 898 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 899 { 900 return test_bit(flag, &sk->sk_flags); 901 } 902 903 #ifdef CONFIG_NET 904 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 905 static inline int sk_memalloc_socks(void) 906 { 907 return static_branch_unlikely(&memalloc_socks_key); 908 } 909 910 void __receive_sock(struct file *file); 911 #else 912 913 static inline int sk_memalloc_socks(void) 914 { 915 return 0; 916 } 917 918 static inline void __receive_sock(struct file *file) 919 { } 920 #endif 921 922 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 923 { 924 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 925 } 926 927 static inline void sk_acceptq_removed(struct sock *sk) 928 { 929 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 930 } 931 932 static inline void sk_acceptq_added(struct sock *sk) 933 { 934 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 935 } 936 937 static inline bool sk_acceptq_is_full(const struct sock *sk) 938 { 939 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 940 } 941 942 /* 943 * Compute minimal free write space needed to queue new packets. 944 */ 945 static inline int sk_stream_min_wspace(const struct sock *sk) 946 { 947 return READ_ONCE(sk->sk_wmem_queued) >> 1; 948 } 949 950 static inline int sk_stream_wspace(const struct sock *sk) 951 { 952 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 953 } 954 955 static inline void sk_wmem_queued_add(struct sock *sk, int val) 956 { 957 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 958 } 959 960 void sk_stream_write_space(struct sock *sk); 961 962 /* OOB backlog add */ 963 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 964 { 965 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 966 skb_dst_force(skb); 967 968 if (!sk->sk_backlog.tail) 969 WRITE_ONCE(sk->sk_backlog.head, skb); 970 else 971 sk->sk_backlog.tail->next = skb; 972 973 WRITE_ONCE(sk->sk_backlog.tail, skb); 974 skb->next = NULL; 975 } 976 977 /* 978 * Take into account size of receive queue and backlog queue 979 * Do not take into account this skb truesize, 980 * to allow even a single big packet to come. 981 */ 982 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 983 { 984 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 985 986 return qsize > limit; 987 } 988 989 /* The per-socket spinlock must be held here. */ 990 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 991 unsigned int limit) 992 { 993 if (sk_rcvqueues_full(sk, limit)) 994 return -ENOBUFS; 995 996 /* 997 * If the skb was allocated from pfmemalloc reserves, only 998 * allow SOCK_MEMALLOC sockets to use it as this socket is 999 * helping free memory 1000 */ 1001 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1002 return -ENOMEM; 1003 1004 __sk_add_backlog(sk, skb); 1005 sk->sk_backlog.len += skb->truesize; 1006 return 0; 1007 } 1008 1009 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1010 1011 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1012 { 1013 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1014 return __sk_backlog_rcv(sk, skb); 1015 1016 return sk->sk_backlog_rcv(sk, skb); 1017 } 1018 1019 static inline void sk_incoming_cpu_update(struct sock *sk) 1020 { 1021 int cpu = raw_smp_processor_id(); 1022 1023 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1024 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1025 } 1026 1027 static inline void sock_rps_record_flow_hash(__u32 hash) 1028 { 1029 #ifdef CONFIG_RPS 1030 struct rps_sock_flow_table *sock_flow_table; 1031 1032 rcu_read_lock(); 1033 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1034 rps_record_sock_flow(sock_flow_table, hash); 1035 rcu_read_unlock(); 1036 #endif 1037 } 1038 1039 static inline void sock_rps_record_flow(const struct sock *sk) 1040 { 1041 #ifdef CONFIG_RPS 1042 if (static_branch_unlikely(&rfs_needed)) { 1043 /* Reading sk->sk_rxhash might incur an expensive cache line 1044 * miss. 1045 * 1046 * TCP_ESTABLISHED does cover almost all states where RFS 1047 * might be useful, and is cheaper [1] than testing : 1048 * IPv4: inet_sk(sk)->inet_daddr 1049 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1050 * OR an additional socket flag 1051 * [1] : sk_state and sk_prot are in the same cache line. 1052 */ 1053 if (sk->sk_state == TCP_ESTABLISHED) 1054 sock_rps_record_flow_hash(sk->sk_rxhash); 1055 } 1056 #endif 1057 } 1058 1059 static inline void sock_rps_save_rxhash(struct sock *sk, 1060 const struct sk_buff *skb) 1061 { 1062 #ifdef CONFIG_RPS 1063 if (unlikely(sk->sk_rxhash != skb->hash)) 1064 sk->sk_rxhash = skb->hash; 1065 #endif 1066 } 1067 1068 static inline void sock_rps_reset_rxhash(struct sock *sk) 1069 { 1070 #ifdef CONFIG_RPS 1071 sk->sk_rxhash = 0; 1072 #endif 1073 } 1074 1075 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1076 ({ int __rc; \ 1077 release_sock(__sk); \ 1078 __rc = __condition; \ 1079 if (!__rc) { \ 1080 *(__timeo) = wait_woken(__wait, \ 1081 TASK_INTERRUPTIBLE, \ 1082 *(__timeo)); \ 1083 } \ 1084 sched_annotate_sleep(); \ 1085 lock_sock(__sk); \ 1086 __rc = __condition; \ 1087 __rc; \ 1088 }) 1089 1090 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1091 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1092 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1093 int sk_stream_error(struct sock *sk, int flags, int err); 1094 void sk_stream_kill_queues(struct sock *sk); 1095 void sk_set_memalloc(struct sock *sk); 1096 void sk_clear_memalloc(struct sock *sk); 1097 1098 void __sk_flush_backlog(struct sock *sk); 1099 1100 static inline bool sk_flush_backlog(struct sock *sk) 1101 { 1102 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1103 __sk_flush_backlog(sk); 1104 return true; 1105 } 1106 return false; 1107 } 1108 1109 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1110 1111 struct request_sock_ops; 1112 struct timewait_sock_ops; 1113 struct inet_hashinfo; 1114 struct raw_hashinfo; 1115 struct smc_hashinfo; 1116 struct module; 1117 1118 /* 1119 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1120 * un-modified. Special care is taken when initializing object to zero. 1121 */ 1122 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1123 { 1124 if (offsetof(struct sock, sk_node.next) != 0) 1125 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1126 memset(&sk->sk_node.pprev, 0, 1127 size - offsetof(struct sock, sk_node.pprev)); 1128 } 1129 1130 /* Networking protocol blocks we attach to sockets. 1131 * socket layer -> transport layer interface 1132 */ 1133 struct proto { 1134 void (*close)(struct sock *sk, 1135 long timeout); 1136 int (*pre_connect)(struct sock *sk, 1137 struct sockaddr *uaddr, 1138 int addr_len); 1139 int (*connect)(struct sock *sk, 1140 struct sockaddr *uaddr, 1141 int addr_len); 1142 int (*disconnect)(struct sock *sk, int flags); 1143 1144 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1145 bool kern); 1146 1147 int (*ioctl)(struct sock *sk, int cmd, 1148 unsigned long arg); 1149 int (*init)(struct sock *sk); 1150 void (*destroy)(struct sock *sk); 1151 void (*shutdown)(struct sock *sk, int how); 1152 int (*setsockopt)(struct sock *sk, int level, 1153 int optname, sockptr_t optval, 1154 unsigned int optlen); 1155 int (*getsockopt)(struct sock *sk, int level, 1156 int optname, char __user *optval, 1157 int __user *option); 1158 void (*keepalive)(struct sock *sk, int valbool); 1159 #ifdef CONFIG_COMPAT 1160 int (*compat_ioctl)(struct sock *sk, 1161 unsigned int cmd, unsigned long arg); 1162 #endif 1163 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1164 size_t len); 1165 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1166 size_t len, int noblock, int flags, 1167 int *addr_len); 1168 int (*sendpage)(struct sock *sk, struct page *page, 1169 int offset, size_t size, int flags); 1170 int (*bind)(struct sock *sk, 1171 struct sockaddr *addr, int addr_len); 1172 int (*bind_add)(struct sock *sk, 1173 struct sockaddr *addr, int addr_len); 1174 1175 int (*backlog_rcv) (struct sock *sk, 1176 struct sk_buff *skb); 1177 1178 void (*release_cb)(struct sock *sk); 1179 1180 /* Keeping track of sk's, looking them up, and port selection methods. */ 1181 int (*hash)(struct sock *sk); 1182 void (*unhash)(struct sock *sk); 1183 void (*rehash)(struct sock *sk); 1184 int (*get_port)(struct sock *sk, unsigned short snum); 1185 1186 /* Keeping track of sockets in use */ 1187 #ifdef CONFIG_PROC_FS 1188 unsigned int inuse_idx; 1189 #endif 1190 1191 bool (*stream_memory_free)(const struct sock *sk, int wake); 1192 bool (*stream_memory_read)(const struct sock *sk); 1193 /* Memory pressure */ 1194 void (*enter_memory_pressure)(struct sock *sk); 1195 void (*leave_memory_pressure)(struct sock *sk); 1196 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1197 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1198 /* 1199 * Pressure flag: try to collapse. 1200 * Technical note: it is used by multiple contexts non atomically. 1201 * All the __sk_mem_schedule() is of this nature: accounting 1202 * is strict, actions are advisory and have some latency. 1203 */ 1204 unsigned long *memory_pressure; 1205 long *sysctl_mem; 1206 1207 int *sysctl_wmem; 1208 int *sysctl_rmem; 1209 u32 sysctl_wmem_offset; 1210 u32 sysctl_rmem_offset; 1211 1212 int max_header; 1213 bool no_autobind; 1214 1215 struct kmem_cache *slab; 1216 unsigned int obj_size; 1217 slab_flags_t slab_flags; 1218 unsigned int useroffset; /* Usercopy region offset */ 1219 unsigned int usersize; /* Usercopy region size */ 1220 1221 struct percpu_counter *orphan_count; 1222 1223 struct request_sock_ops *rsk_prot; 1224 struct timewait_sock_ops *twsk_prot; 1225 1226 union { 1227 struct inet_hashinfo *hashinfo; 1228 struct udp_table *udp_table; 1229 struct raw_hashinfo *raw_hash; 1230 struct smc_hashinfo *smc_hash; 1231 } h; 1232 1233 struct module *owner; 1234 1235 char name[32]; 1236 1237 struct list_head node; 1238 #ifdef SOCK_REFCNT_DEBUG 1239 atomic_t socks; 1240 #endif 1241 int (*diag_destroy)(struct sock *sk, int err); 1242 } __randomize_layout; 1243 1244 int proto_register(struct proto *prot, int alloc_slab); 1245 void proto_unregister(struct proto *prot); 1246 int sock_load_diag_module(int family, int protocol); 1247 1248 #ifdef SOCK_REFCNT_DEBUG 1249 static inline void sk_refcnt_debug_inc(struct sock *sk) 1250 { 1251 atomic_inc(&sk->sk_prot->socks); 1252 } 1253 1254 static inline void sk_refcnt_debug_dec(struct sock *sk) 1255 { 1256 atomic_dec(&sk->sk_prot->socks); 1257 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1258 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1259 } 1260 1261 static inline void sk_refcnt_debug_release(const struct sock *sk) 1262 { 1263 if (refcount_read(&sk->sk_refcnt) != 1) 1264 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1265 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1266 } 1267 #else /* SOCK_REFCNT_DEBUG */ 1268 #define sk_refcnt_debug_inc(sk) do { } while (0) 1269 #define sk_refcnt_debug_dec(sk) do { } while (0) 1270 #define sk_refcnt_debug_release(sk) do { } while (0) 1271 #endif /* SOCK_REFCNT_DEBUG */ 1272 1273 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1274 1275 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1276 { 1277 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1278 return false; 1279 1280 #ifdef CONFIG_INET 1281 return sk->sk_prot->stream_memory_free ? 1282 INDIRECT_CALL_1(sk->sk_prot->stream_memory_free, 1283 tcp_stream_memory_free, 1284 sk, wake) : true; 1285 #else 1286 return sk->sk_prot->stream_memory_free ? 1287 sk->sk_prot->stream_memory_free(sk, wake) : true; 1288 #endif 1289 } 1290 1291 static inline bool sk_stream_memory_free(const struct sock *sk) 1292 { 1293 return __sk_stream_memory_free(sk, 0); 1294 } 1295 1296 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1297 { 1298 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1299 __sk_stream_memory_free(sk, wake); 1300 } 1301 1302 static inline bool sk_stream_is_writeable(const struct sock *sk) 1303 { 1304 return __sk_stream_is_writeable(sk, 0); 1305 } 1306 1307 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1308 struct cgroup *ancestor) 1309 { 1310 #ifdef CONFIG_SOCK_CGROUP_DATA 1311 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1312 ancestor); 1313 #else 1314 return -ENOTSUPP; 1315 #endif 1316 } 1317 1318 static inline bool sk_has_memory_pressure(const struct sock *sk) 1319 { 1320 return sk->sk_prot->memory_pressure != NULL; 1321 } 1322 1323 static inline bool sk_under_memory_pressure(const struct sock *sk) 1324 { 1325 if (!sk->sk_prot->memory_pressure) 1326 return false; 1327 1328 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1329 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1330 return true; 1331 1332 return !!*sk->sk_prot->memory_pressure; 1333 } 1334 1335 static inline long 1336 sk_memory_allocated(const struct sock *sk) 1337 { 1338 return atomic_long_read(sk->sk_prot->memory_allocated); 1339 } 1340 1341 static inline long 1342 sk_memory_allocated_add(struct sock *sk, int amt) 1343 { 1344 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1345 } 1346 1347 static inline void 1348 sk_memory_allocated_sub(struct sock *sk, int amt) 1349 { 1350 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1351 } 1352 1353 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1354 1355 static inline void sk_sockets_allocated_dec(struct sock *sk) 1356 { 1357 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1358 SK_ALLOC_PERCPU_COUNTER_BATCH); 1359 } 1360 1361 static inline void sk_sockets_allocated_inc(struct sock *sk) 1362 { 1363 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1364 SK_ALLOC_PERCPU_COUNTER_BATCH); 1365 } 1366 1367 static inline u64 1368 sk_sockets_allocated_read_positive(struct sock *sk) 1369 { 1370 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1371 } 1372 1373 static inline int 1374 proto_sockets_allocated_sum_positive(struct proto *prot) 1375 { 1376 return percpu_counter_sum_positive(prot->sockets_allocated); 1377 } 1378 1379 static inline long 1380 proto_memory_allocated(struct proto *prot) 1381 { 1382 return atomic_long_read(prot->memory_allocated); 1383 } 1384 1385 static inline bool 1386 proto_memory_pressure(struct proto *prot) 1387 { 1388 if (!prot->memory_pressure) 1389 return false; 1390 return !!*prot->memory_pressure; 1391 } 1392 1393 1394 #ifdef CONFIG_PROC_FS 1395 /* Called with local bh disabled */ 1396 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1397 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1398 int sock_inuse_get(struct net *net); 1399 #else 1400 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1401 int inc) 1402 { 1403 } 1404 #endif 1405 1406 1407 /* With per-bucket locks this operation is not-atomic, so that 1408 * this version is not worse. 1409 */ 1410 static inline int __sk_prot_rehash(struct sock *sk) 1411 { 1412 sk->sk_prot->unhash(sk); 1413 return sk->sk_prot->hash(sk); 1414 } 1415 1416 /* About 10 seconds */ 1417 #define SOCK_DESTROY_TIME (10*HZ) 1418 1419 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1420 #define PROT_SOCK 1024 1421 1422 #define SHUTDOWN_MASK 3 1423 #define RCV_SHUTDOWN 1 1424 #define SEND_SHUTDOWN 2 1425 1426 #define SOCK_SNDBUF_LOCK 1 1427 #define SOCK_RCVBUF_LOCK 2 1428 #define SOCK_BINDADDR_LOCK 4 1429 #define SOCK_BINDPORT_LOCK 8 1430 1431 struct socket_alloc { 1432 struct socket socket; 1433 struct inode vfs_inode; 1434 }; 1435 1436 static inline struct socket *SOCKET_I(struct inode *inode) 1437 { 1438 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1439 } 1440 1441 static inline struct inode *SOCK_INODE(struct socket *socket) 1442 { 1443 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1444 } 1445 1446 /* 1447 * Functions for memory accounting 1448 */ 1449 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1450 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1451 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1452 void __sk_mem_reclaim(struct sock *sk, int amount); 1453 1454 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1455 * do not necessarily have 16x time more memory than 4KB ones. 1456 */ 1457 #define SK_MEM_QUANTUM 4096 1458 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1459 #define SK_MEM_SEND 0 1460 #define SK_MEM_RECV 1 1461 1462 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1463 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1464 { 1465 long val = sk->sk_prot->sysctl_mem[index]; 1466 1467 #if PAGE_SIZE > SK_MEM_QUANTUM 1468 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1469 #elif PAGE_SIZE < SK_MEM_QUANTUM 1470 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1471 #endif 1472 return val; 1473 } 1474 1475 static inline int sk_mem_pages(int amt) 1476 { 1477 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1478 } 1479 1480 static inline bool sk_has_account(struct sock *sk) 1481 { 1482 /* return true if protocol supports memory accounting */ 1483 return !!sk->sk_prot->memory_allocated; 1484 } 1485 1486 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1487 { 1488 if (!sk_has_account(sk)) 1489 return true; 1490 return size <= sk->sk_forward_alloc || 1491 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1492 } 1493 1494 static inline bool 1495 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1496 { 1497 if (!sk_has_account(sk)) 1498 return true; 1499 return size <= sk->sk_forward_alloc || 1500 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1501 skb_pfmemalloc(skb); 1502 } 1503 1504 static inline void sk_mem_reclaim(struct sock *sk) 1505 { 1506 if (!sk_has_account(sk)) 1507 return; 1508 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1509 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1510 } 1511 1512 static inline void sk_mem_reclaim_partial(struct sock *sk) 1513 { 1514 if (!sk_has_account(sk)) 1515 return; 1516 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1517 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1518 } 1519 1520 static inline void sk_mem_charge(struct sock *sk, int size) 1521 { 1522 if (!sk_has_account(sk)) 1523 return; 1524 sk->sk_forward_alloc -= size; 1525 } 1526 1527 static inline void sk_mem_uncharge(struct sock *sk, int size) 1528 { 1529 if (!sk_has_account(sk)) 1530 return; 1531 sk->sk_forward_alloc += size; 1532 1533 /* Avoid a possible overflow. 1534 * TCP send queues can make this happen, if sk_mem_reclaim() 1535 * is not called and more than 2 GBytes are released at once. 1536 * 1537 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1538 * no need to hold that much forward allocation anyway. 1539 */ 1540 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1541 __sk_mem_reclaim(sk, 1 << 20); 1542 } 1543 1544 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 1545 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1546 { 1547 sk_wmem_queued_add(sk, -skb->truesize); 1548 sk_mem_uncharge(sk, skb->truesize); 1549 if (static_branch_unlikely(&tcp_tx_skb_cache_key) && 1550 !sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1551 skb_ext_reset(skb); 1552 skb_zcopy_clear(skb, true); 1553 sk->sk_tx_skb_cache = skb; 1554 return; 1555 } 1556 __kfree_skb(skb); 1557 } 1558 1559 static inline void sock_release_ownership(struct sock *sk) 1560 { 1561 if (sk->sk_lock.owned) { 1562 sk->sk_lock.owned = 0; 1563 1564 /* The sk_lock has mutex_unlock() semantics: */ 1565 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1566 } 1567 } 1568 1569 /* 1570 * Macro so as to not evaluate some arguments when 1571 * lockdep is not enabled. 1572 * 1573 * Mark both the sk_lock and the sk_lock.slock as a 1574 * per-address-family lock class. 1575 */ 1576 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1577 do { \ 1578 sk->sk_lock.owned = 0; \ 1579 init_waitqueue_head(&sk->sk_lock.wq); \ 1580 spin_lock_init(&(sk)->sk_lock.slock); \ 1581 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1582 sizeof((sk)->sk_lock)); \ 1583 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1584 (skey), (sname)); \ 1585 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1586 } while (0) 1587 1588 static inline bool lockdep_sock_is_held(const struct sock *sk) 1589 { 1590 return lockdep_is_held(&sk->sk_lock) || 1591 lockdep_is_held(&sk->sk_lock.slock); 1592 } 1593 1594 void lock_sock_nested(struct sock *sk, int subclass); 1595 1596 static inline void lock_sock(struct sock *sk) 1597 { 1598 lock_sock_nested(sk, 0); 1599 } 1600 1601 void __lock_sock(struct sock *sk); 1602 void __release_sock(struct sock *sk); 1603 void release_sock(struct sock *sk); 1604 1605 /* BH context may only use the following locking interface. */ 1606 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1607 #define bh_lock_sock_nested(__sk) \ 1608 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1609 SINGLE_DEPTH_NESTING) 1610 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1611 1612 bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1613 1614 /** 1615 * unlock_sock_fast - complement of lock_sock_fast 1616 * @sk: socket 1617 * @slow: slow mode 1618 * 1619 * fast unlock socket for user context. 1620 * If slow mode is on, we call regular release_sock() 1621 */ 1622 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1623 __releases(&sk->sk_lock.slock) 1624 { 1625 if (slow) { 1626 release_sock(sk); 1627 __release(&sk->sk_lock.slock); 1628 } else { 1629 spin_unlock_bh(&sk->sk_lock.slock); 1630 } 1631 } 1632 1633 /* Used by processes to "lock" a socket state, so that 1634 * interrupts and bottom half handlers won't change it 1635 * from under us. It essentially blocks any incoming 1636 * packets, so that we won't get any new data or any 1637 * packets that change the state of the socket. 1638 * 1639 * While locked, BH processing will add new packets to 1640 * the backlog queue. This queue is processed by the 1641 * owner of the socket lock right before it is released. 1642 * 1643 * Since ~2.3.5 it is also exclusive sleep lock serializing 1644 * accesses from user process context. 1645 */ 1646 1647 static inline void sock_owned_by_me(const struct sock *sk) 1648 { 1649 #ifdef CONFIG_LOCKDEP 1650 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1651 #endif 1652 } 1653 1654 static inline bool sock_owned_by_user(const struct sock *sk) 1655 { 1656 sock_owned_by_me(sk); 1657 return sk->sk_lock.owned; 1658 } 1659 1660 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1661 { 1662 return sk->sk_lock.owned; 1663 } 1664 1665 /* no reclassification while locks are held */ 1666 static inline bool sock_allow_reclassification(const struct sock *csk) 1667 { 1668 struct sock *sk = (struct sock *)csk; 1669 1670 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1671 } 1672 1673 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1674 struct proto *prot, int kern); 1675 void sk_free(struct sock *sk); 1676 void sk_destruct(struct sock *sk); 1677 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1678 void sk_free_unlock_clone(struct sock *sk); 1679 1680 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1681 gfp_t priority); 1682 void __sock_wfree(struct sk_buff *skb); 1683 void sock_wfree(struct sk_buff *skb); 1684 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1685 gfp_t priority); 1686 void skb_orphan_partial(struct sk_buff *skb); 1687 void sock_rfree(struct sk_buff *skb); 1688 void sock_efree(struct sk_buff *skb); 1689 #ifdef CONFIG_INET 1690 void sock_edemux(struct sk_buff *skb); 1691 void sock_pfree(struct sk_buff *skb); 1692 #else 1693 #define sock_edemux sock_efree 1694 #endif 1695 1696 int sock_setsockopt(struct socket *sock, int level, int op, 1697 sockptr_t optval, unsigned int optlen); 1698 1699 int sock_getsockopt(struct socket *sock, int level, int op, 1700 char __user *optval, int __user *optlen); 1701 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1702 bool timeval, bool time32); 1703 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1704 int noblock, int *errcode); 1705 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1706 unsigned long data_len, int noblock, 1707 int *errcode, int max_page_order); 1708 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1709 void sock_kfree_s(struct sock *sk, void *mem, int size); 1710 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1711 void sk_send_sigurg(struct sock *sk); 1712 1713 struct sockcm_cookie { 1714 u64 transmit_time; 1715 u32 mark; 1716 u16 tsflags; 1717 }; 1718 1719 static inline void sockcm_init(struct sockcm_cookie *sockc, 1720 const struct sock *sk) 1721 { 1722 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1723 } 1724 1725 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1726 struct sockcm_cookie *sockc); 1727 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1728 struct sockcm_cookie *sockc); 1729 1730 /* 1731 * Functions to fill in entries in struct proto_ops when a protocol 1732 * does not implement a particular function. 1733 */ 1734 int sock_no_bind(struct socket *, struct sockaddr *, int); 1735 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1736 int sock_no_socketpair(struct socket *, struct socket *); 1737 int sock_no_accept(struct socket *, struct socket *, int, bool); 1738 int sock_no_getname(struct socket *, struct sockaddr *, int); 1739 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1740 int sock_no_listen(struct socket *, int); 1741 int sock_no_shutdown(struct socket *, int); 1742 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1743 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1744 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1745 int sock_no_mmap(struct file *file, struct socket *sock, 1746 struct vm_area_struct *vma); 1747 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1748 size_t size, int flags); 1749 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1750 int offset, size_t size, int flags); 1751 1752 /* 1753 * Functions to fill in entries in struct proto_ops when a protocol 1754 * uses the inet style. 1755 */ 1756 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1757 char __user *optval, int __user *optlen); 1758 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1759 int flags); 1760 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1761 sockptr_t optval, unsigned int optlen); 1762 1763 void sk_common_release(struct sock *sk); 1764 1765 /* 1766 * Default socket callbacks and setup code 1767 */ 1768 1769 /* Initialise core socket variables */ 1770 void sock_init_data(struct socket *sock, struct sock *sk); 1771 1772 /* 1773 * Socket reference counting postulates. 1774 * 1775 * * Each user of socket SHOULD hold a reference count. 1776 * * Each access point to socket (an hash table bucket, reference from a list, 1777 * running timer, skb in flight MUST hold a reference count. 1778 * * When reference count hits 0, it means it will never increase back. 1779 * * When reference count hits 0, it means that no references from 1780 * outside exist to this socket and current process on current CPU 1781 * is last user and may/should destroy this socket. 1782 * * sk_free is called from any context: process, BH, IRQ. When 1783 * it is called, socket has no references from outside -> sk_free 1784 * may release descendant resources allocated by the socket, but 1785 * to the time when it is called, socket is NOT referenced by any 1786 * hash tables, lists etc. 1787 * * Packets, delivered from outside (from network or from another process) 1788 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1789 * when they sit in queue. Otherwise, packets will leak to hole, when 1790 * socket is looked up by one cpu and unhasing is made by another CPU. 1791 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1792 * (leak to backlog). Packet socket does all the processing inside 1793 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1794 * use separate SMP lock, so that they are prone too. 1795 */ 1796 1797 /* Ungrab socket and destroy it, if it was the last reference. */ 1798 static inline void sock_put(struct sock *sk) 1799 { 1800 if (refcount_dec_and_test(&sk->sk_refcnt)) 1801 sk_free(sk); 1802 } 1803 /* Generic version of sock_put(), dealing with all sockets 1804 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1805 */ 1806 void sock_gen_put(struct sock *sk); 1807 1808 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1809 unsigned int trim_cap, bool refcounted); 1810 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1811 const int nested) 1812 { 1813 return __sk_receive_skb(sk, skb, nested, 1, true); 1814 } 1815 1816 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1817 { 1818 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1819 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1820 return; 1821 sk->sk_tx_queue_mapping = tx_queue; 1822 } 1823 1824 #define NO_QUEUE_MAPPING USHRT_MAX 1825 1826 static inline void sk_tx_queue_clear(struct sock *sk) 1827 { 1828 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1829 } 1830 1831 static inline int sk_tx_queue_get(const struct sock *sk) 1832 { 1833 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1834 return sk->sk_tx_queue_mapping; 1835 1836 return -1; 1837 } 1838 1839 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1840 { 1841 #ifdef CONFIG_XPS 1842 if (skb_rx_queue_recorded(skb)) { 1843 u16 rx_queue = skb_get_rx_queue(skb); 1844 1845 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1846 return; 1847 1848 sk->sk_rx_queue_mapping = rx_queue; 1849 } 1850 #endif 1851 } 1852 1853 static inline void sk_rx_queue_clear(struct sock *sk) 1854 { 1855 #ifdef CONFIG_XPS 1856 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1857 #endif 1858 } 1859 1860 #ifdef CONFIG_XPS 1861 static inline int sk_rx_queue_get(const struct sock *sk) 1862 { 1863 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1864 return sk->sk_rx_queue_mapping; 1865 1866 return -1; 1867 } 1868 #endif 1869 1870 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1871 { 1872 sk->sk_socket = sock; 1873 } 1874 1875 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1876 { 1877 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1878 return &rcu_dereference_raw(sk->sk_wq)->wait; 1879 } 1880 /* Detach socket from process context. 1881 * Announce socket dead, detach it from wait queue and inode. 1882 * Note that parent inode held reference count on this struct sock, 1883 * we do not release it in this function, because protocol 1884 * probably wants some additional cleanups or even continuing 1885 * to work with this socket (TCP). 1886 */ 1887 static inline void sock_orphan(struct sock *sk) 1888 { 1889 write_lock_bh(&sk->sk_callback_lock); 1890 sock_set_flag(sk, SOCK_DEAD); 1891 sk_set_socket(sk, NULL); 1892 sk->sk_wq = NULL; 1893 write_unlock_bh(&sk->sk_callback_lock); 1894 } 1895 1896 static inline void sock_graft(struct sock *sk, struct socket *parent) 1897 { 1898 WARN_ON(parent->sk); 1899 write_lock_bh(&sk->sk_callback_lock); 1900 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1901 parent->sk = sk; 1902 sk_set_socket(sk, parent); 1903 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1904 security_sock_graft(sk, parent); 1905 write_unlock_bh(&sk->sk_callback_lock); 1906 } 1907 1908 kuid_t sock_i_uid(struct sock *sk); 1909 unsigned long sock_i_ino(struct sock *sk); 1910 1911 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1912 { 1913 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1914 } 1915 1916 static inline u32 net_tx_rndhash(void) 1917 { 1918 u32 v = prandom_u32(); 1919 1920 return v ?: 1; 1921 } 1922 1923 static inline void sk_set_txhash(struct sock *sk) 1924 { 1925 sk->sk_txhash = net_tx_rndhash(); 1926 } 1927 1928 static inline bool sk_rethink_txhash(struct sock *sk) 1929 { 1930 if (sk->sk_txhash) { 1931 sk_set_txhash(sk); 1932 return true; 1933 } 1934 return false; 1935 } 1936 1937 static inline struct dst_entry * 1938 __sk_dst_get(struct sock *sk) 1939 { 1940 return rcu_dereference_check(sk->sk_dst_cache, 1941 lockdep_sock_is_held(sk)); 1942 } 1943 1944 static inline struct dst_entry * 1945 sk_dst_get(struct sock *sk) 1946 { 1947 struct dst_entry *dst; 1948 1949 rcu_read_lock(); 1950 dst = rcu_dereference(sk->sk_dst_cache); 1951 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1952 dst = NULL; 1953 rcu_read_unlock(); 1954 return dst; 1955 } 1956 1957 static inline void __dst_negative_advice(struct sock *sk) 1958 { 1959 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1960 1961 if (dst && dst->ops->negative_advice) { 1962 ndst = dst->ops->negative_advice(dst); 1963 1964 if (ndst != dst) { 1965 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1966 sk_tx_queue_clear(sk); 1967 sk->sk_dst_pending_confirm = 0; 1968 } 1969 } 1970 } 1971 1972 static inline void dst_negative_advice(struct sock *sk) 1973 { 1974 sk_rethink_txhash(sk); 1975 __dst_negative_advice(sk); 1976 } 1977 1978 static inline void 1979 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1980 { 1981 struct dst_entry *old_dst; 1982 1983 sk_tx_queue_clear(sk); 1984 sk->sk_dst_pending_confirm = 0; 1985 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1986 lockdep_sock_is_held(sk)); 1987 rcu_assign_pointer(sk->sk_dst_cache, dst); 1988 dst_release(old_dst); 1989 } 1990 1991 static inline void 1992 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1993 { 1994 struct dst_entry *old_dst; 1995 1996 sk_tx_queue_clear(sk); 1997 sk->sk_dst_pending_confirm = 0; 1998 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1999 dst_release(old_dst); 2000 } 2001 2002 static inline void 2003 __sk_dst_reset(struct sock *sk) 2004 { 2005 __sk_dst_set(sk, NULL); 2006 } 2007 2008 static inline void 2009 sk_dst_reset(struct sock *sk) 2010 { 2011 sk_dst_set(sk, NULL); 2012 } 2013 2014 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2015 2016 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2017 2018 static inline void sk_dst_confirm(struct sock *sk) 2019 { 2020 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2021 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2022 } 2023 2024 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2025 { 2026 if (skb_get_dst_pending_confirm(skb)) { 2027 struct sock *sk = skb->sk; 2028 unsigned long now = jiffies; 2029 2030 /* avoid dirtying neighbour */ 2031 if (READ_ONCE(n->confirmed) != now) 2032 WRITE_ONCE(n->confirmed, now); 2033 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2034 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2035 } 2036 } 2037 2038 bool sk_mc_loop(struct sock *sk); 2039 2040 static inline bool sk_can_gso(const struct sock *sk) 2041 { 2042 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2043 } 2044 2045 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2046 2047 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 2048 { 2049 sk->sk_route_nocaps |= flags; 2050 sk->sk_route_caps &= ~flags; 2051 } 2052 2053 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2054 struct iov_iter *from, char *to, 2055 int copy, int offset) 2056 { 2057 if (skb->ip_summed == CHECKSUM_NONE) { 2058 __wsum csum = 0; 2059 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2060 return -EFAULT; 2061 skb->csum = csum_block_add(skb->csum, csum, offset); 2062 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2063 if (!copy_from_iter_full_nocache(to, copy, from)) 2064 return -EFAULT; 2065 } else if (!copy_from_iter_full(to, copy, from)) 2066 return -EFAULT; 2067 2068 return 0; 2069 } 2070 2071 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2072 struct iov_iter *from, int copy) 2073 { 2074 int err, offset = skb->len; 2075 2076 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2077 copy, offset); 2078 if (err) 2079 __skb_trim(skb, offset); 2080 2081 return err; 2082 } 2083 2084 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2085 struct sk_buff *skb, 2086 struct page *page, 2087 int off, int copy) 2088 { 2089 int err; 2090 2091 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2092 copy, skb->len); 2093 if (err) 2094 return err; 2095 2096 skb->len += copy; 2097 skb->data_len += copy; 2098 skb->truesize += copy; 2099 sk_wmem_queued_add(sk, copy); 2100 sk_mem_charge(sk, copy); 2101 return 0; 2102 } 2103 2104 /** 2105 * sk_wmem_alloc_get - returns write allocations 2106 * @sk: socket 2107 * 2108 * Return: sk_wmem_alloc minus initial offset of one 2109 */ 2110 static inline int sk_wmem_alloc_get(const struct sock *sk) 2111 { 2112 return refcount_read(&sk->sk_wmem_alloc) - 1; 2113 } 2114 2115 /** 2116 * sk_rmem_alloc_get - returns read allocations 2117 * @sk: socket 2118 * 2119 * Return: sk_rmem_alloc 2120 */ 2121 static inline int sk_rmem_alloc_get(const struct sock *sk) 2122 { 2123 return atomic_read(&sk->sk_rmem_alloc); 2124 } 2125 2126 /** 2127 * sk_has_allocations - check if allocations are outstanding 2128 * @sk: socket 2129 * 2130 * Return: true if socket has write or read allocations 2131 */ 2132 static inline bool sk_has_allocations(const struct sock *sk) 2133 { 2134 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2135 } 2136 2137 /** 2138 * skwq_has_sleeper - check if there are any waiting processes 2139 * @wq: struct socket_wq 2140 * 2141 * Return: true if socket_wq has waiting processes 2142 * 2143 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2144 * barrier call. They were added due to the race found within the tcp code. 2145 * 2146 * Consider following tcp code paths:: 2147 * 2148 * CPU1 CPU2 2149 * sys_select receive packet 2150 * ... ... 2151 * __add_wait_queue update tp->rcv_nxt 2152 * ... ... 2153 * tp->rcv_nxt check sock_def_readable 2154 * ... { 2155 * schedule rcu_read_lock(); 2156 * wq = rcu_dereference(sk->sk_wq); 2157 * if (wq && waitqueue_active(&wq->wait)) 2158 * wake_up_interruptible(&wq->wait) 2159 * ... 2160 * } 2161 * 2162 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2163 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2164 * could then endup calling schedule and sleep forever if there are no more 2165 * data on the socket. 2166 * 2167 */ 2168 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2169 { 2170 return wq && wq_has_sleeper(&wq->wait); 2171 } 2172 2173 /** 2174 * sock_poll_wait - place memory barrier behind the poll_wait call. 2175 * @filp: file 2176 * @sock: socket to wait on 2177 * @p: poll_table 2178 * 2179 * See the comments in the wq_has_sleeper function. 2180 */ 2181 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2182 poll_table *p) 2183 { 2184 if (!poll_does_not_wait(p)) { 2185 poll_wait(filp, &sock->wq.wait, p); 2186 /* We need to be sure we are in sync with the 2187 * socket flags modification. 2188 * 2189 * This memory barrier is paired in the wq_has_sleeper. 2190 */ 2191 smp_mb(); 2192 } 2193 } 2194 2195 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2196 { 2197 if (sk->sk_txhash) { 2198 skb->l4_hash = 1; 2199 skb->hash = sk->sk_txhash; 2200 } 2201 } 2202 2203 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2204 2205 /* 2206 * Queue a received datagram if it will fit. Stream and sequenced 2207 * protocols can't normally use this as they need to fit buffers in 2208 * and play with them. 2209 * 2210 * Inlined as it's very short and called for pretty much every 2211 * packet ever received. 2212 */ 2213 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2214 { 2215 skb_orphan(skb); 2216 skb->sk = sk; 2217 skb->destructor = sock_rfree; 2218 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2219 sk_mem_charge(sk, skb->truesize); 2220 } 2221 2222 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2223 unsigned long expires); 2224 2225 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2226 2227 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2228 2229 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2230 struct sk_buff *skb, unsigned int flags, 2231 void (*destructor)(struct sock *sk, 2232 struct sk_buff *skb)); 2233 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2234 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2235 2236 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2237 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2238 2239 /* 2240 * Recover an error report and clear atomically 2241 */ 2242 2243 static inline int sock_error(struct sock *sk) 2244 { 2245 int err; 2246 if (likely(!sk->sk_err)) 2247 return 0; 2248 err = xchg(&sk->sk_err, 0); 2249 return -err; 2250 } 2251 2252 static inline unsigned long sock_wspace(struct sock *sk) 2253 { 2254 int amt = 0; 2255 2256 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2257 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2258 if (amt < 0) 2259 amt = 0; 2260 } 2261 return amt; 2262 } 2263 2264 /* Note: 2265 * We use sk->sk_wq_raw, from contexts knowing this 2266 * pointer is not NULL and cannot disappear/change. 2267 */ 2268 static inline void sk_set_bit(int nr, struct sock *sk) 2269 { 2270 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2271 !sock_flag(sk, SOCK_FASYNC)) 2272 return; 2273 2274 set_bit(nr, &sk->sk_wq_raw->flags); 2275 } 2276 2277 static inline void sk_clear_bit(int nr, struct sock *sk) 2278 { 2279 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2280 !sock_flag(sk, SOCK_FASYNC)) 2281 return; 2282 2283 clear_bit(nr, &sk->sk_wq_raw->flags); 2284 } 2285 2286 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2287 { 2288 if (sock_flag(sk, SOCK_FASYNC)) { 2289 rcu_read_lock(); 2290 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2291 rcu_read_unlock(); 2292 } 2293 } 2294 2295 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2296 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2297 * Note: for send buffers, TCP works better if we can build two skbs at 2298 * minimum. 2299 */ 2300 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2301 2302 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2303 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2304 2305 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2306 { 2307 u32 val; 2308 2309 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2310 return; 2311 2312 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2313 2314 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2315 } 2316 2317 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2318 bool force_schedule); 2319 2320 /** 2321 * sk_page_frag - return an appropriate page_frag 2322 * @sk: socket 2323 * 2324 * Use the per task page_frag instead of the per socket one for 2325 * optimization when we know that we're in the normal context and owns 2326 * everything that's associated with %current. 2327 * 2328 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2329 * inside other socket operations and end up recursing into sk_page_frag() 2330 * while it's already in use. 2331 * 2332 * Return: a per task page_frag if context allows that, 2333 * otherwise a per socket one. 2334 */ 2335 static inline struct page_frag *sk_page_frag(struct sock *sk) 2336 { 2337 if (gfpflags_normal_context(sk->sk_allocation)) 2338 return ¤t->task_frag; 2339 2340 return &sk->sk_frag; 2341 } 2342 2343 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2344 2345 /* 2346 * Default write policy as shown to user space via poll/select/SIGIO 2347 */ 2348 static inline bool sock_writeable(const struct sock *sk) 2349 { 2350 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2351 } 2352 2353 static inline gfp_t gfp_any(void) 2354 { 2355 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2356 } 2357 2358 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2359 { 2360 return noblock ? 0 : sk->sk_rcvtimeo; 2361 } 2362 2363 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2364 { 2365 return noblock ? 0 : sk->sk_sndtimeo; 2366 } 2367 2368 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2369 { 2370 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2371 2372 return v ?: 1; 2373 } 2374 2375 /* Alas, with timeout socket operations are not restartable. 2376 * Compare this to poll(). 2377 */ 2378 static inline int sock_intr_errno(long timeo) 2379 { 2380 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2381 } 2382 2383 struct sock_skb_cb { 2384 u32 dropcount; 2385 }; 2386 2387 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2388 * using skb->cb[] would keep using it directly and utilize its 2389 * alignement guarantee. 2390 */ 2391 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2392 sizeof(struct sock_skb_cb))) 2393 2394 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2395 SOCK_SKB_CB_OFFSET)) 2396 2397 #define sock_skb_cb_check_size(size) \ 2398 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2399 2400 static inline void 2401 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2402 { 2403 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2404 atomic_read(&sk->sk_drops) : 0; 2405 } 2406 2407 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2408 { 2409 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2410 2411 atomic_add(segs, &sk->sk_drops); 2412 } 2413 2414 static inline ktime_t sock_read_timestamp(struct sock *sk) 2415 { 2416 #if BITS_PER_LONG==32 2417 unsigned int seq; 2418 ktime_t kt; 2419 2420 do { 2421 seq = read_seqbegin(&sk->sk_stamp_seq); 2422 kt = sk->sk_stamp; 2423 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2424 2425 return kt; 2426 #else 2427 return READ_ONCE(sk->sk_stamp); 2428 #endif 2429 } 2430 2431 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2432 { 2433 #if BITS_PER_LONG==32 2434 write_seqlock(&sk->sk_stamp_seq); 2435 sk->sk_stamp = kt; 2436 write_sequnlock(&sk->sk_stamp_seq); 2437 #else 2438 WRITE_ONCE(sk->sk_stamp, kt); 2439 #endif 2440 } 2441 2442 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2443 struct sk_buff *skb); 2444 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2445 struct sk_buff *skb); 2446 2447 static inline void 2448 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2449 { 2450 ktime_t kt = skb->tstamp; 2451 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2452 2453 /* 2454 * generate control messages if 2455 * - receive time stamping in software requested 2456 * - software time stamp available and wanted 2457 * - hardware time stamps available and wanted 2458 */ 2459 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2460 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2461 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2462 (hwtstamps->hwtstamp && 2463 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2464 __sock_recv_timestamp(msg, sk, skb); 2465 else 2466 sock_write_timestamp(sk, kt); 2467 2468 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2469 __sock_recv_wifi_status(msg, sk, skb); 2470 } 2471 2472 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2473 struct sk_buff *skb); 2474 2475 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2476 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2477 struct sk_buff *skb) 2478 { 2479 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2480 (1UL << SOCK_RCVTSTAMP)) 2481 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2482 SOF_TIMESTAMPING_RAW_HARDWARE) 2483 2484 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2485 __sock_recv_ts_and_drops(msg, sk, skb); 2486 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2487 sock_write_timestamp(sk, skb->tstamp); 2488 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2489 sock_write_timestamp(sk, 0); 2490 } 2491 2492 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2493 2494 /** 2495 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2496 * @sk: socket sending this packet 2497 * @tsflags: timestamping flags to use 2498 * @tx_flags: completed with instructions for time stamping 2499 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2500 * 2501 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2502 */ 2503 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2504 __u8 *tx_flags, __u32 *tskey) 2505 { 2506 if (unlikely(tsflags)) { 2507 __sock_tx_timestamp(tsflags, tx_flags); 2508 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2509 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2510 *tskey = sk->sk_tskey++; 2511 } 2512 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2513 *tx_flags |= SKBTX_WIFI_STATUS; 2514 } 2515 2516 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2517 __u8 *tx_flags) 2518 { 2519 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2520 } 2521 2522 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2523 { 2524 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2525 &skb_shinfo(skb)->tskey); 2526 } 2527 2528 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 2529 /** 2530 * sk_eat_skb - Release a skb if it is no longer needed 2531 * @sk: socket to eat this skb from 2532 * @skb: socket buffer to eat 2533 * 2534 * This routine must be called with interrupts disabled or with the socket 2535 * locked so that the sk_buff queue operation is ok. 2536 */ 2537 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2538 { 2539 __skb_unlink(skb, &sk->sk_receive_queue); 2540 if (static_branch_unlikely(&tcp_rx_skb_cache_key) && 2541 !sk->sk_rx_skb_cache) { 2542 sk->sk_rx_skb_cache = skb; 2543 skb_orphan(skb); 2544 return; 2545 } 2546 __kfree_skb(skb); 2547 } 2548 2549 static inline 2550 struct net *sock_net(const struct sock *sk) 2551 { 2552 return read_pnet(&sk->sk_net); 2553 } 2554 2555 static inline 2556 void sock_net_set(struct sock *sk, struct net *net) 2557 { 2558 write_pnet(&sk->sk_net, net); 2559 } 2560 2561 static inline bool 2562 skb_sk_is_prefetched(struct sk_buff *skb) 2563 { 2564 #ifdef CONFIG_INET 2565 return skb->destructor == sock_pfree; 2566 #else 2567 return false; 2568 #endif /* CONFIG_INET */ 2569 } 2570 2571 /* This helper checks if a socket is a full socket, 2572 * ie _not_ a timewait or request socket. 2573 */ 2574 static inline bool sk_fullsock(const struct sock *sk) 2575 { 2576 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2577 } 2578 2579 static inline bool 2580 sk_is_refcounted(struct sock *sk) 2581 { 2582 /* Only full sockets have sk->sk_flags. */ 2583 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2584 } 2585 2586 /** 2587 * skb_steal_sock - steal a socket from an sk_buff 2588 * @skb: sk_buff to steal the socket from 2589 * @refcounted: is set to true if the socket is reference-counted 2590 */ 2591 static inline struct sock * 2592 skb_steal_sock(struct sk_buff *skb, bool *refcounted) 2593 { 2594 if (skb->sk) { 2595 struct sock *sk = skb->sk; 2596 2597 *refcounted = true; 2598 if (skb_sk_is_prefetched(skb)) 2599 *refcounted = sk_is_refcounted(sk); 2600 skb->destructor = NULL; 2601 skb->sk = NULL; 2602 return sk; 2603 } 2604 *refcounted = false; 2605 return NULL; 2606 } 2607 2608 /* Checks if this SKB belongs to an HW offloaded socket 2609 * and whether any SW fallbacks are required based on dev. 2610 * Check decrypted mark in case skb_orphan() cleared socket. 2611 */ 2612 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2613 struct net_device *dev) 2614 { 2615 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2616 struct sock *sk = skb->sk; 2617 2618 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2619 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2620 #ifdef CONFIG_TLS_DEVICE 2621 } else if (unlikely(skb->decrypted)) { 2622 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2623 kfree_skb(skb); 2624 skb = NULL; 2625 #endif 2626 } 2627 #endif 2628 2629 return skb; 2630 } 2631 2632 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2633 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2634 */ 2635 static inline bool sk_listener(const struct sock *sk) 2636 { 2637 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2638 } 2639 2640 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2641 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2642 int type); 2643 2644 bool sk_ns_capable(const struct sock *sk, 2645 struct user_namespace *user_ns, int cap); 2646 bool sk_capable(const struct sock *sk, int cap); 2647 bool sk_net_capable(const struct sock *sk, int cap); 2648 2649 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2650 2651 /* Take into consideration the size of the struct sk_buff overhead in the 2652 * determination of these values, since that is non-constant across 2653 * platforms. This makes socket queueing behavior and performance 2654 * not depend upon such differences. 2655 */ 2656 #define _SK_MEM_PACKETS 256 2657 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2658 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2659 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2660 2661 extern __u32 sysctl_wmem_max; 2662 extern __u32 sysctl_rmem_max; 2663 2664 extern int sysctl_tstamp_allow_data; 2665 extern int sysctl_optmem_max; 2666 2667 extern __u32 sysctl_wmem_default; 2668 extern __u32 sysctl_rmem_default; 2669 2670 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2671 2672 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2673 { 2674 /* Does this proto have per netns sysctl_wmem ? */ 2675 if (proto->sysctl_wmem_offset) 2676 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2677 2678 return *proto->sysctl_wmem; 2679 } 2680 2681 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2682 { 2683 /* Does this proto have per netns sysctl_rmem ? */ 2684 if (proto->sysctl_rmem_offset) 2685 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2686 2687 return *proto->sysctl_rmem; 2688 } 2689 2690 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2691 * Some wifi drivers need to tweak it to get more chunks. 2692 * They can use this helper from their ndo_start_xmit() 2693 */ 2694 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2695 { 2696 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2697 return; 2698 WRITE_ONCE(sk->sk_pacing_shift, val); 2699 } 2700 2701 /* if a socket is bound to a device, check that the given device 2702 * index is either the same or that the socket is bound to an L3 2703 * master device and the given device index is also enslaved to 2704 * that L3 master 2705 */ 2706 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2707 { 2708 int mdif; 2709 2710 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2711 return true; 2712 2713 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2714 if (mdif && mdif == sk->sk_bound_dev_if) 2715 return true; 2716 2717 return false; 2718 } 2719 2720 void sock_def_readable(struct sock *sk); 2721 2722 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2723 void sock_enable_timestamps(struct sock *sk); 2724 void sock_no_linger(struct sock *sk); 2725 void sock_set_keepalive(struct sock *sk); 2726 void sock_set_priority(struct sock *sk, u32 priority); 2727 void sock_set_rcvbuf(struct sock *sk, int val); 2728 void sock_set_mark(struct sock *sk, u32 val); 2729 void sock_set_reuseaddr(struct sock *sk); 2730 void sock_set_reuseport(struct sock *sk); 2731 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2732 2733 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2734 2735 #endif /* _SOCK_H */ 2736