xref: /openbmc/linux/include/net/sock.h (revision a2faac39)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	union {
165 		__addrpair	skc_addrpair;
166 		struct {
167 			__be32	skc_daddr;
168 			__be32	skc_rcv_saddr;
169 		};
170 	};
171 	union  {
172 		unsigned int	skc_hash;
173 		__u16		skc_u16hashes[2];
174 	};
175 	/* skc_dport && skc_num must be grouped as well */
176 	union {
177 		__portpair	skc_portpair;
178 		struct {
179 			__be16	skc_dport;
180 			__u16	skc_num;
181 		};
182 	};
183 
184 	unsigned short		skc_family;
185 	volatile unsigned char	skc_state;
186 	unsigned char		skc_reuse:4;
187 	unsigned char		skc_reuseport:1;
188 	unsigned char		skc_ipv6only:1;
189 	unsigned char		skc_net_refcnt:1;
190 	int			skc_bound_dev_if;
191 	union {
192 		struct hlist_node	skc_bind_node;
193 		struct hlist_node	skc_portaddr_node;
194 	};
195 	struct proto		*skc_prot;
196 	possible_net_t		skc_net;
197 
198 #if IS_ENABLED(CONFIG_IPV6)
199 	struct in6_addr		skc_v6_daddr;
200 	struct in6_addr		skc_v6_rcv_saddr;
201 #endif
202 
203 	atomic64_t		skc_cookie;
204 
205 	/* following fields are padding to force
206 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 	 * assuming IPV6 is enabled. We use this padding differently
208 	 * for different kind of 'sockets'
209 	 */
210 	union {
211 		unsigned long	skc_flags;
212 		struct sock	*skc_listener; /* request_sock */
213 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 	};
215 	/*
216 	 * fields between dontcopy_begin/dontcopy_end
217 	 * are not copied in sock_copy()
218 	 */
219 	/* private: */
220 	int			skc_dontcopy_begin[0];
221 	/* public: */
222 	union {
223 		struct hlist_node	skc_node;
224 		struct hlist_nulls_node skc_nulls_node;
225 	};
226 	unsigned short		skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 	unsigned short		skc_rx_queue_mapping;
229 #endif
230 	union {
231 		int		skc_incoming_cpu;
232 		u32		skc_rcv_wnd;
233 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
234 	};
235 
236 	refcount_t		skc_refcnt;
237 	/* private: */
238 	int                     skc_dontcopy_end[0];
239 	union {
240 		u32		skc_rxhash;
241 		u32		skc_window_clamp;
242 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 	};
244 	/* public: */
245 };
246 
247 struct bpf_local_storage;
248 struct sk_filter;
249 
250 /**
251   *	struct sock - network layer representation of sockets
252   *	@__sk_common: shared layout with inet_timewait_sock
253   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255   *	@sk_lock:	synchronizer
256   *	@sk_kern_sock: True if sock is using kernel lock classes
257   *	@sk_rcvbuf: size of receive buffer in bytes
258   *	@sk_wq: sock wait queue and async head
259   *	@sk_rx_dst: receive input route used by early demux
260   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
262   *	@sk_dst_cache: destination cache
263   *	@sk_dst_pending_confirm: need to confirm neighbour
264   *	@sk_policy: flow policy
265   *	@sk_receive_queue: incoming packets
266   *	@sk_wmem_alloc: transmit queue bytes committed
267   *	@sk_tsq_flags: TCP Small Queues flags
268   *	@sk_write_queue: Packet sending queue
269   *	@sk_omem_alloc: "o" is "option" or "other"
270   *	@sk_wmem_queued: persistent queue size
271   *	@sk_forward_alloc: space allocated forward
272   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
273   *	@sk_napi_id: id of the last napi context to receive data for sk
274   *	@sk_ll_usec: usecs to busypoll when there is no data
275   *	@sk_allocation: allocation mode
276   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
278   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279   *	@sk_sndbuf: size of send buffer in bytes
280   *	@__sk_flags_offset: empty field used to determine location of bitfield
281   *	@sk_padding: unused element for alignment
282   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283   *	@sk_no_check_rx: allow zero checksum in RX packets
284   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287   *	@sk_gso_max_size: Maximum GSO segment size to build
288   *	@sk_gso_max_segs: Maximum number of GSO segments
289   *	@sk_pacing_shift: scaling factor for TCP Small Queues
290   *	@sk_lingertime: %SO_LINGER l_linger setting
291   *	@sk_backlog: always used with the per-socket spinlock held
292   *	@sk_callback_lock: used with the callbacks in the end of this struct
293   *	@sk_error_queue: rarely used
294   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295   *			  IPV6_ADDRFORM for instance)
296   *	@sk_err: last error
297   *	@sk_err_soft: errors that don't cause failure but are the cause of a
298   *		      persistent failure not just 'timed out'
299   *	@sk_drops: raw/udp drops counter
300   *	@sk_ack_backlog: current listen backlog
301   *	@sk_max_ack_backlog: listen backlog set in listen()
302   *	@sk_uid: user id of owner
303   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
304   *	@sk_busy_poll_budget: napi processing budget when busypolling
305   *	@sk_priority: %SO_PRIORITY setting
306   *	@sk_type: socket type (%SOCK_STREAM, etc)
307   *	@sk_protocol: which protocol this socket belongs in this network family
308   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309   *	@sk_peer_pid: &struct pid for this socket's peer
310   *	@sk_peer_cred: %SO_PEERCRED setting
311   *	@sk_rcvlowat: %SO_RCVLOWAT setting
312   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
313   *	@sk_sndtimeo: %SO_SNDTIMEO setting
314   *	@sk_txhash: computed flow hash for use on transmit
315   *	@sk_txrehash: enable TX hash rethink
316   *	@sk_filter: socket filtering instructions
317   *	@sk_timer: sock cleanup timer
318   *	@sk_stamp: time stamp of last packet received
319   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320   *	@sk_tsflags: SO_TIMESTAMPING flags
321   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
322   *	              for timestamping
323   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
324   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
325   *	@sk_socket: Identd and reporting IO signals
326   *	@sk_user_data: RPC layer private data
327   *	@sk_frag: cached page frag
328   *	@sk_peek_off: current peek_offset value
329   *	@sk_send_head: front of stuff to transmit
330   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331   *	@sk_security: used by security modules
332   *	@sk_mark: generic packet mark
333   *	@sk_cgrp_data: cgroup data for this cgroup
334   *	@sk_memcg: this socket's memory cgroup association
335   *	@sk_write_pending: a write to stream socket waits to start
336   *	@sk_state_change: callback to indicate change in the state of the sock
337   *	@sk_data_ready: callback to indicate there is data to be processed
338   *	@sk_write_space: callback to indicate there is bf sending space available
339   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
340   *	@sk_backlog_rcv: callback to process the backlog
341   *	@sk_validate_xmit_skb: ptr to an optional validate function
342   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
343   *	@sk_reuseport_cb: reuseport group container
344   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
345   *	@sk_rcu: used during RCU grace period
346   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
347   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
348   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
349   *	@sk_txtime_unused: unused txtime flags
350   *	@ns_tracker: tracker for netns reference
351   */
352 struct sock {
353 	/*
354 	 * Now struct inet_timewait_sock also uses sock_common, so please just
355 	 * don't add nothing before this first member (__sk_common) --acme
356 	 */
357 	struct sock_common	__sk_common;
358 #define sk_node			__sk_common.skc_node
359 #define sk_nulls_node		__sk_common.skc_nulls_node
360 #define sk_refcnt		__sk_common.skc_refcnt
361 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
363 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
364 #endif
365 
366 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
367 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
368 #define sk_hash			__sk_common.skc_hash
369 #define sk_portpair		__sk_common.skc_portpair
370 #define sk_num			__sk_common.skc_num
371 #define sk_dport		__sk_common.skc_dport
372 #define sk_addrpair		__sk_common.skc_addrpair
373 #define sk_daddr		__sk_common.skc_daddr
374 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
375 #define sk_family		__sk_common.skc_family
376 #define sk_state		__sk_common.skc_state
377 #define sk_reuse		__sk_common.skc_reuse
378 #define sk_reuseport		__sk_common.skc_reuseport
379 #define sk_ipv6only		__sk_common.skc_ipv6only
380 #define sk_net_refcnt		__sk_common.skc_net_refcnt
381 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
382 #define sk_bind_node		__sk_common.skc_bind_node
383 #define sk_prot			__sk_common.skc_prot
384 #define sk_net			__sk_common.skc_net
385 #define sk_v6_daddr		__sk_common.skc_v6_daddr
386 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
387 #define sk_cookie		__sk_common.skc_cookie
388 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
389 #define sk_flags		__sk_common.skc_flags
390 #define sk_rxhash		__sk_common.skc_rxhash
391 
392 	/* early demux fields */
393 	struct dst_entry __rcu	*sk_rx_dst;
394 	int			sk_rx_dst_ifindex;
395 	u32			sk_rx_dst_cookie;
396 
397 	socket_lock_t		sk_lock;
398 	atomic_t		sk_drops;
399 	int			sk_rcvlowat;
400 	struct sk_buff_head	sk_error_queue;
401 	struct sk_buff_head	sk_receive_queue;
402 	/*
403 	 * The backlog queue is special, it is always used with
404 	 * the per-socket spinlock held and requires low latency
405 	 * access. Therefore we special case it's implementation.
406 	 * Note : rmem_alloc is in this structure to fill a hole
407 	 * on 64bit arches, not because its logically part of
408 	 * backlog.
409 	 */
410 	struct {
411 		atomic_t	rmem_alloc;
412 		int		len;
413 		struct sk_buff	*head;
414 		struct sk_buff	*tail;
415 	} sk_backlog;
416 
417 #define sk_rmem_alloc sk_backlog.rmem_alloc
418 
419 	int			sk_forward_alloc;
420 	u32			sk_reserved_mem;
421 #ifdef CONFIG_NET_RX_BUSY_POLL
422 	unsigned int		sk_ll_usec;
423 	/* ===== mostly read cache line ===== */
424 	unsigned int		sk_napi_id;
425 #endif
426 	int			sk_rcvbuf;
427 
428 	struct sk_filter __rcu	*sk_filter;
429 	union {
430 		struct socket_wq __rcu	*sk_wq;
431 		/* private: */
432 		struct socket_wq	*sk_wq_raw;
433 		/* public: */
434 	};
435 #ifdef CONFIG_XFRM
436 	struct xfrm_policy __rcu *sk_policy[2];
437 #endif
438 
439 	struct dst_entry __rcu	*sk_dst_cache;
440 	atomic_t		sk_omem_alloc;
441 	int			sk_sndbuf;
442 
443 	/* ===== cache line for TX ===== */
444 	int			sk_wmem_queued;
445 	refcount_t		sk_wmem_alloc;
446 	unsigned long		sk_tsq_flags;
447 	union {
448 		struct sk_buff	*sk_send_head;
449 		struct rb_root	tcp_rtx_queue;
450 	};
451 	struct sk_buff_head	sk_write_queue;
452 	__s32			sk_peek_off;
453 	int			sk_write_pending;
454 	__u32			sk_dst_pending_confirm;
455 	u32			sk_pacing_status; /* see enum sk_pacing */
456 	long			sk_sndtimeo;
457 	struct timer_list	sk_timer;
458 	__u32			sk_priority;
459 	__u32			sk_mark;
460 	unsigned long		sk_pacing_rate; /* bytes per second */
461 	unsigned long		sk_max_pacing_rate;
462 	struct page_frag	sk_frag;
463 	netdev_features_t	sk_route_caps;
464 	int			sk_gso_type;
465 	unsigned int		sk_gso_max_size;
466 	gfp_t			sk_allocation;
467 	__u32			sk_txhash;
468 
469 	/*
470 	 * Because of non atomicity rules, all
471 	 * changes are protected by socket lock.
472 	 */
473 	u8			sk_gso_disabled : 1,
474 				sk_kern_sock : 1,
475 				sk_no_check_tx : 1,
476 				sk_no_check_rx : 1,
477 				sk_userlocks : 4;
478 	u8			sk_pacing_shift;
479 	u16			sk_type;
480 	u16			sk_protocol;
481 	u16			sk_gso_max_segs;
482 	unsigned long	        sk_lingertime;
483 	struct proto		*sk_prot_creator;
484 	rwlock_t		sk_callback_lock;
485 	int			sk_err,
486 				sk_err_soft;
487 	u32			sk_ack_backlog;
488 	u32			sk_max_ack_backlog;
489 	kuid_t			sk_uid;
490 	u8			sk_txrehash;
491 #ifdef CONFIG_NET_RX_BUSY_POLL
492 	u8			sk_prefer_busy_poll;
493 	u16			sk_busy_poll_budget;
494 #endif
495 	spinlock_t		sk_peer_lock;
496 	int			sk_bind_phc;
497 	struct pid		*sk_peer_pid;
498 	const struct cred	*sk_peer_cred;
499 
500 	long			sk_rcvtimeo;
501 	ktime_t			sk_stamp;
502 #if BITS_PER_LONG==32
503 	seqlock_t		sk_stamp_seq;
504 #endif
505 	u16			sk_tsflags;
506 	u8			sk_shutdown;
507 	atomic_t		sk_tskey;
508 	atomic_t		sk_zckey;
509 
510 	u8			sk_clockid;
511 	u8			sk_txtime_deadline_mode : 1,
512 				sk_txtime_report_errors : 1,
513 				sk_txtime_unused : 6;
514 
515 	struct socket		*sk_socket;
516 	void			*sk_user_data;
517 #ifdef CONFIG_SECURITY
518 	void			*sk_security;
519 #endif
520 	struct sock_cgroup_data	sk_cgrp_data;
521 	struct mem_cgroup	*sk_memcg;
522 	void			(*sk_state_change)(struct sock *sk);
523 	void			(*sk_data_ready)(struct sock *sk);
524 	void			(*sk_write_space)(struct sock *sk);
525 	void			(*sk_error_report)(struct sock *sk);
526 	int			(*sk_backlog_rcv)(struct sock *sk,
527 						  struct sk_buff *skb);
528 #ifdef CONFIG_SOCK_VALIDATE_XMIT
529 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
530 							struct net_device *dev,
531 							struct sk_buff *skb);
532 #endif
533 	void                    (*sk_destruct)(struct sock *sk);
534 	struct sock_reuseport __rcu	*sk_reuseport_cb;
535 #ifdef CONFIG_BPF_SYSCALL
536 	struct bpf_local_storage __rcu	*sk_bpf_storage;
537 #endif
538 	struct rcu_head		sk_rcu;
539 	netns_tracker		ns_tracker;
540 };
541 
542 enum sk_pacing {
543 	SK_PACING_NONE		= 0,
544 	SK_PACING_NEEDED	= 1,
545 	SK_PACING_FQ		= 2,
546 };
547 
548 /* flag bits in sk_user_data
549  *
550  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
551  *   not be suitable for copying when cloning the socket. For instance,
552  *   it can point to a reference counted object. sk_user_data bottom
553  *   bit is set if pointer must not be copied.
554  *
555  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
556  *   managed/owned by a BPF reuseport array. This bit should be set
557  *   when sk_user_data's sk is added to the bpf's reuseport_array.
558  *
559  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
560  *   sk_user_data points to psock type. This bit should be set
561  *   when sk_user_data is assigned to a psock object.
562  */
563 #define SK_USER_DATA_NOCOPY	1UL
564 #define SK_USER_DATA_BPF	2UL
565 #define SK_USER_DATA_PSOCK	4UL
566 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
567 				  SK_USER_DATA_PSOCK)
568 
569 /**
570  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
571  * @sk: socket
572  */
573 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
574 {
575 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
576 }
577 
578 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
579 
580 /**
581  * __locked_read_sk_user_data_with_flags - return the pointer
582  * only if argument flags all has been set in sk_user_data. Otherwise
583  * return NULL
584  *
585  * @sk: socket
586  * @flags: flag bits
587  *
588  * The caller must be holding sk->sk_callback_lock.
589  */
590 static inline void *
591 __locked_read_sk_user_data_with_flags(const struct sock *sk,
592 				      uintptr_t flags)
593 {
594 	uintptr_t sk_user_data =
595 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
596 						 lockdep_is_held(&sk->sk_callback_lock));
597 
598 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
599 
600 	if ((sk_user_data & flags) == flags)
601 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
602 	return NULL;
603 }
604 
605 /**
606  * __rcu_dereference_sk_user_data_with_flags - return the pointer
607  * only if argument flags all has been set in sk_user_data. Otherwise
608  * return NULL
609  *
610  * @sk: socket
611  * @flags: flag bits
612  */
613 static inline void *
614 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
615 					  uintptr_t flags)
616 {
617 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
618 
619 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
620 
621 	if ((sk_user_data & flags) == flags)
622 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
623 	return NULL;
624 }
625 
626 #define rcu_dereference_sk_user_data(sk)				\
627 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
628 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
629 ({									\
630 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
631 		  __tmp2 = (uintptr_t)(flags);				\
632 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
633 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
634 	rcu_assign_pointer(__sk_user_data((sk)),			\
635 			   __tmp1 | __tmp2);				\
636 })
637 #define rcu_assign_sk_user_data(sk, ptr)				\
638 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
639 
640 static inline
641 struct net *sock_net(const struct sock *sk)
642 {
643 	return read_pnet(&sk->sk_net);
644 }
645 
646 static inline
647 void sock_net_set(struct sock *sk, struct net *net)
648 {
649 	write_pnet(&sk->sk_net, net);
650 }
651 
652 /*
653  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
654  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
655  * on a socket means that the socket will reuse everybody else's port
656  * without looking at the other's sk_reuse value.
657  */
658 
659 #define SK_NO_REUSE	0
660 #define SK_CAN_REUSE	1
661 #define SK_FORCE_REUSE	2
662 
663 int sk_set_peek_off(struct sock *sk, int val);
664 
665 static inline int sk_peek_offset(const struct sock *sk, int flags)
666 {
667 	if (unlikely(flags & MSG_PEEK)) {
668 		return READ_ONCE(sk->sk_peek_off);
669 	}
670 
671 	return 0;
672 }
673 
674 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
675 {
676 	s32 off = READ_ONCE(sk->sk_peek_off);
677 
678 	if (unlikely(off >= 0)) {
679 		off = max_t(s32, off - val, 0);
680 		WRITE_ONCE(sk->sk_peek_off, off);
681 	}
682 }
683 
684 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
685 {
686 	sk_peek_offset_bwd(sk, -val);
687 }
688 
689 /*
690  * Hashed lists helper routines
691  */
692 static inline struct sock *sk_entry(const struct hlist_node *node)
693 {
694 	return hlist_entry(node, struct sock, sk_node);
695 }
696 
697 static inline struct sock *__sk_head(const struct hlist_head *head)
698 {
699 	return hlist_entry(head->first, struct sock, sk_node);
700 }
701 
702 static inline struct sock *sk_head(const struct hlist_head *head)
703 {
704 	return hlist_empty(head) ? NULL : __sk_head(head);
705 }
706 
707 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
708 {
709 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
710 }
711 
712 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
713 {
714 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
715 }
716 
717 static inline struct sock *sk_next(const struct sock *sk)
718 {
719 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
720 }
721 
722 static inline struct sock *sk_nulls_next(const struct sock *sk)
723 {
724 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
725 		hlist_nulls_entry(sk->sk_nulls_node.next,
726 				  struct sock, sk_nulls_node) :
727 		NULL;
728 }
729 
730 static inline bool sk_unhashed(const struct sock *sk)
731 {
732 	return hlist_unhashed(&sk->sk_node);
733 }
734 
735 static inline bool sk_hashed(const struct sock *sk)
736 {
737 	return !sk_unhashed(sk);
738 }
739 
740 static inline void sk_node_init(struct hlist_node *node)
741 {
742 	node->pprev = NULL;
743 }
744 
745 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
746 {
747 	node->pprev = NULL;
748 }
749 
750 static inline void __sk_del_node(struct sock *sk)
751 {
752 	__hlist_del(&sk->sk_node);
753 }
754 
755 /* NB: equivalent to hlist_del_init_rcu */
756 static inline bool __sk_del_node_init(struct sock *sk)
757 {
758 	if (sk_hashed(sk)) {
759 		__sk_del_node(sk);
760 		sk_node_init(&sk->sk_node);
761 		return true;
762 	}
763 	return false;
764 }
765 
766 /* Grab socket reference count. This operation is valid only
767    when sk is ALREADY grabbed f.e. it is found in hash table
768    or a list and the lookup is made under lock preventing hash table
769    modifications.
770  */
771 
772 static __always_inline void sock_hold(struct sock *sk)
773 {
774 	refcount_inc(&sk->sk_refcnt);
775 }
776 
777 /* Ungrab socket in the context, which assumes that socket refcnt
778    cannot hit zero, f.e. it is true in context of any socketcall.
779  */
780 static __always_inline void __sock_put(struct sock *sk)
781 {
782 	refcount_dec(&sk->sk_refcnt);
783 }
784 
785 static inline bool sk_del_node_init(struct sock *sk)
786 {
787 	bool rc = __sk_del_node_init(sk);
788 
789 	if (rc) {
790 		/* paranoid for a while -acme */
791 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
792 		__sock_put(sk);
793 	}
794 	return rc;
795 }
796 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
797 
798 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
799 {
800 	if (sk_hashed(sk)) {
801 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
802 		return true;
803 	}
804 	return false;
805 }
806 
807 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
808 {
809 	bool rc = __sk_nulls_del_node_init_rcu(sk);
810 
811 	if (rc) {
812 		/* paranoid for a while -acme */
813 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
814 		__sock_put(sk);
815 	}
816 	return rc;
817 }
818 
819 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
820 {
821 	hlist_add_head(&sk->sk_node, list);
822 }
823 
824 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
825 {
826 	sock_hold(sk);
827 	__sk_add_node(sk, list);
828 }
829 
830 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
831 {
832 	sock_hold(sk);
833 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
834 	    sk->sk_family == AF_INET6)
835 		hlist_add_tail_rcu(&sk->sk_node, list);
836 	else
837 		hlist_add_head_rcu(&sk->sk_node, list);
838 }
839 
840 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
841 {
842 	sock_hold(sk);
843 	hlist_add_tail_rcu(&sk->sk_node, list);
844 }
845 
846 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
847 {
848 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
849 }
850 
851 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
852 {
853 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
854 }
855 
856 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
857 {
858 	sock_hold(sk);
859 	__sk_nulls_add_node_rcu(sk, list);
860 }
861 
862 static inline void __sk_del_bind_node(struct sock *sk)
863 {
864 	__hlist_del(&sk->sk_bind_node);
865 }
866 
867 static inline void sk_add_bind_node(struct sock *sk,
868 					struct hlist_head *list)
869 {
870 	hlist_add_head(&sk->sk_bind_node, list);
871 }
872 
873 #define sk_for_each(__sk, list) \
874 	hlist_for_each_entry(__sk, list, sk_node)
875 #define sk_for_each_rcu(__sk, list) \
876 	hlist_for_each_entry_rcu(__sk, list, sk_node)
877 #define sk_nulls_for_each(__sk, node, list) \
878 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
879 #define sk_nulls_for_each_rcu(__sk, node, list) \
880 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
881 #define sk_for_each_from(__sk) \
882 	hlist_for_each_entry_from(__sk, sk_node)
883 #define sk_nulls_for_each_from(__sk, node) \
884 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
885 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
886 #define sk_for_each_safe(__sk, tmp, list) \
887 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
888 #define sk_for_each_bound(__sk, list) \
889 	hlist_for_each_entry(__sk, list, sk_bind_node)
890 
891 /**
892  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
893  * @tpos:	the type * to use as a loop cursor.
894  * @pos:	the &struct hlist_node to use as a loop cursor.
895  * @head:	the head for your list.
896  * @offset:	offset of hlist_node within the struct.
897  *
898  */
899 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
900 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
901 	     pos != NULL &&						       \
902 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
903 	     pos = rcu_dereference(hlist_next_rcu(pos)))
904 
905 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
906 {
907 	/* Careful only use this in a context where these parameters
908 	 * can not change and must all be valid, such as recvmsg from
909 	 * userspace.
910 	 */
911 	return sk->sk_socket->file->f_cred->user_ns;
912 }
913 
914 /* Sock flags */
915 enum sock_flags {
916 	SOCK_DEAD,
917 	SOCK_DONE,
918 	SOCK_URGINLINE,
919 	SOCK_KEEPOPEN,
920 	SOCK_LINGER,
921 	SOCK_DESTROY,
922 	SOCK_BROADCAST,
923 	SOCK_TIMESTAMP,
924 	SOCK_ZAPPED,
925 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
926 	SOCK_DBG, /* %SO_DEBUG setting */
927 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
928 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
929 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
930 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
931 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
932 	SOCK_FASYNC, /* fasync() active */
933 	SOCK_RXQ_OVFL,
934 	SOCK_ZEROCOPY, /* buffers from userspace */
935 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
936 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
937 		     * Will use last 4 bytes of packet sent from
938 		     * user-space instead.
939 		     */
940 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
941 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
942 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
943 	SOCK_TXTIME,
944 	SOCK_XDP, /* XDP is attached */
945 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
946 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
947 };
948 
949 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
950 
951 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
952 {
953 	nsk->sk_flags = osk->sk_flags;
954 }
955 
956 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
957 {
958 	__set_bit(flag, &sk->sk_flags);
959 }
960 
961 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
962 {
963 	__clear_bit(flag, &sk->sk_flags);
964 }
965 
966 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
967 				     int valbool)
968 {
969 	if (valbool)
970 		sock_set_flag(sk, bit);
971 	else
972 		sock_reset_flag(sk, bit);
973 }
974 
975 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
976 {
977 	return test_bit(flag, &sk->sk_flags);
978 }
979 
980 #ifdef CONFIG_NET
981 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
982 static inline int sk_memalloc_socks(void)
983 {
984 	return static_branch_unlikely(&memalloc_socks_key);
985 }
986 
987 void __receive_sock(struct file *file);
988 #else
989 
990 static inline int sk_memalloc_socks(void)
991 {
992 	return 0;
993 }
994 
995 static inline void __receive_sock(struct file *file)
996 { }
997 #endif
998 
999 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1000 {
1001 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1002 }
1003 
1004 static inline void sk_acceptq_removed(struct sock *sk)
1005 {
1006 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1007 }
1008 
1009 static inline void sk_acceptq_added(struct sock *sk)
1010 {
1011 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1012 }
1013 
1014 /* Note: If you think the test should be:
1015  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1016  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1017  */
1018 static inline bool sk_acceptq_is_full(const struct sock *sk)
1019 {
1020 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1021 }
1022 
1023 /*
1024  * Compute minimal free write space needed to queue new packets.
1025  */
1026 static inline int sk_stream_min_wspace(const struct sock *sk)
1027 {
1028 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1029 }
1030 
1031 static inline int sk_stream_wspace(const struct sock *sk)
1032 {
1033 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1034 }
1035 
1036 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1037 {
1038 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1039 }
1040 
1041 void sk_stream_write_space(struct sock *sk);
1042 
1043 /* OOB backlog add */
1044 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1045 {
1046 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1047 	skb_dst_force(skb);
1048 
1049 	if (!sk->sk_backlog.tail)
1050 		WRITE_ONCE(sk->sk_backlog.head, skb);
1051 	else
1052 		sk->sk_backlog.tail->next = skb;
1053 
1054 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1055 	skb->next = NULL;
1056 }
1057 
1058 /*
1059  * Take into account size of receive queue and backlog queue
1060  * Do not take into account this skb truesize,
1061  * to allow even a single big packet to come.
1062  */
1063 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1064 {
1065 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1066 
1067 	return qsize > limit;
1068 }
1069 
1070 /* The per-socket spinlock must be held here. */
1071 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1072 					      unsigned int limit)
1073 {
1074 	if (sk_rcvqueues_full(sk, limit))
1075 		return -ENOBUFS;
1076 
1077 	/*
1078 	 * If the skb was allocated from pfmemalloc reserves, only
1079 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1080 	 * helping free memory
1081 	 */
1082 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1083 		return -ENOMEM;
1084 
1085 	__sk_add_backlog(sk, skb);
1086 	sk->sk_backlog.len += skb->truesize;
1087 	return 0;
1088 }
1089 
1090 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1091 
1092 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1093 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1094 
1095 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1096 {
1097 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1098 		return __sk_backlog_rcv(sk, skb);
1099 
1100 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1101 				  tcp_v6_do_rcv,
1102 				  tcp_v4_do_rcv,
1103 				  sk, skb);
1104 }
1105 
1106 static inline void sk_incoming_cpu_update(struct sock *sk)
1107 {
1108 	int cpu = raw_smp_processor_id();
1109 
1110 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1111 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1112 }
1113 
1114 static inline void sock_rps_record_flow_hash(__u32 hash)
1115 {
1116 #ifdef CONFIG_RPS
1117 	struct rps_sock_flow_table *sock_flow_table;
1118 
1119 	rcu_read_lock();
1120 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1121 	rps_record_sock_flow(sock_flow_table, hash);
1122 	rcu_read_unlock();
1123 #endif
1124 }
1125 
1126 static inline void sock_rps_record_flow(const struct sock *sk)
1127 {
1128 #ifdef CONFIG_RPS
1129 	if (static_branch_unlikely(&rfs_needed)) {
1130 		/* Reading sk->sk_rxhash might incur an expensive cache line
1131 		 * miss.
1132 		 *
1133 		 * TCP_ESTABLISHED does cover almost all states where RFS
1134 		 * might be useful, and is cheaper [1] than testing :
1135 		 *	IPv4: inet_sk(sk)->inet_daddr
1136 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1137 		 * OR	an additional socket flag
1138 		 * [1] : sk_state and sk_prot are in the same cache line.
1139 		 */
1140 		if (sk->sk_state == TCP_ESTABLISHED)
1141 			sock_rps_record_flow_hash(sk->sk_rxhash);
1142 	}
1143 #endif
1144 }
1145 
1146 static inline void sock_rps_save_rxhash(struct sock *sk,
1147 					const struct sk_buff *skb)
1148 {
1149 #ifdef CONFIG_RPS
1150 	if (unlikely(sk->sk_rxhash != skb->hash))
1151 		sk->sk_rxhash = skb->hash;
1152 #endif
1153 }
1154 
1155 static inline void sock_rps_reset_rxhash(struct sock *sk)
1156 {
1157 #ifdef CONFIG_RPS
1158 	sk->sk_rxhash = 0;
1159 #endif
1160 }
1161 
1162 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1163 	({	int __rc;						\
1164 		release_sock(__sk);					\
1165 		__rc = __condition;					\
1166 		if (!__rc) {						\
1167 			*(__timeo) = wait_woken(__wait,			\
1168 						TASK_INTERRUPTIBLE,	\
1169 						*(__timeo));		\
1170 		}							\
1171 		sched_annotate_sleep();					\
1172 		lock_sock(__sk);					\
1173 		__rc = __condition;					\
1174 		__rc;							\
1175 	})
1176 
1177 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1178 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1179 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1180 int sk_stream_error(struct sock *sk, int flags, int err);
1181 void sk_stream_kill_queues(struct sock *sk);
1182 void sk_set_memalloc(struct sock *sk);
1183 void sk_clear_memalloc(struct sock *sk);
1184 
1185 void __sk_flush_backlog(struct sock *sk);
1186 
1187 static inline bool sk_flush_backlog(struct sock *sk)
1188 {
1189 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1190 		__sk_flush_backlog(sk);
1191 		return true;
1192 	}
1193 	return false;
1194 }
1195 
1196 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1197 
1198 struct request_sock_ops;
1199 struct timewait_sock_ops;
1200 struct inet_hashinfo;
1201 struct raw_hashinfo;
1202 struct smc_hashinfo;
1203 struct module;
1204 struct sk_psock;
1205 
1206 /*
1207  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1208  * un-modified. Special care is taken when initializing object to zero.
1209  */
1210 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1211 {
1212 	if (offsetof(struct sock, sk_node.next) != 0)
1213 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1214 	memset(&sk->sk_node.pprev, 0,
1215 	       size - offsetof(struct sock, sk_node.pprev));
1216 }
1217 
1218 /* Networking protocol blocks we attach to sockets.
1219  * socket layer -> transport layer interface
1220  */
1221 struct proto {
1222 	void			(*close)(struct sock *sk,
1223 					long timeout);
1224 	int			(*pre_connect)(struct sock *sk,
1225 					struct sockaddr *uaddr,
1226 					int addr_len);
1227 	int			(*connect)(struct sock *sk,
1228 					struct sockaddr *uaddr,
1229 					int addr_len);
1230 	int			(*disconnect)(struct sock *sk, int flags);
1231 
1232 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1233 					  bool kern);
1234 
1235 	int			(*ioctl)(struct sock *sk, int cmd,
1236 					 unsigned long arg);
1237 	int			(*init)(struct sock *sk);
1238 	void			(*destroy)(struct sock *sk);
1239 	void			(*shutdown)(struct sock *sk, int how);
1240 	int			(*setsockopt)(struct sock *sk, int level,
1241 					int optname, sockptr_t optval,
1242 					unsigned int optlen);
1243 	int			(*getsockopt)(struct sock *sk, int level,
1244 					int optname, char __user *optval,
1245 					int __user *option);
1246 	void			(*keepalive)(struct sock *sk, int valbool);
1247 #ifdef CONFIG_COMPAT
1248 	int			(*compat_ioctl)(struct sock *sk,
1249 					unsigned int cmd, unsigned long arg);
1250 #endif
1251 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1252 					   size_t len);
1253 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1254 					   size_t len, int flags, int *addr_len);
1255 	int			(*sendpage)(struct sock *sk, struct page *page,
1256 					int offset, size_t size, int flags);
1257 	int			(*bind)(struct sock *sk,
1258 					struct sockaddr *addr, int addr_len);
1259 	int			(*bind_add)(struct sock *sk,
1260 					struct sockaddr *addr, int addr_len);
1261 
1262 	int			(*backlog_rcv) (struct sock *sk,
1263 						struct sk_buff *skb);
1264 	bool			(*bpf_bypass_getsockopt)(int level,
1265 							 int optname);
1266 
1267 	void		(*release_cb)(struct sock *sk);
1268 
1269 	/* Keeping track of sk's, looking them up, and port selection methods. */
1270 	int			(*hash)(struct sock *sk);
1271 	void			(*unhash)(struct sock *sk);
1272 	void			(*rehash)(struct sock *sk);
1273 	int			(*get_port)(struct sock *sk, unsigned short snum);
1274 	void			(*put_port)(struct sock *sk);
1275 #ifdef CONFIG_BPF_SYSCALL
1276 	int			(*psock_update_sk_prot)(struct sock *sk,
1277 							struct sk_psock *psock,
1278 							bool restore);
1279 #endif
1280 
1281 	/* Keeping track of sockets in use */
1282 #ifdef CONFIG_PROC_FS
1283 	unsigned int		inuse_idx;
1284 #endif
1285 
1286 #if IS_ENABLED(CONFIG_MPTCP)
1287 	int			(*forward_alloc_get)(const struct sock *sk);
1288 #endif
1289 
1290 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1291 	bool			(*sock_is_readable)(struct sock *sk);
1292 	/* Memory pressure */
1293 	void			(*enter_memory_pressure)(struct sock *sk);
1294 	void			(*leave_memory_pressure)(struct sock *sk);
1295 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1296 	int  __percpu		*per_cpu_fw_alloc;
1297 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1298 
1299 	/*
1300 	 * Pressure flag: try to collapse.
1301 	 * Technical note: it is used by multiple contexts non atomically.
1302 	 * All the __sk_mem_schedule() is of this nature: accounting
1303 	 * is strict, actions are advisory and have some latency.
1304 	 */
1305 	unsigned long		*memory_pressure;
1306 	long			*sysctl_mem;
1307 
1308 	int			*sysctl_wmem;
1309 	int			*sysctl_rmem;
1310 	u32			sysctl_wmem_offset;
1311 	u32			sysctl_rmem_offset;
1312 
1313 	int			max_header;
1314 	bool			no_autobind;
1315 
1316 	struct kmem_cache	*slab;
1317 	unsigned int		obj_size;
1318 	slab_flags_t		slab_flags;
1319 	unsigned int		useroffset;	/* Usercopy region offset */
1320 	unsigned int		usersize;	/* Usercopy region size */
1321 
1322 	unsigned int __percpu	*orphan_count;
1323 
1324 	struct request_sock_ops	*rsk_prot;
1325 	struct timewait_sock_ops *twsk_prot;
1326 
1327 	union {
1328 		struct inet_hashinfo	*hashinfo;
1329 		struct udp_table	*udp_table;
1330 		struct raw_hashinfo	*raw_hash;
1331 		struct smc_hashinfo	*smc_hash;
1332 	} h;
1333 
1334 	struct module		*owner;
1335 
1336 	char			name[32];
1337 
1338 	struct list_head	node;
1339 #ifdef SOCK_REFCNT_DEBUG
1340 	atomic_t		socks;
1341 #endif
1342 	int			(*diag_destroy)(struct sock *sk, int err);
1343 } __randomize_layout;
1344 
1345 int proto_register(struct proto *prot, int alloc_slab);
1346 void proto_unregister(struct proto *prot);
1347 int sock_load_diag_module(int family, int protocol);
1348 
1349 #ifdef SOCK_REFCNT_DEBUG
1350 static inline void sk_refcnt_debug_inc(struct sock *sk)
1351 {
1352 	atomic_inc(&sk->sk_prot->socks);
1353 }
1354 
1355 static inline void sk_refcnt_debug_dec(struct sock *sk)
1356 {
1357 	atomic_dec(&sk->sk_prot->socks);
1358 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1359 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1360 }
1361 
1362 static inline void sk_refcnt_debug_release(const struct sock *sk)
1363 {
1364 	if (refcount_read(&sk->sk_refcnt) != 1)
1365 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1366 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1367 }
1368 #else /* SOCK_REFCNT_DEBUG */
1369 #define sk_refcnt_debug_inc(sk) do { } while (0)
1370 #define sk_refcnt_debug_dec(sk) do { } while (0)
1371 #define sk_refcnt_debug_release(sk) do { } while (0)
1372 #endif /* SOCK_REFCNT_DEBUG */
1373 
1374 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1375 
1376 static inline int sk_forward_alloc_get(const struct sock *sk)
1377 {
1378 #if IS_ENABLED(CONFIG_MPTCP)
1379 	if (sk->sk_prot->forward_alloc_get)
1380 		return sk->sk_prot->forward_alloc_get(sk);
1381 #endif
1382 	return sk->sk_forward_alloc;
1383 }
1384 
1385 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1386 {
1387 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1388 		return false;
1389 
1390 	return sk->sk_prot->stream_memory_free ?
1391 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1392 				     tcp_stream_memory_free, sk, wake) : true;
1393 }
1394 
1395 static inline bool sk_stream_memory_free(const struct sock *sk)
1396 {
1397 	return __sk_stream_memory_free(sk, 0);
1398 }
1399 
1400 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1401 {
1402 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1403 	       __sk_stream_memory_free(sk, wake);
1404 }
1405 
1406 static inline bool sk_stream_is_writeable(const struct sock *sk)
1407 {
1408 	return __sk_stream_is_writeable(sk, 0);
1409 }
1410 
1411 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1412 					    struct cgroup *ancestor)
1413 {
1414 #ifdef CONFIG_SOCK_CGROUP_DATA
1415 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1416 				    ancestor);
1417 #else
1418 	return -ENOTSUPP;
1419 #endif
1420 }
1421 
1422 static inline bool sk_has_memory_pressure(const struct sock *sk)
1423 {
1424 	return sk->sk_prot->memory_pressure != NULL;
1425 }
1426 
1427 static inline bool sk_under_memory_pressure(const struct sock *sk)
1428 {
1429 	if (!sk->sk_prot->memory_pressure)
1430 		return false;
1431 
1432 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1433 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1434 		return true;
1435 
1436 	return !!*sk->sk_prot->memory_pressure;
1437 }
1438 
1439 static inline long
1440 proto_memory_allocated(const struct proto *prot)
1441 {
1442 	return max(0L, atomic_long_read(prot->memory_allocated));
1443 }
1444 
1445 static inline long
1446 sk_memory_allocated(const struct sock *sk)
1447 {
1448 	return proto_memory_allocated(sk->sk_prot);
1449 }
1450 
1451 /* 1 MB per cpu, in page units */
1452 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1453 
1454 static inline void
1455 sk_memory_allocated_add(struct sock *sk, int amt)
1456 {
1457 	int local_reserve;
1458 
1459 	preempt_disable();
1460 	local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1461 	if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1462 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1463 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1464 	}
1465 	preempt_enable();
1466 }
1467 
1468 static inline void
1469 sk_memory_allocated_sub(struct sock *sk, int amt)
1470 {
1471 	int local_reserve;
1472 
1473 	preempt_disable();
1474 	local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1475 	if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1476 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1477 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1478 	}
1479 	preempt_enable();
1480 }
1481 
1482 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1483 
1484 static inline void sk_sockets_allocated_dec(struct sock *sk)
1485 {
1486 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1487 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1488 }
1489 
1490 static inline void sk_sockets_allocated_inc(struct sock *sk)
1491 {
1492 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1493 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1494 }
1495 
1496 static inline u64
1497 sk_sockets_allocated_read_positive(struct sock *sk)
1498 {
1499 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1500 }
1501 
1502 static inline int
1503 proto_sockets_allocated_sum_positive(struct proto *prot)
1504 {
1505 	return percpu_counter_sum_positive(prot->sockets_allocated);
1506 }
1507 
1508 static inline bool
1509 proto_memory_pressure(struct proto *prot)
1510 {
1511 	if (!prot->memory_pressure)
1512 		return false;
1513 	return !!*prot->memory_pressure;
1514 }
1515 
1516 
1517 #ifdef CONFIG_PROC_FS
1518 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1519 struct prot_inuse {
1520 	int all;
1521 	int val[PROTO_INUSE_NR];
1522 };
1523 
1524 static inline void sock_prot_inuse_add(const struct net *net,
1525 				       const struct proto *prot, int val)
1526 {
1527 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1528 }
1529 
1530 static inline void sock_inuse_add(const struct net *net, int val)
1531 {
1532 	this_cpu_add(net->core.prot_inuse->all, val);
1533 }
1534 
1535 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1536 int sock_inuse_get(struct net *net);
1537 #else
1538 static inline void sock_prot_inuse_add(const struct net *net,
1539 				       const struct proto *prot, int val)
1540 {
1541 }
1542 
1543 static inline void sock_inuse_add(const struct net *net, int val)
1544 {
1545 }
1546 #endif
1547 
1548 
1549 /* With per-bucket locks this operation is not-atomic, so that
1550  * this version is not worse.
1551  */
1552 static inline int __sk_prot_rehash(struct sock *sk)
1553 {
1554 	sk->sk_prot->unhash(sk);
1555 	return sk->sk_prot->hash(sk);
1556 }
1557 
1558 /* About 10 seconds */
1559 #define SOCK_DESTROY_TIME (10*HZ)
1560 
1561 /* Sockets 0-1023 can't be bound to unless you are superuser */
1562 #define PROT_SOCK	1024
1563 
1564 #define SHUTDOWN_MASK	3
1565 #define RCV_SHUTDOWN	1
1566 #define SEND_SHUTDOWN	2
1567 
1568 #define SOCK_BINDADDR_LOCK	4
1569 #define SOCK_BINDPORT_LOCK	8
1570 
1571 struct socket_alloc {
1572 	struct socket socket;
1573 	struct inode vfs_inode;
1574 };
1575 
1576 static inline struct socket *SOCKET_I(struct inode *inode)
1577 {
1578 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1579 }
1580 
1581 static inline struct inode *SOCK_INODE(struct socket *socket)
1582 {
1583 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1584 }
1585 
1586 /*
1587  * Functions for memory accounting
1588  */
1589 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1590 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1591 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1592 void __sk_mem_reclaim(struct sock *sk, int amount);
1593 
1594 #define SK_MEM_SEND	0
1595 #define SK_MEM_RECV	1
1596 
1597 /* sysctl_mem values are in pages */
1598 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1599 {
1600 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1601 }
1602 
1603 static inline int sk_mem_pages(int amt)
1604 {
1605 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1606 }
1607 
1608 static inline bool sk_has_account(struct sock *sk)
1609 {
1610 	/* return true if protocol supports memory accounting */
1611 	return !!sk->sk_prot->memory_allocated;
1612 }
1613 
1614 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1615 {
1616 	int delta;
1617 
1618 	if (!sk_has_account(sk))
1619 		return true;
1620 	delta = size - sk->sk_forward_alloc;
1621 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1622 }
1623 
1624 static inline bool
1625 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1626 {
1627 	int delta;
1628 
1629 	if (!sk_has_account(sk))
1630 		return true;
1631 	delta = size - sk->sk_forward_alloc;
1632 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1633 		skb_pfmemalloc(skb);
1634 }
1635 
1636 static inline int sk_unused_reserved_mem(const struct sock *sk)
1637 {
1638 	int unused_mem;
1639 
1640 	if (likely(!sk->sk_reserved_mem))
1641 		return 0;
1642 
1643 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1644 			atomic_read(&sk->sk_rmem_alloc);
1645 
1646 	return unused_mem > 0 ? unused_mem : 0;
1647 }
1648 
1649 static inline void sk_mem_reclaim(struct sock *sk)
1650 {
1651 	int reclaimable;
1652 
1653 	if (!sk_has_account(sk))
1654 		return;
1655 
1656 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1657 
1658 	if (reclaimable >= (int)PAGE_SIZE)
1659 		__sk_mem_reclaim(sk, reclaimable);
1660 }
1661 
1662 static inline void sk_mem_reclaim_final(struct sock *sk)
1663 {
1664 	sk->sk_reserved_mem = 0;
1665 	sk_mem_reclaim(sk);
1666 }
1667 
1668 static inline void sk_mem_charge(struct sock *sk, int size)
1669 {
1670 	if (!sk_has_account(sk))
1671 		return;
1672 	sk->sk_forward_alloc -= size;
1673 }
1674 
1675 static inline void sk_mem_uncharge(struct sock *sk, int size)
1676 {
1677 	if (!sk_has_account(sk))
1678 		return;
1679 	sk->sk_forward_alloc += size;
1680 	sk_mem_reclaim(sk);
1681 }
1682 
1683 /*
1684  * Macro so as to not evaluate some arguments when
1685  * lockdep is not enabled.
1686  *
1687  * Mark both the sk_lock and the sk_lock.slock as a
1688  * per-address-family lock class.
1689  */
1690 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1691 do {									\
1692 	sk->sk_lock.owned = 0;						\
1693 	init_waitqueue_head(&sk->sk_lock.wq);				\
1694 	spin_lock_init(&(sk)->sk_lock.slock);				\
1695 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1696 			sizeof((sk)->sk_lock));				\
1697 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1698 				(skey), (sname));				\
1699 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1700 } while (0)
1701 
1702 static inline bool lockdep_sock_is_held(const struct sock *sk)
1703 {
1704 	return lockdep_is_held(&sk->sk_lock) ||
1705 	       lockdep_is_held(&sk->sk_lock.slock);
1706 }
1707 
1708 void lock_sock_nested(struct sock *sk, int subclass);
1709 
1710 static inline void lock_sock(struct sock *sk)
1711 {
1712 	lock_sock_nested(sk, 0);
1713 }
1714 
1715 void __lock_sock(struct sock *sk);
1716 void __release_sock(struct sock *sk);
1717 void release_sock(struct sock *sk);
1718 
1719 /* BH context may only use the following locking interface. */
1720 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1721 #define bh_lock_sock_nested(__sk) \
1722 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1723 				SINGLE_DEPTH_NESTING)
1724 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1725 
1726 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1727 
1728 /**
1729  * lock_sock_fast - fast version of lock_sock
1730  * @sk: socket
1731  *
1732  * This version should be used for very small section, where process wont block
1733  * return false if fast path is taken:
1734  *
1735  *   sk_lock.slock locked, owned = 0, BH disabled
1736  *
1737  * return true if slow path is taken:
1738  *
1739  *   sk_lock.slock unlocked, owned = 1, BH enabled
1740  */
1741 static inline bool lock_sock_fast(struct sock *sk)
1742 {
1743 	/* The sk_lock has mutex_lock() semantics here. */
1744 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1745 
1746 	return __lock_sock_fast(sk);
1747 }
1748 
1749 /* fast socket lock variant for caller already holding a [different] socket lock */
1750 static inline bool lock_sock_fast_nested(struct sock *sk)
1751 {
1752 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1753 
1754 	return __lock_sock_fast(sk);
1755 }
1756 
1757 /**
1758  * unlock_sock_fast - complement of lock_sock_fast
1759  * @sk: socket
1760  * @slow: slow mode
1761  *
1762  * fast unlock socket for user context.
1763  * If slow mode is on, we call regular release_sock()
1764  */
1765 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1766 	__releases(&sk->sk_lock.slock)
1767 {
1768 	if (slow) {
1769 		release_sock(sk);
1770 		__release(&sk->sk_lock.slock);
1771 	} else {
1772 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1773 		spin_unlock_bh(&sk->sk_lock.slock);
1774 	}
1775 }
1776 
1777 /* Used by processes to "lock" a socket state, so that
1778  * interrupts and bottom half handlers won't change it
1779  * from under us. It essentially blocks any incoming
1780  * packets, so that we won't get any new data or any
1781  * packets that change the state of the socket.
1782  *
1783  * While locked, BH processing will add new packets to
1784  * the backlog queue.  This queue is processed by the
1785  * owner of the socket lock right before it is released.
1786  *
1787  * Since ~2.3.5 it is also exclusive sleep lock serializing
1788  * accesses from user process context.
1789  */
1790 
1791 static inline void sock_owned_by_me(const struct sock *sk)
1792 {
1793 #ifdef CONFIG_LOCKDEP
1794 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1795 #endif
1796 }
1797 
1798 static inline bool sock_owned_by_user(const struct sock *sk)
1799 {
1800 	sock_owned_by_me(sk);
1801 	return sk->sk_lock.owned;
1802 }
1803 
1804 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1805 {
1806 	return sk->sk_lock.owned;
1807 }
1808 
1809 static inline void sock_release_ownership(struct sock *sk)
1810 {
1811 	if (sock_owned_by_user_nocheck(sk)) {
1812 		sk->sk_lock.owned = 0;
1813 
1814 		/* The sk_lock has mutex_unlock() semantics: */
1815 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1816 	}
1817 }
1818 
1819 /* no reclassification while locks are held */
1820 static inline bool sock_allow_reclassification(const struct sock *csk)
1821 {
1822 	struct sock *sk = (struct sock *)csk;
1823 
1824 	return !sock_owned_by_user_nocheck(sk) &&
1825 		!spin_is_locked(&sk->sk_lock.slock);
1826 }
1827 
1828 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1829 		      struct proto *prot, int kern);
1830 void sk_free(struct sock *sk);
1831 void sk_destruct(struct sock *sk);
1832 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1833 void sk_free_unlock_clone(struct sock *sk);
1834 
1835 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1836 			     gfp_t priority);
1837 void __sock_wfree(struct sk_buff *skb);
1838 void sock_wfree(struct sk_buff *skb);
1839 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1840 			     gfp_t priority);
1841 void skb_orphan_partial(struct sk_buff *skb);
1842 void sock_rfree(struct sk_buff *skb);
1843 void sock_efree(struct sk_buff *skb);
1844 #ifdef CONFIG_INET
1845 void sock_edemux(struct sk_buff *skb);
1846 void sock_pfree(struct sk_buff *skb);
1847 #else
1848 #define sock_edemux sock_efree
1849 #endif
1850 
1851 int sock_setsockopt(struct socket *sock, int level, int op,
1852 		    sockptr_t optval, unsigned int optlen);
1853 
1854 int sock_getsockopt(struct socket *sock, int level, int op,
1855 		    char __user *optval, int __user *optlen);
1856 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1857 		   bool timeval, bool time32);
1858 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1859 				     unsigned long data_len, int noblock,
1860 				     int *errcode, int max_page_order);
1861 
1862 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1863 						  unsigned long size,
1864 						  int noblock, int *errcode)
1865 {
1866 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1867 }
1868 
1869 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1870 void sock_kfree_s(struct sock *sk, void *mem, int size);
1871 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1872 void sk_send_sigurg(struct sock *sk);
1873 
1874 struct sockcm_cookie {
1875 	u64 transmit_time;
1876 	u32 mark;
1877 	u16 tsflags;
1878 };
1879 
1880 static inline void sockcm_init(struct sockcm_cookie *sockc,
1881 			       const struct sock *sk)
1882 {
1883 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1884 }
1885 
1886 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1887 		     struct sockcm_cookie *sockc);
1888 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1889 		   struct sockcm_cookie *sockc);
1890 
1891 /*
1892  * Functions to fill in entries in struct proto_ops when a protocol
1893  * does not implement a particular function.
1894  */
1895 int sock_no_bind(struct socket *, struct sockaddr *, int);
1896 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1897 int sock_no_socketpair(struct socket *, struct socket *);
1898 int sock_no_accept(struct socket *, struct socket *, int, bool);
1899 int sock_no_getname(struct socket *, struct sockaddr *, int);
1900 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1901 int sock_no_listen(struct socket *, int);
1902 int sock_no_shutdown(struct socket *, int);
1903 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1904 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1905 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1906 int sock_no_mmap(struct file *file, struct socket *sock,
1907 		 struct vm_area_struct *vma);
1908 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1909 			 size_t size, int flags);
1910 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1911 				int offset, size_t size, int flags);
1912 
1913 /*
1914  * Functions to fill in entries in struct proto_ops when a protocol
1915  * uses the inet style.
1916  */
1917 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1918 				  char __user *optval, int __user *optlen);
1919 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1920 			int flags);
1921 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1922 			   sockptr_t optval, unsigned int optlen);
1923 
1924 void sk_common_release(struct sock *sk);
1925 
1926 /*
1927  *	Default socket callbacks and setup code
1928  */
1929 
1930 /* Initialise core socket variables */
1931 void sock_init_data(struct socket *sock, struct sock *sk);
1932 
1933 /*
1934  * Socket reference counting postulates.
1935  *
1936  * * Each user of socket SHOULD hold a reference count.
1937  * * Each access point to socket (an hash table bucket, reference from a list,
1938  *   running timer, skb in flight MUST hold a reference count.
1939  * * When reference count hits 0, it means it will never increase back.
1940  * * When reference count hits 0, it means that no references from
1941  *   outside exist to this socket and current process on current CPU
1942  *   is last user and may/should destroy this socket.
1943  * * sk_free is called from any context: process, BH, IRQ. When
1944  *   it is called, socket has no references from outside -> sk_free
1945  *   may release descendant resources allocated by the socket, but
1946  *   to the time when it is called, socket is NOT referenced by any
1947  *   hash tables, lists etc.
1948  * * Packets, delivered from outside (from network or from another process)
1949  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1950  *   when they sit in queue. Otherwise, packets will leak to hole, when
1951  *   socket is looked up by one cpu and unhasing is made by another CPU.
1952  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1953  *   (leak to backlog). Packet socket does all the processing inside
1954  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1955  *   use separate SMP lock, so that they are prone too.
1956  */
1957 
1958 /* Ungrab socket and destroy it, if it was the last reference. */
1959 static inline void sock_put(struct sock *sk)
1960 {
1961 	if (refcount_dec_and_test(&sk->sk_refcnt))
1962 		sk_free(sk);
1963 }
1964 /* Generic version of sock_put(), dealing with all sockets
1965  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1966  */
1967 void sock_gen_put(struct sock *sk);
1968 
1969 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1970 		     unsigned int trim_cap, bool refcounted);
1971 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1972 				 const int nested)
1973 {
1974 	return __sk_receive_skb(sk, skb, nested, 1, true);
1975 }
1976 
1977 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1978 {
1979 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1980 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1981 		return;
1982 	sk->sk_tx_queue_mapping = tx_queue;
1983 }
1984 
1985 #define NO_QUEUE_MAPPING	USHRT_MAX
1986 
1987 static inline void sk_tx_queue_clear(struct sock *sk)
1988 {
1989 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1990 }
1991 
1992 static inline int sk_tx_queue_get(const struct sock *sk)
1993 {
1994 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1995 		return sk->sk_tx_queue_mapping;
1996 
1997 	return -1;
1998 }
1999 
2000 static inline void __sk_rx_queue_set(struct sock *sk,
2001 				     const struct sk_buff *skb,
2002 				     bool force_set)
2003 {
2004 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2005 	if (skb_rx_queue_recorded(skb)) {
2006 		u16 rx_queue = skb_get_rx_queue(skb);
2007 
2008 		if (force_set ||
2009 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2010 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2011 	}
2012 #endif
2013 }
2014 
2015 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2016 {
2017 	__sk_rx_queue_set(sk, skb, true);
2018 }
2019 
2020 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2021 {
2022 	__sk_rx_queue_set(sk, skb, false);
2023 }
2024 
2025 static inline void sk_rx_queue_clear(struct sock *sk)
2026 {
2027 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2029 #endif
2030 }
2031 
2032 static inline int sk_rx_queue_get(const struct sock *sk)
2033 {
2034 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2035 	if (sk) {
2036 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2037 
2038 		if (res != NO_QUEUE_MAPPING)
2039 			return res;
2040 	}
2041 #endif
2042 
2043 	return -1;
2044 }
2045 
2046 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2047 {
2048 	sk->sk_socket = sock;
2049 }
2050 
2051 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2052 {
2053 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2054 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2055 }
2056 /* Detach socket from process context.
2057  * Announce socket dead, detach it from wait queue and inode.
2058  * Note that parent inode held reference count on this struct sock,
2059  * we do not release it in this function, because protocol
2060  * probably wants some additional cleanups or even continuing
2061  * to work with this socket (TCP).
2062  */
2063 static inline void sock_orphan(struct sock *sk)
2064 {
2065 	write_lock_bh(&sk->sk_callback_lock);
2066 	sock_set_flag(sk, SOCK_DEAD);
2067 	sk_set_socket(sk, NULL);
2068 	sk->sk_wq  = NULL;
2069 	write_unlock_bh(&sk->sk_callback_lock);
2070 }
2071 
2072 static inline void sock_graft(struct sock *sk, struct socket *parent)
2073 {
2074 	WARN_ON(parent->sk);
2075 	write_lock_bh(&sk->sk_callback_lock);
2076 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2077 	parent->sk = sk;
2078 	sk_set_socket(sk, parent);
2079 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2080 	security_sock_graft(sk, parent);
2081 	write_unlock_bh(&sk->sk_callback_lock);
2082 }
2083 
2084 kuid_t sock_i_uid(struct sock *sk);
2085 unsigned long sock_i_ino(struct sock *sk);
2086 
2087 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2088 {
2089 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2090 }
2091 
2092 static inline u32 net_tx_rndhash(void)
2093 {
2094 	u32 v = prandom_u32();
2095 
2096 	return v ?: 1;
2097 }
2098 
2099 static inline void sk_set_txhash(struct sock *sk)
2100 {
2101 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2102 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2103 }
2104 
2105 static inline bool sk_rethink_txhash(struct sock *sk)
2106 {
2107 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2108 		sk_set_txhash(sk);
2109 		return true;
2110 	}
2111 	return false;
2112 }
2113 
2114 static inline struct dst_entry *
2115 __sk_dst_get(struct sock *sk)
2116 {
2117 	return rcu_dereference_check(sk->sk_dst_cache,
2118 				     lockdep_sock_is_held(sk));
2119 }
2120 
2121 static inline struct dst_entry *
2122 sk_dst_get(struct sock *sk)
2123 {
2124 	struct dst_entry *dst;
2125 
2126 	rcu_read_lock();
2127 	dst = rcu_dereference(sk->sk_dst_cache);
2128 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2129 		dst = NULL;
2130 	rcu_read_unlock();
2131 	return dst;
2132 }
2133 
2134 static inline void __dst_negative_advice(struct sock *sk)
2135 {
2136 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2137 
2138 	if (dst && dst->ops->negative_advice) {
2139 		ndst = dst->ops->negative_advice(dst);
2140 
2141 		if (ndst != dst) {
2142 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2143 			sk_tx_queue_clear(sk);
2144 			sk->sk_dst_pending_confirm = 0;
2145 		}
2146 	}
2147 }
2148 
2149 static inline void dst_negative_advice(struct sock *sk)
2150 {
2151 	sk_rethink_txhash(sk);
2152 	__dst_negative_advice(sk);
2153 }
2154 
2155 static inline void
2156 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2157 {
2158 	struct dst_entry *old_dst;
2159 
2160 	sk_tx_queue_clear(sk);
2161 	sk->sk_dst_pending_confirm = 0;
2162 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2163 					    lockdep_sock_is_held(sk));
2164 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2165 	dst_release(old_dst);
2166 }
2167 
2168 static inline void
2169 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2170 {
2171 	struct dst_entry *old_dst;
2172 
2173 	sk_tx_queue_clear(sk);
2174 	sk->sk_dst_pending_confirm = 0;
2175 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2176 	dst_release(old_dst);
2177 }
2178 
2179 static inline void
2180 __sk_dst_reset(struct sock *sk)
2181 {
2182 	__sk_dst_set(sk, NULL);
2183 }
2184 
2185 static inline void
2186 sk_dst_reset(struct sock *sk)
2187 {
2188 	sk_dst_set(sk, NULL);
2189 }
2190 
2191 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2192 
2193 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2194 
2195 static inline void sk_dst_confirm(struct sock *sk)
2196 {
2197 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2198 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2199 }
2200 
2201 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2202 {
2203 	if (skb_get_dst_pending_confirm(skb)) {
2204 		struct sock *sk = skb->sk;
2205 
2206 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2207 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2208 		neigh_confirm(n);
2209 	}
2210 }
2211 
2212 bool sk_mc_loop(struct sock *sk);
2213 
2214 static inline bool sk_can_gso(const struct sock *sk)
2215 {
2216 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2217 }
2218 
2219 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2220 
2221 static inline void sk_gso_disable(struct sock *sk)
2222 {
2223 	sk->sk_gso_disabled = 1;
2224 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2225 }
2226 
2227 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2228 					   struct iov_iter *from, char *to,
2229 					   int copy, int offset)
2230 {
2231 	if (skb->ip_summed == CHECKSUM_NONE) {
2232 		__wsum csum = 0;
2233 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2234 			return -EFAULT;
2235 		skb->csum = csum_block_add(skb->csum, csum, offset);
2236 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2237 		if (!copy_from_iter_full_nocache(to, copy, from))
2238 			return -EFAULT;
2239 	} else if (!copy_from_iter_full(to, copy, from))
2240 		return -EFAULT;
2241 
2242 	return 0;
2243 }
2244 
2245 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2246 				       struct iov_iter *from, int copy)
2247 {
2248 	int err, offset = skb->len;
2249 
2250 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2251 				       copy, offset);
2252 	if (err)
2253 		__skb_trim(skb, offset);
2254 
2255 	return err;
2256 }
2257 
2258 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2259 					   struct sk_buff *skb,
2260 					   struct page *page,
2261 					   int off, int copy)
2262 {
2263 	int err;
2264 
2265 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2266 				       copy, skb->len);
2267 	if (err)
2268 		return err;
2269 
2270 	skb_len_add(skb, copy);
2271 	sk_wmem_queued_add(sk, copy);
2272 	sk_mem_charge(sk, copy);
2273 	return 0;
2274 }
2275 
2276 /**
2277  * sk_wmem_alloc_get - returns write allocations
2278  * @sk: socket
2279  *
2280  * Return: sk_wmem_alloc minus initial offset of one
2281  */
2282 static inline int sk_wmem_alloc_get(const struct sock *sk)
2283 {
2284 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2285 }
2286 
2287 /**
2288  * sk_rmem_alloc_get - returns read allocations
2289  * @sk: socket
2290  *
2291  * Return: sk_rmem_alloc
2292  */
2293 static inline int sk_rmem_alloc_get(const struct sock *sk)
2294 {
2295 	return atomic_read(&sk->sk_rmem_alloc);
2296 }
2297 
2298 /**
2299  * sk_has_allocations - check if allocations are outstanding
2300  * @sk: socket
2301  *
2302  * Return: true if socket has write or read allocations
2303  */
2304 static inline bool sk_has_allocations(const struct sock *sk)
2305 {
2306 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2307 }
2308 
2309 /**
2310  * skwq_has_sleeper - check if there are any waiting processes
2311  * @wq: struct socket_wq
2312  *
2313  * Return: true if socket_wq has waiting processes
2314  *
2315  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2316  * barrier call. They were added due to the race found within the tcp code.
2317  *
2318  * Consider following tcp code paths::
2319  *
2320  *   CPU1                CPU2
2321  *   sys_select          receive packet
2322  *   ...                 ...
2323  *   __add_wait_queue    update tp->rcv_nxt
2324  *   ...                 ...
2325  *   tp->rcv_nxt check   sock_def_readable
2326  *   ...                 {
2327  *   schedule               rcu_read_lock();
2328  *                          wq = rcu_dereference(sk->sk_wq);
2329  *                          if (wq && waitqueue_active(&wq->wait))
2330  *                              wake_up_interruptible(&wq->wait)
2331  *                          ...
2332  *                       }
2333  *
2334  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2335  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2336  * could then endup calling schedule and sleep forever if there are no more
2337  * data on the socket.
2338  *
2339  */
2340 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2341 {
2342 	return wq && wq_has_sleeper(&wq->wait);
2343 }
2344 
2345 /**
2346  * sock_poll_wait - place memory barrier behind the poll_wait call.
2347  * @filp:           file
2348  * @sock:           socket to wait on
2349  * @p:              poll_table
2350  *
2351  * See the comments in the wq_has_sleeper function.
2352  */
2353 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2354 				  poll_table *p)
2355 {
2356 	if (!poll_does_not_wait(p)) {
2357 		poll_wait(filp, &sock->wq.wait, p);
2358 		/* We need to be sure we are in sync with the
2359 		 * socket flags modification.
2360 		 *
2361 		 * This memory barrier is paired in the wq_has_sleeper.
2362 		 */
2363 		smp_mb();
2364 	}
2365 }
2366 
2367 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2368 {
2369 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2370 	u32 txhash = READ_ONCE(sk->sk_txhash);
2371 
2372 	if (txhash) {
2373 		skb->l4_hash = 1;
2374 		skb->hash = txhash;
2375 	}
2376 }
2377 
2378 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2379 
2380 /*
2381  *	Queue a received datagram if it will fit. Stream and sequenced
2382  *	protocols can't normally use this as they need to fit buffers in
2383  *	and play with them.
2384  *
2385  *	Inlined as it's very short and called for pretty much every
2386  *	packet ever received.
2387  */
2388 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2389 {
2390 	skb_orphan(skb);
2391 	skb->sk = sk;
2392 	skb->destructor = sock_rfree;
2393 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2394 	sk_mem_charge(sk, skb->truesize);
2395 }
2396 
2397 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2398 {
2399 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2400 		skb_orphan(skb);
2401 		skb->destructor = sock_efree;
2402 		skb->sk = sk;
2403 		return true;
2404 	}
2405 	return false;
2406 }
2407 
2408 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2409 {
2410 	if (skb->destructor != sock_wfree) {
2411 		skb_orphan(skb);
2412 		return;
2413 	}
2414 	skb->slow_gro = 1;
2415 }
2416 
2417 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2418 		    unsigned long expires);
2419 
2420 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2421 
2422 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2423 
2424 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2425 			struct sk_buff *skb, unsigned int flags,
2426 			void (*destructor)(struct sock *sk,
2427 					   struct sk_buff *skb));
2428 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2429 
2430 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2431 			      enum skb_drop_reason *reason);
2432 
2433 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2434 {
2435 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2436 }
2437 
2438 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2439 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2440 
2441 /*
2442  *	Recover an error report and clear atomically
2443  */
2444 
2445 static inline int sock_error(struct sock *sk)
2446 {
2447 	int err;
2448 
2449 	/* Avoid an atomic operation for the common case.
2450 	 * This is racy since another cpu/thread can change sk_err under us.
2451 	 */
2452 	if (likely(data_race(!sk->sk_err)))
2453 		return 0;
2454 
2455 	err = xchg(&sk->sk_err, 0);
2456 	return -err;
2457 }
2458 
2459 void sk_error_report(struct sock *sk);
2460 
2461 static inline unsigned long sock_wspace(struct sock *sk)
2462 {
2463 	int amt = 0;
2464 
2465 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2466 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2467 		if (amt < 0)
2468 			amt = 0;
2469 	}
2470 	return amt;
2471 }
2472 
2473 /* Note:
2474  *  We use sk->sk_wq_raw, from contexts knowing this
2475  *  pointer is not NULL and cannot disappear/change.
2476  */
2477 static inline void sk_set_bit(int nr, struct sock *sk)
2478 {
2479 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2480 	    !sock_flag(sk, SOCK_FASYNC))
2481 		return;
2482 
2483 	set_bit(nr, &sk->sk_wq_raw->flags);
2484 }
2485 
2486 static inline void sk_clear_bit(int nr, struct sock *sk)
2487 {
2488 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2489 	    !sock_flag(sk, SOCK_FASYNC))
2490 		return;
2491 
2492 	clear_bit(nr, &sk->sk_wq_raw->flags);
2493 }
2494 
2495 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2496 {
2497 	if (sock_flag(sk, SOCK_FASYNC)) {
2498 		rcu_read_lock();
2499 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2500 		rcu_read_unlock();
2501 	}
2502 }
2503 
2504 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2505  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2506  * Note: for send buffers, TCP works better if we can build two skbs at
2507  * minimum.
2508  */
2509 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2510 
2511 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2512 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2513 
2514 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2515 {
2516 	u32 val;
2517 
2518 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2519 		return;
2520 
2521 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2522 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2523 
2524 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2525 }
2526 
2527 /**
2528  * sk_page_frag - return an appropriate page_frag
2529  * @sk: socket
2530  *
2531  * Use the per task page_frag instead of the per socket one for
2532  * optimization when we know that we're in process context and own
2533  * everything that's associated with %current.
2534  *
2535  * Both direct reclaim and page faults can nest inside other
2536  * socket operations and end up recursing into sk_page_frag()
2537  * while it's already in use: explicitly avoid task page_frag
2538  * usage if the caller is potentially doing any of them.
2539  * This assumes that page fault handlers use the GFP_NOFS flags.
2540  *
2541  * Return: a per task page_frag if context allows that,
2542  * otherwise a per socket one.
2543  */
2544 static inline struct page_frag *sk_page_frag(struct sock *sk)
2545 {
2546 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2547 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2548 		return &current->task_frag;
2549 
2550 	return &sk->sk_frag;
2551 }
2552 
2553 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2554 
2555 /*
2556  *	Default write policy as shown to user space via poll/select/SIGIO
2557  */
2558 static inline bool sock_writeable(const struct sock *sk)
2559 {
2560 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2561 }
2562 
2563 static inline gfp_t gfp_any(void)
2564 {
2565 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2566 }
2567 
2568 static inline gfp_t gfp_memcg_charge(void)
2569 {
2570 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2571 }
2572 
2573 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2574 {
2575 	return noblock ? 0 : sk->sk_rcvtimeo;
2576 }
2577 
2578 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2579 {
2580 	return noblock ? 0 : sk->sk_sndtimeo;
2581 }
2582 
2583 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2584 {
2585 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2586 
2587 	return v ?: 1;
2588 }
2589 
2590 /* Alas, with timeout socket operations are not restartable.
2591  * Compare this to poll().
2592  */
2593 static inline int sock_intr_errno(long timeo)
2594 {
2595 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2596 }
2597 
2598 struct sock_skb_cb {
2599 	u32 dropcount;
2600 };
2601 
2602 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2603  * using skb->cb[] would keep using it directly and utilize its
2604  * alignement guarantee.
2605  */
2606 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2607 			    sizeof(struct sock_skb_cb)))
2608 
2609 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2610 			    SOCK_SKB_CB_OFFSET))
2611 
2612 #define sock_skb_cb_check_size(size) \
2613 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2614 
2615 static inline void
2616 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2617 {
2618 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2619 						atomic_read(&sk->sk_drops) : 0;
2620 }
2621 
2622 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2623 {
2624 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2625 
2626 	atomic_add(segs, &sk->sk_drops);
2627 }
2628 
2629 static inline ktime_t sock_read_timestamp(struct sock *sk)
2630 {
2631 #if BITS_PER_LONG==32
2632 	unsigned int seq;
2633 	ktime_t kt;
2634 
2635 	do {
2636 		seq = read_seqbegin(&sk->sk_stamp_seq);
2637 		kt = sk->sk_stamp;
2638 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2639 
2640 	return kt;
2641 #else
2642 	return READ_ONCE(sk->sk_stamp);
2643 #endif
2644 }
2645 
2646 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2647 {
2648 #if BITS_PER_LONG==32
2649 	write_seqlock(&sk->sk_stamp_seq);
2650 	sk->sk_stamp = kt;
2651 	write_sequnlock(&sk->sk_stamp_seq);
2652 #else
2653 	WRITE_ONCE(sk->sk_stamp, kt);
2654 #endif
2655 }
2656 
2657 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2658 			   struct sk_buff *skb);
2659 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2660 			     struct sk_buff *skb);
2661 
2662 static inline void
2663 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2664 {
2665 	ktime_t kt = skb->tstamp;
2666 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2667 
2668 	/*
2669 	 * generate control messages if
2670 	 * - receive time stamping in software requested
2671 	 * - software time stamp available and wanted
2672 	 * - hardware time stamps available and wanted
2673 	 */
2674 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2675 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2676 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2677 	    (hwtstamps->hwtstamp &&
2678 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2679 		__sock_recv_timestamp(msg, sk, skb);
2680 	else
2681 		sock_write_timestamp(sk, kt);
2682 
2683 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2684 		__sock_recv_wifi_status(msg, sk, skb);
2685 }
2686 
2687 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2688 		       struct sk_buff *skb);
2689 
2690 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2691 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2692 				   struct sk_buff *skb)
2693 {
2694 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2695 			   (1UL << SOCK_RCVTSTAMP)			| \
2696 			   (1UL << SOCK_RCVMARK))
2697 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2698 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2699 
2700 	if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2701 		__sock_recv_cmsgs(msg, sk, skb);
2702 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2703 		sock_write_timestamp(sk, skb->tstamp);
2704 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2705 		sock_write_timestamp(sk, 0);
2706 }
2707 
2708 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2709 
2710 /**
2711  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2712  * @sk:		socket sending this packet
2713  * @tsflags:	timestamping flags to use
2714  * @tx_flags:	completed with instructions for time stamping
2715  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2716  *
2717  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2718  */
2719 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2720 				      __u8 *tx_flags, __u32 *tskey)
2721 {
2722 	if (unlikely(tsflags)) {
2723 		__sock_tx_timestamp(tsflags, tx_flags);
2724 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2725 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2726 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2727 	}
2728 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2729 		*tx_flags |= SKBTX_WIFI_STATUS;
2730 }
2731 
2732 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2733 				     __u8 *tx_flags)
2734 {
2735 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2736 }
2737 
2738 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2739 {
2740 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2741 			   &skb_shinfo(skb)->tskey);
2742 }
2743 
2744 static inline bool sk_is_tcp(const struct sock *sk)
2745 {
2746 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2747 }
2748 
2749 /**
2750  * sk_eat_skb - Release a skb if it is no longer needed
2751  * @sk: socket to eat this skb from
2752  * @skb: socket buffer to eat
2753  *
2754  * This routine must be called with interrupts disabled or with the socket
2755  * locked so that the sk_buff queue operation is ok.
2756 */
2757 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2758 {
2759 	__skb_unlink(skb, &sk->sk_receive_queue);
2760 	__kfree_skb(skb);
2761 }
2762 
2763 static inline bool
2764 skb_sk_is_prefetched(struct sk_buff *skb)
2765 {
2766 #ifdef CONFIG_INET
2767 	return skb->destructor == sock_pfree;
2768 #else
2769 	return false;
2770 #endif /* CONFIG_INET */
2771 }
2772 
2773 /* This helper checks if a socket is a full socket,
2774  * ie _not_ a timewait or request socket.
2775  */
2776 static inline bool sk_fullsock(const struct sock *sk)
2777 {
2778 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2779 }
2780 
2781 static inline bool
2782 sk_is_refcounted(struct sock *sk)
2783 {
2784 	/* Only full sockets have sk->sk_flags. */
2785 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2786 }
2787 
2788 /**
2789  * skb_steal_sock - steal a socket from an sk_buff
2790  * @skb: sk_buff to steal the socket from
2791  * @refcounted: is set to true if the socket is reference-counted
2792  */
2793 static inline struct sock *
2794 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2795 {
2796 	if (skb->sk) {
2797 		struct sock *sk = skb->sk;
2798 
2799 		*refcounted = true;
2800 		if (skb_sk_is_prefetched(skb))
2801 			*refcounted = sk_is_refcounted(sk);
2802 		skb->destructor = NULL;
2803 		skb->sk = NULL;
2804 		return sk;
2805 	}
2806 	*refcounted = false;
2807 	return NULL;
2808 }
2809 
2810 /* Checks if this SKB belongs to an HW offloaded socket
2811  * and whether any SW fallbacks are required based on dev.
2812  * Check decrypted mark in case skb_orphan() cleared socket.
2813  */
2814 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2815 						   struct net_device *dev)
2816 {
2817 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2818 	struct sock *sk = skb->sk;
2819 
2820 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2821 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2822 #ifdef CONFIG_TLS_DEVICE
2823 	} else if (unlikely(skb->decrypted)) {
2824 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2825 		kfree_skb(skb);
2826 		skb = NULL;
2827 #endif
2828 	}
2829 #endif
2830 
2831 	return skb;
2832 }
2833 
2834 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2835  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2836  */
2837 static inline bool sk_listener(const struct sock *sk)
2838 {
2839 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2840 }
2841 
2842 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2843 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2844 		       int type);
2845 
2846 bool sk_ns_capable(const struct sock *sk,
2847 		   struct user_namespace *user_ns, int cap);
2848 bool sk_capable(const struct sock *sk, int cap);
2849 bool sk_net_capable(const struct sock *sk, int cap);
2850 
2851 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2852 
2853 /* Take into consideration the size of the struct sk_buff overhead in the
2854  * determination of these values, since that is non-constant across
2855  * platforms.  This makes socket queueing behavior and performance
2856  * not depend upon such differences.
2857  */
2858 #define _SK_MEM_PACKETS		256
2859 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2860 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2861 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2862 
2863 extern __u32 sysctl_wmem_max;
2864 extern __u32 sysctl_rmem_max;
2865 
2866 extern int sysctl_tstamp_allow_data;
2867 extern int sysctl_optmem_max;
2868 
2869 extern __u32 sysctl_wmem_default;
2870 extern __u32 sysctl_rmem_default;
2871 
2872 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2873 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2874 
2875 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2876 {
2877 	/* Does this proto have per netns sysctl_wmem ? */
2878 	if (proto->sysctl_wmem_offset)
2879 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2880 
2881 	return READ_ONCE(*proto->sysctl_wmem);
2882 }
2883 
2884 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2885 {
2886 	/* Does this proto have per netns sysctl_rmem ? */
2887 	if (proto->sysctl_rmem_offset)
2888 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2889 
2890 	return READ_ONCE(*proto->sysctl_rmem);
2891 }
2892 
2893 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2894  * Some wifi drivers need to tweak it to get more chunks.
2895  * They can use this helper from their ndo_start_xmit()
2896  */
2897 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2898 {
2899 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2900 		return;
2901 	WRITE_ONCE(sk->sk_pacing_shift, val);
2902 }
2903 
2904 /* if a socket is bound to a device, check that the given device
2905  * index is either the same or that the socket is bound to an L3
2906  * master device and the given device index is also enslaved to
2907  * that L3 master
2908  */
2909 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2910 {
2911 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2912 	int mdif;
2913 
2914 	if (!bound_dev_if || bound_dev_if == dif)
2915 		return true;
2916 
2917 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2918 	if (mdif && mdif == bound_dev_if)
2919 		return true;
2920 
2921 	return false;
2922 }
2923 
2924 void sock_def_readable(struct sock *sk);
2925 
2926 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2927 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2928 int sock_set_timestamping(struct sock *sk, int optname,
2929 			  struct so_timestamping timestamping);
2930 
2931 void sock_enable_timestamps(struct sock *sk);
2932 void sock_no_linger(struct sock *sk);
2933 void sock_set_keepalive(struct sock *sk);
2934 void sock_set_priority(struct sock *sk, u32 priority);
2935 void sock_set_rcvbuf(struct sock *sk, int val);
2936 void sock_set_mark(struct sock *sk, u32 val);
2937 void sock_set_reuseaddr(struct sock *sk);
2938 void sock_set_reuseport(struct sock *sk);
2939 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2940 
2941 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2942 
2943 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2944 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2945 			   sockptr_t optval, int optlen, bool old_timeval);
2946 
2947 static inline bool sk_is_readable(struct sock *sk)
2948 {
2949 	if (sk->sk_prot->sock_is_readable)
2950 		return sk->sk_prot->sock_is_readable(sk);
2951 	return false;
2952 }
2953 #endif	/* _SOCK_H */
2954