1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 #include <linux/wait.h> 62 #include <linux/cgroup-defs.h> 63 #include <linux/rbtree.h> 64 #include <linux/filter.h> 65 #include <linux/rculist_nulls.h> 66 #include <linux/poll.h> 67 68 #include <linux/atomic.h> 69 #include <linux/refcount.h> 70 #include <net/dst.h> 71 #include <net/checksum.h> 72 #include <net/tcp_states.h> 73 #include <linux/net_tstamp.h> 74 #include <net/smc.h> 75 #include <net/l3mdev.h> 76 77 /* 78 * This structure really needs to be cleaned up. 79 * Most of it is for TCP, and not used by any of 80 * the other protocols. 81 */ 82 83 /* Define this to get the SOCK_DBG debugging facility. */ 84 #define SOCK_DEBUGGING 85 #ifdef SOCK_DEBUGGING 86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 87 printk(KERN_DEBUG msg); } while (0) 88 #else 89 /* Validate arguments and do nothing */ 90 static inline __printf(2, 3) 91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 92 { 93 } 94 #endif 95 96 /* This is the per-socket lock. The spinlock provides a synchronization 97 * between user contexts and software interrupt processing, whereas the 98 * mini-semaphore synchronizes multiple users amongst themselves. 99 */ 100 typedef struct { 101 spinlock_t slock; 102 int owned; 103 wait_queue_head_t wq; 104 /* 105 * We express the mutex-alike socket_lock semantics 106 * to the lock validator by explicitly managing 107 * the slock as a lock variant (in addition to 108 * the slock itself): 109 */ 110 #ifdef CONFIG_DEBUG_LOCK_ALLOC 111 struct lockdep_map dep_map; 112 #endif 113 } socket_lock_t; 114 115 struct sock; 116 struct proto; 117 struct net; 118 119 typedef __u32 __bitwise __portpair; 120 typedef __u64 __bitwise __addrpair; 121 122 /** 123 * struct sock_common - minimal network layer representation of sockets 124 * @skc_daddr: Foreign IPv4 addr 125 * @skc_rcv_saddr: Bound local IPv4 addr 126 * @skc_hash: hash value used with various protocol lookup tables 127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 128 * @skc_dport: placeholder for inet_dport/tw_dport 129 * @skc_num: placeholder for inet_num/tw_num 130 * @skc_family: network address family 131 * @skc_state: Connection state 132 * @skc_reuse: %SO_REUSEADDR setting 133 * @skc_reuseport: %SO_REUSEPORT setting 134 * @skc_bound_dev_if: bound device index if != 0 135 * @skc_bind_node: bind hash linkage for various protocol lookup tables 136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 137 * @skc_prot: protocol handlers inside a network family 138 * @skc_net: reference to the network namespace of this socket 139 * @skc_node: main hash linkage for various protocol lookup tables 140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 141 * @skc_tx_queue_mapping: tx queue number for this connection 142 * @skc_rx_queue_mapping: rx queue number for this connection 143 * @skc_flags: place holder for sk_flags 144 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 145 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 146 * @skc_incoming_cpu: record/match cpu processing incoming packets 147 * @skc_refcnt: reference count 148 * 149 * This is the minimal network layer representation of sockets, the header 150 * for struct sock and struct inet_timewait_sock. 151 */ 152 struct sock_common { 153 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 154 * address on 64bit arches : cf INET_MATCH() 155 */ 156 union { 157 __addrpair skc_addrpair; 158 struct { 159 __be32 skc_daddr; 160 __be32 skc_rcv_saddr; 161 }; 162 }; 163 union { 164 unsigned int skc_hash; 165 __u16 skc_u16hashes[2]; 166 }; 167 /* skc_dport && skc_num must be grouped as well */ 168 union { 169 __portpair skc_portpair; 170 struct { 171 __be16 skc_dport; 172 __u16 skc_num; 173 }; 174 }; 175 176 unsigned short skc_family; 177 volatile unsigned char skc_state; 178 unsigned char skc_reuse:4; 179 unsigned char skc_reuseport:1; 180 unsigned char skc_ipv6only:1; 181 unsigned char skc_net_refcnt:1; 182 int skc_bound_dev_if; 183 union { 184 struct hlist_node skc_bind_node; 185 struct hlist_node skc_portaddr_node; 186 }; 187 struct proto *skc_prot; 188 possible_net_t skc_net; 189 190 #if IS_ENABLED(CONFIG_IPV6) 191 struct in6_addr skc_v6_daddr; 192 struct in6_addr skc_v6_rcv_saddr; 193 #endif 194 195 atomic64_t skc_cookie; 196 197 /* following fields are padding to force 198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 199 * assuming IPV6 is enabled. We use this padding differently 200 * for different kind of 'sockets' 201 */ 202 union { 203 unsigned long skc_flags; 204 struct sock *skc_listener; /* request_sock */ 205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 206 }; 207 /* 208 * fields between dontcopy_begin/dontcopy_end 209 * are not copied in sock_copy() 210 */ 211 /* private: */ 212 int skc_dontcopy_begin[0]; 213 /* public: */ 214 union { 215 struct hlist_node skc_node; 216 struct hlist_nulls_node skc_nulls_node; 217 }; 218 unsigned short skc_tx_queue_mapping; 219 #ifdef CONFIG_XPS 220 unsigned short skc_rx_queue_mapping; 221 #endif 222 union { 223 int skc_incoming_cpu; 224 u32 skc_rcv_wnd; 225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 226 }; 227 228 refcount_t skc_refcnt; 229 /* private: */ 230 int skc_dontcopy_end[0]; 231 union { 232 u32 skc_rxhash; 233 u32 skc_window_clamp; 234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 235 }; 236 /* public: */ 237 }; 238 239 struct bpf_sk_storage; 240 241 /** 242 * struct sock - network layer representation of sockets 243 * @__sk_common: shared layout with inet_timewait_sock 244 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 245 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 246 * @sk_lock: synchronizer 247 * @sk_kern_sock: True if sock is using kernel lock classes 248 * @sk_rcvbuf: size of receive buffer in bytes 249 * @sk_wq: sock wait queue and async head 250 * @sk_rx_dst: receive input route used by early demux 251 * @sk_dst_cache: destination cache 252 * @sk_dst_pending_confirm: need to confirm neighbour 253 * @sk_policy: flow policy 254 * @sk_receive_queue: incoming packets 255 * @sk_wmem_alloc: transmit queue bytes committed 256 * @sk_tsq_flags: TCP Small Queues flags 257 * @sk_write_queue: Packet sending queue 258 * @sk_omem_alloc: "o" is "option" or "other" 259 * @sk_wmem_queued: persistent queue size 260 * @sk_forward_alloc: space allocated forward 261 * @sk_napi_id: id of the last napi context to receive data for sk 262 * @sk_ll_usec: usecs to busypoll when there is no data 263 * @sk_allocation: allocation mode 264 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 265 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 266 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 267 * @sk_sndbuf: size of send buffer in bytes 268 * @__sk_flags_offset: empty field used to determine location of bitfield 269 * @sk_padding: unused element for alignment 270 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 271 * @sk_no_check_rx: allow zero checksum in RX packets 272 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 273 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 274 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 275 * @sk_gso_max_size: Maximum GSO segment size to build 276 * @sk_gso_max_segs: Maximum number of GSO segments 277 * @sk_pacing_shift: scaling factor for TCP Small Queues 278 * @sk_lingertime: %SO_LINGER l_linger setting 279 * @sk_backlog: always used with the per-socket spinlock held 280 * @sk_callback_lock: used with the callbacks in the end of this struct 281 * @sk_error_queue: rarely used 282 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 283 * IPV6_ADDRFORM for instance) 284 * @sk_err: last error 285 * @sk_err_soft: errors that don't cause failure but are the cause of a 286 * persistent failure not just 'timed out' 287 * @sk_drops: raw/udp drops counter 288 * @sk_ack_backlog: current listen backlog 289 * @sk_max_ack_backlog: listen backlog set in listen() 290 * @sk_uid: user id of owner 291 * @sk_priority: %SO_PRIORITY setting 292 * @sk_type: socket type (%SOCK_STREAM, etc) 293 * @sk_protocol: which protocol this socket belongs in this network family 294 * @sk_peer_pid: &struct pid for this socket's peer 295 * @sk_peer_cred: %SO_PEERCRED setting 296 * @sk_rcvlowat: %SO_RCVLOWAT setting 297 * @sk_rcvtimeo: %SO_RCVTIMEO setting 298 * @sk_sndtimeo: %SO_SNDTIMEO setting 299 * @sk_txhash: computed flow hash for use on transmit 300 * @sk_filter: socket filtering instructions 301 * @sk_timer: sock cleanup timer 302 * @sk_stamp: time stamp of last packet received 303 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 304 * @sk_tsflags: SO_TIMESTAMPING socket options 305 * @sk_tskey: counter to disambiguate concurrent tstamp requests 306 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 307 * @sk_socket: Identd and reporting IO signals 308 * @sk_user_data: RPC layer private data 309 * @sk_frag: cached page frag 310 * @sk_peek_off: current peek_offset value 311 * @sk_send_head: front of stuff to transmit 312 * @sk_security: used by security modules 313 * @sk_mark: generic packet mark 314 * @sk_cgrp_data: cgroup data for this cgroup 315 * @sk_memcg: this socket's memory cgroup association 316 * @sk_write_pending: a write to stream socket waits to start 317 * @sk_state_change: callback to indicate change in the state of the sock 318 * @sk_data_ready: callback to indicate there is data to be processed 319 * @sk_write_space: callback to indicate there is bf sending space available 320 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 321 * @sk_backlog_rcv: callback to process the backlog 322 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 323 * @sk_reuseport_cb: reuseport group container 324 * @sk_rcu: used during RCU grace period 325 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 326 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 327 * @sk_txtime_unused: unused txtime flags 328 */ 329 struct sock { 330 /* 331 * Now struct inet_timewait_sock also uses sock_common, so please just 332 * don't add nothing before this first member (__sk_common) --acme 333 */ 334 struct sock_common __sk_common; 335 #define sk_node __sk_common.skc_node 336 #define sk_nulls_node __sk_common.skc_nulls_node 337 #define sk_refcnt __sk_common.skc_refcnt 338 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 339 #ifdef CONFIG_XPS 340 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 341 #endif 342 343 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 344 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 345 #define sk_hash __sk_common.skc_hash 346 #define sk_portpair __sk_common.skc_portpair 347 #define sk_num __sk_common.skc_num 348 #define sk_dport __sk_common.skc_dport 349 #define sk_addrpair __sk_common.skc_addrpair 350 #define sk_daddr __sk_common.skc_daddr 351 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 352 #define sk_family __sk_common.skc_family 353 #define sk_state __sk_common.skc_state 354 #define sk_reuse __sk_common.skc_reuse 355 #define sk_reuseport __sk_common.skc_reuseport 356 #define sk_ipv6only __sk_common.skc_ipv6only 357 #define sk_net_refcnt __sk_common.skc_net_refcnt 358 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 359 #define sk_bind_node __sk_common.skc_bind_node 360 #define sk_prot __sk_common.skc_prot 361 #define sk_net __sk_common.skc_net 362 #define sk_v6_daddr __sk_common.skc_v6_daddr 363 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 364 #define sk_cookie __sk_common.skc_cookie 365 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 366 #define sk_flags __sk_common.skc_flags 367 #define sk_rxhash __sk_common.skc_rxhash 368 369 socket_lock_t sk_lock; 370 atomic_t sk_drops; 371 int sk_rcvlowat; 372 struct sk_buff_head sk_error_queue; 373 struct sk_buff *sk_rx_skb_cache; 374 struct sk_buff_head sk_receive_queue; 375 /* 376 * The backlog queue is special, it is always used with 377 * the per-socket spinlock held and requires low latency 378 * access. Therefore we special case it's implementation. 379 * Note : rmem_alloc is in this structure to fill a hole 380 * on 64bit arches, not because its logically part of 381 * backlog. 382 */ 383 struct { 384 atomic_t rmem_alloc; 385 int len; 386 struct sk_buff *head; 387 struct sk_buff *tail; 388 } sk_backlog; 389 #define sk_rmem_alloc sk_backlog.rmem_alloc 390 391 int sk_forward_alloc; 392 #ifdef CONFIG_NET_RX_BUSY_POLL 393 unsigned int sk_ll_usec; 394 /* ===== mostly read cache line ===== */ 395 unsigned int sk_napi_id; 396 #endif 397 int sk_rcvbuf; 398 399 struct sk_filter __rcu *sk_filter; 400 union { 401 struct socket_wq __rcu *sk_wq; 402 struct socket_wq *sk_wq_raw; 403 }; 404 #ifdef CONFIG_XFRM 405 struct xfrm_policy __rcu *sk_policy[2]; 406 #endif 407 struct dst_entry *sk_rx_dst; 408 struct dst_entry __rcu *sk_dst_cache; 409 atomic_t sk_omem_alloc; 410 int sk_sndbuf; 411 412 /* ===== cache line for TX ===== */ 413 int sk_wmem_queued; 414 refcount_t sk_wmem_alloc; 415 unsigned long sk_tsq_flags; 416 union { 417 struct sk_buff *sk_send_head; 418 struct rb_root tcp_rtx_queue; 419 }; 420 struct sk_buff *sk_tx_skb_cache; 421 struct sk_buff_head sk_write_queue; 422 __s32 sk_peek_off; 423 int sk_write_pending; 424 __u32 sk_dst_pending_confirm; 425 u32 sk_pacing_status; /* see enum sk_pacing */ 426 long sk_sndtimeo; 427 struct timer_list sk_timer; 428 __u32 sk_priority; 429 __u32 sk_mark; 430 unsigned long sk_pacing_rate; /* bytes per second */ 431 unsigned long sk_max_pacing_rate; 432 struct page_frag sk_frag; 433 netdev_features_t sk_route_caps; 434 netdev_features_t sk_route_nocaps; 435 netdev_features_t sk_route_forced_caps; 436 int sk_gso_type; 437 unsigned int sk_gso_max_size; 438 gfp_t sk_allocation; 439 __u32 sk_txhash; 440 441 /* 442 * Because of non atomicity rules, all 443 * changes are protected by socket lock. 444 */ 445 unsigned int __sk_flags_offset[0]; 446 #ifdef __BIG_ENDIAN_BITFIELD 447 #define SK_FL_PROTO_SHIFT 16 448 #define SK_FL_PROTO_MASK 0x00ff0000 449 450 #define SK_FL_TYPE_SHIFT 0 451 #define SK_FL_TYPE_MASK 0x0000ffff 452 #else 453 #define SK_FL_PROTO_SHIFT 8 454 #define SK_FL_PROTO_MASK 0x0000ff00 455 456 #define SK_FL_TYPE_SHIFT 16 457 #define SK_FL_TYPE_MASK 0xffff0000 458 #endif 459 460 unsigned int sk_padding : 1, 461 sk_kern_sock : 1, 462 sk_no_check_tx : 1, 463 sk_no_check_rx : 1, 464 sk_userlocks : 4, 465 sk_protocol : 8, 466 sk_type : 16; 467 #define SK_PROTOCOL_MAX U8_MAX 468 u16 sk_gso_max_segs; 469 u8 sk_pacing_shift; 470 unsigned long sk_lingertime; 471 struct proto *sk_prot_creator; 472 rwlock_t sk_callback_lock; 473 int sk_err, 474 sk_err_soft; 475 u32 sk_ack_backlog; 476 u32 sk_max_ack_backlog; 477 kuid_t sk_uid; 478 struct pid *sk_peer_pid; 479 const struct cred *sk_peer_cred; 480 long sk_rcvtimeo; 481 ktime_t sk_stamp; 482 #if BITS_PER_LONG==32 483 seqlock_t sk_stamp_seq; 484 #endif 485 u16 sk_tsflags; 486 u8 sk_shutdown; 487 u32 sk_tskey; 488 atomic_t sk_zckey; 489 490 u8 sk_clockid; 491 u8 sk_txtime_deadline_mode : 1, 492 sk_txtime_report_errors : 1, 493 sk_txtime_unused : 6; 494 495 struct socket *sk_socket; 496 void *sk_user_data; 497 #ifdef CONFIG_SECURITY 498 void *sk_security; 499 #endif 500 struct sock_cgroup_data sk_cgrp_data; 501 struct mem_cgroup *sk_memcg; 502 void (*sk_state_change)(struct sock *sk); 503 void (*sk_data_ready)(struct sock *sk); 504 void (*sk_write_space)(struct sock *sk); 505 void (*sk_error_report)(struct sock *sk); 506 int (*sk_backlog_rcv)(struct sock *sk, 507 struct sk_buff *skb); 508 #ifdef CONFIG_SOCK_VALIDATE_XMIT 509 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 510 struct net_device *dev, 511 struct sk_buff *skb); 512 #endif 513 void (*sk_destruct)(struct sock *sk); 514 struct sock_reuseport __rcu *sk_reuseport_cb; 515 #ifdef CONFIG_BPF_SYSCALL 516 struct bpf_sk_storage __rcu *sk_bpf_storage; 517 #endif 518 struct rcu_head sk_rcu; 519 }; 520 521 enum sk_pacing { 522 SK_PACING_NONE = 0, 523 SK_PACING_NEEDED = 1, 524 SK_PACING_FQ = 2, 525 }; 526 527 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 528 529 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 530 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 531 532 /* 533 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 534 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 535 * on a socket means that the socket will reuse everybody else's port 536 * without looking at the other's sk_reuse value. 537 */ 538 539 #define SK_NO_REUSE 0 540 #define SK_CAN_REUSE 1 541 #define SK_FORCE_REUSE 2 542 543 int sk_set_peek_off(struct sock *sk, int val); 544 545 static inline int sk_peek_offset(struct sock *sk, int flags) 546 { 547 if (unlikely(flags & MSG_PEEK)) { 548 return READ_ONCE(sk->sk_peek_off); 549 } 550 551 return 0; 552 } 553 554 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 555 { 556 s32 off = READ_ONCE(sk->sk_peek_off); 557 558 if (unlikely(off >= 0)) { 559 off = max_t(s32, off - val, 0); 560 WRITE_ONCE(sk->sk_peek_off, off); 561 } 562 } 563 564 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 565 { 566 sk_peek_offset_bwd(sk, -val); 567 } 568 569 /* 570 * Hashed lists helper routines 571 */ 572 static inline struct sock *sk_entry(const struct hlist_node *node) 573 { 574 return hlist_entry(node, struct sock, sk_node); 575 } 576 577 static inline struct sock *__sk_head(const struct hlist_head *head) 578 { 579 return hlist_entry(head->first, struct sock, sk_node); 580 } 581 582 static inline struct sock *sk_head(const struct hlist_head *head) 583 { 584 return hlist_empty(head) ? NULL : __sk_head(head); 585 } 586 587 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 588 { 589 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 590 } 591 592 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 593 { 594 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 595 } 596 597 static inline struct sock *sk_next(const struct sock *sk) 598 { 599 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 600 } 601 602 static inline struct sock *sk_nulls_next(const struct sock *sk) 603 { 604 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 605 hlist_nulls_entry(sk->sk_nulls_node.next, 606 struct sock, sk_nulls_node) : 607 NULL; 608 } 609 610 static inline bool sk_unhashed(const struct sock *sk) 611 { 612 return hlist_unhashed(&sk->sk_node); 613 } 614 615 static inline bool sk_hashed(const struct sock *sk) 616 { 617 return !sk_unhashed(sk); 618 } 619 620 static inline void sk_node_init(struct hlist_node *node) 621 { 622 node->pprev = NULL; 623 } 624 625 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 626 { 627 node->pprev = NULL; 628 } 629 630 static inline void __sk_del_node(struct sock *sk) 631 { 632 __hlist_del(&sk->sk_node); 633 } 634 635 /* NB: equivalent to hlist_del_init_rcu */ 636 static inline bool __sk_del_node_init(struct sock *sk) 637 { 638 if (sk_hashed(sk)) { 639 __sk_del_node(sk); 640 sk_node_init(&sk->sk_node); 641 return true; 642 } 643 return false; 644 } 645 646 /* Grab socket reference count. This operation is valid only 647 when sk is ALREADY grabbed f.e. it is found in hash table 648 or a list and the lookup is made under lock preventing hash table 649 modifications. 650 */ 651 652 static __always_inline void sock_hold(struct sock *sk) 653 { 654 refcount_inc(&sk->sk_refcnt); 655 } 656 657 /* Ungrab socket in the context, which assumes that socket refcnt 658 cannot hit zero, f.e. it is true in context of any socketcall. 659 */ 660 static __always_inline void __sock_put(struct sock *sk) 661 { 662 refcount_dec(&sk->sk_refcnt); 663 } 664 665 static inline bool sk_del_node_init(struct sock *sk) 666 { 667 bool rc = __sk_del_node_init(sk); 668 669 if (rc) { 670 /* paranoid for a while -acme */ 671 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 672 __sock_put(sk); 673 } 674 return rc; 675 } 676 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 677 678 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 679 { 680 if (sk_hashed(sk)) { 681 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 682 return true; 683 } 684 return false; 685 } 686 687 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 688 { 689 bool rc = __sk_nulls_del_node_init_rcu(sk); 690 691 if (rc) { 692 /* paranoid for a while -acme */ 693 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 694 __sock_put(sk); 695 } 696 return rc; 697 } 698 699 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 700 { 701 hlist_add_head(&sk->sk_node, list); 702 } 703 704 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 705 { 706 sock_hold(sk); 707 __sk_add_node(sk, list); 708 } 709 710 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 711 { 712 sock_hold(sk); 713 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 714 sk->sk_family == AF_INET6) 715 hlist_add_tail_rcu(&sk->sk_node, list); 716 else 717 hlist_add_head_rcu(&sk->sk_node, list); 718 } 719 720 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 721 { 722 sock_hold(sk); 723 hlist_add_tail_rcu(&sk->sk_node, list); 724 } 725 726 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 727 { 728 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 729 } 730 731 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 732 { 733 sock_hold(sk); 734 __sk_nulls_add_node_rcu(sk, list); 735 } 736 737 static inline void __sk_del_bind_node(struct sock *sk) 738 { 739 __hlist_del(&sk->sk_bind_node); 740 } 741 742 static inline void sk_add_bind_node(struct sock *sk, 743 struct hlist_head *list) 744 { 745 hlist_add_head(&sk->sk_bind_node, list); 746 } 747 748 #define sk_for_each(__sk, list) \ 749 hlist_for_each_entry(__sk, list, sk_node) 750 #define sk_for_each_rcu(__sk, list) \ 751 hlist_for_each_entry_rcu(__sk, list, sk_node) 752 #define sk_nulls_for_each(__sk, node, list) \ 753 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 754 #define sk_nulls_for_each_rcu(__sk, node, list) \ 755 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 756 #define sk_for_each_from(__sk) \ 757 hlist_for_each_entry_from(__sk, sk_node) 758 #define sk_nulls_for_each_from(__sk, node) \ 759 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 760 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 761 #define sk_for_each_safe(__sk, tmp, list) \ 762 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 763 #define sk_for_each_bound(__sk, list) \ 764 hlist_for_each_entry(__sk, list, sk_bind_node) 765 766 /** 767 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 768 * @tpos: the type * to use as a loop cursor. 769 * @pos: the &struct hlist_node to use as a loop cursor. 770 * @head: the head for your list. 771 * @offset: offset of hlist_node within the struct. 772 * 773 */ 774 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 775 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 776 pos != NULL && \ 777 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 778 pos = rcu_dereference(hlist_next_rcu(pos))) 779 780 static inline struct user_namespace *sk_user_ns(struct sock *sk) 781 { 782 /* Careful only use this in a context where these parameters 783 * can not change and must all be valid, such as recvmsg from 784 * userspace. 785 */ 786 return sk->sk_socket->file->f_cred->user_ns; 787 } 788 789 /* Sock flags */ 790 enum sock_flags { 791 SOCK_DEAD, 792 SOCK_DONE, 793 SOCK_URGINLINE, 794 SOCK_KEEPOPEN, 795 SOCK_LINGER, 796 SOCK_DESTROY, 797 SOCK_BROADCAST, 798 SOCK_TIMESTAMP, 799 SOCK_ZAPPED, 800 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 801 SOCK_DBG, /* %SO_DEBUG setting */ 802 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 803 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 804 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 805 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 806 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 807 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 808 SOCK_FASYNC, /* fasync() active */ 809 SOCK_RXQ_OVFL, 810 SOCK_ZEROCOPY, /* buffers from userspace */ 811 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 812 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 813 * Will use last 4 bytes of packet sent from 814 * user-space instead. 815 */ 816 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 817 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 818 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 819 SOCK_TXTIME, 820 SOCK_XDP, /* XDP is attached */ 821 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 822 }; 823 824 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 825 826 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 827 { 828 nsk->sk_flags = osk->sk_flags; 829 } 830 831 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 832 { 833 __set_bit(flag, &sk->sk_flags); 834 } 835 836 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 837 { 838 __clear_bit(flag, &sk->sk_flags); 839 } 840 841 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 842 { 843 return test_bit(flag, &sk->sk_flags); 844 } 845 846 #ifdef CONFIG_NET 847 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 848 static inline int sk_memalloc_socks(void) 849 { 850 return static_branch_unlikely(&memalloc_socks_key); 851 } 852 #else 853 854 static inline int sk_memalloc_socks(void) 855 { 856 return 0; 857 } 858 859 #endif 860 861 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 862 { 863 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 864 } 865 866 static inline void sk_acceptq_removed(struct sock *sk) 867 { 868 sk->sk_ack_backlog--; 869 } 870 871 static inline void sk_acceptq_added(struct sock *sk) 872 { 873 sk->sk_ack_backlog++; 874 } 875 876 static inline bool sk_acceptq_is_full(const struct sock *sk) 877 { 878 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 879 } 880 881 /* 882 * Compute minimal free write space needed to queue new packets. 883 */ 884 static inline int sk_stream_min_wspace(const struct sock *sk) 885 { 886 return sk->sk_wmem_queued >> 1; 887 } 888 889 static inline int sk_stream_wspace(const struct sock *sk) 890 { 891 return sk->sk_sndbuf - sk->sk_wmem_queued; 892 } 893 894 void sk_stream_write_space(struct sock *sk); 895 896 /* OOB backlog add */ 897 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 898 { 899 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 900 skb_dst_force(skb); 901 902 if (!sk->sk_backlog.tail) 903 sk->sk_backlog.head = skb; 904 else 905 sk->sk_backlog.tail->next = skb; 906 907 sk->sk_backlog.tail = skb; 908 skb->next = NULL; 909 } 910 911 /* 912 * Take into account size of receive queue and backlog queue 913 * Do not take into account this skb truesize, 914 * to allow even a single big packet to come. 915 */ 916 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 917 { 918 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 919 920 return qsize > limit; 921 } 922 923 /* The per-socket spinlock must be held here. */ 924 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 925 unsigned int limit) 926 { 927 if (sk_rcvqueues_full(sk, limit)) 928 return -ENOBUFS; 929 930 /* 931 * If the skb was allocated from pfmemalloc reserves, only 932 * allow SOCK_MEMALLOC sockets to use it as this socket is 933 * helping free memory 934 */ 935 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 936 return -ENOMEM; 937 938 __sk_add_backlog(sk, skb); 939 sk->sk_backlog.len += skb->truesize; 940 return 0; 941 } 942 943 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 944 945 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 946 { 947 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 948 return __sk_backlog_rcv(sk, skb); 949 950 return sk->sk_backlog_rcv(sk, skb); 951 } 952 953 static inline void sk_incoming_cpu_update(struct sock *sk) 954 { 955 int cpu = raw_smp_processor_id(); 956 957 if (unlikely(sk->sk_incoming_cpu != cpu)) 958 sk->sk_incoming_cpu = cpu; 959 } 960 961 static inline void sock_rps_record_flow_hash(__u32 hash) 962 { 963 #ifdef CONFIG_RPS 964 struct rps_sock_flow_table *sock_flow_table; 965 966 rcu_read_lock(); 967 sock_flow_table = rcu_dereference(rps_sock_flow_table); 968 rps_record_sock_flow(sock_flow_table, hash); 969 rcu_read_unlock(); 970 #endif 971 } 972 973 static inline void sock_rps_record_flow(const struct sock *sk) 974 { 975 #ifdef CONFIG_RPS 976 if (static_branch_unlikely(&rfs_needed)) { 977 /* Reading sk->sk_rxhash might incur an expensive cache line 978 * miss. 979 * 980 * TCP_ESTABLISHED does cover almost all states where RFS 981 * might be useful, and is cheaper [1] than testing : 982 * IPv4: inet_sk(sk)->inet_daddr 983 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 984 * OR an additional socket flag 985 * [1] : sk_state and sk_prot are in the same cache line. 986 */ 987 if (sk->sk_state == TCP_ESTABLISHED) 988 sock_rps_record_flow_hash(sk->sk_rxhash); 989 } 990 #endif 991 } 992 993 static inline void sock_rps_save_rxhash(struct sock *sk, 994 const struct sk_buff *skb) 995 { 996 #ifdef CONFIG_RPS 997 if (unlikely(sk->sk_rxhash != skb->hash)) 998 sk->sk_rxhash = skb->hash; 999 #endif 1000 } 1001 1002 static inline void sock_rps_reset_rxhash(struct sock *sk) 1003 { 1004 #ifdef CONFIG_RPS 1005 sk->sk_rxhash = 0; 1006 #endif 1007 } 1008 1009 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1010 ({ int __rc; \ 1011 release_sock(__sk); \ 1012 __rc = __condition; \ 1013 if (!__rc) { \ 1014 *(__timeo) = wait_woken(__wait, \ 1015 TASK_INTERRUPTIBLE, \ 1016 *(__timeo)); \ 1017 } \ 1018 sched_annotate_sleep(); \ 1019 lock_sock(__sk); \ 1020 __rc = __condition; \ 1021 __rc; \ 1022 }) 1023 1024 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1025 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1026 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1027 int sk_stream_error(struct sock *sk, int flags, int err); 1028 void sk_stream_kill_queues(struct sock *sk); 1029 void sk_set_memalloc(struct sock *sk); 1030 void sk_clear_memalloc(struct sock *sk); 1031 1032 void __sk_flush_backlog(struct sock *sk); 1033 1034 static inline bool sk_flush_backlog(struct sock *sk) 1035 { 1036 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1037 __sk_flush_backlog(sk); 1038 return true; 1039 } 1040 return false; 1041 } 1042 1043 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1044 1045 struct request_sock_ops; 1046 struct timewait_sock_ops; 1047 struct inet_hashinfo; 1048 struct raw_hashinfo; 1049 struct smc_hashinfo; 1050 struct module; 1051 1052 /* 1053 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1054 * un-modified. Special care is taken when initializing object to zero. 1055 */ 1056 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1057 { 1058 if (offsetof(struct sock, sk_node.next) != 0) 1059 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1060 memset(&sk->sk_node.pprev, 0, 1061 size - offsetof(struct sock, sk_node.pprev)); 1062 } 1063 1064 /* Networking protocol blocks we attach to sockets. 1065 * socket layer -> transport layer interface 1066 */ 1067 struct proto { 1068 void (*close)(struct sock *sk, 1069 long timeout); 1070 int (*pre_connect)(struct sock *sk, 1071 struct sockaddr *uaddr, 1072 int addr_len); 1073 int (*connect)(struct sock *sk, 1074 struct sockaddr *uaddr, 1075 int addr_len); 1076 int (*disconnect)(struct sock *sk, int flags); 1077 1078 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1079 bool kern); 1080 1081 int (*ioctl)(struct sock *sk, int cmd, 1082 unsigned long arg); 1083 int (*init)(struct sock *sk); 1084 void (*destroy)(struct sock *sk); 1085 void (*shutdown)(struct sock *sk, int how); 1086 int (*setsockopt)(struct sock *sk, int level, 1087 int optname, char __user *optval, 1088 unsigned int optlen); 1089 int (*getsockopt)(struct sock *sk, int level, 1090 int optname, char __user *optval, 1091 int __user *option); 1092 void (*keepalive)(struct sock *sk, int valbool); 1093 #ifdef CONFIG_COMPAT 1094 int (*compat_setsockopt)(struct sock *sk, 1095 int level, 1096 int optname, char __user *optval, 1097 unsigned int optlen); 1098 int (*compat_getsockopt)(struct sock *sk, 1099 int level, 1100 int optname, char __user *optval, 1101 int __user *option); 1102 int (*compat_ioctl)(struct sock *sk, 1103 unsigned int cmd, unsigned long arg); 1104 #endif 1105 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1106 size_t len); 1107 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1108 size_t len, int noblock, int flags, 1109 int *addr_len); 1110 int (*sendpage)(struct sock *sk, struct page *page, 1111 int offset, size_t size, int flags); 1112 int (*bind)(struct sock *sk, 1113 struct sockaddr *uaddr, int addr_len); 1114 1115 int (*backlog_rcv) (struct sock *sk, 1116 struct sk_buff *skb); 1117 1118 void (*release_cb)(struct sock *sk); 1119 1120 /* Keeping track of sk's, looking them up, and port selection methods. */ 1121 int (*hash)(struct sock *sk); 1122 void (*unhash)(struct sock *sk); 1123 void (*rehash)(struct sock *sk); 1124 int (*get_port)(struct sock *sk, unsigned short snum); 1125 1126 /* Keeping track of sockets in use */ 1127 #ifdef CONFIG_PROC_FS 1128 unsigned int inuse_idx; 1129 #endif 1130 1131 bool (*stream_memory_free)(const struct sock *sk, int wake); 1132 bool (*stream_memory_read)(const struct sock *sk); 1133 /* Memory pressure */ 1134 void (*enter_memory_pressure)(struct sock *sk); 1135 void (*leave_memory_pressure)(struct sock *sk); 1136 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1137 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1138 /* 1139 * Pressure flag: try to collapse. 1140 * Technical note: it is used by multiple contexts non atomically. 1141 * All the __sk_mem_schedule() is of this nature: accounting 1142 * is strict, actions are advisory and have some latency. 1143 */ 1144 unsigned long *memory_pressure; 1145 long *sysctl_mem; 1146 1147 int *sysctl_wmem; 1148 int *sysctl_rmem; 1149 u32 sysctl_wmem_offset; 1150 u32 sysctl_rmem_offset; 1151 1152 int max_header; 1153 bool no_autobind; 1154 1155 struct kmem_cache *slab; 1156 unsigned int obj_size; 1157 slab_flags_t slab_flags; 1158 unsigned int useroffset; /* Usercopy region offset */ 1159 unsigned int usersize; /* Usercopy region size */ 1160 1161 struct percpu_counter *orphan_count; 1162 1163 struct request_sock_ops *rsk_prot; 1164 struct timewait_sock_ops *twsk_prot; 1165 1166 union { 1167 struct inet_hashinfo *hashinfo; 1168 struct udp_table *udp_table; 1169 struct raw_hashinfo *raw_hash; 1170 struct smc_hashinfo *smc_hash; 1171 } h; 1172 1173 struct module *owner; 1174 1175 char name[32]; 1176 1177 struct list_head node; 1178 #ifdef SOCK_REFCNT_DEBUG 1179 atomic_t socks; 1180 #endif 1181 int (*diag_destroy)(struct sock *sk, int err); 1182 } __randomize_layout; 1183 1184 int proto_register(struct proto *prot, int alloc_slab); 1185 void proto_unregister(struct proto *prot); 1186 int sock_load_diag_module(int family, int protocol); 1187 1188 #ifdef SOCK_REFCNT_DEBUG 1189 static inline void sk_refcnt_debug_inc(struct sock *sk) 1190 { 1191 atomic_inc(&sk->sk_prot->socks); 1192 } 1193 1194 static inline void sk_refcnt_debug_dec(struct sock *sk) 1195 { 1196 atomic_dec(&sk->sk_prot->socks); 1197 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1198 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1199 } 1200 1201 static inline void sk_refcnt_debug_release(const struct sock *sk) 1202 { 1203 if (refcount_read(&sk->sk_refcnt) != 1) 1204 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1205 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1206 } 1207 #else /* SOCK_REFCNT_DEBUG */ 1208 #define sk_refcnt_debug_inc(sk) do { } while (0) 1209 #define sk_refcnt_debug_dec(sk) do { } while (0) 1210 #define sk_refcnt_debug_release(sk) do { } while (0) 1211 #endif /* SOCK_REFCNT_DEBUG */ 1212 1213 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1214 { 1215 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1216 return false; 1217 1218 return sk->sk_prot->stream_memory_free ? 1219 sk->sk_prot->stream_memory_free(sk, wake) : true; 1220 } 1221 1222 static inline bool sk_stream_memory_free(const struct sock *sk) 1223 { 1224 return __sk_stream_memory_free(sk, 0); 1225 } 1226 1227 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1228 { 1229 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1230 __sk_stream_memory_free(sk, wake); 1231 } 1232 1233 static inline bool sk_stream_is_writeable(const struct sock *sk) 1234 { 1235 return __sk_stream_is_writeable(sk, 0); 1236 } 1237 1238 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1239 struct cgroup *ancestor) 1240 { 1241 #ifdef CONFIG_SOCK_CGROUP_DATA 1242 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1243 ancestor); 1244 #else 1245 return -ENOTSUPP; 1246 #endif 1247 } 1248 1249 static inline bool sk_has_memory_pressure(const struct sock *sk) 1250 { 1251 return sk->sk_prot->memory_pressure != NULL; 1252 } 1253 1254 static inline bool sk_under_memory_pressure(const struct sock *sk) 1255 { 1256 if (!sk->sk_prot->memory_pressure) 1257 return false; 1258 1259 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1260 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1261 return true; 1262 1263 return !!*sk->sk_prot->memory_pressure; 1264 } 1265 1266 static inline long 1267 sk_memory_allocated(const struct sock *sk) 1268 { 1269 return atomic_long_read(sk->sk_prot->memory_allocated); 1270 } 1271 1272 static inline long 1273 sk_memory_allocated_add(struct sock *sk, int amt) 1274 { 1275 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1276 } 1277 1278 static inline void 1279 sk_memory_allocated_sub(struct sock *sk, int amt) 1280 { 1281 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1282 } 1283 1284 static inline void sk_sockets_allocated_dec(struct sock *sk) 1285 { 1286 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1287 } 1288 1289 static inline void sk_sockets_allocated_inc(struct sock *sk) 1290 { 1291 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1292 } 1293 1294 static inline u64 1295 sk_sockets_allocated_read_positive(struct sock *sk) 1296 { 1297 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1298 } 1299 1300 static inline int 1301 proto_sockets_allocated_sum_positive(struct proto *prot) 1302 { 1303 return percpu_counter_sum_positive(prot->sockets_allocated); 1304 } 1305 1306 static inline long 1307 proto_memory_allocated(struct proto *prot) 1308 { 1309 return atomic_long_read(prot->memory_allocated); 1310 } 1311 1312 static inline bool 1313 proto_memory_pressure(struct proto *prot) 1314 { 1315 if (!prot->memory_pressure) 1316 return false; 1317 return !!*prot->memory_pressure; 1318 } 1319 1320 1321 #ifdef CONFIG_PROC_FS 1322 /* Called with local bh disabled */ 1323 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1324 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1325 int sock_inuse_get(struct net *net); 1326 #else 1327 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1328 int inc) 1329 { 1330 } 1331 #endif 1332 1333 1334 /* With per-bucket locks this operation is not-atomic, so that 1335 * this version is not worse. 1336 */ 1337 static inline int __sk_prot_rehash(struct sock *sk) 1338 { 1339 sk->sk_prot->unhash(sk); 1340 return sk->sk_prot->hash(sk); 1341 } 1342 1343 /* About 10 seconds */ 1344 #define SOCK_DESTROY_TIME (10*HZ) 1345 1346 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1347 #define PROT_SOCK 1024 1348 1349 #define SHUTDOWN_MASK 3 1350 #define RCV_SHUTDOWN 1 1351 #define SEND_SHUTDOWN 2 1352 1353 #define SOCK_SNDBUF_LOCK 1 1354 #define SOCK_RCVBUF_LOCK 2 1355 #define SOCK_BINDADDR_LOCK 4 1356 #define SOCK_BINDPORT_LOCK 8 1357 1358 struct socket_alloc { 1359 struct socket socket; 1360 struct inode vfs_inode; 1361 }; 1362 1363 static inline struct socket *SOCKET_I(struct inode *inode) 1364 { 1365 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1366 } 1367 1368 static inline struct inode *SOCK_INODE(struct socket *socket) 1369 { 1370 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1371 } 1372 1373 /* 1374 * Functions for memory accounting 1375 */ 1376 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1377 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1378 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1379 void __sk_mem_reclaim(struct sock *sk, int amount); 1380 1381 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1382 * do not necessarily have 16x time more memory than 4KB ones. 1383 */ 1384 #define SK_MEM_QUANTUM 4096 1385 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1386 #define SK_MEM_SEND 0 1387 #define SK_MEM_RECV 1 1388 1389 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1390 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1391 { 1392 long val = sk->sk_prot->sysctl_mem[index]; 1393 1394 #if PAGE_SIZE > SK_MEM_QUANTUM 1395 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1396 #elif PAGE_SIZE < SK_MEM_QUANTUM 1397 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1398 #endif 1399 return val; 1400 } 1401 1402 static inline int sk_mem_pages(int amt) 1403 { 1404 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1405 } 1406 1407 static inline bool sk_has_account(struct sock *sk) 1408 { 1409 /* return true if protocol supports memory accounting */ 1410 return !!sk->sk_prot->memory_allocated; 1411 } 1412 1413 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1414 { 1415 if (!sk_has_account(sk)) 1416 return true; 1417 return size <= sk->sk_forward_alloc || 1418 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1419 } 1420 1421 static inline bool 1422 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1423 { 1424 if (!sk_has_account(sk)) 1425 return true; 1426 return size<= sk->sk_forward_alloc || 1427 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1428 skb_pfmemalloc(skb); 1429 } 1430 1431 static inline void sk_mem_reclaim(struct sock *sk) 1432 { 1433 if (!sk_has_account(sk)) 1434 return; 1435 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1436 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1437 } 1438 1439 static inline void sk_mem_reclaim_partial(struct sock *sk) 1440 { 1441 if (!sk_has_account(sk)) 1442 return; 1443 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1444 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1445 } 1446 1447 static inline void sk_mem_charge(struct sock *sk, int size) 1448 { 1449 if (!sk_has_account(sk)) 1450 return; 1451 sk->sk_forward_alloc -= size; 1452 } 1453 1454 static inline void sk_mem_uncharge(struct sock *sk, int size) 1455 { 1456 if (!sk_has_account(sk)) 1457 return; 1458 sk->sk_forward_alloc += size; 1459 1460 /* Avoid a possible overflow. 1461 * TCP send queues can make this happen, if sk_mem_reclaim() 1462 * is not called and more than 2 GBytes are released at once. 1463 * 1464 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1465 * no need to hold that much forward allocation anyway. 1466 */ 1467 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1468 __sk_mem_reclaim(sk, 1 << 20); 1469 } 1470 1471 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1472 { 1473 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1474 sk->sk_wmem_queued -= skb->truesize; 1475 sk_mem_uncharge(sk, skb->truesize); 1476 if (!sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1477 skb_zcopy_clear(skb, true); 1478 sk->sk_tx_skb_cache = skb; 1479 return; 1480 } 1481 __kfree_skb(skb); 1482 } 1483 1484 static inline void sock_release_ownership(struct sock *sk) 1485 { 1486 if (sk->sk_lock.owned) { 1487 sk->sk_lock.owned = 0; 1488 1489 /* The sk_lock has mutex_unlock() semantics: */ 1490 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1491 } 1492 } 1493 1494 /* 1495 * Macro so as to not evaluate some arguments when 1496 * lockdep is not enabled. 1497 * 1498 * Mark both the sk_lock and the sk_lock.slock as a 1499 * per-address-family lock class. 1500 */ 1501 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1502 do { \ 1503 sk->sk_lock.owned = 0; \ 1504 init_waitqueue_head(&sk->sk_lock.wq); \ 1505 spin_lock_init(&(sk)->sk_lock.slock); \ 1506 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1507 sizeof((sk)->sk_lock)); \ 1508 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1509 (skey), (sname)); \ 1510 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1511 } while (0) 1512 1513 #ifdef CONFIG_LOCKDEP 1514 static inline bool lockdep_sock_is_held(const struct sock *sk) 1515 { 1516 return lockdep_is_held(&sk->sk_lock) || 1517 lockdep_is_held(&sk->sk_lock.slock); 1518 } 1519 #endif 1520 1521 void lock_sock_nested(struct sock *sk, int subclass); 1522 1523 static inline void lock_sock(struct sock *sk) 1524 { 1525 lock_sock_nested(sk, 0); 1526 } 1527 1528 void __release_sock(struct sock *sk); 1529 void release_sock(struct sock *sk); 1530 1531 /* BH context may only use the following locking interface. */ 1532 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1533 #define bh_lock_sock_nested(__sk) \ 1534 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1535 SINGLE_DEPTH_NESTING) 1536 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1537 1538 bool lock_sock_fast(struct sock *sk); 1539 /** 1540 * unlock_sock_fast - complement of lock_sock_fast 1541 * @sk: socket 1542 * @slow: slow mode 1543 * 1544 * fast unlock socket for user context. 1545 * If slow mode is on, we call regular release_sock() 1546 */ 1547 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1548 { 1549 if (slow) 1550 release_sock(sk); 1551 else 1552 spin_unlock_bh(&sk->sk_lock.slock); 1553 } 1554 1555 /* Used by processes to "lock" a socket state, so that 1556 * interrupts and bottom half handlers won't change it 1557 * from under us. It essentially blocks any incoming 1558 * packets, so that we won't get any new data or any 1559 * packets that change the state of the socket. 1560 * 1561 * While locked, BH processing will add new packets to 1562 * the backlog queue. This queue is processed by the 1563 * owner of the socket lock right before it is released. 1564 * 1565 * Since ~2.3.5 it is also exclusive sleep lock serializing 1566 * accesses from user process context. 1567 */ 1568 1569 static inline void sock_owned_by_me(const struct sock *sk) 1570 { 1571 #ifdef CONFIG_LOCKDEP 1572 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1573 #endif 1574 } 1575 1576 static inline bool sock_owned_by_user(const struct sock *sk) 1577 { 1578 sock_owned_by_me(sk); 1579 return sk->sk_lock.owned; 1580 } 1581 1582 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1583 { 1584 return sk->sk_lock.owned; 1585 } 1586 1587 /* no reclassification while locks are held */ 1588 static inline bool sock_allow_reclassification(const struct sock *csk) 1589 { 1590 struct sock *sk = (struct sock *)csk; 1591 1592 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1593 } 1594 1595 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1596 struct proto *prot, int kern); 1597 void sk_free(struct sock *sk); 1598 void sk_destruct(struct sock *sk); 1599 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1600 void sk_free_unlock_clone(struct sock *sk); 1601 1602 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1603 gfp_t priority); 1604 void __sock_wfree(struct sk_buff *skb); 1605 void sock_wfree(struct sk_buff *skb); 1606 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1607 gfp_t priority); 1608 void skb_orphan_partial(struct sk_buff *skb); 1609 void sock_rfree(struct sk_buff *skb); 1610 void sock_efree(struct sk_buff *skb); 1611 #ifdef CONFIG_INET 1612 void sock_edemux(struct sk_buff *skb); 1613 #else 1614 #define sock_edemux sock_efree 1615 #endif 1616 1617 int sock_setsockopt(struct socket *sock, int level, int op, 1618 char __user *optval, unsigned int optlen); 1619 1620 int sock_getsockopt(struct socket *sock, int level, int op, 1621 char __user *optval, int __user *optlen); 1622 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1623 bool timeval, bool time32); 1624 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1625 int noblock, int *errcode); 1626 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1627 unsigned long data_len, int noblock, 1628 int *errcode, int max_page_order); 1629 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1630 void sock_kfree_s(struct sock *sk, void *mem, int size); 1631 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1632 void sk_send_sigurg(struct sock *sk); 1633 1634 struct sockcm_cookie { 1635 u64 transmit_time; 1636 u32 mark; 1637 u16 tsflags; 1638 }; 1639 1640 static inline void sockcm_init(struct sockcm_cookie *sockc, 1641 const struct sock *sk) 1642 { 1643 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1644 } 1645 1646 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1647 struct sockcm_cookie *sockc); 1648 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1649 struct sockcm_cookie *sockc); 1650 1651 /* 1652 * Functions to fill in entries in struct proto_ops when a protocol 1653 * does not implement a particular function. 1654 */ 1655 int sock_no_bind(struct socket *, struct sockaddr *, int); 1656 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1657 int sock_no_socketpair(struct socket *, struct socket *); 1658 int sock_no_accept(struct socket *, struct socket *, int, bool); 1659 int sock_no_getname(struct socket *, struct sockaddr *, int); 1660 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1661 int sock_no_listen(struct socket *, int); 1662 int sock_no_shutdown(struct socket *, int); 1663 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1664 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1665 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1666 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1667 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1668 int sock_no_mmap(struct file *file, struct socket *sock, 1669 struct vm_area_struct *vma); 1670 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1671 size_t size, int flags); 1672 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1673 int offset, size_t size, int flags); 1674 1675 /* 1676 * Functions to fill in entries in struct proto_ops when a protocol 1677 * uses the inet style. 1678 */ 1679 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1680 char __user *optval, int __user *optlen); 1681 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1682 int flags); 1683 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1684 char __user *optval, unsigned int optlen); 1685 int compat_sock_common_getsockopt(struct socket *sock, int level, 1686 int optname, char __user *optval, int __user *optlen); 1687 int compat_sock_common_setsockopt(struct socket *sock, int level, 1688 int optname, char __user *optval, unsigned int optlen); 1689 1690 void sk_common_release(struct sock *sk); 1691 1692 /* 1693 * Default socket callbacks and setup code 1694 */ 1695 1696 /* Initialise core socket variables */ 1697 void sock_init_data(struct socket *sock, struct sock *sk); 1698 1699 /* 1700 * Socket reference counting postulates. 1701 * 1702 * * Each user of socket SHOULD hold a reference count. 1703 * * Each access point to socket (an hash table bucket, reference from a list, 1704 * running timer, skb in flight MUST hold a reference count. 1705 * * When reference count hits 0, it means it will never increase back. 1706 * * When reference count hits 0, it means that no references from 1707 * outside exist to this socket and current process on current CPU 1708 * is last user and may/should destroy this socket. 1709 * * sk_free is called from any context: process, BH, IRQ. When 1710 * it is called, socket has no references from outside -> sk_free 1711 * may release descendant resources allocated by the socket, but 1712 * to the time when it is called, socket is NOT referenced by any 1713 * hash tables, lists etc. 1714 * * Packets, delivered from outside (from network or from another process) 1715 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1716 * when they sit in queue. Otherwise, packets will leak to hole, when 1717 * socket is looked up by one cpu and unhasing is made by another CPU. 1718 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1719 * (leak to backlog). Packet socket does all the processing inside 1720 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1721 * use separate SMP lock, so that they are prone too. 1722 */ 1723 1724 /* Ungrab socket and destroy it, if it was the last reference. */ 1725 static inline void sock_put(struct sock *sk) 1726 { 1727 if (refcount_dec_and_test(&sk->sk_refcnt)) 1728 sk_free(sk); 1729 } 1730 /* Generic version of sock_put(), dealing with all sockets 1731 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1732 */ 1733 void sock_gen_put(struct sock *sk); 1734 1735 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1736 unsigned int trim_cap, bool refcounted); 1737 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1738 const int nested) 1739 { 1740 return __sk_receive_skb(sk, skb, nested, 1, true); 1741 } 1742 1743 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1744 { 1745 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1746 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1747 return; 1748 sk->sk_tx_queue_mapping = tx_queue; 1749 } 1750 1751 #define NO_QUEUE_MAPPING USHRT_MAX 1752 1753 static inline void sk_tx_queue_clear(struct sock *sk) 1754 { 1755 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1756 } 1757 1758 static inline int sk_tx_queue_get(const struct sock *sk) 1759 { 1760 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1761 return sk->sk_tx_queue_mapping; 1762 1763 return -1; 1764 } 1765 1766 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1767 { 1768 #ifdef CONFIG_XPS 1769 if (skb_rx_queue_recorded(skb)) { 1770 u16 rx_queue = skb_get_rx_queue(skb); 1771 1772 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1773 return; 1774 1775 sk->sk_rx_queue_mapping = rx_queue; 1776 } 1777 #endif 1778 } 1779 1780 static inline void sk_rx_queue_clear(struct sock *sk) 1781 { 1782 #ifdef CONFIG_XPS 1783 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1784 #endif 1785 } 1786 1787 #ifdef CONFIG_XPS 1788 static inline int sk_rx_queue_get(const struct sock *sk) 1789 { 1790 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1791 return sk->sk_rx_queue_mapping; 1792 1793 return -1; 1794 } 1795 #endif 1796 1797 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1798 { 1799 sk_tx_queue_clear(sk); 1800 sk->sk_socket = sock; 1801 } 1802 1803 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1804 { 1805 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1806 return &rcu_dereference_raw(sk->sk_wq)->wait; 1807 } 1808 /* Detach socket from process context. 1809 * Announce socket dead, detach it from wait queue and inode. 1810 * Note that parent inode held reference count on this struct sock, 1811 * we do not release it in this function, because protocol 1812 * probably wants some additional cleanups or even continuing 1813 * to work with this socket (TCP). 1814 */ 1815 static inline void sock_orphan(struct sock *sk) 1816 { 1817 write_lock_bh(&sk->sk_callback_lock); 1818 sock_set_flag(sk, SOCK_DEAD); 1819 sk_set_socket(sk, NULL); 1820 sk->sk_wq = NULL; 1821 write_unlock_bh(&sk->sk_callback_lock); 1822 } 1823 1824 static inline void sock_graft(struct sock *sk, struct socket *parent) 1825 { 1826 WARN_ON(parent->sk); 1827 write_lock_bh(&sk->sk_callback_lock); 1828 rcu_assign_pointer(sk->sk_wq, parent->wq); 1829 parent->sk = sk; 1830 sk_set_socket(sk, parent); 1831 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1832 security_sock_graft(sk, parent); 1833 write_unlock_bh(&sk->sk_callback_lock); 1834 } 1835 1836 kuid_t sock_i_uid(struct sock *sk); 1837 unsigned long sock_i_ino(struct sock *sk); 1838 1839 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1840 { 1841 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1842 } 1843 1844 static inline u32 net_tx_rndhash(void) 1845 { 1846 u32 v = prandom_u32(); 1847 1848 return v ?: 1; 1849 } 1850 1851 static inline void sk_set_txhash(struct sock *sk) 1852 { 1853 sk->sk_txhash = net_tx_rndhash(); 1854 } 1855 1856 static inline void sk_rethink_txhash(struct sock *sk) 1857 { 1858 if (sk->sk_txhash) 1859 sk_set_txhash(sk); 1860 } 1861 1862 static inline struct dst_entry * 1863 __sk_dst_get(struct sock *sk) 1864 { 1865 return rcu_dereference_check(sk->sk_dst_cache, 1866 lockdep_sock_is_held(sk)); 1867 } 1868 1869 static inline struct dst_entry * 1870 sk_dst_get(struct sock *sk) 1871 { 1872 struct dst_entry *dst; 1873 1874 rcu_read_lock(); 1875 dst = rcu_dereference(sk->sk_dst_cache); 1876 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1877 dst = NULL; 1878 rcu_read_unlock(); 1879 return dst; 1880 } 1881 1882 static inline void dst_negative_advice(struct sock *sk) 1883 { 1884 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1885 1886 sk_rethink_txhash(sk); 1887 1888 if (dst && dst->ops->negative_advice) { 1889 ndst = dst->ops->negative_advice(dst); 1890 1891 if (ndst != dst) { 1892 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1893 sk_tx_queue_clear(sk); 1894 sk->sk_dst_pending_confirm = 0; 1895 } 1896 } 1897 } 1898 1899 static inline void 1900 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1901 { 1902 struct dst_entry *old_dst; 1903 1904 sk_tx_queue_clear(sk); 1905 sk->sk_dst_pending_confirm = 0; 1906 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1907 lockdep_sock_is_held(sk)); 1908 rcu_assign_pointer(sk->sk_dst_cache, dst); 1909 dst_release(old_dst); 1910 } 1911 1912 static inline void 1913 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1914 { 1915 struct dst_entry *old_dst; 1916 1917 sk_tx_queue_clear(sk); 1918 sk->sk_dst_pending_confirm = 0; 1919 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1920 dst_release(old_dst); 1921 } 1922 1923 static inline void 1924 __sk_dst_reset(struct sock *sk) 1925 { 1926 __sk_dst_set(sk, NULL); 1927 } 1928 1929 static inline void 1930 sk_dst_reset(struct sock *sk) 1931 { 1932 sk_dst_set(sk, NULL); 1933 } 1934 1935 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1936 1937 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1938 1939 static inline void sk_dst_confirm(struct sock *sk) 1940 { 1941 if (!sk->sk_dst_pending_confirm) 1942 sk->sk_dst_pending_confirm = 1; 1943 } 1944 1945 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1946 { 1947 if (skb_get_dst_pending_confirm(skb)) { 1948 struct sock *sk = skb->sk; 1949 unsigned long now = jiffies; 1950 1951 /* avoid dirtying neighbour */ 1952 if (n->confirmed != now) 1953 n->confirmed = now; 1954 if (sk && sk->sk_dst_pending_confirm) 1955 sk->sk_dst_pending_confirm = 0; 1956 } 1957 } 1958 1959 bool sk_mc_loop(struct sock *sk); 1960 1961 static inline bool sk_can_gso(const struct sock *sk) 1962 { 1963 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1964 } 1965 1966 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1967 1968 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1969 { 1970 sk->sk_route_nocaps |= flags; 1971 sk->sk_route_caps &= ~flags; 1972 } 1973 1974 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1975 struct iov_iter *from, char *to, 1976 int copy, int offset) 1977 { 1978 if (skb->ip_summed == CHECKSUM_NONE) { 1979 __wsum csum = 0; 1980 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 1981 return -EFAULT; 1982 skb->csum = csum_block_add(skb->csum, csum, offset); 1983 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1984 if (!copy_from_iter_full_nocache(to, copy, from)) 1985 return -EFAULT; 1986 } else if (!copy_from_iter_full(to, copy, from)) 1987 return -EFAULT; 1988 1989 return 0; 1990 } 1991 1992 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1993 struct iov_iter *from, int copy) 1994 { 1995 int err, offset = skb->len; 1996 1997 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1998 copy, offset); 1999 if (err) 2000 __skb_trim(skb, offset); 2001 2002 return err; 2003 } 2004 2005 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2006 struct sk_buff *skb, 2007 struct page *page, 2008 int off, int copy) 2009 { 2010 int err; 2011 2012 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2013 copy, skb->len); 2014 if (err) 2015 return err; 2016 2017 skb->len += copy; 2018 skb->data_len += copy; 2019 skb->truesize += copy; 2020 sk->sk_wmem_queued += copy; 2021 sk_mem_charge(sk, copy); 2022 return 0; 2023 } 2024 2025 /** 2026 * sk_wmem_alloc_get - returns write allocations 2027 * @sk: socket 2028 * 2029 * Returns sk_wmem_alloc minus initial offset of one 2030 */ 2031 static inline int sk_wmem_alloc_get(const struct sock *sk) 2032 { 2033 return refcount_read(&sk->sk_wmem_alloc) - 1; 2034 } 2035 2036 /** 2037 * sk_rmem_alloc_get - returns read allocations 2038 * @sk: socket 2039 * 2040 * Returns sk_rmem_alloc 2041 */ 2042 static inline int sk_rmem_alloc_get(const struct sock *sk) 2043 { 2044 return atomic_read(&sk->sk_rmem_alloc); 2045 } 2046 2047 /** 2048 * sk_has_allocations - check if allocations are outstanding 2049 * @sk: socket 2050 * 2051 * Returns true if socket has write or read allocations 2052 */ 2053 static inline bool sk_has_allocations(const struct sock *sk) 2054 { 2055 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2056 } 2057 2058 /** 2059 * skwq_has_sleeper - check if there are any waiting processes 2060 * @wq: struct socket_wq 2061 * 2062 * Returns true if socket_wq has waiting processes 2063 * 2064 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2065 * barrier call. They were added due to the race found within the tcp code. 2066 * 2067 * Consider following tcp code paths:: 2068 * 2069 * CPU1 CPU2 2070 * sys_select receive packet 2071 * ... ... 2072 * __add_wait_queue update tp->rcv_nxt 2073 * ... ... 2074 * tp->rcv_nxt check sock_def_readable 2075 * ... { 2076 * schedule rcu_read_lock(); 2077 * wq = rcu_dereference(sk->sk_wq); 2078 * if (wq && waitqueue_active(&wq->wait)) 2079 * wake_up_interruptible(&wq->wait) 2080 * ... 2081 * } 2082 * 2083 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2084 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2085 * could then endup calling schedule and sleep forever if there are no more 2086 * data on the socket. 2087 * 2088 */ 2089 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2090 { 2091 return wq && wq_has_sleeper(&wq->wait); 2092 } 2093 2094 /** 2095 * sock_poll_wait - place memory barrier behind the poll_wait call. 2096 * @filp: file 2097 * @sock: socket to wait on 2098 * @p: poll_table 2099 * 2100 * See the comments in the wq_has_sleeper function. 2101 */ 2102 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2103 poll_table *p) 2104 { 2105 if (!poll_does_not_wait(p)) { 2106 poll_wait(filp, &sock->wq->wait, p); 2107 /* We need to be sure we are in sync with the 2108 * socket flags modification. 2109 * 2110 * This memory barrier is paired in the wq_has_sleeper. 2111 */ 2112 smp_mb(); 2113 } 2114 } 2115 2116 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2117 { 2118 if (sk->sk_txhash) { 2119 skb->l4_hash = 1; 2120 skb->hash = sk->sk_txhash; 2121 } 2122 } 2123 2124 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2125 2126 /* 2127 * Queue a received datagram if it will fit. Stream and sequenced 2128 * protocols can't normally use this as they need to fit buffers in 2129 * and play with them. 2130 * 2131 * Inlined as it's very short and called for pretty much every 2132 * packet ever received. 2133 */ 2134 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2135 { 2136 skb_orphan(skb); 2137 skb->sk = sk; 2138 skb->destructor = sock_rfree; 2139 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2140 sk_mem_charge(sk, skb->truesize); 2141 } 2142 2143 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2144 unsigned long expires); 2145 2146 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2147 2148 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2149 struct sk_buff *skb, unsigned int flags, 2150 void (*destructor)(struct sock *sk, 2151 struct sk_buff *skb)); 2152 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2153 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2154 2155 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2156 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2157 2158 /* 2159 * Recover an error report and clear atomically 2160 */ 2161 2162 static inline int sock_error(struct sock *sk) 2163 { 2164 int err; 2165 if (likely(!sk->sk_err)) 2166 return 0; 2167 err = xchg(&sk->sk_err, 0); 2168 return -err; 2169 } 2170 2171 static inline unsigned long sock_wspace(struct sock *sk) 2172 { 2173 int amt = 0; 2174 2175 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2176 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2177 if (amt < 0) 2178 amt = 0; 2179 } 2180 return amt; 2181 } 2182 2183 /* Note: 2184 * We use sk->sk_wq_raw, from contexts knowing this 2185 * pointer is not NULL and cannot disappear/change. 2186 */ 2187 static inline void sk_set_bit(int nr, struct sock *sk) 2188 { 2189 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2190 !sock_flag(sk, SOCK_FASYNC)) 2191 return; 2192 2193 set_bit(nr, &sk->sk_wq_raw->flags); 2194 } 2195 2196 static inline void sk_clear_bit(int nr, struct sock *sk) 2197 { 2198 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2199 !sock_flag(sk, SOCK_FASYNC)) 2200 return; 2201 2202 clear_bit(nr, &sk->sk_wq_raw->flags); 2203 } 2204 2205 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2206 { 2207 if (sock_flag(sk, SOCK_FASYNC)) { 2208 rcu_read_lock(); 2209 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2210 rcu_read_unlock(); 2211 } 2212 } 2213 2214 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2215 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2216 * Note: for send buffers, TCP works better if we can build two skbs at 2217 * minimum. 2218 */ 2219 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2220 2221 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2222 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2223 2224 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2225 { 2226 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2227 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2228 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2229 } 2230 } 2231 2232 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2233 bool force_schedule); 2234 2235 /** 2236 * sk_page_frag - return an appropriate page_frag 2237 * @sk: socket 2238 * 2239 * If socket allocation mode allows current thread to sleep, it means its 2240 * safe to use the per task page_frag instead of the per socket one. 2241 */ 2242 static inline struct page_frag *sk_page_frag(struct sock *sk) 2243 { 2244 if (gfpflags_allow_blocking(sk->sk_allocation)) 2245 return ¤t->task_frag; 2246 2247 return &sk->sk_frag; 2248 } 2249 2250 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2251 2252 /* 2253 * Default write policy as shown to user space via poll/select/SIGIO 2254 */ 2255 static inline bool sock_writeable(const struct sock *sk) 2256 { 2257 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2258 } 2259 2260 static inline gfp_t gfp_any(void) 2261 { 2262 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2263 } 2264 2265 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2266 { 2267 return noblock ? 0 : sk->sk_rcvtimeo; 2268 } 2269 2270 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2271 { 2272 return noblock ? 0 : sk->sk_sndtimeo; 2273 } 2274 2275 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2276 { 2277 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2278 } 2279 2280 /* Alas, with timeout socket operations are not restartable. 2281 * Compare this to poll(). 2282 */ 2283 static inline int sock_intr_errno(long timeo) 2284 { 2285 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2286 } 2287 2288 struct sock_skb_cb { 2289 u32 dropcount; 2290 }; 2291 2292 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2293 * using skb->cb[] would keep using it directly and utilize its 2294 * alignement guarantee. 2295 */ 2296 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2297 sizeof(struct sock_skb_cb))) 2298 2299 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2300 SOCK_SKB_CB_OFFSET)) 2301 2302 #define sock_skb_cb_check_size(size) \ 2303 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2304 2305 static inline void 2306 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2307 { 2308 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2309 atomic_read(&sk->sk_drops) : 0; 2310 } 2311 2312 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2313 { 2314 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2315 2316 atomic_add(segs, &sk->sk_drops); 2317 } 2318 2319 static inline ktime_t sock_read_timestamp(struct sock *sk) 2320 { 2321 #if BITS_PER_LONG==32 2322 unsigned int seq; 2323 ktime_t kt; 2324 2325 do { 2326 seq = read_seqbegin(&sk->sk_stamp_seq); 2327 kt = sk->sk_stamp; 2328 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2329 2330 return kt; 2331 #else 2332 return sk->sk_stamp; 2333 #endif 2334 } 2335 2336 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2337 { 2338 #if BITS_PER_LONG==32 2339 write_seqlock(&sk->sk_stamp_seq); 2340 sk->sk_stamp = kt; 2341 write_sequnlock(&sk->sk_stamp_seq); 2342 #else 2343 sk->sk_stamp = kt; 2344 #endif 2345 } 2346 2347 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2348 struct sk_buff *skb); 2349 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2350 struct sk_buff *skb); 2351 2352 static inline void 2353 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2354 { 2355 ktime_t kt = skb->tstamp; 2356 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2357 2358 /* 2359 * generate control messages if 2360 * - receive time stamping in software requested 2361 * - software time stamp available and wanted 2362 * - hardware time stamps available and wanted 2363 */ 2364 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2365 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2366 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2367 (hwtstamps->hwtstamp && 2368 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2369 __sock_recv_timestamp(msg, sk, skb); 2370 else 2371 sock_write_timestamp(sk, kt); 2372 2373 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2374 __sock_recv_wifi_status(msg, sk, skb); 2375 } 2376 2377 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2378 struct sk_buff *skb); 2379 2380 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2381 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2382 struct sk_buff *skb) 2383 { 2384 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2385 (1UL << SOCK_RCVTSTAMP)) 2386 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2387 SOF_TIMESTAMPING_RAW_HARDWARE) 2388 2389 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2390 __sock_recv_ts_and_drops(msg, sk, skb); 2391 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2392 sock_write_timestamp(sk, skb->tstamp); 2393 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2394 sock_write_timestamp(sk, 0); 2395 } 2396 2397 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2398 2399 /** 2400 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2401 * @sk: socket sending this packet 2402 * @tsflags: timestamping flags to use 2403 * @tx_flags: completed with instructions for time stamping 2404 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2405 * 2406 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2407 */ 2408 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2409 __u8 *tx_flags, __u32 *tskey) 2410 { 2411 if (unlikely(tsflags)) { 2412 __sock_tx_timestamp(tsflags, tx_flags); 2413 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2414 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2415 *tskey = sk->sk_tskey++; 2416 } 2417 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2418 *tx_flags |= SKBTX_WIFI_STATUS; 2419 } 2420 2421 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2422 __u8 *tx_flags) 2423 { 2424 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2425 } 2426 2427 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2428 { 2429 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2430 &skb_shinfo(skb)->tskey); 2431 } 2432 2433 /** 2434 * sk_eat_skb - Release a skb if it is no longer needed 2435 * @sk: socket to eat this skb from 2436 * @skb: socket buffer to eat 2437 * 2438 * This routine must be called with interrupts disabled or with the socket 2439 * locked so that the sk_buff queue operation is ok. 2440 */ 2441 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2442 { 2443 __skb_unlink(skb, &sk->sk_receive_queue); 2444 if ( 2445 #ifdef CONFIG_RPS 2446 !static_branch_unlikely(&rps_needed) && 2447 #endif 2448 !sk->sk_rx_skb_cache) { 2449 sk->sk_rx_skb_cache = skb; 2450 skb_orphan(skb); 2451 return; 2452 } 2453 __kfree_skb(skb); 2454 } 2455 2456 static inline 2457 struct net *sock_net(const struct sock *sk) 2458 { 2459 return read_pnet(&sk->sk_net); 2460 } 2461 2462 static inline 2463 void sock_net_set(struct sock *sk, struct net *net) 2464 { 2465 write_pnet(&sk->sk_net, net); 2466 } 2467 2468 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2469 { 2470 if (skb->sk) { 2471 struct sock *sk = skb->sk; 2472 2473 skb->destructor = NULL; 2474 skb->sk = NULL; 2475 return sk; 2476 } 2477 return NULL; 2478 } 2479 2480 /* This helper checks if a socket is a full socket, 2481 * ie _not_ a timewait or request socket. 2482 */ 2483 static inline bool sk_fullsock(const struct sock *sk) 2484 { 2485 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2486 } 2487 2488 /* Checks if this SKB belongs to an HW offloaded socket 2489 * and whether any SW fallbacks are required based on dev. 2490 */ 2491 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2492 struct net_device *dev) 2493 { 2494 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2495 struct sock *sk = skb->sk; 2496 2497 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) 2498 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2499 #endif 2500 2501 return skb; 2502 } 2503 2504 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2505 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2506 */ 2507 static inline bool sk_listener(const struct sock *sk) 2508 { 2509 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2510 } 2511 2512 void sock_enable_timestamp(struct sock *sk, int flag); 2513 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2514 int type); 2515 2516 bool sk_ns_capable(const struct sock *sk, 2517 struct user_namespace *user_ns, int cap); 2518 bool sk_capable(const struct sock *sk, int cap); 2519 bool sk_net_capable(const struct sock *sk, int cap); 2520 2521 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2522 2523 /* Take into consideration the size of the struct sk_buff overhead in the 2524 * determination of these values, since that is non-constant across 2525 * platforms. This makes socket queueing behavior and performance 2526 * not depend upon such differences. 2527 */ 2528 #define _SK_MEM_PACKETS 256 2529 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2530 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2531 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2532 2533 extern __u32 sysctl_wmem_max; 2534 extern __u32 sysctl_rmem_max; 2535 2536 extern int sysctl_tstamp_allow_data; 2537 extern int sysctl_optmem_max; 2538 2539 extern __u32 sysctl_wmem_default; 2540 extern __u32 sysctl_rmem_default; 2541 2542 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2543 { 2544 /* Does this proto have per netns sysctl_wmem ? */ 2545 if (proto->sysctl_wmem_offset) 2546 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2547 2548 return *proto->sysctl_wmem; 2549 } 2550 2551 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2552 { 2553 /* Does this proto have per netns sysctl_rmem ? */ 2554 if (proto->sysctl_rmem_offset) 2555 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2556 2557 return *proto->sysctl_rmem; 2558 } 2559 2560 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2561 * Some wifi drivers need to tweak it to get more chunks. 2562 * They can use this helper from their ndo_start_xmit() 2563 */ 2564 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2565 { 2566 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val) 2567 return; 2568 sk->sk_pacing_shift = val; 2569 } 2570 2571 /* if a socket is bound to a device, check that the given device 2572 * index is either the same or that the socket is bound to an L3 2573 * master device and the given device index is also enslaved to 2574 * that L3 master 2575 */ 2576 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2577 { 2578 int mdif; 2579 2580 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2581 return true; 2582 2583 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2584 if (mdif && mdif == sk->sk_bound_dev_if) 2585 return true; 2586 2587 return false; 2588 } 2589 2590 #endif /* _SOCK_H */ 2591