xref: /openbmc/linux/include/net/sock.h (revision a8da474e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65 
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
71 
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 	return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89  * This structure really needs to be cleaned up.
90  * Most of it is for TCP, and not used by any of
91  * the other protocols.
92  */
93 
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 					printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106 
107 /* This is the per-socket lock.  The spinlock provides a synchronization
108  * between user contexts and software interrupt processing, whereas the
109  * mini-semaphore synchronizes multiple users amongst themselves.
110  */
111 typedef struct {
112 	spinlock_t		slock;
113 	int			owned;
114 	wait_queue_head_t	wq;
115 	/*
116 	 * We express the mutex-alike socket_lock semantics
117 	 * to the lock validator by explicitly managing
118 	 * the slock as a lock variant (in addition to
119 	 * the slock itself):
120 	 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 	struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125 
126 struct sock;
127 struct proto;
128 struct net;
129 
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132 
133 /**
134  *	struct sock_common - minimal network layer representation of sockets
135  *	@skc_daddr: Foreign IPv4 addr
136  *	@skc_rcv_saddr: Bound local IPv4 addr
137  *	@skc_hash: hash value used with various protocol lookup tables
138  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
139  *	@skc_dport: placeholder for inet_dport/tw_dport
140  *	@skc_num: placeholder for inet_num/tw_num
141  *	@skc_family: network address family
142  *	@skc_state: Connection state
143  *	@skc_reuse: %SO_REUSEADDR setting
144  *	@skc_reuseport: %SO_REUSEPORT setting
145  *	@skc_bound_dev_if: bound device index if != 0
146  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
147  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148  *	@skc_prot: protocol handlers inside a network family
149  *	@skc_net: reference to the network namespace of this socket
150  *	@skc_node: main hash linkage for various protocol lookup tables
151  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152  *	@skc_tx_queue_mapping: tx queue number for this connection
153  *	@skc_flags: place holder for sk_flags
154  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
155  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
156  *	@skc_incoming_cpu: record/match cpu processing incoming packets
157  *	@skc_refcnt: reference count
158  *
159  *	This is the minimal network layer representation of sockets, the header
160  *	for struct sock and struct inet_timewait_sock.
161  */
162 struct sock_common {
163 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 	 * address on 64bit arches : cf INET_MATCH()
165 	 */
166 	union {
167 		__addrpair	skc_addrpair;
168 		struct {
169 			__be32	skc_daddr;
170 			__be32	skc_rcv_saddr;
171 		};
172 	};
173 	union  {
174 		unsigned int	skc_hash;
175 		__u16		skc_u16hashes[2];
176 	};
177 	/* skc_dport && skc_num must be grouped as well */
178 	union {
179 		__portpair	skc_portpair;
180 		struct {
181 			__be16	skc_dport;
182 			__u16	skc_num;
183 		};
184 	};
185 
186 	unsigned short		skc_family;
187 	volatile unsigned char	skc_state;
188 	unsigned char		skc_reuse:4;
189 	unsigned char		skc_reuseport:1;
190 	unsigned char		skc_ipv6only:1;
191 	unsigned char		skc_net_refcnt:1;
192 	int			skc_bound_dev_if;
193 	union {
194 		struct hlist_node	skc_bind_node;
195 		struct hlist_nulls_node skc_portaddr_node;
196 	};
197 	struct proto		*skc_prot;
198 	possible_net_t		skc_net;
199 
200 #if IS_ENABLED(CONFIG_IPV6)
201 	struct in6_addr		skc_v6_daddr;
202 	struct in6_addr		skc_v6_rcv_saddr;
203 #endif
204 
205 	atomic64_t		skc_cookie;
206 
207 	/* following fields are padding to force
208 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 	 * assuming IPV6 is enabled. We use this padding differently
210 	 * for different kind of 'sockets'
211 	 */
212 	union {
213 		unsigned long	skc_flags;
214 		struct sock	*skc_listener; /* request_sock */
215 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 	};
217 	/*
218 	 * fields between dontcopy_begin/dontcopy_end
219 	 * are not copied in sock_copy()
220 	 */
221 	/* private: */
222 	int			skc_dontcopy_begin[0];
223 	/* public: */
224 	union {
225 		struct hlist_node	skc_node;
226 		struct hlist_nulls_node skc_nulls_node;
227 	};
228 	int			skc_tx_queue_mapping;
229 	union {
230 		int		skc_incoming_cpu;
231 		u32		skc_rcv_wnd;
232 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
233 	};
234 
235 	atomic_t		skc_refcnt;
236 	/* private: */
237 	int                     skc_dontcopy_end[0];
238 	union {
239 		u32		skc_rxhash;
240 		u32		skc_window_clamp;
241 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
242 	};
243 	/* public: */
244 };
245 
246 struct cg_proto;
247 /**
248   *	struct sock - network layer representation of sockets
249   *	@__sk_common: shared layout with inet_timewait_sock
250   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
251   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
252   *	@sk_lock:	synchronizer
253   *	@sk_rcvbuf: size of receive buffer in bytes
254   *	@sk_wq: sock wait queue and async head
255   *	@sk_rx_dst: receive input route used by early demux
256   *	@sk_dst_cache: destination cache
257   *	@sk_dst_lock: destination cache lock
258   *	@sk_policy: flow policy
259   *	@sk_receive_queue: incoming packets
260   *	@sk_wmem_alloc: transmit queue bytes committed
261   *	@sk_write_queue: Packet sending queue
262   *	@sk_omem_alloc: "o" is "option" or "other"
263   *	@sk_wmem_queued: persistent queue size
264   *	@sk_forward_alloc: space allocated forward
265   *	@sk_napi_id: id of the last napi context to receive data for sk
266   *	@sk_ll_usec: usecs to busypoll when there is no data
267   *	@sk_allocation: allocation mode
268   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
269   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
270   *	@sk_sndbuf: size of send buffer in bytes
271   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
272   *	@sk_no_check_rx: allow zero checksum in RX packets
273   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
274   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
275   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
276   *	@sk_gso_max_size: Maximum GSO segment size to build
277   *	@sk_gso_max_segs: Maximum number of GSO segments
278   *	@sk_lingertime: %SO_LINGER l_linger setting
279   *	@sk_backlog: always used with the per-socket spinlock held
280   *	@sk_callback_lock: used with the callbacks in the end of this struct
281   *	@sk_error_queue: rarely used
282   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
283   *			  IPV6_ADDRFORM for instance)
284   *	@sk_err: last error
285   *	@sk_err_soft: errors that don't cause failure but are the cause of a
286   *		      persistent failure not just 'timed out'
287   *	@sk_drops: raw/udp drops counter
288   *	@sk_ack_backlog: current listen backlog
289   *	@sk_max_ack_backlog: listen backlog set in listen()
290   *	@sk_priority: %SO_PRIORITY setting
291   *	@sk_cgrp_prioidx: socket group's priority map index
292   *	@sk_type: socket type (%SOCK_STREAM, etc)
293   *	@sk_protocol: which protocol this socket belongs in this network family
294   *	@sk_peer_pid: &struct pid for this socket's peer
295   *	@sk_peer_cred: %SO_PEERCRED setting
296   *	@sk_rcvlowat: %SO_RCVLOWAT setting
297   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
298   *	@sk_sndtimeo: %SO_SNDTIMEO setting
299   *	@sk_txhash: computed flow hash for use on transmit
300   *	@sk_filter: socket filtering instructions
301   *	@sk_timer: sock cleanup timer
302   *	@sk_stamp: time stamp of last packet received
303   *	@sk_tsflags: SO_TIMESTAMPING socket options
304   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
305   *	@sk_socket: Identd and reporting IO signals
306   *	@sk_user_data: RPC layer private data
307   *	@sk_frag: cached page frag
308   *	@sk_peek_off: current peek_offset value
309   *	@sk_send_head: front of stuff to transmit
310   *	@sk_security: used by security modules
311   *	@sk_mark: generic packet mark
312   *	@sk_classid: this socket's cgroup classid
313   *	@sk_cgrp: this socket's cgroup-specific proto data
314   *	@sk_write_pending: a write to stream socket waits to start
315   *	@sk_state_change: callback to indicate change in the state of the sock
316   *	@sk_data_ready: callback to indicate there is data to be processed
317   *	@sk_write_space: callback to indicate there is bf sending space available
318   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319   *	@sk_backlog_rcv: callback to process the backlog
320   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321  */
322 struct sock {
323 	/*
324 	 * Now struct inet_timewait_sock also uses sock_common, so please just
325 	 * don't add nothing before this first member (__sk_common) --acme
326 	 */
327 	struct sock_common	__sk_common;
328 #define sk_node			__sk_common.skc_node
329 #define sk_nulls_node		__sk_common.skc_nulls_node
330 #define sk_refcnt		__sk_common.skc_refcnt
331 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
332 
333 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
334 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
335 #define sk_hash			__sk_common.skc_hash
336 #define sk_portpair		__sk_common.skc_portpair
337 #define sk_num			__sk_common.skc_num
338 #define sk_dport		__sk_common.skc_dport
339 #define sk_addrpair		__sk_common.skc_addrpair
340 #define sk_daddr		__sk_common.skc_daddr
341 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
342 #define sk_family		__sk_common.skc_family
343 #define sk_state		__sk_common.skc_state
344 #define sk_reuse		__sk_common.skc_reuse
345 #define sk_reuseport		__sk_common.skc_reuseport
346 #define sk_ipv6only		__sk_common.skc_ipv6only
347 #define sk_net_refcnt		__sk_common.skc_net_refcnt
348 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
349 #define sk_bind_node		__sk_common.skc_bind_node
350 #define sk_prot			__sk_common.skc_prot
351 #define sk_net			__sk_common.skc_net
352 #define sk_v6_daddr		__sk_common.skc_v6_daddr
353 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
354 #define sk_cookie		__sk_common.skc_cookie
355 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
356 #define sk_flags		__sk_common.skc_flags
357 #define sk_rxhash		__sk_common.skc_rxhash
358 
359 	socket_lock_t		sk_lock;
360 	struct sk_buff_head	sk_receive_queue;
361 	/*
362 	 * The backlog queue is special, it is always used with
363 	 * the per-socket spinlock held and requires low latency
364 	 * access. Therefore we special case it's implementation.
365 	 * Note : rmem_alloc is in this structure to fill a hole
366 	 * on 64bit arches, not because its logically part of
367 	 * backlog.
368 	 */
369 	struct {
370 		atomic_t	rmem_alloc;
371 		int		len;
372 		struct sk_buff	*head;
373 		struct sk_buff	*tail;
374 	} sk_backlog;
375 #define sk_rmem_alloc sk_backlog.rmem_alloc
376 	int			sk_forward_alloc;
377 
378 	__u32			sk_txhash;
379 #ifdef CONFIG_NET_RX_BUSY_POLL
380 	unsigned int		sk_napi_id;
381 	unsigned int		sk_ll_usec;
382 #endif
383 	atomic_t		sk_drops;
384 	int			sk_rcvbuf;
385 
386 	struct sk_filter __rcu	*sk_filter;
387 	struct socket_wq __rcu	*sk_wq;
388 
389 #ifdef CONFIG_XFRM
390 	struct xfrm_policy	*sk_policy[2];
391 #endif
392 	struct dst_entry	*sk_rx_dst;
393 	struct dst_entry __rcu	*sk_dst_cache;
394 	spinlock_t		sk_dst_lock;
395 	atomic_t		sk_wmem_alloc;
396 	atomic_t		sk_omem_alloc;
397 	int			sk_sndbuf;
398 	struct sk_buff_head	sk_write_queue;
399 	kmemcheck_bitfield_begin(flags);
400 	unsigned int		sk_shutdown  : 2,
401 				sk_no_check_tx : 1,
402 				sk_no_check_rx : 1,
403 				sk_userlocks : 4,
404 				sk_protocol  : 8,
405 				sk_type      : 16;
406 	kmemcheck_bitfield_end(flags);
407 	int			sk_wmem_queued;
408 	gfp_t			sk_allocation;
409 	u32			sk_pacing_rate; /* bytes per second */
410 	u32			sk_max_pacing_rate;
411 	netdev_features_t	sk_route_caps;
412 	netdev_features_t	sk_route_nocaps;
413 	int			sk_gso_type;
414 	unsigned int		sk_gso_max_size;
415 	u16			sk_gso_max_segs;
416 	int			sk_rcvlowat;
417 	unsigned long	        sk_lingertime;
418 	struct sk_buff_head	sk_error_queue;
419 	struct proto		*sk_prot_creator;
420 	rwlock_t		sk_callback_lock;
421 	int			sk_err,
422 				sk_err_soft;
423 	u32			sk_ack_backlog;
424 	u32			sk_max_ack_backlog;
425 	__u32			sk_priority;
426 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
427 	__u32			sk_cgrp_prioidx;
428 #endif
429 	struct pid		*sk_peer_pid;
430 	const struct cred	*sk_peer_cred;
431 	long			sk_rcvtimeo;
432 	long			sk_sndtimeo;
433 	struct timer_list	sk_timer;
434 	ktime_t			sk_stamp;
435 	u16			sk_tsflags;
436 	u32			sk_tskey;
437 	struct socket		*sk_socket;
438 	void			*sk_user_data;
439 	struct page_frag	sk_frag;
440 	struct sk_buff		*sk_send_head;
441 	__s32			sk_peek_off;
442 	int			sk_write_pending;
443 #ifdef CONFIG_SECURITY
444 	void			*sk_security;
445 #endif
446 	__u32			sk_mark;
447 #ifdef CONFIG_CGROUP_NET_CLASSID
448 	u32			sk_classid;
449 #endif
450 	struct cg_proto		*sk_cgrp;
451 	void			(*sk_state_change)(struct sock *sk);
452 	void			(*sk_data_ready)(struct sock *sk);
453 	void			(*sk_write_space)(struct sock *sk);
454 	void			(*sk_error_report)(struct sock *sk);
455 	int			(*sk_backlog_rcv)(struct sock *sk,
456 						  struct sk_buff *skb);
457 	void                    (*sk_destruct)(struct sock *sk);
458 };
459 
460 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
461 
462 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
463 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
464 
465 /*
466  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
467  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
468  * on a socket means that the socket will reuse everybody else's port
469  * without looking at the other's sk_reuse value.
470  */
471 
472 #define SK_NO_REUSE	0
473 #define SK_CAN_REUSE	1
474 #define SK_FORCE_REUSE	2
475 
476 static inline int sk_peek_offset(struct sock *sk, int flags)
477 {
478 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
479 		return sk->sk_peek_off;
480 	else
481 		return 0;
482 }
483 
484 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
485 {
486 	if (sk->sk_peek_off >= 0) {
487 		if (sk->sk_peek_off >= val)
488 			sk->sk_peek_off -= val;
489 		else
490 			sk->sk_peek_off = 0;
491 	}
492 }
493 
494 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
495 {
496 	if (sk->sk_peek_off >= 0)
497 		sk->sk_peek_off += val;
498 }
499 
500 /*
501  * Hashed lists helper routines
502  */
503 static inline struct sock *sk_entry(const struct hlist_node *node)
504 {
505 	return hlist_entry(node, struct sock, sk_node);
506 }
507 
508 static inline struct sock *__sk_head(const struct hlist_head *head)
509 {
510 	return hlist_entry(head->first, struct sock, sk_node);
511 }
512 
513 static inline struct sock *sk_head(const struct hlist_head *head)
514 {
515 	return hlist_empty(head) ? NULL : __sk_head(head);
516 }
517 
518 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
519 {
520 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
521 }
522 
523 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
524 {
525 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
526 }
527 
528 static inline struct sock *sk_next(const struct sock *sk)
529 {
530 	return sk->sk_node.next ?
531 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
532 }
533 
534 static inline struct sock *sk_nulls_next(const struct sock *sk)
535 {
536 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
537 		hlist_nulls_entry(sk->sk_nulls_node.next,
538 				  struct sock, sk_nulls_node) :
539 		NULL;
540 }
541 
542 static inline bool sk_unhashed(const struct sock *sk)
543 {
544 	return hlist_unhashed(&sk->sk_node);
545 }
546 
547 static inline bool sk_hashed(const struct sock *sk)
548 {
549 	return !sk_unhashed(sk);
550 }
551 
552 static inline void sk_node_init(struct hlist_node *node)
553 {
554 	node->pprev = NULL;
555 }
556 
557 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
558 {
559 	node->pprev = NULL;
560 }
561 
562 static inline void __sk_del_node(struct sock *sk)
563 {
564 	__hlist_del(&sk->sk_node);
565 }
566 
567 /* NB: equivalent to hlist_del_init_rcu */
568 static inline bool __sk_del_node_init(struct sock *sk)
569 {
570 	if (sk_hashed(sk)) {
571 		__sk_del_node(sk);
572 		sk_node_init(&sk->sk_node);
573 		return true;
574 	}
575 	return false;
576 }
577 
578 /* Grab socket reference count. This operation is valid only
579    when sk is ALREADY grabbed f.e. it is found in hash table
580    or a list and the lookup is made under lock preventing hash table
581    modifications.
582  */
583 
584 static inline void sock_hold(struct sock *sk)
585 {
586 	atomic_inc(&sk->sk_refcnt);
587 }
588 
589 /* Ungrab socket in the context, which assumes that socket refcnt
590    cannot hit zero, f.e. it is true in context of any socketcall.
591  */
592 static inline void __sock_put(struct sock *sk)
593 {
594 	atomic_dec(&sk->sk_refcnt);
595 }
596 
597 static inline bool sk_del_node_init(struct sock *sk)
598 {
599 	bool rc = __sk_del_node_init(sk);
600 
601 	if (rc) {
602 		/* paranoid for a while -acme */
603 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
604 		__sock_put(sk);
605 	}
606 	return rc;
607 }
608 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
609 
610 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
611 {
612 	if (sk_hashed(sk)) {
613 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
614 		return true;
615 	}
616 	return false;
617 }
618 
619 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
620 {
621 	bool rc = __sk_nulls_del_node_init_rcu(sk);
622 
623 	if (rc) {
624 		/* paranoid for a while -acme */
625 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
626 		__sock_put(sk);
627 	}
628 	return rc;
629 }
630 
631 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
632 {
633 	hlist_add_head(&sk->sk_node, list);
634 }
635 
636 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
637 {
638 	sock_hold(sk);
639 	__sk_add_node(sk, list);
640 }
641 
642 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
643 {
644 	sock_hold(sk);
645 	hlist_add_head_rcu(&sk->sk_node, list);
646 }
647 
648 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
649 {
650 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
651 }
652 
653 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
654 {
655 	sock_hold(sk);
656 	__sk_nulls_add_node_rcu(sk, list);
657 }
658 
659 static inline void __sk_del_bind_node(struct sock *sk)
660 {
661 	__hlist_del(&sk->sk_bind_node);
662 }
663 
664 static inline void sk_add_bind_node(struct sock *sk,
665 					struct hlist_head *list)
666 {
667 	hlist_add_head(&sk->sk_bind_node, list);
668 }
669 
670 #define sk_for_each(__sk, list) \
671 	hlist_for_each_entry(__sk, list, sk_node)
672 #define sk_for_each_rcu(__sk, list) \
673 	hlist_for_each_entry_rcu(__sk, list, sk_node)
674 #define sk_nulls_for_each(__sk, node, list) \
675 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
676 #define sk_nulls_for_each_rcu(__sk, node, list) \
677 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
678 #define sk_for_each_from(__sk) \
679 	hlist_for_each_entry_from(__sk, sk_node)
680 #define sk_nulls_for_each_from(__sk, node) \
681 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
682 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
683 #define sk_for_each_safe(__sk, tmp, list) \
684 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
685 #define sk_for_each_bound(__sk, list) \
686 	hlist_for_each_entry(__sk, list, sk_bind_node)
687 
688 /**
689  * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
690  * @tpos:	the type * to use as a loop cursor.
691  * @pos:	the &struct hlist_node to use as a loop cursor.
692  * @head:	the head for your list.
693  * @offset:	offset of hlist_node within the struct.
694  *
695  */
696 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
697 	for (pos = (head)->first;					       \
698 	     (!is_a_nulls(pos)) &&					       \
699 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
700 	     pos = pos->next)
701 
702 static inline struct user_namespace *sk_user_ns(struct sock *sk)
703 {
704 	/* Careful only use this in a context where these parameters
705 	 * can not change and must all be valid, such as recvmsg from
706 	 * userspace.
707 	 */
708 	return sk->sk_socket->file->f_cred->user_ns;
709 }
710 
711 /* Sock flags */
712 enum sock_flags {
713 	SOCK_DEAD,
714 	SOCK_DONE,
715 	SOCK_URGINLINE,
716 	SOCK_KEEPOPEN,
717 	SOCK_LINGER,
718 	SOCK_DESTROY,
719 	SOCK_BROADCAST,
720 	SOCK_TIMESTAMP,
721 	SOCK_ZAPPED,
722 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
723 	SOCK_DBG, /* %SO_DEBUG setting */
724 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
725 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
726 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
727 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
728 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
729 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
730 	SOCK_FASYNC, /* fasync() active */
731 	SOCK_RXQ_OVFL,
732 	SOCK_ZEROCOPY, /* buffers from userspace */
733 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
734 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
735 		     * Will use last 4 bytes of packet sent from
736 		     * user-space instead.
737 		     */
738 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
739 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
740 };
741 
742 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
743 {
744 	nsk->sk_flags = osk->sk_flags;
745 }
746 
747 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
748 {
749 	__set_bit(flag, &sk->sk_flags);
750 }
751 
752 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
753 {
754 	__clear_bit(flag, &sk->sk_flags);
755 }
756 
757 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
758 {
759 	return test_bit(flag, &sk->sk_flags);
760 }
761 
762 #ifdef CONFIG_NET
763 extern struct static_key memalloc_socks;
764 static inline int sk_memalloc_socks(void)
765 {
766 	return static_key_false(&memalloc_socks);
767 }
768 #else
769 
770 static inline int sk_memalloc_socks(void)
771 {
772 	return 0;
773 }
774 
775 #endif
776 
777 static inline gfp_t sk_gfp_atomic(const struct sock *sk, gfp_t gfp_mask)
778 {
779 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
780 }
781 
782 static inline void sk_acceptq_removed(struct sock *sk)
783 {
784 	sk->sk_ack_backlog--;
785 }
786 
787 static inline void sk_acceptq_added(struct sock *sk)
788 {
789 	sk->sk_ack_backlog++;
790 }
791 
792 static inline bool sk_acceptq_is_full(const struct sock *sk)
793 {
794 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
795 }
796 
797 /*
798  * Compute minimal free write space needed to queue new packets.
799  */
800 static inline int sk_stream_min_wspace(const struct sock *sk)
801 {
802 	return sk->sk_wmem_queued >> 1;
803 }
804 
805 static inline int sk_stream_wspace(const struct sock *sk)
806 {
807 	return sk->sk_sndbuf - sk->sk_wmem_queued;
808 }
809 
810 void sk_stream_write_space(struct sock *sk);
811 
812 /* OOB backlog add */
813 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
814 {
815 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
816 	skb_dst_force(skb);
817 
818 	if (!sk->sk_backlog.tail)
819 		sk->sk_backlog.head = skb;
820 	else
821 		sk->sk_backlog.tail->next = skb;
822 
823 	sk->sk_backlog.tail = skb;
824 	skb->next = NULL;
825 }
826 
827 /*
828  * Take into account size of receive queue and backlog queue
829  * Do not take into account this skb truesize,
830  * to allow even a single big packet to come.
831  */
832 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
833 {
834 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
835 
836 	return qsize > limit;
837 }
838 
839 /* The per-socket spinlock must be held here. */
840 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
841 					      unsigned int limit)
842 {
843 	if (sk_rcvqueues_full(sk, limit))
844 		return -ENOBUFS;
845 
846 	/*
847 	 * If the skb was allocated from pfmemalloc reserves, only
848 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
849 	 * helping free memory
850 	 */
851 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
852 		return -ENOMEM;
853 
854 	__sk_add_backlog(sk, skb);
855 	sk->sk_backlog.len += skb->truesize;
856 	return 0;
857 }
858 
859 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
860 
861 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
862 {
863 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
864 		return __sk_backlog_rcv(sk, skb);
865 
866 	return sk->sk_backlog_rcv(sk, skb);
867 }
868 
869 static inline void sk_incoming_cpu_update(struct sock *sk)
870 {
871 	sk->sk_incoming_cpu = raw_smp_processor_id();
872 }
873 
874 static inline void sock_rps_record_flow_hash(__u32 hash)
875 {
876 #ifdef CONFIG_RPS
877 	struct rps_sock_flow_table *sock_flow_table;
878 
879 	rcu_read_lock();
880 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
881 	rps_record_sock_flow(sock_flow_table, hash);
882 	rcu_read_unlock();
883 #endif
884 }
885 
886 static inline void sock_rps_record_flow(const struct sock *sk)
887 {
888 #ifdef CONFIG_RPS
889 	sock_rps_record_flow_hash(sk->sk_rxhash);
890 #endif
891 }
892 
893 static inline void sock_rps_save_rxhash(struct sock *sk,
894 					const struct sk_buff *skb)
895 {
896 #ifdef CONFIG_RPS
897 	if (unlikely(sk->sk_rxhash != skb->hash))
898 		sk->sk_rxhash = skb->hash;
899 #endif
900 }
901 
902 static inline void sock_rps_reset_rxhash(struct sock *sk)
903 {
904 #ifdef CONFIG_RPS
905 	sk->sk_rxhash = 0;
906 #endif
907 }
908 
909 #define sk_wait_event(__sk, __timeo, __condition)			\
910 	({	int __rc;						\
911 		release_sock(__sk);					\
912 		__rc = __condition;					\
913 		if (!__rc) {						\
914 			*(__timeo) = schedule_timeout(*(__timeo));	\
915 		}							\
916 		sched_annotate_sleep();						\
917 		lock_sock(__sk);					\
918 		__rc = __condition;					\
919 		__rc;							\
920 	})
921 
922 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
923 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
924 void sk_stream_wait_close(struct sock *sk, long timeo_p);
925 int sk_stream_error(struct sock *sk, int flags, int err);
926 void sk_stream_kill_queues(struct sock *sk);
927 void sk_set_memalloc(struct sock *sk);
928 void sk_clear_memalloc(struct sock *sk);
929 
930 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
931 
932 struct request_sock_ops;
933 struct timewait_sock_ops;
934 struct inet_hashinfo;
935 struct raw_hashinfo;
936 struct module;
937 
938 /*
939  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
940  * un-modified. Special care is taken when initializing object to zero.
941  */
942 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
943 {
944 	if (offsetof(struct sock, sk_node.next) != 0)
945 		memset(sk, 0, offsetof(struct sock, sk_node.next));
946 	memset(&sk->sk_node.pprev, 0,
947 	       size - offsetof(struct sock, sk_node.pprev));
948 }
949 
950 /* Networking protocol blocks we attach to sockets.
951  * socket layer -> transport layer interface
952  */
953 struct proto {
954 	void			(*close)(struct sock *sk,
955 					long timeout);
956 	int			(*connect)(struct sock *sk,
957 					struct sockaddr *uaddr,
958 					int addr_len);
959 	int			(*disconnect)(struct sock *sk, int flags);
960 
961 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
962 
963 	int			(*ioctl)(struct sock *sk, int cmd,
964 					 unsigned long arg);
965 	int			(*init)(struct sock *sk);
966 	void			(*destroy)(struct sock *sk);
967 	void			(*shutdown)(struct sock *sk, int how);
968 	int			(*setsockopt)(struct sock *sk, int level,
969 					int optname, char __user *optval,
970 					unsigned int optlen);
971 	int			(*getsockopt)(struct sock *sk, int level,
972 					int optname, char __user *optval,
973 					int __user *option);
974 #ifdef CONFIG_COMPAT
975 	int			(*compat_setsockopt)(struct sock *sk,
976 					int level,
977 					int optname, char __user *optval,
978 					unsigned int optlen);
979 	int			(*compat_getsockopt)(struct sock *sk,
980 					int level,
981 					int optname, char __user *optval,
982 					int __user *option);
983 	int			(*compat_ioctl)(struct sock *sk,
984 					unsigned int cmd, unsigned long arg);
985 #endif
986 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
987 					   size_t len);
988 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
989 					   size_t len, int noblock, int flags,
990 					   int *addr_len);
991 	int			(*sendpage)(struct sock *sk, struct page *page,
992 					int offset, size_t size, int flags);
993 	int			(*bind)(struct sock *sk,
994 					struct sockaddr *uaddr, int addr_len);
995 
996 	int			(*backlog_rcv) (struct sock *sk,
997 						struct sk_buff *skb);
998 
999 	void		(*release_cb)(struct sock *sk);
1000 
1001 	/* Keeping track of sk's, looking them up, and port selection methods. */
1002 	void			(*hash)(struct sock *sk);
1003 	void			(*unhash)(struct sock *sk);
1004 	void			(*rehash)(struct sock *sk);
1005 	int			(*get_port)(struct sock *sk, unsigned short snum);
1006 	void			(*clear_sk)(struct sock *sk, int size);
1007 
1008 	/* Keeping track of sockets in use */
1009 #ifdef CONFIG_PROC_FS
1010 	unsigned int		inuse_idx;
1011 #endif
1012 
1013 	bool			(*stream_memory_free)(const struct sock *sk);
1014 	/* Memory pressure */
1015 	void			(*enter_memory_pressure)(struct sock *sk);
1016 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1017 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1018 	/*
1019 	 * Pressure flag: try to collapse.
1020 	 * Technical note: it is used by multiple contexts non atomically.
1021 	 * All the __sk_mem_schedule() is of this nature: accounting
1022 	 * is strict, actions are advisory and have some latency.
1023 	 */
1024 	int			*memory_pressure;
1025 	long			*sysctl_mem;
1026 	int			*sysctl_wmem;
1027 	int			*sysctl_rmem;
1028 	int			max_header;
1029 	bool			no_autobind;
1030 
1031 	struct kmem_cache	*slab;
1032 	unsigned int		obj_size;
1033 	int			slab_flags;
1034 
1035 	struct percpu_counter	*orphan_count;
1036 
1037 	struct request_sock_ops	*rsk_prot;
1038 	struct timewait_sock_ops *twsk_prot;
1039 
1040 	union {
1041 		struct inet_hashinfo	*hashinfo;
1042 		struct udp_table	*udp_table;
1043 		struct raw_hashinfo	*raw_hash;
1044 	} h;
1045 
1046 	struct module		*owner;
1047 
1048 	char			name[32];
1049 
1050 	struct list_head	node;
1051 #ifdef SOCK_REFCNT_DEBUG
1052 	atomic_t		socks;
1053 #endif
1054 #ifdef CONFIG_MEMCG_KMEM
1055 	/*
1056 	 * cgroup specific init/deinit functions. Called once for all
1057 	 * protocols that implement it, from cgroups populate function.
1058 	 * This function has to setup any files the protocol want to
1059 	 * appear in the kmem cgroup filesystem.
1060 	 */
1061 	int			(*init_cgroup)(struct mem_cgroup *memcg,
1062 					       struct cgroup_subsys *ss);
1063 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1064 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1065 #endif
1066 };
1067 
1068 int proto_register(struct proto *prot, int alloc_slab);
1069 void proto_unregister(struct proto *prot);
1070 
1071 #ifdef SOCK_REFCNT_DEBUG
1072 static inline void sk_refcnt_debug_inc(struct sock *sk)
1073 {
1074 	atomic_inc(&sk->sk_prot->socks);
1075 }
1076 
1077 static inline void sk_refcnt_debug_dec(struct sock *sk)
1078 {
1079 	atomic_dec(&sk->sk_prot->socks);
1080 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1081 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1082 }
1083 
1084 static inline void sk_refcnt_debug_release(const struct sock *sk)
1085 {
1086 	if (atomic_read(&sk->sk_refcnt) != 1)
1087 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1088 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1089 }
1090 #else /* SOCK_REFCNT_DEBUG */
1091 #define sk_refcnt_debug_inc(sk) do { } while (0)
1092 #define sk_refcnt_debug_dec(sk) do { } while (0)
1093 #define sk_refcnt_debug_release(sk) do { } while (0)
1094 #endif /* SOCK_REFCNT_DEBUG */
1095 
1096 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1097 extern struct static_key memcg_socket_limit_enabled;
1098 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1099 					       struct cg_proto *cg_proto)
1100 {
1101 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1102 }
1103 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1104 #else
1105 #define mem_cgroup_sockets_enabled 0
1106 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1107 					       struct cg_proto *cg_proto)
1108 {
1109 	return NULL;
1110 }
1111 #endif
1112 
1113 static inline bool sk_stream_memory_free(const struct sock *sk)
1114 {
1115 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1116 		return false;
1117 
1118 	return sk->sk_prot->stream_memory_free ?
1119 		sk->sk_prot->stream_memory_free(sk) : true;
1120 }
1121 
1122 static inline bool sk_stream_is_writeable(const struct sock *sk)
1123 {
1124 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1125 	       sk_stream_memory_free(sk);
1126 }
1127 
1128 
1129 static inline bool sk_has_memory_pressure(const struct sock *sk)
1130 {
1131 	return sk->sk_prot->memory_pressure != NULL;
1132 }
1133 
1134 static inline bool sk_under_memory_pressure(const struct sock *sk)
1135 {
1136 	if (!sk->sk_prot->memory_pressure)
1137 		return false;
1138 
1139 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1140 		return !!sk->sk_cgrp->memory_pressure;
1141 
1142 	return !!*sk->sk_prot->memory_pressure;
1143 }
1144 
1145 static inline void sk_leave_memory_pressure(struct sock *sk)
1146 {
1147 	int *memory_pressure = sk->sk_prot->memory_pressure;
1148 
1149 	if (!memory_pressure)
1150 		return;
1151 
1152 	if (*memory_pressure)
1153 		*memory_pressure = 0;
1154 
1155 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1156 		struct cg_proto *cg_proto = sk->sk_cgrp;
1157 		struct proto *prot = sk->sk_prot;
1158 
1159 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1160 			cg_proto->memory_pressure = 0;
1161 	}
1162 
1163 }
1164 
1165 static inline void sk_enter_memory_pressure(struct sock *sk)
1166 {
1167 	if (!sk->sk_prot->enter_memory_pressure)
1168 		return;
1169 
1170 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1171 		struct cg_proto *cg_proto = sk->sk_cgrp;
1172 		struct proto *prot = sk->sk_prot;
1173 
1174 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1175 			cg_proto->memory_pressure = 1;
1176 	}
1177 
1178 	sk->sk_prot->enter_memory_pressure(sk);
1179 }
1180 
1181 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1182 {
1183 	long *prot = sk->sk_prot->sysctl_mem;
1184 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1185 		prot = sk->sk_cgrp->sysctl_mem;
1186 	return prot[index];
1187 }
1188 
1189 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1190 					      unsigned long amt,
1191 					      int *parent_status)
1192 {
1193 	page_counter_charge(&prot->memory_allocated, amt);
1194 
1195 	if (page_counter_read(&prot->memory_allocated) >
1196 	    prot->memory_allocated.limit)
1197 		*parent_status = OVER_LIMIT;
1198 }
1199 
1200 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1201 					      unsigned long amt)
1202 {
1203 	page_counter_uncharge(&prot->memory_allocated, amt);
1204 }
1205 
1206 static inline long
1207 sk_memory_allocated(const struct sock *sk)
1208 {
1209 	struct proto *prot = sk->sk_prot;
1210 
1211 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1212 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1213 
1214 	return atomic_long_read(prot->memory_allocated);
1215 }
1216 
1217 static inline long
1218 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1219 {
1220 	struct proto *prot = sk->sk_prot;
1221 
1222 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1223 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1224 		/* update the root cgroup regardless */
1225 		atomic_long_add_return(amt, prot->memory_allocated);
1226 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1227 	}
1228 
1229 	return atomic_long_add_return(amt, prot->memory_allocated);
1230 }
1231 
1232 static inline void
1233 sk_memory_allocated_sub(struct sock *sk, int amt)
1234 {
1235 	struct proto *prot = sk->sk_prot;
1236 
1237 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1238 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1239 
1240 	atomic_long_sub(amt, prot->memory_allocated);
1241 }
1242 
1243 static inline void sk_sockets_allocated_dec(struct sock *sk)
1244 {
1245 	struct proto *prot = sk->sk_prot;
1246 
1247 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1248 		struct cg_proto *cg_proto = sk->sk_cgrp;
1249 
1250 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1251 			percpu_counter_dec(&cg_proto->sockets_allocated);
1252 	}
1253 
1254 	percpu_counter_dec(prot->sockets_allocated);
1255 }
1256 
1257 static inline void sk_sockets_allocated_inc(struct sock *sk)
1258 {
1259 	struct proto *prot = sk->sk_prot;
1260 
1261 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1262 		struct cg_proto *cg_proto = sk->sk_cgrp;
1263 
1264 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1265 			percpu_counter_inc(&cg_proto->sockets_allocated);
1266 	}
1267 
1268 	percpu_counter_inc(prot->sockets_allocated);
1269 }
1270 
1271 static inline int
1272 sk_sockets_allocated_read_positive(struct sock *sk)
1273 {
1274 	struct proto *prot = sk->sk_prot;
1275 
1276 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1277 		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1278 
1279 	return percpu_counter_read_positive(prot->sockets_allocated);
1280 }
1281 
1282 static inline int
1283 proto_sockets_allocated_sum_positive(struct proto *prot)
1284 {
1285 	return percpu_counter_sum_positive(prot->sockets_allocated);
1286 }
1287 
1288 static inline long
1289 proto_memory_allocated(struct proto *prot)
1290 {
1291 	return atomic_long_read(prot->memory_allocated);
1292 }
1293 
1294 static inline bool
1295 proto_memory_pressure(struct proto *prot)
1296 {
1297 	if (!prot->memory_pressure)
1298 		return false;
1299 	return !!*prot->memory_pressure;
1300 }
1301 
1302 
1303 #ifdef CONFIG_PROC_FS
1304 /* Called with local bh disabled */
1305 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1306 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1307 #else
1308 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1309 		int inc)
1310 {
1311 }
1312 #endif
1313 
1314 
1315 /* With per-bucket locks this operation is not-atomic, so that
1316  * this version is not worse.
1317  */
1318 static inline void __sk_prot_rehash(struct sock *sk)
1319 {
1320 	sk->sk_prot->unhash(sk);
1321 	sk->sk_prot->hash(sk);
1322 }
1323 
1324 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1325 
1326 /* About 10 seconds */
1327 #define SOCK_DESTROY_TIME (10*HZ)
1328 
1329 /* Sockets 0-1023 can't be bound to unless you are superuser */
1330 #define PROT_SOCK	1024
1331 
1332 #define SHUTDOWN_MASK	3
1333 #define RCV_SHUTDOWN	1
1334 #define SEND_SHUTDOWN	2
1335 
1336 #define SOCK_SNDBUF_LOCK	1
1337 #define SOCK_RCVBUF_LOCK	2
1338 #define SOCK_BINDADDR_LOCK	4
1339 #define SOCK_BINDPORT_LOCK	8
1340 
1341 struct socket_alloc {
1342 	struct socket socket;
1343 	struct inode vfs_inode;
1344 };
1345 
1346 static inline struct socket *SOCKET_I(struct inode *inode)
1347 {
1348 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1349 }
1350 
1351 static inline struct inode *SOCK_INODE(struct socket *socket)
1352 {
1353 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1354 }
1355 
1356 /*
1357  * Functions for memory accounting
1358  */
1359 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1360 void __sk_mem_reclaim(struct sock *sk, int amount);
1361 
1362 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1363 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1364 #define SK_MEM_SEND	0
1365 #define SK_MEM_RECV	1
1366 
1367 static inline int sk_mem_pages(int amt)
1368 {
1369 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1370 }
1371 
1372 static inline bool sk_has_account(struct sock *sk)
1373 {
1374 	/* return true if protocol supports memory accounting */
1375 	return !!sk->sk_prot->memory_allocated;
1376 }
1377 
1378 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1379 {
1380 	if (!sk_has_account(sk))
1381 		return true;
1382 	return size <= sk->sk_forward_alloc ||
1383 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1384 }
1385 
1386 static inline bool
1387 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1388 {
1389 	if (!sk_has_account(sk))
1390 		return true;
1391 	return size<= sk->sk_forward_alloc ||
1392 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1393 		skb_pfmemalloc(skb);
1394 }
1395 
1396 static inline void sk_mem_reclaim(struct sock *sk)
1397 {
1398 	if (!sk_has_account(sk))
1399 		return;
1400 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1401 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1402 }
1403 
1404 static inline void sk_mem_reclaim_partial(struct sock *sk)
1405 {
1406 	if (!sk_has_account(sk))
1407 		return;
1408 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1409 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1410 }
1411 
1412 static inline void sk_mem_charge(struct sock *sk, int size)
1413 {
1414 	if (!sk_has_account(sk))
1415 		return;
1416 	sk->sk_forward_alloc -= size;
1417 }
1418 
1419 static inline void sk_mem_uncharge(struct sock *sk, int size)
1420 {
1421 	if (!sk_has_account(sk))
1422 		return;
1423 	sk->sk_forward_alloc += size;
1424 }
1425 
1426 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1427 {
1428 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1429 	sk->sk_wmem_queued -= skb->truesize;
1430 	sk_mem_uncharge(sk, skb->truesize);
1431 	__kfree_skb(skb);
1432 }
1433 
1434 /* Used by processes to "lock" a socket state, so that
1435  * interrupts and bottom half handlers won't change it
1436  * from under us. It essentially blocks any incoming
1437  * packets, so that we won't get any new data or any
1438  * packets that change the state of the socket.
1439  *
1440  * While locked, BH processing will add new packets to
1441  * the backlog queue.  This queue is processed by the
1442  * owner of the socket lock right before it is released.
1443  *
1444  * Since ~2.3.5 it is also exclusive sleep lock serializing
1445  * accesses from user process context.
1446  */
1447 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1448 
1449 static inline void sock_release_ownership(struct sock *sk)
1450 {
1451 	sk->sk_lock.owned = 0;
1452 }
1453 
1454 /*
1455  * Macro so as to not evaluate some arguments when
1456  * lockdep is not enabled.
1457  *
1458  * Mark both the sk_lock and the sk_lock.slock as a
1459  * per-address-family lock class.
1460  */
1461 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1462 do {									\
1463 	sk->sk_lock.owned = 0;						\
1464 	init_waitqueue_head(&sk->sk_lock.wq);				\
1465 	spin_lock_init(&(sk)->sk_lock.slock);				\
1466 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1467 			sizeof((sk)->sk_lock));				\
1468 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1469 				(skey), (sname));				\
1470 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1471 } while (0)
1472 
1473 void lock_sock_nested(struct sock *sk, int subclass);
1474 
1475 static inline void lock_sock(struct sock *sk)
1476 {
1477 	lock_sock_nested(sk, 0);
1478 }
1479 
1480 void release_sock(struct sock *sk);
1481 
1482 /* BH context may only use the following locking interface. */
1483 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1484 #define bh_lock_sock_nested(__sk) \
1485 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1486 				SINGLE_DEPTH_NESTING)
1487 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1488 
1489 bool lock_sock_fast(struct sock *sk);
1490 /**
1491  * unlock_sock_fast - complement of lock_sock_fast
1492  * @sk: socket
1493  * @slow: slow mode
1494  *
1495  * fast unlock socket for user context.
1496  * If slow mode is on, we call regular release_sock()
1497  */
1498 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1499 {
1500 	if (slow)
1501 		release_sock(sk);
1502 	else
1503 		spin_unlock_bh(&sk->sk_lock.slock);
1504 }
1505 
1506 
1507 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1508 		      struct proto *prot, int kern);
1509 void sk_free(struct sock *sk);
1510 void sk_destruct(struct sock *sk);
1511 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1512 
1513 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1514 			     gfp_t priority);
1515 void sock_wfree(struct sk_buff *skb);
1516 void skb_orphan_partial(struct sk_buff *skb);
1517 void sock_rfree(struct sk_buff *skb);
1518 void sock_efree(struct sk_buff *skb);
1519 #ifdef CONFIG_INET
1520 void sock_edemux(struct sk_buff *skb);
1521 #else
1522 #define sock_edemux(skb) sock_efree(skb)
1523 #endif
1524 
1525 int sock_setsockopt(struct socket *sock, int level, int op,
1526 		    char __user *optval, unsigned int optlen);
1527 
1528 int sock_getsockopt(struct socket *sock, int level, int op,
1529 		    char __user *optval, int __user *optlen);
1530 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1531 				    int noblock, int *errcode);
1532 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1533 				     unsigned long data_len, int noblock,
1534 				     int *errcode, int max_page_order);
1535 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1536 void sock_kfree_s(struct sock *sk, void *mem, int size);
1537 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1538 void sk_send_sigurg(struct sock *sk);
1539 
1540 struct sockcm_cookie {
1541 	u32 mark;
1542 };
1543 
1544 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1545 		   struct sockcm_cookie *sockc);
1546 
1547 /*
1548  * Functions to fill in entries in struct proto_ops when a protocol
1549  * does not implement a particular function.
1550  */
1551 int sock_no_bind(struct socket *, struct sockaddr *, int);
1552 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1553 int sock_no_socketpair(struct socket *, struct socket *);
1554 int sock_no_accept(struct socket *, struct socket *, int);
1555 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1556 unsigned int sock_no_poll(struct file *, struct socket *,
1557 			  struct poll_table_struct *);
1558 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1559 int sock_no_listen(struct socket *, int);
1560 int sock_no_shutdown(struct socket *, int);
1561 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1562 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1563 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1564 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1565 int sock_no_mmap(struct file *file, struct socket *sock,
1566 		 struct vm_area_struct *vma);
1567 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1568 			 size_t size, int flags);
1569 
1570 /*
1571  * Functions to fill in entries in struct proto_ops when a protocol
1572  * uses the inet style.
1573  */
1574 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1575 				  char __user *optval, int __user *optlen);
1576 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1577 			int flags);
1578 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1579 				  char __user *optval, unsigned int optlen);
1580 int compat_sock_common_getsockopt(struct socket *sock, int level,
1581 		int optname, char __user *optval, int __user *optlen);
1582 int compat_sock_common_setsockopt(struct socket *sock, int level,
1583 		int optname, char __user *optval, unsigned int optlen);
1584 
1585 void sk_common_release(struct sock *sk);
1586 
1587 /*
1588  *	Default socket callbacks and setup code
1589  */
1590 
1591 /* Initialise core socket variables */
1592 void sock_init_data(struct socket *sock, struct sock *sk);
1593 
1594 /*
1595  * Socket reference counting postulates.
1596  *
1597  * * Each user of socket SHOULD hold a reference count.
1598  * * Each access point to socket (an hash table bucket, reference from a list,
1599  *   running timer, skb in flight MUST hold a reference count.
1600  * * When reference count hits 0, it means it will never increase back.
1601  * * When reference count hits 0, it means that no references from
1602  *   outside exist to this socket and current process on current CPU
1603  *   is last user and may/should destroy this socket.
1604  * * sk_free is called from any context: process, BH, IRQ. When
1605  *   it is called, socket has no references from outside -> sk_free
1606  *   may release descendant resources allocated by the socket, but
1607  *   to the time when it is called, socket is NOT referenced by any
1608  *   hash tables, lists etc.
1609  * * Packets, delivered from outside (from network or from another process)
1610  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1611  *   when they sit in queue. Otherwise, packets will leak to hole, when
1612  *   socket is looked up by one cpu and unhasing is made by another CPU.
1613  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1614  *   (leak to backlog). Packet socket does all the processing inside
1615  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1616  *   use separate SMP lock, so that they are prone too.
1617  */
1618 
1619 /* Ungrab socket and destroy it, if it was the last reference. */
1620 static inline void sock_put(struct sock *sk)
1621 {
1622 	if (atomic_dec_and_test(&sk->sk_refcnt))
1623 		sk_free(sk);
1624 }
1625 /* Generic version of sock_put(), dealing with all sockets
1626  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1627  */
1628 void sock_gen_put(struct sock *sk);
1629 
1630 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1631 
1632 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1633 {
1634 	sk->sk_tx_queue_mapping = tx_queue;
1635 }
1636 
1637 static inline void sk_tx_queue_clear(struct sock *sk)
1638 {
1639 	sk->sk_tx_queue_mapping = -1;
1640 }
1641 
1642 static inline int sk_tx_queue_get(const struct sock *sk)
1643 {
1644 	return sk ? sk->sk_tx_queue_mapping : -1;
1645 }
1646 
1647 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1648 {
1649 	sk_tx_queue_clear(sk);
1650 	sk->sk_socket = sock;
1651 }
1652 
1653 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1654 {
1655 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1656 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1657 }
1658 /* Detach socket from process context.
1659  * Announce socket dead, detach it from wait queue and inode.
1660  * Note that parent inode held reference count on this struct sock,
1661  * we do not release it in this function, because protocol
1662  * probably wants some additional cleanups or even continuing
1663  * to work with this socket (TCP).
1664  */
1665 static inline void sock_orphan(struct sock *sk)
1666 {
1667 	write_lock_bh(&sk->sk_callback_lock);
1668 	sock_set_flag(sk, SOCK_DEAD);
1669 	sk_set_socket(sk, NULL);
1670 	sk->sk_wq  = NULL;
1671 	write_unlock_bh(&sk->sk_callback_lock);
1672 }
1673 
1674 static inline void sock_graft(struct sock *sk, struct socket *parent)
1675 {
1676 	write_lock_bh(&sk->sk_callback_lock);
1677 	sk->sk_wq = parent->wq;
1678 	parent->sk = sk;
1679 	sk_set_socket(sk, parent);
1680 	security_sock_graft(sk, parent);
1681 	write_unlock_bh(&sk->sk_callback_lock);
1682 }
1683 
1684 kuid_t sock_i_uid(struct sock *sk);
1685 unsigned long sock_i_ino(struct sock *sk);
1686 
1687 static inline u32 net_tx_rndhash(void)
1688 {
1689 	u32 v = prandom_u32();
1690 
1691 	return v ?: 1;
1692 }
1693 
1694 static inline void sk_set_txhash(struct sock *sk)
1695 {
1696 	sk->sk_txhash = net_tx_rndhash();
1697 }
1698 
1699 static inline void sk_rethink_txhash(struct sock *sk)
1700 {
1701 	if (sk->sk_txhash)
1702 		sk_set_txhash(sk);
1703 }
1704 
1705 static inline struct dst_entry *
1706 __sk_dst_get(struct sock *sk)
1707 {
1708 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1709 						       lockdep_is_held(&sk->sk_lock.slock));
1710 }
1711 
1712 static inline struct dst_entry *
1713 sk_dst_get(struct sock *sk)
1714 {
1715 	struct dst_entry *dst;
1716 
1717 	rcu_read_lock();
1718 	dst = rcu_dereference(sk->sk_dst_cache);
1719 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1720 		dst = NULL;
1721 	rcu_read_unlock();
1722 	return dst;
1723 }
1724 
1725 static inline void dst_negative_advice(struct sock *sk)
1726 {
1727 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1728 
1729 	sk_rethink_txhash(sk);
1730 
1731 	if (dst && dst->ops->negative_advice) {
1732 		ndst = dst->ops->negative_advice(dst);
1733 
1734 		if (ndst != dst) {
1735 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1736 			sk_tx_queue_clear(sk);
1737 		}
1738 	}
1739 }
1740 
1741 static inline void
1742 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1743 {
1744 	struct dst_entry *old_dst;
1745 
1746 	sk_tx_queue_clear(sk);
1747 	/*
1748 	 * This can be called while sk is owned by the caller only,
1749 	 * with no state that can be checked in a rcu_dereference_check() cond
1750 	 */
1751 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1752 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1753 	dst_release(old_dst);
1754 }
1755 
1756 static inline void
1757 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1758 {
1759 	struct dst_entry *old_dst;
1760 
1761 	sk_tx_queue_clear(sk);
1762 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1763 	dst_release(old_dst);
1764 }
1765 
1766 static inline void
1767 __sk_dst_reset(struct sock *sk)
1768 {
1769 	__sk_dst_set(sk, NULL);
1770 }
1771 
1772 static inline void
1773 sk_dst_reset(struct sock *sk)
1774 {
1775 	sk_dst_set(sk, NULL);
1776 }
1777 
1778 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1779 
1780 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1781 
1782 bool sk_mc_loop(struct sock *sk);
1783 
1784 static inline bool sk_can_gso(const struct sock *sk)
1785 {
1786 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1787 }
1788 
1789 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1790 
1791 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1792 {
1793 	sk->sk_route_nocaps |= flags;
1794 	sk->sk_route_caps &= ~flags;
1795 }
1796 
1797 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1798 					   struct iov_iter *from, char *to,
1799 					   int copy, int offset)
1800 {
1801 	if (skb->ip_summed == CHECKSUM_NONE) {
1802 		__wsum csum = 0;
1803 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1804 			return -EFAULT;
1805 		skb->csum = csum_block_add(skb->csum, csum, offset);
1806 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1807 		if (copy_from_iter_nocache(to, copy, from) != copy)
1808 			return -EFAULT;
1809 	} else if (copy_from_iter(to, copy, from) != copy)
1810 		return -EFAULT;
1811 
1812 	return 0;
1813 }
1814 
1815 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1816 				       struct iov_iter *from, int copy)
1817 {
1818 	int err, offset = skb->len;
1819 
1820 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1821 				       copy, offset);
1822 	if (err)
1823 		__skb_trim(skb, offset);
1824 
1825 	return err;
1826 }
1827 
1828 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1829 					   struct sk_buff *skb,
1830 					   struct page *page,
1831 					   int off, int copy)
1832 {
1833 	int err;
1834 
1835 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1836 				       copy, skb->len);
1837 	if (err)
1838 		return err;
1839 
1840 	skb->len	     += copy;
1841 	skb->data_len	     += copy;
1842 	skb->truesize	     += copy;
1843 	sk->sk_wmem_queued   += copy;
1844 	sk_mem_charge(sk, copy);
1845 	return 0;
1846 }
1847 
1848 /**
1849  * sk_wmem_alloc_get - returns write allocations
1850  * @sk: socket
1851  *
1852  * Returns sk_wmem_alloc minus initial offset of one
1853  */
1854 static inline int sk_wmem_alloc_get(const struct sock *sk)
1855 {
1856 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1857 }
1858 
1859 /**
1860  * sk_rmem_alloc_get - returns read allocations
1861  * @sk: socket
1862  *
1863  * Returns sk_rmem_alloc
1864  */
1865 static inline int sk_rmem_alloc_get(const struct sock *sk)
1866 {
1867 	return atomic_read(&sk->sk_rmem_alloc);
1868 }
1869 
1870 /**
1871  * sk_has_allocations - check if allocations are outstanding
1872  * @sk: socket
1873  *
1874  * Returns true if socket has write or read allocations
1875  */
1876 static inline bool sk_has_allocations(const struct sock *sk)
1877 {
1878 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1879 }
1880 
1881 /**
1882  * wq_has_sleeper - check if there are any waiting processes
1883  * @wq: struct socket_wq
1884  *
1885  * Returns true if socket_wq has waiting processes
1886  *
1887  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1888  * barrier call. They were added due to the race found within the tcp code.
1889  *
1890  * Consider following tcp code paths:
1891  *
1892  * CPU1                  CPU2
1893  *
1894  * sys_select            receive packet
1895  *   ...                 ...
1896  *   __add_wait_queue    update tp->rcv_nxt
1897  *   ...                 ...
1898  *   tp->rcv_nxt check   sock_def_readable
1899  *   ...                 {
1900  *   schedule               rcu_read_lock();
1901  *                          wq = rcu_dereference(sk->sk_wq);
1902  *                          if (wq && waitqueue_active(&wq->wait))
1903  *                              wake_up_interruptible(&wq->wait)
1904  *                          ...
1905  *                       }
1906  *
1907  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1908  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1909  * could then endup calling schedule and sleep forever if there are no more
1910  * data on the socket.
1911  *
1912  */
1913 static inline bool wq_has_sleeper(struct socket_wq *wq)
1914 {
1915 	/* We need to be sure we are in sync with the
1916 	 * add_wait_queue modifications to the wait queue.
1917 	 *
1918 	 * This memory barrier is paired in the sock_poll_wait.
1919 	 */
1920 	smp_mb();
1921 	return wq && waitqueue_active(&wq->wait);
1922 }
1923 
1924 /**
1925  * sock_poll_wait - place memory barrier behind the poll_wait call.
1926  * @filp:           file
1927  * @wait_address:   socket wait queue
1928  * @p:              poll_table
1929  *
1930  * See the comments in the wq_has_sleeper function.
1931  */
1932 static inline void sock_poll_wait(struct file *filp,
1933 		wait_queue_head_t *wait_address, poll_table *p)
1934 {
1935 	if (!poll_does_not_wait(p) && wait_address) {
1936 		poll_wait(filp, wait_address, p);
1937 		/* We need to be sure we are in sync with the
1938 		 * socket flags modification.
1939 		 *
1940 		 * This memory barrier is paired in the wq_has_sleeper.
1941 		 */
1942 		smp_mb();
1943 	}
1944 }
1945 
1946 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1947 {
1948 	if (sk->sk_txhash) {
1949 		skb->l4_hash = 1;
1950 		skb->hash = sk->sk_txhash;
1951 	}
1952 }
1953 
1954 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1955 
1956 /*
1957  *	Queue a received datagram if it will fit. Stream and sequenced
1958  *	protocols can't normally use this as they need to fit buffers in
1959  *	and play with them.
1960  *
1961  *	Inlined as it's very short and called for pretty much every
1962  *	packet ever received.
1963  */
1964 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1965 {
1966 	skb_orphan(skb);
1967 	skb->sk = sk;
1968 	skb->destructor = sock_rfree;
1969 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1970 	sk_mem_charge(sk, skb->truesize);
1971 }
1972 
1973 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1974 		    unsigned long expires);
1975 
1976 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1977 
1978 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1979 
1980 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1981 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1982 
1983 /*
1984  *	Recover an error report and clear atomically
1985  */
1986 
1987 static inline int sock_error(struct sock *sk)
1988 {
1989 	int err;
1990 	if (likely(!sk->sk_err))
1991 		return 0;
1992 	err = xchg(&sk->sk_err, 0);
1993 	return -err;
1994 }
1995 
1996 static inline unsigned long sock_wspace(struct sock *sk)
1997 {
1998 	int amt = 0;
1999 
2000 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2001 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2002 		if (amt < 0)
2003 			amt = 0;
2004 	}
2005 	return amt;
2006 }
2007 
2008 static inline void sk_wake_async(struct sock *sk, int how, int band)
2009 {
2010 	if (sock_flag(sk, SOCK_FASYNC))
2011 		sock_wake_async(sk->sk_socket, how, band);
2012 }
2013 
2014 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2015  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2016  * Note: for send buffers, TCP works better if we can build two skbs at
2017  * minimum.
2018  */
2019 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2020 
2021 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2022 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2023 
2024 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2025 {
2026 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2027 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2028 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2029 	}
2030 }
2031 
2032 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2033 				    bool force_schedule);
2034 
2035 /**
2036  * sk_page_frag - return an appropriate page_frag
2037  * @sk: socket
2038  *
2039  * If socket allocation mode allows current thread to sleep, it means its
2040  * safe to use the per task page_frag instead of the per socket one.
2041  */
2042 static inline struct page_frag *sk_page_frag(struct sock *sk)
2043 {
2044 	if (gfpflags_allow_blocking(sk->sk_allocation))
2045 		return &current->task_frag;
2046 
2047 	return &sk->sk_frag;
2048 }
2049 
2050 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2051 
2052 /*
2053  *	Default write policy as shown to user space via poll/select/SIGIO
2054  */
2055 static inline bool sock_writeable(const struct sock *sk)
2056 {
2057 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2058 }
2059 
2060 static inline gfp_t gfp_any(void)
2061 {
2062 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2063 }
2064 
2065 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2066 {
2067 	return noblock ? 0 : sk->sk_rcvtimeo;
2068 }
2069 
2070 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2071 {
2072 	return noblock ? 0 : sk->sk_sndtimeo;
2073 }
2074 
2075 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2076 {
2077 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2078 }
2079 
2080 /* Alas, with timeout socket operations are not restartable.
2081  * Compare this to poll().
2082  */
2083 static inline int sock_intr_errno(long timeo)
2084 {
2085 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2086 }
2087 
2088 struct sock_skb_cb {
2089 	u32 dropcount;
2090 };
2091 
2092 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2093  * using skb->cb[] would keep using it directly and utilize its
2094  * alignement guarantee.
2095  */
2096 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2097 			    sizeof(struct sock_skb_cb)))
2098 
2099 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2100 			    SOCK_SKB_CB_OFFSET))
2101 
2102 #define sock_skb_cb_check_size(size) \
2103 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2104 
2105 static inline void
2106 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2107 {
2108 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2109 }
2110 
2111 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2112 			   struct sk_buff *skb);
2113 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2114 			     struct sk_buff *skb);
2115 
2116 static inline void
2117 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2118 {
2119 	ktime_t kt = skb->tstamp;
2120 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2121 
2122 	/*
2123 	 * generate control messages if
2124 	 * - receive time stamping in software requested
2125 	 * - software time stamp available and wanted
2126 	 * - hardware time stamps available and wanted
2127 	 */
2128 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2129 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2130 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2131 	    (hwtstamps->hwtstamp.tv64 &&
2132 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2133 		__sock_recv_timestamp(msg, sk, skb);
2134 	else
2135 		sk->sk_stamp = kt;
2136 
2137 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2138 		__sock_recv_wifi_status(msg, sk, skb);
2139 }
2140 
2141 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2142 			      struct sk_buff *skb);
2143 
2144 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2145 					  struct sk_buff *skb)
2146 {
2147 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2148 			   (1UL << SOCK_RCVTSTAMP))
2149 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2150 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2151 
2152 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2153 		__sock_recv_ts_and_drops(msg, sk, skb);
2154 	else
2155 		sk->sk_stamp = skb->tstamp;
2156 }
2157 
2158 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2159 
2160 /**
2161  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2162  * @sk:		socket sending this packet
2163  * @tx_flags:	completed with instructions for time stamping
2164  *
2165  * Note : callers should take care of initial *tx_flags value (usually 0)
2166  */
2167 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2168 {
2169 	if (unlikely(sk->sk_tsflags))
2170 		__sock_tx_timestamp(sk, tx_flags);
2171 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2172 		*tx_flags |= SKBTX_WIFI_STATUS;
2173 }
2174 
2175 /**
2176  * sk_eat_skb - Release a skb if it is no longer needed
2177  * @sk: socket to eat this skb from
2178  * @skb: socket buffer to eat
2179  *
2180  * This routine must be called with interrupts disabled or with the socket
2181  * locked so that the sk_buff queue operation is ok.
2182 */
2183 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2184 {
2185 	__skb_unlink(skb, &sk->sk_receive_queue);
2186 	__kfree_skb(skb);
2187 }
2188 
2189 static inline
2190 struct net *sock_net(const struct sock *sk)
2191 {
2192 	return read_pnet(&sk->sk_net);
2193 }
2194 
2195 static inline
2196 void sock_net_set(struct sock *sk, struct net *net)
2197 {
2198 	write_pnet(&sk->sk_net, net);
2199 }
2200 
2201 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2202 {
2203 	if (skb->sk) {
2204 		struct sock *sk = skb->sk;
2205 
2206 		skb->destructor = NULL;
2207 		skb->sk = NULL;
2208 		return sk;
2209 	}
2210 	return NULL;
2211 }
2212 
2213 /* This helper checks if a socket is a full socket,
2214  * ie _not_ a timewait or request socket.
2215  */
2216 static inline bool sk_fullsock(const struct sock *sk)
2217 {
2218 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2219 }
2220 
2221 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2222  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2223  */
2224 static inline bool sk_listener(const struct sock *sk)
2225 {
2226 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2227 }
2228 
2229 /**
2230  * sk_state_load - read sk->sk_state for lockless contexts
2231  * @sk: socket pointer
2232  *
2233  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2234  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2235  */
2236 static inline int sk_state_load(const struct sock *sk)
2237 {
2238 	return smp_load_acquire(&sk->sk_state);
2239 }
2240 
2241 /**
2242  * sk_state_store - update sk->sk_state
2243  * @sk: socket pointer
2244  * @newstate: new state
2245  *
2246  * Paired with sk_state_load(). Should be used in contexts where
2247  * state change might impact lockless readers.
2248  */
2249 static inline void sk_state_store(struct sock *sk, int newstate)
2250 {
2251 	smp_store_release(&sk->sk_state, newstate);
2252 }
2253 
2254 void sock_enable_timestamp(struct sock *sk, int flag);
2255 int sock_get_timestamp(struct sock *, struct timeval __user *);
2256 int sock_get_timestampns(struct sock *, struct timespec __user *);
2257 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2258 		       int type);
2259 
2260 bool sk_ns_capable(const struct sock *sk,
2261 		   struct user_namespace *user_ns, int cap);
2262 bool sk_capable(const struct sock *sk, int cap);
2263 bool sk_net_capable(const struct sock *sk, int cap);
2264 
2265 extern __u32 sysctl_wmem_max;
2266 extern __u32 sysctl_rmem_max;
2267 
2268 extern int sysctl_tstamp_allow_data;
2269 extern int sysctl_optmem_max;
2270 
2271 extern __u32 sysctl_wmem_default;
2272 extern __u32 sysctl_rmem_default;
2273 
2274 #endif	/* _SOCK_H */
2275