xref: /openbmc/linux/include/net/sock.h (revision a86854d0)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
76 
77 /*
78  * This structure really needs to be cleaned up.
79  * Most of it is for TCP, and not used by any of
80  * the other protocols.
81  */
82 
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 					printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 {
93 }
94 #endif
95 
96 /* This is the per-socket lock.  The spinlock provides a synchronization
97  * between user contexts and software interrupt processing, whereas the
98  * mini-semaphore synchronizes multiple users amongst themselves.
99  */
100 typedef struct {
101 	spinlock_t		slock;
102 	int			owned;
103 	wait_queue_head_t	wq;
104 	/*
105 	 * We express the mutex-alike socket_lock semantics
106 	 * to the lock validator by explicitly managing
107 	 * the slock as a lock variant (in addition to
108 	 * the slock itself):
109 	 */
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 	struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
114 
115 struct sock;
116 struct proto;
117 struct net;
118 
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
121 
122 /**
123  *	struct sock_common - minimal network layer representation of sockets
124  *	@skc_daddr: Foreign IPv4 addr
125  *	@skc_rcv_saddr: Bound local IPv4 addr
126  *	@skc_hash: hash value used with various protocol lookup tables
127  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
128  *	@skc_dport: placeholder for inet_dport/tw_dport
129  *	@skc_num: placeholder for inet_num/tw_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_node: main hash linkage for various protocol lookup tables
140  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141  *	@skc_tx_queue_mapping: tx queue number for this connection
142  *	@skc_flags: place holder for sk_flags
143  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
144  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
145  *	@skc_incoming_cpu: record/match cpu processing incoming packets
146  *	@skc_refcnt: reference count
147  *
148  *	This is the minimal network layer representation of sockets, the header
149  *	for struct sock and struct inet_timewait_sock.
150  */
151 struct sock_common {
152 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
153 	 * address on 64bit arches : cf INET_MATCH()
154 	 */
155 	union {
156 		__addrpair	skc_addrpair;
157 		struct {
158 			__be32	skc_daddr;
159 			__be32	skc_rcv_saddr;
160 		};
161 	};
162 	union  {
163 		unsigned int	skc_hash;
164 		__u16		skc_u16hashes[2];
165 	};
166 	/* skc_dport && skc_num must be grouped as well */
167 	union {
168 		__portpair	skc_portpair;
169 		struct {
170 			__be16	skc_dport;
171 			__u16	skc_num;
172 		};
173 	};
174 
175 	unsigned short		skc_family;
176 	volatile unsigned char	skc_state;
177 	unsigned char		skc_reuse:4;
178 	unsigned char		skc_reuseport:1;
179 	unsigned char		skc_ipv6only:1;
180 	unsigned char		skc_net_refcnt:1;
181 	int			skc_bound_dev_if;
182 	union {
183 		struct hlist_node	skc_bind_node;
184 		struct hlist_node	skc_portaddr_node;
185 	};
186 	struct proto		*skc_prot;
187 	possible_net_t		skc_net;
188 
189 #if IS_ENABLED(CONFIG_IPV6)
190 	struct in6_addr		skc_v6_daddr;
191 	struct in6_addr		skc_v6_rcv_saddr;
192 #endif
193 
194 	atomic64_t		skc_cookie;
195 
196 	/* following fields are padding to force
197 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
198 	 * assuming IPV6 is enabled. We use this padding differently
199 	 * for different kind of 'sockets'
200 	 */
201 	union {
202 		unsigned long	skc_flags;
203 		struct sock	*skc_listener; /* request_sock */
204 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
205 	};
206 	/*
207 	 * fields between dontcopy_begin/dontcopy_end
208 	 * are not copied in sock_copy()
209 	 */
210 	/* private: */
211 	int			skc_dontcopy_begin[0];
212 	/* public: */
213 	union {
214 		struct hlist_node	skc_node;
215 		struct hlist_nulls_node skc_nulls_node;
216 	};
217 	int			skc_tx_queue_mapping;
218 	union {
219 		int		skc_incoming_cpu;
220 		u32		skc_rcv_wnd;
221 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
222 	};
223 
224 	refcount_t		skc_refcnt;
225 	/* private: */
226 	int                     skc_dontcopy_end[0];
227 	union {
228 		u32		skc_rxhash;
229 		u32		skc_window_clamp;
230 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
231 	};
232 	/* public: */
233 };
234 
235 /**
236   *	struct sock - network layer representation of sockets
237   *	@__sk_common: shared layout with inet_timewait_sock
238   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
239   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
240   *	@sk_lock:	synchronizer
241   *	@sk_kern_sock: True if sock is using kernel lock classes
242   *	@sk_rcvbuf: size of receive buffer in bytes
243   *	@sk_wq: sock wait queue and async head
244   *	@sk_rx_dst: receive input route used by early demux
245   *	@sk_dst_cache: destination cache
246   *	@sk_dst_pending_confirm: need to confirm neighbour
247   *	@sk_policy: flow policy
248   *	@sk_receive_queue: incoming packets
249   *	@sk_wmem_alloc: transmit queue bytes committed
250   *	@sk_tsq_flags: TCP Small Queues flags
251   *	@sk_write_queue: Packet sending queue
252   *	@sk_omem_alloc: "o" is "option" or "other"
253   *	@sk_wmem_queued: persistent queue size
254   *	@sk_forward_alloc: space allocated forward
255   *	@sk_napi_id: id of the last napi context to receive data for sk
256   *	@sk_ll_usec: usecs to busypoll when there is no data
257   *	@sk_allocation: allocation mode
258   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
259   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
260   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
261   *	@sk_sndbuf: size of send buffer in bytes
262   *	@__sk_flags_offset: empty field used to determine location of bitfield
263   *	@sk_padding: unused element for alignment
264   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
265   *	@sk_no_check_rx: allow zero checksum in RX packets
266   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
267   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
268   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
269   *	@sk_gso_max_size: Maximum GSO segment size to build
270   *	@sk_gso_max_segs: Maximum number of GSO segments
271   *	@sk_pacing_shift: scaling factor for TCP Small Queues
272   *	@sk_lingertime: %SO_LINGER l_linger setting
273   *	@sk_backlog: always used with the per-socket spinlock held
274   *	@sk_callback_lock: used with the callbacks in the end of this struct
275   *	@sk_error_queue: rarely used
276   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
277   *			  IPV6_ADDRFORM for instance)
278   *	@sk_err: last error
279   *	@sk_err_soft: errors that don't cause failure but are the cause of a
280   *		      persistent failure not just 'timed out'
281   *	@sk_drops: raw/udp drops counter
282   *	@sk_ack_backlog: current listen backlog
283   *	@sk_max_ack_backlog: listen backlog set in listen()
284   *	@sk_uid: user id of owner
285   *	@sk_priority: %SO_PRIORITY setting
286   *	@sk_type: socket type (%SOCK_STREAM, etc)
287   *	@sk_protocol: which protocol this socket belongs in this network family
288   *	@sk_peer_pid: &struct pid for this socket's peer
289   *	@sk_peer_cred: %SO_PEERCRED setting
290   *	@sk_rcvlowat: %SO_RCVLOWAT setting
291   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
292   *	@sk_sndtimeo: %SO_SNDTIMEO setting
293   *	@sk_txhash: computed flow hash for use on transmit
294   *	@sk_filter: socket filtering instructions
295   *	@sk_timer: sock cleanup timer
296   *	@sk_stamp: time stamp of last packet received
297   *	@sk_tsflags: SO_TIMESTAMPING socket options
298   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
299   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
300   *	@sk_socket: Identd and reporting IO signals
301   *	@sk_user_data: RPC layer private data
302   *	@sk_frag: cached page frag
303   *	@sk_peek_off: current peek_offset value
304   *	@sk_send_head: front of stuff to transmit
305   *	@sk_security: used by security modules
306   *	@sk_mark: generic packet mark
307   *	@sk_cgrp_data: cgroup data for this cgroup
308   *	@sk_memcg: this socket's memory cgroup association
309   *	@sk_write_pending: a write to stream socket waits to start
310   *	@sk_state_change: callback to indicate change in the state of the sock
311   *	@sk_data_ready: callback to indicate there is data to be processed
312   *	@sk_write_space: callback to indicate there is bf sending space available
313   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
314   *	@sk_backlog_rcv: callback to process the backlog
315   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
316   *	@sk_reuseport_cb: reuseport group container
317   *	@sk_rcu: used during RCU grace period
318   */
319 struct sock {
320 	/*
321 	 * Now struct inet_timewait_sock also uses sock_common, so please just
322 	 * don't add nothing before this first member (__sk_common) --acme
323 	 */
324 	struct sock_common	__sk_common;
325 #define sk_node			__sk_common.skc_node
326 #define sk_nulls_node		__sk_common.skc_nulls_node
327 #define sk_refcnt		__sk_common.skc_refcnt
328 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
329 
330 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
331 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
332 #define sk_hash			__sk_common.skc_hash
333 #define sk_portpair		__sk_common.skc_portpair
334 #define sk_num			__sk_common.skc_num
335 #define sk_dport		__sk_common.skc_dport
336 #define sk_addrpair		__sk_common.skc_addrpair
337 #define sk_daddr		__sk_common.skc_daddr
338 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
339 #define sk_family		__sk_common.skc_family
340 #define sk_state		__sk_common.skc_state
341 #define sk_reuse		__sk_common.skc_reuse
342 #define sk_reuseport		__sk_common.skc_reuseport
343 #define sk_ipv6only		__sk_common.skc_ipv6only
344 #define sk_net_refcnt		__sk_common.skc_net_refcnt
345 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
346 #define sk_bind_node		__sk_common.skc_bind_node
347 #define sk_prot			__sk_common.skc_prot
348 #define sk_net			__sk_common.skc_net
349 #define sk_v6_daddr		__sk_common.skc_v6_daddr
350 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
351 #define sk_cookie		__sk_common.skc_cookie
352 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
353 #define sk_flags		__sk_common.skc_flags
354 #define sk_rxhash		__sk_common.skc_rxhash
355 
356 	socket_lock_t		sk_lock;
357 	atomic_t		sk_drops;
358 	int			sk_rcvlowat;
359 	struct sk_buff_head	sk_error_queue;
360 	struct sk_buff_head	sk_receive_queue;
361 	/*
362 	 * The backlog queue is special, it is always used with
363 	 * the per-socket spinlock held and requires low latency
364 	 * access. Therefore we special case it's implementation.
365 	 * Note : rmem_alloc is in this structure to fill a hole
366 	 * on 64bit arches, not because its logically part of
367 	 * backlog.
368 	 */
369 	struct {
370 		atomic_t	rmem_alloc;
371 		int		len;
372 		struct sk_buff	*head;
373 		struct sk_buff	*tail;
374 	} sk_backlog;
375 #define sk_rmem_alloc sk_backlog.rmem_alloc
376 
377 	int			sk_forward_alloc;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 	unsigned int		sk_ll_usec;
380 	/* ===== mostly read cache line ===== */
381 	unsigned int		sk_napi_id;
382 #endif
383 	int			sk_rcvbuf;
384 
385 	struct sk_filter __rcu	*sk_filter;
386 	union {
387 		struct socket_wq __rcu	*sk_wq;
388 		struct socket_wq	*sk_wq_raw;
389 	};
390 #ifdef CONFIG_XFRM
391 	struct xfrm_policy __rcu *sk_policy[2];
392 #endif
393 	struct dst_entry	*sk_rx_dst;
394 	struct dst_entry __rcu	*sk_dst_cache;
395 	atomic_t		sk_omem_alloc;
396 	int			sk_sndbuf;
397 
398 	/* ===== cache line for TX ===== */
399 	int			sk_wmem_queued;
400 	refcount_t		sk_wmem_alloc;
401 	unsigned long		sk_tsq_flags;
402 	union {
403 		struct sk_buff	*sk_send_head;
404 		struct rb_root	tcp_rtx_queue;
405 	};
406 	struct sk_buff_head	sk_write_queue;
407 	__s32			sk_peek_off;
408 	int			sk_write_pending;
409 	__u32			sk_dst_pending_confirm;
410 	u32			sk_pacing_status; /* see enum sk_pacing */
411 	long			sk_sndtimeo;
412 	struct timer_list	sk_timer;
413 	__u32			sk_priority;
414 	__u32			sk_mark;
415 	u32			sk_pacing_rate; /* bytes per second */
416 	u32			sk_max_pacing_rate;
417 	struct page_frag	sk_frag;
418 	netdev_features_t	sk_route_caps;
419 	netdev_features_t	sk_route_nocaps;
420 	netdev_features_t	sk_route_forced_caps;
421 	int			sk_gso_type;
422 	unsigned int		sk_gso_max_size;
423 	gfp_t			sk_allocation;
424 	__u32			sk_txhash;
425 
426 	/*
427 	 * Because of non atomicity rules, all
428 	 * changes are protected by socket lock.
429 	 */
430 	unsigned int		__sk_flags_offset[0];
431 #ifdef __BIG_ENDIAN_BITFIELD
432 #define SK_FL_PROTO_SHIFT  16
433 #define SK_FL_PROTO_MASK   0x00ff0000
434 
435 #define SK_FL_TYPE_SHIFT   0
436 #define SK_FL_TYPE_MASK    0x0000ffff
437 #else
438 #define SK_FL_PROTO_SHIFT  8
439 #define SK_FL_PROTO_MASK   0x0000ff00
440 
441 #define SK_FL_TYPE_SHIFT   16
442 #define SK_FL_TYPE_MASK    0xffff0000
443 #endif
444 
445 	unsigned int		sk_padding : 1,
446 				sk_kern_sock : 1,
447 				sk_no_check_tx : 1,
448 				sk_no_check_rx : 1,
449 				sk_userlocks : 4,
450 				sk_protocol  : 8,
451 				sk_type      : 16;
452 #define SK_PROTOCOL_MAX U8_MAX
453 	u16			sk_gso_max_segs;
454 	u8			sk_pacing_shift;
455 	unsigned long	        sk_lingertime;
456 	struct proto		*sk_prot_creator;
457 	rwlock_t		sk_callback_lock;
458 	int			sk_err,
459 				sk_err_soft;
460 	u32			sk_ack_backlog;
461 	u32			sk_max_ack_backlog;
462 	kuid_t			sk_uid;
463 	struct pid		*sk_peer_pid;
464 	const struct cred	*sk_peer_cred;
465 	long			sk_rcvtimeo;
466 	ktime_t			sk_stamp;
467 	u16			sk_tsflags;
468 	u8			sk_shutdown;
469 	u32			sk_tskey;
470 	atomic_t		sk_zckey;
471 	struct socket		*sk_socket;
472 	void			*sk_user_data;
473 #ifdef CONFIG_SECURITY
474 	void			*sk_security;
475 #endif
476 	struct sock_cgroup_data	sk_cgrp_data;
477 	struct mem_cgroup	*sk_memcg;
478 	void			(*sk_state_change)(struct sock *sk);
479 	void			(*sk_data_ready)(struct sock *sk);
480 	void			(*sk_write_space)(struct sock *sk);
481 	void			(*sk_error_report)(struct sock *sk);
482 	int			(*sk_backlog_rcv)(struct sock *sk,
483 						  struct sk_buff *skb);
484 #ifdef CONFIG_SOCK_VALIDATE_XMIT
485 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
486 							struct net_device *dev,
487 							struct sk_buff *skb);
488 #endif
489 	void                    (*sk_destruct)(struct sock *sk);
490 	struct sock_reuseport __rcu	*sk_reuseport_cb;
491 	struct rcu_head		sk_rcu;
492 };
493 
494 enum sk_pacing {
495 	SK_PACING_NONE		= 0,
496 	SK_PACING_NEEDED	= 1,
497 	SK_PACING_FQ		= 2,
498 };
499 
500 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
501 
502 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
503 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
504 
505 /*
506  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
507  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
508  * on a socket means that the socket will reuse everybody else's port
509  * without looking at the other's sk_reuse value.
510  */
511 
512 #define SK_NO_REUSE	0
513 #define SK_CAN_REUSE	1
514 #define SK_FORCE_REUSE	2
515 
516 int sk_set_peek_off(struct sock *sk, int val);
517 
518 static inline int sk_peek_offset(struct sock *sk, int flags)
519 {
520 	if (unlikely(flags & MSG_PEEK)) {
521 		return READ_ONCE(sk->sk_peek_off);
522 	}
523 
524 	return 0;
525 }
526 
527 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
528 {
529 	s32 off = READ_ONCE(sk->sk_peek_off);
530 
531 	if (unlikely(off >= 0)) {
532 		off = max_t(s32, off - val, 0);
533 		WRITE_ONCE(sk->sk_peek_off, off);
534 	}
535 }
536 
537 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
538 {
539 	sk_peek_offset_bwd(sk, -val);
540 }
541 
542 /*
543  * Hashed lists helper routines
544  */
545 static inline struct sock *sk_entry(const struct hlist_node *node)
546 {
547 	return hlist_entry(node, struct sock, sk_node);
548 }
549 
550 static inline struct sock *__sk_head(const struct hlist_head *head)
551 {
552 	return hlist_entry(head->first, struct sock, sk_node);
553 }
554 
555 static inline struct sock *sk_head(const struct hlist_head *head)
556 {
557 	return hlist_empty(head) ? NULL : __sk_head(head);
558 }
559 
560 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
561 {
562 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
563 }
564 
565 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
566 {
567 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
568 }
569 
570 static inline struct sock *sk_next(const struct sock *sk)
571 {
572 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
573 }
574 
575 static inline struct sock *sk_nulls_next(const struct sock *sk)
576 {
577 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
578 		hlist_nulls_entry(sk->sk_nulls_node.next,
579 				  struct sock, sk_nulls_node) :
580 		NULL;
581 }
582 
583 static inline bool sk_unhashed(const struct sock *sk)
584 {
585 	return hlist_unhashed(&sk->sk_node);
586 }
587 
588 static inline bool sk_hashed(const struct sock *sk)
589 {
590 	return !sk_unhashed(sk);
591 }
592 
593 static inline void sk_node_init(struct hlist_node *node)
594 {
595 	node->pprev = NULL;
596 }
597 
598 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
599 {
600 	node->pprev = NULL;
601 }
602 
603 static inline void __sk_del_node(struct sock *sk)
604 {
605 	__hlist_del(&sk->sk_node);
606 }
607 
608 /* NB: equivalent to hlist_del_init_rcu */
609 static inline bool __sk_del_node_init(struct sock *sk)
610 {
611 	if (sk_hashed(sk)) {
612 		__sk_del_node(sk);
613 		sk_node_init(&sk->sk_node);
614 		return true;
615 	}
616 	return false;
617 }
618 
619 /* Grab socket reference count. This operation is valid only
620    when sk is ALREADY grabbed f.e. it is found in hash table
621    or a list and the lookup is made under lock preventing hash table
622    modifications.
623  */
624 
625 static __always_inline void sock_hold(struct sock *sk)
626 {
627 	refcount_inc(&sk->sk_refcnt);
628 }
629 
630 /* Ungrab socket in the context, which assumes that socket refcnt
631    cannot hit zero, f.e. it is true in context of any socketcall.
632  */
633 static __always_inline void __sock_put(struct sock *sk)
634 {
635 	refcount_dec(&sk->sk_refcnt);
636 }
637 
638 static inline bool sk_del_node_init(struct sock *sk)
639 {
640 	bool rc = __sk_del_node_init(sk);
641 
642 	if (rc) {
643 		/* paranoid for a while -acme */
644 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
645 		__sock_put(sk);
646 	}
647 	return rc;
648 }
649 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
650 
651 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
652 {
653 	if (sk_hashed(sk)) {
654 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
655 		return true;
656 	}
657 	return false;
658 }
659 
660 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
661 {
662 	bool rc = __sk_nulls_del_node_init_rcu(sk);
663 
664 	if (rc) {
665 		/* paranoid for a while -acme */
666 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
667 		__sock_put(sk);
668 	}
669 	return rc;
670 }
671 
672 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
673 {
674 	hlist_add_head(&sk->sk_node, list);
675 }
676 
677 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
678 {
679 	sock_hold(sk);
680 	__sk_add_node(sk, list);
681 }
682 
683 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
684 {
685 	sock_hold(sk);
686 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
687 	    sk->sk_family == AF_INET6)
688 		hlist_add_tail_rcu(&sk->sk_node, list);
689 	else
690 		hlist_add_head_rcu(&sk->sk_node, list);
691 }
692 
693 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
694 {
695 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
696 }
697 
698 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
699 {
700 	sock_hold(sk);
701 	__sk_nulls_add_node_rcu(sk, list);
702 }
703 
704 static inline void __sk_del_bind_node(struct sock *sk)
705 {
706 	__hlist_del(&sk->sk_bind_node);
707 }
708 
709 static inline void sk_add_bind_node(struct sock *sk,
710 					struct hlist_head *list)
711 {
712 	hlist_add_head(&sk->sk_bind_node, list);
713 }
714 
715 #define sk_for_each(__sk, list) \
716 	hlist_for_each_entry(__sk, list, sk_node)
717 #define sk_for_each_rcu(__sk, list) \
718 	hlist_for_each_entry_rcu(__sk, list, sk_node)
719 #define sk_nulls_for_each(__sk, node, list) \
720 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
721 #define sk_nulls_for_each_rcu(__sk, node, list) \
722 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
723 #define sk_for_each_from(__sk) \
724 	hlist_for_each_entry_from(__sk, sk_node)
725 #define sk_nulls_for_each_from(__sk, node) \
726 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
727 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
728 #define sk_for_each_safe(__sk, tmp, list) \
729 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
730 #define sk_for_each_bound(__sk, list) \
731 	hlist_for_each_entry(__sk, list, sk_bind_node)
732 
733 /**
734  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
735  * @tpos:	the type * to use as a loop cursor.
736  * @pos:	the &struct hlist_node to use as a loop cursor.
737  * @head:	the head for your list.
738  * @offset:	offset of hlist_node within the struct.
739  *
740  */
741 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
742 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
743 	     pos != NULL &&						       \
744 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
745 	     pos = rcu_dereference(hlist_next_rcu(pos)))
746 
747 static inline struct user_namespace *sk_user_ns(struct sock *sk)
748 {
749 	/* Careful only use this in a context where these parameters
750 	 * can not change and must all be valid, such as recvmsg from
751 	 * userspace.
752 	 */
753 	return sk->sk_socket->file->f_cred->user_ns;
754 }
755 
756 /* Sock flags */
757 enum sock_flags {
758 	SOCK_DEAD,
759 	SOCK_DONE,
760 	SOCK_URGINLINE,
761 	SOCK_KEEPOPEN,
762 	SOCK_LINGER,
763 	SOCK_DESTROY,
764 	SOCK_BROADCAST,
765 	SOCK_TIMESTAMP,
766 	SOCK_ZAPPED,
767 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
768 	SOCK_DBG, /* %SO_DEBUG setting */
769 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
770 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
771 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
772 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
773 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
774 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
775 	SOCK_FASYNC, /* fasync() active */
776 	SOCK_RXQ_OVFL,
777 	SOCK_ZEROCOPY, /* buffers from userspace */
778 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
779 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
780 		     * Will use last 4 bytes of packet sent from
781 		     * user-space instead.
782 		     */
783 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
784 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
785 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
786 };
787 
788 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
789 
790 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
791 {
792 	nsk->sk_flags = osk->sk_flags;
793 }
794 
795 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
796 {
797 	__set_bit(flag, &sk->sk_flags);
798 }
799 
800 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
801 {
802 	__clear_bit(flag, &sk->sk_flags);
803 }
804 
805 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
806 {
807 	return test_bit(flag, &sk->sk_flags);
808 }
809 
810 #ifdef CONFIG_NET
811 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
812 static inline int sk_memalloc_socks(void)
813 {
814 	return static_branch_unlikely(&memalloc_socks_key);
815 }
816 #else
817 
818 static inline int sk_memalloc_socks(void)
819 {
820 	return 0;
821 }
822 
823 #endif
824 
825 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
826 {
827 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
828 }
829 
830 static inline void sk_acceptq_removed(struct sock *sk)
831 {
832 	sk->sk_ack_backlog--;
833 }
834 
835 static inline void sk_acceptq_added(struct sock *sk)
836 {
837 	sk->sk_ack_backlog++;
838 }
839 
840 static inline bool sk_acceptq_is_full(const struct sock *sk)
841 {
842 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
843 }
844 
845 /*
846  * Compute minimal free write space needed to queue new packets.
847  */
848 static inline int sk_stream_min_wspace(const struct sock *sk)
849 {
850 	return sk->sk_wmem_queued >> 1;
851 }
852 
853 static inline int sk_stream_wspace(const struct sock *sk)
854 {
855 	return sk->sk_sndbuf - sk->sk_wmem_queued;
856 }
857 
858 void sk_stream_write_space(struct sock *sk);
859 
860 /* OOB backlog add */
861 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
862 {
863 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
864 	skb_dst_force(skb);
865 
866 	if (!sk->sk_backlog.tail)
867 		sk->sk_backlog.head = skb;
868 	else
869 		sk->sk_backlog.tail->next = skb;
870 
871 	sk->sk_backlog.tail = skb;
872 	skb->next = NULL;
873 }
874 
875 /*
876  * Take into account size of receive queue and backlog queue
877  * Do not take into account this skb truesize,
878  * to allow even a single big packet to come.
879  */
880 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
881 {
882 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
883 
884 	return qsize > limit;
885 }
886 
887 /* The per-socket spinlock must be held here. */
888 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
889 					      unsigned int limit)
890 {
891 	if (sk_rcvqueues_full(sk, limit))
892 		return -ENOBUFS;
893 
894 	/*
895 	 * If the skb was allocated from pfmemalloc reserves, only
896 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
897 	 * helping free memory
898 	 */
899 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
900 		return -ENOMEM;
901 
902 	__sk_add_backlog(sk, skb);
903 	sk->sk_backlog.len += skb->truesize;
904 	return 0;
905 }
906 
907 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
908 
909 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
910 {
911 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
912 		return __sk_backlog_rcv(sk, skb);
913 
914 	return sk->sk_backlog_rcv(sk, skb);
915 }
916 
917 static inline void sk_incoming_cpu_update(struct sock *sk)
918 {
919 	int cpu = raw_smp_processor_id();
920 
921 	if (unlikely(sk->sk_incoming_cpu != cpu))
922 		sk->sk_incoming_cpu = cpu;
923 }
924 
925 static inline void sock_rps_record_flow_hash(__u32 hash)
926 {
927 #ifdef CONFIG_RPS
928 	struct rps_sock_flow_table *sock_flow_table;
929 
930 	rcu_read_lock();
931 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
932 	rps_record_sock_flow(sock_flow_table, hash);
933 	rcu_read_unlock();
934 #endif
935 }
936 
937 static inline void sock_rps_record_flow(const struct sock *sk)
938 {
939 #ifdef CONFIG_RPS
940 	if (static_key_false(&rfs_needed)) {
941 		/* Reading sk->sk_rxhash might incur an expensive cache line
942 		 * miss.
943 		 *
944 		 * TCP_ESTABLISHED does cover almost all states where RFS
945 		 * might be useful, and is cheaper [1] than testing :
946 		 *	IPv4: inet_sk(sk)->inet_daddr
947 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
948 		 * OR	an additional socket flag
949 		 * [1] : sk_state and sk_prot are in the same cache line.
950 		 */
951 		if (sk->sk_state == TCP_ESTABLISHED)
952 			sock_rps_record_flow_hash(sk->sk_rxhash);
953 	}
954 #endif
955 }
956 
957 static inline void sock_rps_save_rxhash(struct sock *sk,
958 					const struct sk_buff *skb)
959 {
960 #ifdef CONFIG_RPS
961 	if (unlikely(sk->sk_rxhash != skb->hash))
962 		sk->sk_rxhash = skb->hash;
963 #endif
964 }
965 
966 static inline void sock_rps_reset_rxhash(struct sock *sk)
967 {
968 #ifdef CONFIG_RPS
969 	sk->sk_rxhash = 0;
970 #endif
971 }
972 
973 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
974 	({	int __rc;						\
975 		release_sock(__sk);					\
976 		__rc = __condition;					\
977 		if (!__rc) {						\
978 			*(__timeo) = wait_woken(__wait,			\
979 						TASK_INTERRUPTIBLE,	\
980 						*(__timeo));		\
981 		}							\
982 		sched_annotate_sleep();					\
983 		lock_sock(__sk);					\
984 		__rc = __condition;					\
985 		__rc;							\
986 	})
987 
988 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
989 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
990 void sk_stream_wait_close(struct sock *sk, long timeo_p);
991 int sk_stream_error(struct sock *sk, int flags, int err);
992 void sk_stream_kill_queues(struct sock *sk);
993 void sk_set_memalloc(struct sock *sk);
994 void sk_clear_memalloc(struct sock *sk);
995 
996 void __sk_flush_backlog(struct sock *sk);
997 
998 static inline bool sk_flush_backlog(struct sock *sk)
999 {
1000 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1001 		__sk_flush_backlog(sk);
1002 		return true;
1003 	}
1004 	return false;
1005 }
1006 
1007 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1008 
1009 struct request_sock_ops;
1010 struct timewait_sock_ops;
1011 struct inet_hashinfo;
1012 struct raw_hashinfo;
1013 struct smc_hashinfo;
1014 struct module;
1015 
1016 /*
1017  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1018  * un-modified. Special care is taken when initializing object to zero.
1019  */
1020 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1021 {
1022 	if (offsetof(struct sock, sk_node.next) != 0)
1023 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1024 	memset(&sk->sk_node.pprev, 0,
1025 	       size - offsetof(struct sock, sk_node.pprev));
1026 }
1027 
1028 /* Networking protocol blocks we attach to sockets.
1029  * socket layer -> transport layer interface
1030  */
1031 struct proto {
1032 	void			(*close)(struct sock *sk,
1033 					long timeout);
1034 	int			(*pre_connect)(struct sock *sk,
1035 					struct sockaddr *uaddr,
1036 					int addr_len);
1037 	int			(*connect)(struct sock *sk,
1038 					struct sockaddr *uaddr,
1039 					int addr_len);
1040 	int			(*disconnect)(struct sock *sk, int flags);
1041 
1042 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1043 					  bool kern);
1044 
1045 	int			(*ioctl)(struct sock *sk, int cmd,
1046 					 unsigned long arg);
1047 	int			(*init)(struct sock *sk);
1048 	void			(*destroy)(struct sock *sk);
1049 	void			(*shutdown)(struct sock *sk, int how);
1050 	int			(*setsockopt)(struct sock *sk, int level,
1051 					int optname, char __user *optval,
1052 					unsigned int optlen);
1053 	int			(*getsockopt)(struct sock *sk, int level,
1054 					int optname, char __user *optval,
1055 					int __user *option);
1056 	void			(*keepalive)(struct sock *sk, int valbool);
1057 #ifdef CONFIG_COMPAT
1058 	int			(*compat_setsockopt)(struct sock *sk,
1059 					int level,
1060 					int optname, char __user *optval,
1061 					unsigned int optlen);
1062 	int			(*compat_getsockopt)(struct sock *sk,
1063 					int level,
1064 					int optname, char __user *optval,
1065 					int __user *option);
1066 	int			(*compat_ioctl)(struct sock *sk,
1067 					unsigned int cmd, unsigned long arg);
1068 #endif
1069 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1070 					   size_t len);
1071 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1072 					   size_t len, int noblock, int flags,
1073 					   int *addr_len);
1074 	int			(*sendpage)(struct sock *sk, struct page *page,
1075 					int offset, size_t size, int flags);
1076 	int			(*bind)(struct sock *sk,
1077 					struct sockaddr *uaddr, int addr_len);
1078 
1079 	int			(*backlog_rcv) (struct sock *sk,
1080 						struct sk_buff *skb);
1081 
1082 	void		(*release_cb)(struct sock *sk);
1083 
1084 	/* Keeping track of sk's, looking them up, and port selection methods. */
1085 	int			(*hash)(struct sock *sk);
1086 	void			(*unhash)(struct sock *sk);
1087 	void			(*rehash)(struct sock *sk);
1088 	int			(*get_port)(struct sock *sk, unsigned short snum);
1089 
1090 	/* Keeping track of sockets in use */
1091 #ifdef CONFIG_PROC_FS
1092 	unsigned int		inuse_idx;
1093 #endif
1094 
1095 	bool			(*stream_memory_free)(const struct sock *sk);
1096 	bool			(*stream_memory_read)(const struct sock *sk);
1097 	/* Memory pressure */
1098 	void			(*enter_memory_pressure)(struct sock *sk);
1099 	void			(*leave_memory_pressure)(struct sock *sk);
1100 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1101 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1102 	/*
1103 	 * Pressure flag: try to collapse.
1104 	 * Technical note: it is used by multiple contexts non atomically.
1105 	 * All the __sk_mem_schedule() is of this nature: accounting
1106 	 * is strict, actions are advisory and have some latency.
1107 	 */
1108 	unsigned long		*memory_pressure;
1109 	long			*sysctl_mem;
1110 
1111 	int			*sysctl_wmem;
1112 	int			*sysctl_rmem;
1113 	u32			sysctl_wmem_offset;
1114 	u32			sysctl_rmem_offset;
1115 
1116 	int			max_header;
1117 	bool			no_autobind;
1118 
1119 	struct kmem_cache	*slab;
1120 	unsigned int		obj_size;
1121 	slab_flags_t		slab_flags;
1122 	unsigned int		useroffset;	/* Usercopy region offset */
1123 	unsigned int		usersize;	/* Usercopy region size */
1124 
1125 	struct percpu_counter	*orphan_count;
1126 
1127 	struct request_sock_ops	*rsk_prot;
1128 	struct timewait_sock_ops *twsk_prot;
1129 
1130 	union {
1131 		struct inet_hashinfo	*hashinfo;
1132 		struct udp_table	*udp_table;
1133 		struct raw_hashinfo	*raw_hash;
1134 		struct smc_hashinfo	*smc_hash;
1135 	} h;
1136 
1137 	struct module		*owner;
1138 
1139 	char			name[32];
1140 
1141 	struct list_head	node;
1142 #ifdef SOCK_REFCNT_DEBUG
1143 	atomic_t		socks;
1144 #endif
1145 	int			(*diag_destroy)(struct sock *sk, int err);
1146 } __randomize_layout;
1147 
1148 int proto_register(struct proto *prot, int alloc_slab);
1149 void proto_unregister(struct proto *prot);
1150 int sock_load_diag_module(int family, int protocol);
1151 
1152 #ifdef SOCK_REFCNT_DEBUG
1153 static inline void sk_refcnt_debug_inc(struct sock *sk)
1154 {
1155 	atomic_inc(&sk->sk_prot->socks);
1156 }
1157 
1158 static inline void sk_refcnt_debug_dec(struct sock *sk)
1159 {
1160 	atomic_dec(&sk->sk_prot->socks);
1161 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1162 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1163 }
1164 
1165 static inline void sk_refcnt_debug_release(const struct sock *sk)
1166 {
1167 	if (refcount_read(&sk->sk_refcnt) != 1)
1168 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1169 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1170 }
1171 #else /* SOCK_REFCNT_DEBUG */
1172 #define sk_refcnt_debug_inc(sk) do { } while (0)
1173 #define sk_refcnt_debug_dec(sk) do { } while (0)
1174 #define sk_refcnt_debug_release(sk) do { } while (0)
1175 #endif /* SOCK_REFCNT_DEBUG */
1176 
1177 static inline bool sk_stream_memory_free(const struct sock *sk)
1178 {
1179 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1180 		return false;
1181 
1182 	return sk->sk_prot->stream_memory_free ?
1183 		sk->sk_prot->stream_memory_free(sk) : true;
1184 }
1185 
1186 static inline bool sk_stream_is_writeable(const struct sock *sk)
1187 {
1188 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1189 	       sk_stream_memory_free(sk);
1190 }
1191 
1192 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1193 					    struct cgroup *ancestor)
1194 {
1195 #ifdef CONFIG_SOCK_CGROUP_DATA
1196 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1197 				    ancestor);
1198 #else
1199 	return -ENOTSUPP;
1200 #endif
1201 }
1202 
1203 static inline bool sk_has_memory_pressure(const struct sock *sk)
1204 {
1205 	return sk->sk_prot->memory_pressure != NULL;
1206 }
1207 
1208 static inline bool sk_under_memory_pressure(const struct sock *sk)
1209 {
1210 	if (!sk->sk_prot->memory_pressure)
1211 		return false;
1212 
1213 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1214 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1215 		return true;
1216 
1217 	return !!*sk->sk_prot->memory_pressure;
1218 }
1219 
1220 static inline long
1221 sk_memory_allocated(const struct sock *sk)
1222 {
1223 	return atomic_long_read(sk->sk_prot->memory_allocated);
1224 }
1225 
1226 static inline long
1227 sk_memory_allocated_add(struct sock *sk, int amt)
1228 {
1229 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1230 }
1231 
1232 static inline void
1233 sk_memory_allocated_sub(struct sock *sk, int amt)
1234 {
1235 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1236 }
1237 
1238 static inline void sk_sockets_allocated_dec(struct sock *sk)
1239 {
1240 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1241 }
1242 
1243 static inline void sk_sockets_allocated_inc(struct sock *sk)
1244 {
1245 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1246 }
1247 
1248 static inline int
1249 sk_sockets_allocated_read_positive(struct sock *sk)
1250 {
1251 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1252 }
1253 
1254 static inline int
1255 proto_sockets_allocated_sum_positive(struct proto *prot)
1256 {
1257 	return percpu_counter_sum_positive(prot->sockets_allocated);
1258 }
1259 
1260 static inline long
1261 proto_memory_allocated(struct proto *prot)
1262 {
1263 	return atomic_long_read(prot->memory_allocated);
1264 }
1265 
1266 static inline bool
1267 proto_memory_pressure(struct proto *prot)
1268 {
1269 	if (!prot->memory_pressure)
1270 		return false;
1271 	return !!*prot->memory_pressure;
1272 }
1273 
1274 
1275 #ifdef CONFIG_PROC_FS
1276 /* Called with local bh disabled */
1277 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1278 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1279 int sock_inuse_get(struct net *net);
1280 #else
1281 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1282 		int inc)
1283 {
1284 }
1285 #endif
1286 
1287 
1288 /* With per-bucket locks this operation is not-atomic, so that
1289  * this version is not worse.
1290  */
1291 static inline int __sk_prot_rehash(struct sock *sk)
1292 {
1293 	sk->sk_prot->unhash(sk);
1294 	return sk->sk_prot->hash(sk);
1295 }
1296 
1297 /* About 10 seconds */
1298 #define SOCK_DESTROY_TIME (10*HZ)
1299 
1300 /* Sockets 0-1023 can't be bound to unless you are superuser */
1301 #define PROT_SOCK	1024
1302 
1303 #define SHUTDOWN_MASK	3
1304 #define RCV_SHUTDOWN	1
1305 #define SEND_SHUTDOWN	2
1306 
1307 #define SOCK_SNDBUF_LOCK	1
1308 #define SOCK_RCVBUF_LOCK	2
1309 #define SOCK_BINDADDR_LOCK	4
1310 #define SOCK_BINDPORT_LOCK	8
1311 
1312 struct socket_alloc {
1313 	struct socket socket;
1314 	struct inode vfs_inode;
1315 };
1316 
1317 static inline struct socket *SOCKET_I(struct inode *inode)
1318 {
1319 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1320 }
1321 
1322 static inline struct inode *SOCK_INODE(struct socket *socket)
1323 {
1324 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1325 }
1326 
1327 /*
1328  * Functions for memory accounting
1329  */
1330 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1331 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1332 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1333 void __sk_mem_reclaim(struct sock *sk, int amount);
1334 
1335 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1336  * do not necessarily have 16x time more memory than 4KB ones.
1337  */
1338 #define SK_MEM_QUANTUM 4096
1339 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1340 #define SK_MEM_SEND	0
1341 #define SK_MEM_RECV	1
1342 
1343 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1344 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1345 {
1346 	long val = sk->sk_prot->sysctl_mem[index];
1347 
1348 #if PAGE_SIZE > SK_MEM_QUANTUM
1349 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1350 #elif PAGE_SIZE < SK_MEM_QUANTUM
1351 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1352 #endif
1353 	return val;
1354 }
1355 
1356 static inline int sk_mem_pages(int amt)
1357 {
1358 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1359 }
1360 
1361 static inline bool sk_has_account(struct sock *sk)
1362 {
1363 	/* return true if protocol supports memory accounting */
1364 	return !!sk->sk_prot->memory_allocated;
1365 }
1366 
1367 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1368 {
1369 	if (!sk_has_account(sk))
1370 		return true;
1371 	return size <= sk->sk_forward_alloc ||
1372 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1373 }
1374 
1375 static inline bool
1376 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1377 {
1378 	if (!sk_has_account(sk))
1379 		return true;
1380 	return size<= sk->sk_forward_alloc ||
1381 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1382 		skb_pfmemalloc(skb);
1383 }
1384 
1385 static inline void sk_mem_reclaim(struct sock *sk)
1386 {
1387 	if (!sk_has_account(sk))
1388 		return;
1389 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1390 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1391 }
1392 
1393 static inline void sk_mem_reclaim_partial(struct sock *sk)
1394 {
1395 	if (!sk_has_account(sk))
1396 		return;
1397 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1398 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1399 }
1400 
1401 static inline void sk_mem_charge(struct sock *sk, int size)
1402 {
1403 	if (!sk_has_account(sk))
1404 		return;
1405 	sk->sk_forward_alloc -= size;
1406 }
1407 
1408 static inline void sk_mem_uncharge(struct sock *sk, int size)
1409 {
1410 	if (!sk_has_account(sk))
1411 		return;
1412 	sk->sk_forward_alloc += size;
1413 
1414 	/* Avoid a possible overflow.
1415 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1416 	 * is not called and more than 2 GBytes are released at once.
1417 	 *
1418 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1419 	 * no need to hold that much forward allocation anyway.
1420 	 */
1421 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1422 		__sk_mem_reclaim(sk, 1 << 20);
1423 }
1424 
1425 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1426 {
1427 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1428 	sk->sk_wmem_queued -= skb->truesize;
1429 	sk_mem_uncharge(sk, skb->truesize);
1430 	__kfree_skb(skb);
1431 }
1432 
1433 static inline void sock_release_ownership(struct sock *sk)
1434 {
1435 	if (sk->sk_lock.owned) {
1436 		sk->sk_lock.owned = 0;
1437 
1438 		/* The sk_lock has mutex_unlock() semantics: */
1439 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1440 	}
1441 }
1442 
1443 /*
1444  * Macro so as to not evaluate some arguments when
1445  * lockdep is not enabled.
1446  *
1447  * Mark both the sk_lock and the sk_lock.slock as a
1448  * per-address-family lock class.
1449  */
1450 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1451 do {									\
1452 	sk->sk_lock.owned = 0;						\
1453 	init_waitqueue_head(&sk->sk_lock.wq);				\
1454 	spin_lock_init(&(sk)->sk_lock.slock);				\
1455 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1456 			sizeof((sk)->sk_lock));				\
1457 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1458 				(skey), (sname));				\
1459 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1460 } while (0)
1461 
1462 #ifdef CONFIG_LOCKDEP
1463 static inline bool lockdep_sock_is_held(const struct sock *sk)
1464 {
1465 	return lockdep_is_held(&sk->sk_lock) ||
1466 	       lockdep_is_held(&sk->sk_lock.slock);
1467 }
1468 #endif
1469 
1470 void lock_sock_nested(struct sock *sk, int subclass);
1471 
1472 static inline void lock_sock(struct sock *sk)
1473 {
1474 	lock_sock_nested(sk, 0);
1475 }
1476 
1477 void release_sock(struct sock *sk);
1478 
1479 /* BH context may only use the following locking interface. */
1480 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1481 #define bh_lock_sock_nested(__sk) \
1482 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1483 				SINGLE_DEPTH_NESTING)
1484 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1485 
1486 bool lock_sock_fast(struct sock *sk);
1487 /**
1488  * unlock_sock_fast - complement of lock_sock_fast
1489  * @sk: socket
1490  * @slow: slow mode
1491  *
1492  * fast unlock socket for user context.
1493  * If slow mode is on, we call regular release_sock()
1494  */
1495 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1496 {
1497 	if (slow)
1498 		release_sock(sk);
1499 	else
1500 		spin_unlock_bh(&sk->sk_lock.slock);
1501 }
1502 
1503 /* Used by processes to "lock" a socket state, so that
1504  * interrupts and bottom half handlers won't change it
1505  * from under us. It essentially blocks any incoming
1506  * packets, so that we won't get any new data or any
1507  * packets that change the state of the socket.
1508  *
1509  * While locked, BH processing will add new packets to
1510  * the backlog queue.  This queue is processed by the
1511  * owner of the socket lock right before it is released.
1512  *
1513  * Since ~2.3.5 it is also exclusive sleep lock serializing
1514  * accesses from user process context.
1515  */
1516 
1517 static inline void sock_owned_by_me(const struct sock *sk)
1518 {
1519 #ifdef CONFIG_LOCKDEP
1520 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1521 #endif
1522 }
1523 
1524 static inline bool sock_owned_by_user(const struct sock *sk)
1525 {
1526 	sock_owned_by_me(sk);
1527 	return sk->sk_lock.owned;
1528 }
1529 
1530 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1531 {
1532 	return sk->sk_lock.owned;
1533 }
1534 
1535 /* no reclassification while locks are held */
1536 static inline bool sock_allow_reclassification(const struct sock *csk)
1537 {
1538 	struct sock *sk = (struct sock *)csk;
1539 
1540 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1541 }
1542 
1543 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1544 		      struct proto *prot, int kern);
1545 void sk_free(struct sock *sk);
1546 void sk_destruct(struct sock *sk);
1547 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1548 void sk_free_unlock_clone(struct sock *sk);
1549 
1550 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1551 			     gfp_t priority);
1552 void __sock_wfree(struct sk_buff *skb);
1553 void sock_wfree(struct sk_buff *skb);
1554 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1555 			     gfp_t priority);
1556 void skb_orphan_partial(struct sk_buff *skb);
1557 void sock_rfree(struct sk_buff *skb);
1558 void sock_efree(struct sk_buff *skb);
1559 #ifdef CONFIG_INET
1560 void sock_edemux(struct sk_buff *skb);
1561 #else
1562 #define sock_edemux sock_efree
1563 #endif
1564 
1565 int sock_setsockopt(struct socket *sock, int level, int op,
1566 		    char __user *optval, unsigned int optlen);
1567 
1568 int sock_getsockopt(struct socket *sock, int level, int op,
1569 		    char __user *optval, int __user *optlen);
1570 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1571 				    int noblock, int *errcode);
1572 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1573 				     unsigned long data_len, int noblock,
1574 				     int *errcode, int max_page_order);
1575 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1576 void sock_kfree_s(struct sock *sk, void *mem, int size);
1577 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1578 void sk_send_sigurg(struct sock *sk);
1579 
1580 struct sockcm_cookie {
1581 	u32 mark;
1582 	u16 tsflags;
1583 };
1584 
1585 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1586 		     struct sockcm_cookie *sockc);
1587 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1588 		   struct sockcm_cookie *sockc);
1589 
1590 /*
1591  * Functions to fill in entries in struct proto_ops when a protocol
1592  * does not implement a particular function.
1593  */
1594 int sock_no_bind(struct socket *, struct sockaddr *, int);
1595 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1596 int sock_no_socketpair(struct socket *, struct socket *);
1597 int sock_no_accept(struct socket *, struct socket *, int, bool);
1598 int sock_no_getname(struct socket *, struct sockaddr *, int);
1599 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1600 int sock_no_listen(struct socket *, int);
1601 int sock_no_shutdown(struct socket *, int);
1602 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1603 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1604 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1605 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1606 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1607 int sock_no_mmap(struct file *file, struct socket *sock,
1608 		 struct vm_area_struct *vma);
1609 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1610 			 size_t size, int flags);
1611 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1612 				int offset, size_t size, int flags);
1613 
1614 /*
1615  * Functions to fill in entries in struct proto_ops when a protocol
1616  * uses the inet style.
1617  */
1618 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1619 				  char __user *optval, int __user *optlen);
1620 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1621 			int flags);
1622 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1623 				  char __user *optval, unsigned int optlen);
1624 int compat_sock_common_getsockopt(struct socket *sock, int level,
1625 		int optname, char __user *optval, int __user *optlen);
1626 int compat_sock_common_setsockopt(struct socket *sock, int level,
1627 		int optname, char __user *optval, unsigned int optlen);
1628 
1629 void sk_common_release(struct sock *sk);
1630 
1631 /*
1632  *	Default socket callbacks and setup code
1633  */
1634 
1635 /* Initialise core socket variables */
1636 void sock_init_data(struct socket *sock, struct sock *sk);
1637 
1638 /*
1639  * Socket reference counting postulates.
1640  *
1641  * * Each user of socket SHOULD hold a reference count.
1642  * * Each access point to socket (an hash table bucket, reference from a list,
1643  *   running timer, skb in flight MUST hold a reference count.
1644  * * When reference count hits 0, it means it will never increase back.
1645  * * When reference count hits 0, it means that no references from
1646  *   outside exist to this socket and current process on current CPU
1647  *   is last user and may/should destroy this socket.
1648  * * sk_free is called from any context: process, BH, IRQ. When
1649  *   it is called, socket has no references from outside -> sk_free
1650  *   may release descendant resources allocated by the socket, but
1651  *   to the time when it is called, socket is NOT referenced by any
1652  *   hash tables, lists etc.
1653  * * Packets, delivered from outside (from network or from another process)
1654  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1655  *   when they sit in queue. Otherwise, packets will leak to hole, when
1656  *   socket is looked up by one cpu and unhasing is made by another CPU.
1657  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1658  *   (leak to backlog). Packet socket does all the processing inside
1659  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1660  *   use separate SMP lock, so that they are prone too.
1661  */
1662 
1663 /* Ungrab socket and destroy it, if it was the last reference. */
1664 static inline void sock_put(struct sock *sk)
1665 {
1666 	if (refcount_dec_and_test(&sk->sk_refcnt))
1667 		sk_free(sk);
1668 }
1669 /* Generic version of sock_put(), dealing with all sockets
1670  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1671  */
1672 void sock_gen_put(struct sock *sk);
1673 
1674 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1675 		     unsigned int trim_cap, bool refcounted);
1676 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1677 				 const int nested)
1678 {
1679 	return __sk_receive_skb(sk, skb, nested, 1, true);
1680 }
1681 
1682 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1683 {
1684 	sk->sk_tx_queue_mapping = tx_queue;
1685 }
1686 
1687 static inline void sk_tx_queue_clear(struct sock *sk)
1688 {
1689 	sk->sk_tx_queue_mapping = -1;
1690 }
1691 
1692 static inline int sk_tx_queue_get(const struct sock *sk)
1693 {
1694 	return sk ? sk->sk_tx_queue_mapping : -1;
1695 }
1696 
1697 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1698 {
1699 	sk_tx_queue_clear(sk);
1700 	sk->sk_socket = sock;
1701 }
1702 
1703 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1704 {
1705 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1706 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1707 }
1708 /* Detach socket from process context.
1709  * Announce socket dead, detach it from wait queue and inode.
1710  * Note that parent inode held reference count on this struct sock,
1711  * we do not release it in this function, because protocol
1712  * probably wants some additional cleanups or even continuing
1713  * to work with this socket (TCP).
1714  */
1715 static inline void sock_orphan(struct sock *sk)
1716 {
1717 	write_lock_bh(&sk->sk_callback_lock);
1718 	sock_set_flag(sk, SOCK_DEAD);
1719 	sk_set_socket(sk, NULL);
1720 	sk->sk_wq  = NULL;
1721 	write_unlock_bh(&sk->sk_callback_lock);
1722 }
1723 
1724 static inline void sock_graft(struct sock *sk, struct socket *parent)
1725 {
1726 	WARN_ON(parent->sk);
1727 	write_lock_bh(&sk->sk_callback_lock);
1728 	sk->sk_wq = parent->wq;
1729 	parent->sk = sk;
1730 	sk_set_socket(sk, parent);
1731 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1732 	security_sock_graft(sk, parent);
1733 	write_unlock_bh(&sk->sk_callback_lock);
1734 }
1735 
1736 kuid_t sock_i_uid(struct sock *sk);
1737 unsigned long sock_i_ino(struct sock *sk);
1738 
1739 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1740 {
1741 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1742 }
1743 
1744 static inline u32 net_tx_rndhash(void)
1745 {
1746 	u32 v = prandom_u32();
1747 
1748 	return v ?: 1;
1749 }
1750 
1751 static inline void sk_set_txhash(struct sock *sk)
1752 {
1753 	sk->sk_txhash = net_tx_rndhash();
1754 }
1755 
1756 static inline void sk_rethink_txhash(struct sock *sk)
1757 {
1758 	if (sk->sk_txhash)
1759 		sk_set_txhash(sk);
1760 }
1761 
1762 static inline struct dst_entry *
1763 __sk_dst_get(struct sock *sk)
1764 {
1765 	return rcu_dereference_check(sk->sk_dst_cache,
1766 				     lockdep_sock_is_held(sk));
1767 }
1768 
1769 static inline struct dst_entry *
1770 sk_dst_get(struct sock *sk)
1771 {
1772 	struct dst_entry *dst;
1773 
1774 	rcu_read_lock();
1775 	dst = rcu_dereference(sk->sk_dst_cache);
1776 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1777 		dst = NULL;
1778 	rcu_read_unlock();
1779 	return dst;
1780 }
1781 
1782 static inline void dst_negative_advice(struct sock *sk)
1783 {
1784 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1785 
1786 	sk_rethink_txhash(sk);
1787 
1788 	if (dst && dst->ops->negative_advice) {
1789 		ndst = dst->ops->negative_advice(dst);
1790 
1791 		if (ndst != dst) {
1792 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1793 			sk_tx_queue_clear(sk);
1794 			sk->sk_dst_pending_confirm = 0;
1795 		}
1796 	}
1797 }
1798 
1799 static inline void
1800 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1801 {
1802 	struct dst_entry *old_dst;
1803 
1804 	sk_tx_queue_clear(sk);
1805 	sk->sk_dst_pending_confirm = 0;
1806 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1807 					    lockdep_sock_is_held(sk));
1808 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1809 	dst_release(old_dst);
1810 }
1811 
1812 static inline void
1813 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1814 {
1815 	struct dst_entry *old_dst;
1816 
1817 	sk_tx_queue_clear(sk);
1818 	sk->sk_dst_pending_confirm = 0;
1819 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1820 	dst_release(old_dst);
1821 }
1822 
1823 static inline void
1824 __sk_dst_reset(struct sock *sk)
1825 {
1826 	__sk_dst_set(sk, NULL);
1827 }
1828 
1829 static inline void
1830 sk_dst_reset(struct sock *sk)
1831 {
1832 	sk_dst_set(sk, NULL);
1833 }
1834 
1835 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1836 
1837 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1838 
1839 static inline void sk_dst_confirm(struct sock *sk)
1840 {
1841 	if (!sk->sk_dst_pending_confirm)
1842 		sk->sk_dst_pending_confirm = 1;
1843 }
1844 
1845 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1846 {
1847 	if (skb_get_dst_pending_confirm(skb)) {
1848 		struct sock *sk = skb->sk;
1849 		unsigned long now = jiffies;
1850 
1851 		/* avoid dirtying neighbour */
1852 		if (n->confirmed != now)
1853 			n->confirmed = now;
1854 		if (sk && sk->sk_dst_pending_confirm)
1855 			sk->sk_dst_pending_confirm = 0;
1856 	}
1857 }
1858 
1859 bool sk_mc_loop(struct sock *sk);
1860 
1861 static inline bool sk_can_gso(const struct sock *sk)
1862 {
1863 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1864 }
1865 
1866 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1867 
1868 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1869 {
1870 	sk->sk_route_nocaps |= flags;
1871 	sk->sk_route_caps &= ~flags;
1872 }
1873 
1874 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1875 					   struct iov_iter *from, char *to,
1876 					   int copy, int offset)
1877 {
1878 	if (skb->ip_summed == CHECKSUM_NONE) {
1879 		__wsum csum = 0;
1880 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1881 			return -EFAULT;
1882 		skb->csum = csum_block_add(skb->csum, csum, offset);
1883 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1884 		if (!copy_from_iter_full_nocache(to, copy, from))
1885 			return -EFAULT;
1886 	} else if (!copy_from_iter_full(to, copy, from))
1887 		return -EFAULT;
1888 
1889 	return 0;
1890 }
1891 
1892 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1893 				       struct iov_iter *from, int copy)
1894 {
1895 	int err, offset = skb->len;
1896 
1897 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1898 				       copy, offset);
1899 	if (err)
1900 		__skb_trim(skb, offset);
1901 
1902 	return err;
1903 }
1904 
1905 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1906 					   struct sk_buff *skb,
1907 					   struct page *page,
1908 					   int off, int copy)
1909 {
1910 	int err;
1911 
1912 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1913 				       copy, skb->len);
1914 	if (err)
1915 		return err;
1916 
1917 	skb->len	     += copy;
1918 	skb->data_len	     += copy;
1919 	skb->truesize	     += copy;
1920 	sk->sk_wmem_queued   += copy;
1921 	sk_mem_charge(sk, copy);
1922 	return 0;
1923 }
1924 
1925 /**
1926  * sk_wmem_alloc_get - returns write allocations
1927  * @sk: socket
1928  *
1929  * Returns sk_wmem_alloc minus initial offset of one
1930  */
1931 static inline int sk_wmem_alloc_get(const struct sock *sk)
1932 {
1933 	return refcount_read(&sk->sk_wmem_alloc) - 1;
1934 }
1935 
1936 /**
1937  * sk_rmem_alloc_get - returns read allocations
1938  * @sk: socket
1939  *
1940  * Returns sk_rmem_alloc
1941  */
1942 static inline int sk_rmem_alloc_get(const struct sock *sk)
1943 {
1944 	return atomic_read(&sk->sk_rmem_alloc);
1945 }
1946 
1947 /**
1948  * sk_has_allocations - check if allocations are outstanding
1949  * @sk: socket
1950  *
1951  * Returns true if socket has write or read allocations
1952  */
1953 static inline bool sk_has_allocations(const struct sock *sk)
1954 {
1955 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1956 }
1957 
1958 /**
1959  * skwq_has_sleeper - check if there are any waiting processes
1960  * @wq: struct socket_wq
1961  *
1962  * Returns true if socket_wq has waiting processes
1963  *
1964  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1965  * barrier call. They were added due to the race found within the tcp code.
1966  *
1967  * Consider following tcp code paths::
1968  *
1969  *   CPU1                CPU2
1970  *   sys_select          receive packet
1971  *   ...                 ...
1972  *   __add_wait_queue    update tp->rcv_nxt
1973  *   ...                 ...
1974  *   tp->rcv_nxt check   sock_def_readable
1975  *   ...                 {
1976  *   schedule               rcu_read_lock();
1977  *                          wq = rcu_dereference(sk->sk_wq);
1978  *                          if (wq && waitqueue_active(&wq->wait))
1979  *                              wake_up_interruptible(&wq->wait)
1980  *                          ...
1981  *                       }
1982  *
1983  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1984  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1985  * could then endup calling schedule and sleep forever if there are no more
1986  * data on the socket.
1987  *
1988  */
1989 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1990 {
1991 	return wq && wq_has_sleeper(&wq->wait);
1992 }
1993 
1994 /**
1995  * sock_poll_wait - place memory barrier behind the poll_wait call.
1996  * @filp:           file
1997  * @wait_address:   socket wait queue
1998  * @p:              poll_table
1999  *
2000  * See the comments in the wq_has_sleeper function.
2001  */
2002 static inline void sock_poll_wait(struct file *filp,
2003 		wait_queue_head_t *wait_address, poll_table *p)
2004 {
2005 	if (!poll_does_not_wait(p) && wait_address) {
2006 		poll_wait(filp, wait_address, p);
2007 		/* We need to be sure we are in sync with the
2008 		 * socket flags modification.
2009 		 *
2010 		 * This memory barrier is paired in the wq_has_sleeper.
2011 		 */
2012 		smp_mb();
2013 	}
2014 }
2015 
2016 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2017 {
2018 	if (sk->sk_txhash) {
2019 		skb->l4_hash = 1;
2020 		skb->hash = sk->sk_txhash;
2021 	}
2022 }
2023 
2024 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2025 
2026 /*
2027  *	Queue a received datagram if it will fit. Stream and sequenced
2028  *	protocols can't normally use this as they need to fit buffers in
2029  *	and play with them.
2030  *
2031  *	Inlined as it's very short and called for pretty much every
2032  *	packet ever received.
2033  */
2034 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2035 {
2036 	skb_orphan(skb);
2037 	skb->sk = sk;
2038 	skb->destructor = sock_rfree;
2039 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2040 	sk_mem_charge(sk, skb->truesize);
2041 }
2042 
2043 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2044 		    unsigned long expires);
2045 
2046 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2047 
2048 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2049 			struct sk_buff *skb, unsigned int flags,
2050 			void (*destructor)(struct sock *sk,
2051 					   struct sk_buff *skb));
2052 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2053 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2054 
2055 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2056 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2057 
2058 /*
2059  *	Recover an error report and clear atomically
2060  */
2061 
2062 static inline int sock_error(struct sock *sk)
2063 {
2064 	int err;
2065 	if (likely(!sk->sk_err))
2066 		return 0;
2067 	err = xchg(&sk->sk_err, 0);
2068 	return -err;
2069 }
2070 
2071 static inline unsigned long sock_wspace(struct sock *sk)
2072 {
2073 	int amt = 0;
2074 
2075 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2076 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2077 		if (amt < 0)
2078 			amt = 0;
2079 	}
2080 	return amt;
2081 }
2082 
2083 /* Note:
2084  *  We use sk->sk_wq_raw, from contexts knowing this
2085  *  pointer is not NULL and cannot disappear/change.
2086  */
2087 static inline void sk_set_bit(int nr, struct sock *sk)
2088 {
2089 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2090 	    !sock_flag(sk, SOCK_FASYNC))
2091 		return;
2092 
2093 	set_bit(nr, &sk->sk_wq_raw->flags);
2094 }
2095 
2096 static inline void sk_clear_bit(int nr, struct sock *sk)
2097 {
2098 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2099 	    !sock_flag(sk, SOCK_FASYNC))
2100 		return;
2101 
2102 	clear_bit(nr, &sk->sk_wq_raw->flags);
2103 }
2104 
2105 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2106 {
2107 	if (sock_flag(sk, SOCK_FASYNC)) {
2108 		rcu_read_lock();
2109 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2110 		rcu_read_unlock();
2111 	}
2112 }
2113 
2114 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2115  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2116  * Note: for send buffers, TCP works better if we can build two skbs at
2117  * minimum.
2118  */
2119 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2120 
2121 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2122 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2123 
2124 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2125 {
2126 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2127 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2128 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2129 	}
2130 }
2131 
2132 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2133 				    bool force_schedule);
2134 
2135 /**
2136  * sk_page_frag - return an appropriate page_frag
2137  * @sk: socket
2138  *
2139  * If socket allocation mode allows current thread to sleep, it means its
2140  * safe to use the per task page_frag instead of the per socket one.
2141  */
2142 static inline struct page_frag *sk_page_frag(struct sock *sk)
2143 {
2144 	if (gfpflags_allow_blocking(sk->sk_allocation))
2145 		return &current->task_frag;
2146 
2147 	return &sk->sk_frag;
2148 }
2149 
2150 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2151 
2152 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2153 		int sg_start, int *sg_curr, unsigned int *sg_size,
2154 		int first_coalesce);
2155 
2156 /*
2157  *	Default write policy as shown to user space via poll/select/SIGIO
2158  */
2159 static inline bool sock_writeable(const struct sock *sk)
2160 {
2161 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2162 }
2163 
2164 static inline gfp_t gfp_any(void)
2165 {
2166 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2167 }
2168 
2169 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2170 {
2171 	return noblock ? 0 : sk->sk_rcvtimeo;
2172 }
2173 
2174 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2175 {
2176 	return noblock ? 0 : sk->sk_sndtimeo;
2177 }
2178 
2179 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2180 {
2181 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2182 }
2183 
2184 /* Alas, with timeout socket operations are not restartable.
2185  * Compare this to poll().
2186  */
2187 static inline int sock_intr_errno(long timeo)
2188 {
2189 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2190 }
2191 
2192 struct sock_skb_cb {
2193 	u32 dropcount;
2194 };
2195 
2196 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2197  * using skb->cb[] would keep using it directly and utilize its
2198  * alignement guarantee.
2199  */
2200 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2201 			    sizeof(struct sock_skb_cb)))
2202 
2203 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2204 			    SOCK_SKB_CB_OFFSET))
2205 
2206 #define sock_skb_cb_check_size(size) \
2207 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2208 
2209 static inline void
2210 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2211 {
2212 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2213 						atomic_read(&sk->sk_drops) : 0;
2214 }
2215 
2216 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2217 {
2218 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2219 
2220 	atomic_add(segs, &sk->sk_drops);
2221 }
2222 
2223 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2224 			   struct sk_buff *skb);
2225 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2226 			     struct sk_buff *skb);
2227 
2228 static inline void
2229 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2230 {
2231 	ktime_t kt = skb->tstamp;
2232 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2233 
2234 	/*
2235 	 * generate control messages if
2236 	 * - receive time stamping in software requested
2237 	 * - software time stamp available and wanted
2238 	 * - hardware time stamps available and wanted
2239 	 */
2240 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2241 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2242 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2243 	    (hwtstamps->hwtstamp &&
2244 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2245 		__sock_recv_timestamp(msg, sk, skb);
2246 	else
2247 		sk->sk_stamp = kt;
2248 
2249 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2250 		__sock_recv_wifi_status(msg, sk, skb);
2251 }
2252 
2253 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2254 			      struct sk_buff *skb);
2255 
2256 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2257 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2258 					  struct sk_buff *skb)
2259 {
2260 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2261 			   (1UL << SOCK_RCVTSTAMP))
2262 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2263 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2264 
2265 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2266 		__sock_recv_ts_and_drops(msg, sk, skb);
2267 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2268 		sk->sk_stamp = skb->tstamp;
2269 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2270 		sk->sk_stamp = 0;
2271 }
2272 
2273 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2274 
2275 /**
2276  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2277  * @sk:		socket sending this packet
2278  * @tsflags:	timestamping flags to use
2279  * @tx_flags:	completed with instructions for time stamping
2280  *
2281  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2282  */
2283 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2284 				     __u8 *tx_flags)
2285 {
2286 	if (unlikely(tsflags))
2287 		__sock_tx_timestamp(tsflags, tx_flags);
2288 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2289 		*tx_flags |= SKBTX_WIFI_STATUS;
2290 }
2291 
2292 /**
2293  * sk_eat_skb - Release a skb if it is no longer needed
2294  * @sk: socket to eat this skb from
2295  * @skb: socket buffer to eat
2296  *
2297  * This routine must be called with interrupts disabled or with the socket
2298  * locked so that the sk_buff queue operation is ok.
2299 */
2300 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2301 {
2302 	__skb_unlink(skb, &sk->sk_receive_queue);
2303 	__kfree_skb(skb);
2304 }
2305 
2306 static inline
2307 struct net *sock_net(const struct sock *sk)
2308 {
2309 	return read_pnet(&sk->sk_net);
2310 }
2311 
2312 static inline
2313 void sock_net_set(struct sock *sk, struct net *net)
2314 {
2315 	write_pnet(&sk->sk_net, net);
2316 }
2317 
2318 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2319 {
2320 	if (skb->sk) {
2321 		struct sock *sk = skb->sk;
2322 
2323 		skb->destructor = NULL;
2324 		skb->sk = NULL;
2325 		return sk;
2326 	}
2327 	return NULL;
2328 }
2329 
2330 /* This helper checks if a socket is a full socket,
2331  * ie _not_ a timewait or request socket.
2332  */
2333 static inline bool sk_fullsock(const struct sock *sk)
2334 {
2335 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2336 }
2337 
2338 /* Checks if this SKB belongs to an HW offloaded socket
2339  * and whether any SW fallbacks are required based on dev.
2340  */
2341 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2342 						   struct net_device *dev)
2343 {
2344 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2345 	struct sock *sk = skb->sk;
2346 
2347 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2348 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2349 #endif
2350 
2351 	return skb;
2352 }
2353 
2354 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2355  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2356  */
2357 static inline bool sk_listener(const struct sock *sk)
2358 {
2359 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2360 }
2361 
2362 void sock_enable_timestamp(struct sock *sk, int flag);
2363 int sock_get_timestamp(struct sock *, struct timeval __user *);
2364 int sock_get_timestampns(struct sock *, struct timespec __user *);
2365 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2366 		       int type);
2367 
2368 bool sk_ns_capable(const struct sock *sk,
2369 		   struct user_namespace *user_ns, int cap);
2370 bool sk_capable(const struct sock *sk, int cap);
2371 bool sk_net_capable(const struct sock *sk, int cap);
2372 
2373 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2374 
2375 /* Take into consideration the size of the struct sk_buff overhead in the
2376  * determination of these values, since that is non-constant across
2377  * platforms.  This makes socket queueing behavior and performance
2378  * not depend upon such differences.
2379  */
2380 #define _SK_MEM_PACKETS		256
2381 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2382 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2383 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2384 
2385 extern __u32 sysctl_wmem_max;
2386 extern __u32 sysctl_rmem_max;
2387 
2388 extern int sysctl_tstamp_allow_data;
2389 extern int sysctl_optmem_max;
2390 
2391 extern __u32 sysctl_wmem_default;
2392 extern __u32 sysctl_rmem_default;
2393 
2394 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2395 {
2396 	/* Does this proto have per netns sysctl_wmem ? */
2397 	if (proto->sysctl_wmem_offset)
2398 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2399 
2400 	return *proto->sysctl_wmem;
2401 }
2402 
2403 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2404 {
2405 	/* Does this proto have per netns sysctl_rmem ? */
2406 	if (proto->sysctl_rmem_offset)
2407 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2408 
2409 	return *proto->sysctl_rmem;
2410 }
2411 
2412 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2413  * Some wifi drivers need to tweak it to get more chunks.
2414  * They can use this helper from their ndo_start_xmit()
2415  */
2416 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2417 {
2418 	if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2419 		return;
2420 	sk->sk_pacing_shift = val;
2421 }
2422 
2423 /* if a socket is bound to a device, check that the given device
2424  * index is either the same or that the socket is bound to an L3
2425  * master device and the given device index is also enslaved to
2426  * that L3 master
2427  */
2428 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2429 {
2430 	int mdif;
2431 
2432 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2433 		return true;
2434 
2435 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2436 	if (mdif && mdif == sk->sk_bound_dev_if)
2437 		return true;
2438 
2439 	return false;
2440 }
2441 
2442 #endif	/* _SOCK_H */
2443