1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 #include <linux/wait.h> 62 #include <linux/cgroup-defs.h> 63 #include <linux/rbtree.h> 64 #include <linux/filter.h> 65 #include <linux/rculist_nulls.h> 66 #include <linux/poll.h> 67 68 #include <linux/atomic.h> 69 #include <linux/refcount.h> 70 #include <net/dst.h> 71 #include <net/checksum.h> 72 #include <net/tcp_states.h> 73 #include <linux/net_tstamp.h> 74 #include <net/smc.h> 75 #include <net/l3mdev.h> 76 77 /* 78 * This structure really needs to be cleaned up. 79 * Most of it is for TCP, and not used by any of 80 * the other protocols. 81 */ 82 83 /* Define this to get the SOCK_DBG debugging facility. */ 84 #define SOCK_DEBUGGING 85 #ifdef SOCK_DEBUGGING 86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 87 printk(KERN_DEBUG msg); } while (0) 88 #else 89 /* Validate arguments and do nothing */ 90 static inline __printf(2, 3) 91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 92 { 93 } 94 #endif 95 96 /* This is the per-socket lock. The spinlock provides a synchronization 97 * between user contexts and software interrupt processing, whereas the 98 * mini-semaphore synchronizes multiple users amongst themselves. 99 */ 100 typedef struct { 101 spinlock_t slock; 102 int owned; 103 wait_queue_head_t wq; 104 /* 105 * We express the mutex-alike socket_lock semantics 106 * to the lock validator by explicitly managing 107 * the slock as a lock variant (in addition to 108 * the slock itself): 109 */ 110 #ifdef CONFIG_DEBUG_LOCK_ALLOC 111 struct lockdep_map dep_map; 112 #endif 113 } socket_lock_t; 114 115 struct sock; 116 struct proto; 117 struct net; 118 119 typedef __u32 __bitwise __portpair; 120 typedef __u64 __bitwise __addrpair; 121 122 /** 123 * struct sock_common - minimal network layer representation of sockets 124 * @skc_daddr: Foreign IPv4 addr 125 * @skc_rcv_saddr: Bound local IPv4 addr 126 * @skc_hash: hash value used with various protocol lookup tables 127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 128 * @skc_dport: placeholder for inet_dport/tw_dport 129 * @skc_num: placeholder for inet_num/tw_num 130 * @skc_family: network address family 131 * @skc_state: Connection state 132 * @skc_reuse: %SO_REUSEADDR setting 133 * @skc_reuseport: %SO_REUSEPORT setting 134 * @skc_bound_dev_if: bound device index if != 0 135 * @skc_bind_node: bind hash linkage for various protocol lookup tables 136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 137 * @skc_prot: protocol handlers inside a network family 138 * @skc_net: reference to the network namespace of this socket 139 * @skc_node: main hash linkage for various protocol lookup tables 140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 141 * @skc_tx_queue_mapping: tx queue number for this connection 142 * @skc_rx_queue_mapping: rx queue number for this connection 143 * @skc_flags: place holder for sk_flags 144 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 145 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 146 * @skc_incoming_cpu: record/match cpu processing incoming packets 147 * @skc_refcnt: reference count 148 * 149 * This is the minimal network layer representation of sockets, the header 150 * for struct sock and struct inet_timewait_sock. 151 */ 152 struct sock_common { 153 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 154 * address on 64bit arches : cf INET_MATCH() 155 */ 156 union { 157 __addrpair skc_addrpair; 158 struct { 159 __be32 skc_daddr; 160 __be32 skc_rcv_saddr; 161 }; 162 }; 163 union { 164 unsigned int skc_hash; 165 __u16 skc_u16hashes[2]; 166 }; 167 /* skc_dport && skc_num must be grouped as well */ 168 union { 169 __portpair skc_portpair; 170 struct { 171 __be16 skc_dport; 172 __u16 skc_num; 173 }; 174 }; 175 176 unsigned short skc_family; 177 volatile unsigned char skc_state; 178 unsigned char skc_reuse:4; 179 unsigned char skc_reuseport:1; 180 unsigned char skc_ipv6only:1; 181 unsigned char skc_net_refcnt:1; 182 int skc_bound_dev_if; 183 union { 184 struct hlist_node skc_bind_node; 185 struct hlist_node skc_portaddr_node; 186 }; 187 struct proto *skc_prot; 188 possible_net_t skc_net; 189 190 #if IS_ENABLED(CONFIG_IPV6) 191 struct in6_addr skc_v6_daddr; 192 struct in6_addr skc_v6_rcv_saddr; 193 #endif 194 195 atomic64_t skc_cookie; 196 197 /* following fields are padding to force 198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 199 * assuming IPV6 is enabled. We use this padding differently 200 * for different kind of 'sockets' 201 */ 202 union { 203 unsigned long skc_flags; 204 struct sock *skc_listener; /* request_sock */ 205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 206 }; 207 /* 208 * fields between dontcopy_begin/dontcopy_end 209 * are not copied in sock_copy() 210 */ 211 /* private: */ 212 int skc_dontcopy_begin[0]; 213 /* public: */ 214 union { 215 struct hlist_node skc_node; 216 struct hlist_nulls_node skc_nulls_node; 217 }; 218 unsigned short skc_tx_queue_mapping; 219 #ifdef CONFIG_XPS 220 unsigned short skc_rx_queue_mapping; 221 #endif 222 union { 223 int skc_incoming_cpu; 224 u32 skc_rcv_wnd; 225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 226 }; 227 228 refcount_t skc_refcnt; 229 /* private: */ 230 int skc_dontcopy_end[0]; 231 union { 232 u32 skc_rxhash; 233 u32 skc_window_clamp; 234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 235 }; 236 /* public: */ 237 }; 238 239 /** 240 * struct sock - network layer representation of sockets 241 * @__sk_common: shared layout with inet_timewait_sock 242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 244 * @sk_lock: synchronizer 245 * @sk_kern_sock: True if sock is using kernel lock classes 246 * @sk_rcvbuf: size of receive buffer in bytes 247 * @sk_wq: sock wait queue and async head 248 * @sk_rx_dst: receive input route used by early demux 249 * @sk_dst_cache: destination cache 250 * @sk_dst_pending_confirm: need to confirm neighbour 251 * @sk_policy: flow policy 252 * @sk_receive_queue: incoming packets 253 * @sk_wmem_alloc: transmit queue bytes committed 254 * @sk_tsq_flags: TCP Small Queues flags 255 * @sk_write_queue: Packet sending queue 256 * @sk_omem_alloc: "o" is "option" or "other" 257 * @sk_wmem_queued: persistent queue size 258 * @sk_forward_alloc: space allocated forward 259 * @sk_napi_id: id of the last napi context to receive data for sk 260 * @sk_ll_usec: usecs to busypoll when there is no data 261 * @sk_allocation: allocation mode 262 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 263 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 264 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 265 * @sk_sndbuf: size of send buffer in bytes 266 * @__sk_flags_offset: empty field used to determine location of bitfield 267 * @sk_padding: unused element for alignment 268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 269 * @sk_no_check_rx: allow zero checksum in RX packets 270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 271 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 273 * @sk_gso_max_size: Maximum GSO segment size to build 274 * @sk_gso_max_segs: Maximum number of GSO segments 275 * @sk_pacing_shift: scaling factor for TCP Small Queues 276 * @sk_lingertime: %SO_LINGER l_linger setting 277 * @sk_backlog: always used with the per-socket spinlock held 278 * @sk_callback_lock: used with the callbacks in the end of this struct 279 * @sk_error_queue: rarely used 280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 281 * IPV6_ADDRFORM for instance) 282 * @sk_err: last error 283 * @sk_err_soft: errors that don't cause failure but are the cause of a 284 * persistent failure not just 'timed out' 285 * @sk_drops: raw/udp drops counter 286 * @sk_ack_backlog: current listen backlog 287 * @sk_max_ack_backlog: listen backlog set in listen() 288 * @sk_uid: user id of owner 289 * @sk_priority: %SO_PRIORITY setting 290 * @sk_type: socket type (%SOCK_STREAM, etc) 291 * @sk_protocol: which protocol this socket belongs in this network family 292 * @sk_peer_pid: &struct pid for this socket's peer 293 * @sk_peer_cred: %SO_PEERCRED setting 294 * @sk_rcvlowat: %SO_RCVLOWAT setting 295 * @sk_rcvtimeo: %SO_RCVTIMEO setting 296 * @sk_sndtimeo: %SO_SNDTIMEO setting 297 * @sk_txhash: computed flow hash for use on transmit 298 * @sk_filter: socket filtering instructions 299 * @sk_timer: sock cleanup timer 300 * @sk_stamp: time stamp of last packet received 301 * @sk_tsflags: SO_TIMESTAMPING socket options 302 * @sk_tskey: counter to disambiguate concurrent tstamp requests 303 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 304 * @sk_socket: Identd and reporting IO signals 305 * @sk_user_data: RPC layer private data 306 * @sk_frag: cached page frag 307 * @sk_peek_off: current peek_offset value 308 * @sk_send_head: front of stuff to transmit 309 * @sk_security: used by security modules 310 * @sk_mark: generic packet mark 311 * @sk_cgrp_data: cgroup data for this cgroup 312 * @sk_memcg: this socket's memory cgroup association 313 * @sk_write_pending: a write to stream socket waits to start 314 * @sk_state_change: callback to indicate change in the state of the sock 315 * @sk_data_ready: callback to indicate there is data to be processed 316 * @sk_write_space: callback to indicate there is bf sending space available 317 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 318 * @sk_backlog_rcv: callback to process the backlog 319 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 320 * @sk_reuseport_cb: reuseport group container 321 * @sk_rcu: used during RCU grace period 322 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 323 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 324 * @sk_txtime_unused: unused txtime flags 325 */ 326 struct sock { 327 /* 328 * Now struct inet_timewait_sock also uses sock_common, so please just 329 * don't add nothing before this first member (__sk_common) --acme 330 */ 331 struct sock_common __sk_common; 332 #define sk_node __sk_common.skc_node 333 #define sk_nulls_node __sk_common.skc_nulls_node 334 #define sk_refcnt __sk_common.skc_refcnt 335 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 336 #ifdef CONFIG_XPS 337 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 338 #endif 339 340 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 341 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 342 #define sk_hash __sk_common.skc_hash 343 #define sk_portpair __sk_common.skc_portpair 344 #define sk_num __sk_common.skc_num 345 #define sk_dport __sk_common.skc_dport 346 #define sk_addrpair __sk_common.skc_addrpair 347 #define sk_daddr __sk_common.skc_daddr 348 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 349 #define sk_family __sk_common.skc_family 350 #define sk_state __sk_common.skc_state 351 #define sk_reuse __sk_common.skc_reuse 352 #define sk_reuseport __sk_common.skc_reuseport 353 #define sk_ipv6only __sk_common.skc_ipv6only 354 #define sk_net_refcnt __sk_common.skc_net_refcnt 355 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 356 #define sk_bind_node __sk_common.skc_bind_node 357 #define sk_prot __sk_common.skc_prot 358 #define sk_net __sk_common.skc_net 359 #define sk_v6_daddr __sk_common.skc_v6_daddr 360 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 361 #define sk_cookie __sk_common.skc_cookie 362 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 363 #define sk_flags __sk_common.skc_flags 364 #define sk_rxhash __sk_common.skc_rxhash 365 366 socket_lock_t sk_lock; 367 atomic_t sk_drops; 368 int sk_rcvlowat; 369 struct sk_buff_head sk_error_queue; 370 struct sk_buff_head sk_receive_queue; 371 /* 372 * The backlog queue is special, it is always used with 373 * the per-socket spinlock held and requires low latency 374 * access. Therefore we special case it's implementation. 375 * Note : rmem_alloc is in this structure to fill a hole 376 * on 64bit arches, not because its logically part of 377 * backlog. 378 */ 379 struct { 380 atomic_t rmem_alloc; 381 int len; 382 struct sk_buff *head; 383 struct sk_buff *tail; 384 } sk_backlog; 385 #define sk_rmem_alloc sk_backlog.rmem_alloc 386 387 int sk_forward_alloc; 388 #ifdef CONFIG_NET_RX_BUSY_POLL 389 unsigned int sk_ll_usec; 390 /* ===== mostly read cache line ===== */ 391 unsigned int sk_napi_id; 392 #endif 393 int sk_rcvbuf; 394 395 struct sk_filter __rcu *sk_filter; 396 union { 397 struct socket_wq __rcu *sk_wq; 398 struct socket_wq *sk_wq_raw; 399 }; 400 #ifdef CONFIG_XFRM 401 struct xfrm_policy __rcu *sk_policy[2]; 402 #endif 403 struct dst_entry *sk_rx_dst; 404 struct dst_entry __rcu *sk_dst_cache; 405 atomic_t sk_omem_alloc; 406 int sk_sndbuf; 407 408 /* ===== cache line for TX ===== */ 409 int sk_wmem_queued; 410 refcount_t sk_wmem_alloc; 411 unsigned long sk_tsq_flags; 412 union { 413 struct sk_buff *sk_send_head; 414 struct rb_root tcp_rtx_queue; 415 }; 416 struct sk_buff_head sk_write_queue; 417 __s32 sk_peek_off; 418 int sk_write_pending; 419 __u32 sk_dst_pending_confirm; 420 u32 sk_pacing_status; /* see enum sk_pacing */ 421 long sk_sndtimeo; 422 struct timer_list sk_timer; 423 __u32 sk_priority; 424 __u32 sk_mark; 425 u32 sk_pacing_rate; /* bytes per second */ 426 u32 sk_max_pacing_rate; 427 struct page_frag sk_frag; 428 netdev_features_t sk_route_caps; 429 netdev_features_t sk_route_nocaps; 430 netdev_features_t sk_route_forced_caps; 431 int sk_gso_type; 432 unsigned int sk_gso_max_size; 433 gfp_t sk_allocation; 434 __u32 sk_txhash; 435 436 /* 437 * Because of non atomicity rules, all 438 * changes are protected by socket lock. 439 */ 440 unsigned int __sk_flags_offset[0]; 441 #ifdef __BIG_ENDIAN_BITFIELD 442 #define SK_FL_PROTO_SHIFT 16 443 #define SK_FL_PROTO_MASK 0x00ff0000 444 445 #define SK_FL_TYPE_SHIFT 0 446 #define SK_FL_TYPE_MASK 0x0000ffff 447 #else 448 #define SK_FL_PROTO_SHIFT 8 449 #define SK_FL_PROTO_MASK 0x0000ff00 450 451 #define SK_FL_TYPE_SHIFT 16 452 #define SK_FL_TYPE_MASK 0xffff0000 453 #endif 454 455 unsigned int sk_padding : 1, 456 sk_kern_sock : 1, 457 sk_no_check_tx : 1, 458 sk_no_check_rx : 1, 459 sk_userlocks : 4, 460 sk_protocol : 8, 461 sk_type : 16; 462 #define SK_PROTOCOL_MAX U8_MAX 463 u16 sk_gso_max_segs; 464 u8 sk_pacing_shift; 465 unsigned long sk_lingertime; 466 struct proto *sk_prot_creator; 467 rwlock_t sk_callback_lock; 468 int sk_err, 469 sk_err_soft; 470 u32 sk_ack_backlog; 471 u32 sk_max_ack_backlog; 472 kuid_t sk_uid; 473 struct pid *sk_peer_pid; 474 const struct cred *sk_peer_cred; 475 long sk_rcvtimeo; 476 ktime_t sk_stamp; 477 u16 sk_tsflags; 478 u8 sk_shutdown; 479 u32 sk_tskey; 480 atomic_t sk_zckey; 481 482 u8 sk_clockid; 483 u8 sk_txtime_deadline_mode : 1, 484 sk_txtime_report_errors : 1, 485 sk_txtime_unused : 6; 486 487 struct socket *sk_socket; 488 void *sk_user_data; 489 #ifdef CONFIG_SECURITY 490 void *sk_security; 491 #endif 492 struct sock_cgroup_data sk_cgrp_data; 493 struct mem_cgroup *sk_memcg; 494 void (*sk_state_change)(struct sock *sk); 495 void (*sk_data_ready)(struct sock *sk); 496 void (*sk_write_space)(struct sock *sk); 497 void (*sk_error_report)(struct sock *sk); 498 int (*sk_backlog_rcv)(struct sock *sk, 499 struct sk_buff *skb); 500 #ifdef CONFIG_SOCK_VALIDATE_XMIT 501 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 502 struct net_device *dev, 503 struct sk_buff *skb); 504 #endif 505 void (*sk_destruct)(struct sock *sk); 506 struct sock_reuseport __rcu *sk_reuseport_cb; 507 struct rcu_head sk_rcu; 508 }; 509 510 enum sk_pacing { 511 SK_PACING_NONE = 0, 512 SK_PACING_NEEDED = 1, 513 SK_PACING_FQ = 2, 514 }; 515 516 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 517 518 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 519 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 520 521 /* 522 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 523 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 524 * on a socket means that the socket will reuse everybody else's port 525 * without looking at the other's sk_reuse value. 526 */ 527 528 #define SK_NO_REUSE 0 529 #define SK_CAN_REUSE 1 530 #define SK_FORCE_REUSE 2 531 532 int sk_set_peek_off(struct sock *sk, int val); 533 534 static inline int sk_peek_offset(struct sock *sk, int flags) 535 { 536 if (unlikely(flags & MSG_PEEK)) { 537 return READ_ONCE(sk->sk_peek_off); 538 } 539 540 return 0; 541 } 542 543 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 544 { 545 s32 off = READ_ONCE(sk->sk_peek_off); 546 547 if (unlikely(off >= 0)) { 548 off = max_t(s32, off - val, 0); 549 WRITE_ONCE(sk->sk_peek_off, off); 550 } 551 } 552 553 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 554 { 555 sk_peek_offset_bwd(sk, -val); 556 } 557 558 /* 559 * Hashed lists helper routines 560 */ 561 static inline struct sock *sk_entry(const struct hlist_node *node) 562 { 563 return hlist_entry(node, struct sock, sk_node); 564 } 565 566 static inline struct sock *__sk_head(const struct hlist_head *head) 567 { 568 return hlist_entry(head->first, struct sock, sk_node); 569 } 570 571 static inline struct sock *sk_head(const struct hlist_head *head) 572 { 573 return hlist_empty(head) ? NULL : __sk_head(head); 574 } 575 576 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 577 { 578 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 579 } 580 581 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 582 { 583 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 584 } 585 586 static inline struct sock *sk_next(const struct sock *sk) 587 { 588 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 589 } 590 591 static inline struct sock *sk_nulls_next(const struct sock *sk) 592 { 593 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 594 hlist_nulls_entry(sk->sk_nulls_node.next, 595 struct sock, sk_nulls_node) : 596 NULL; 597 } 598 599 static inline bool sk_unhashed(const struct sock *sk) 600 { 601 return hlist_unhashed(&sk->sk_node); 602 } 603 604 static inline bool sk_hashed(const struct sock *sk) 605 { 606 return !sk_unhashed(sk); 607 } 608 609 static inline void sk_node_init(struct hlist_node *node) 610 { 611 node->pprev = NULL; 612 } 613 614 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 615 { 616 node->pprev = NULL; 617 } 618 619 static inline void __sk_del_node(struct sock *sk) 620 { 621 __hlist_del(&sk->sk_node); 622 } 623 624 /* NB: equivalent to hlist_del_init_rcu */ 625 static inline bool __sk_del_node_init(struct sock *sk) 626 { 627 if (sk_hashed(sk)) { 628 __sk_del_node(sk); 629 sk_node_init(&sk->sk_node); 630 return true; 631 } 632 return false; 633 } 634 635 /* Grab socket reference count. This operation is valid only 636 when sk is ALREADY grabbed f.e. it is found in hash table 637 or a list and the lookup is made under lock preventing hash table 638 modifications. 639 */ 640 641 static __always_inline void sock_hold(struct sock *sk) 642 { 643 refcount_inc(&sk->sk_refcnt); 644 } 645 646 /* Ungrab socket in the context, which assumes that socket refcnt 647 cannot hit zero, f.e. it is true in context of any socketcall. 648 */ 649 static __always_inline void __sock_put(struct sock *sk) 650 { 651 refcount_dec(&sk->sk_refcnt); 652 } 653 654 static inline bool sk_del_node_init(struct sock *sk) 655 { 656 bool rc = __sk_del_node_init(sk); 657 658 if (rc) { 659 /* paranoid for a while -acme */ 660 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 661 __sock_put(sk); 662 } 663 return rc; 664 } 665 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 666 667 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 668 { 669 if (sk_hashed(sk)) { 670 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 671 return true; 672 } 673 return false; 674 } 675 676 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 677 { 678 bool rc = __sk_nulls_del_node_init_rcu(sk); 679 680 if (rc) { 681 /* paranoid for a while -acme */ 682 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 683 __sock_put(sk); 684 } 685 return rc; 686 } 687 688 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 689 { 690 hlist_add_head(&sk->sk_node, list); 691 } 692 693 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 694 { 695 sock_hold(sk); 696 __sk_add_node(sk, list); 697 } 698 699 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 700 { 701 sock_hold(sk); 702 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 703 sk->sk_family == AF_INET6) 704 hlist_add_tail_rcu(&sk->sk_node, list); 705 else 706 hlist_add_head_rcu(&sk->sk_node, list); 707 } 708 709 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 710 { 711 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 712 } 713 714 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 715 { 716 sock_hold(sk); 717 __sk_nulls_add_node_rcu(sk, list); 718 } 719 720 static inline void __sk_del_bind_node(struct sock *sk) 721 { 722 __hlist_del(&sk->sk_bind_node); 723 } 724 725 static inline void sk_add_bind_node(struct sock *sk, 726 struct hlist_head *list) 727 { 728 hlist_add_head(&sk->sk_bind_node, list); 729 } 730 731 #define sk_for_each(__sk, list) \ 732 hlist_for_each_entry(__sk, list, sk_node) 733 #define sk_for_each_rcu(__sk, list) \ 734 hlist_for_each_entry_rcu(__sk, list, sk_node) 735 #define sk_nulls_for_each(__sk, node, list) \ 736 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 737 #define sk_nulls_for_each_rcu(__sk, node, list) \ 738 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 739 #define sk_for_each_from(__sk) \ 740 hlist_for_each_entry_from(__sk, sk_node) 741 #define sk_nulls_for_each_from(__sk, node) \ 742 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 743 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 744 #define sk_for_each_safe(__sk, tmp, list) \ 745 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 746 #define sk_for_each_bound(__sk, list) \ 747 hlist_for_each_entry(__sk, list, sk_bind_node) 748 749 /** 750 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 751 * @tpos: the type * to use as a loop cursor. 752 * @pos: the &struct hlist_node to use as a loop cursor. 753 * @head: the head for your list. 754 * @offset: offset of hlist_node within the struct. 755 * 756 */ 757 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 758 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 759 pos != NULL && \ 760 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 761 pos = rcu_dereference(hlist_next_rcu(pos))) 762 763 static inline struct user_namespace *sk_user_ns(struct sock *sk) 764 { 765 /* Careful only use this in a context where these parameters 766 * can not change and must all be valid, such as recvmsg from 767 * userspace. 768 */ 769 return sk->sk_socket->file->f_cred->user_ns; 770 } 771 772 /* Sock flags */ 773 enum sock_flags { 774 SOCK_DEAD, 775 SOCK_DONE, 776 SOCK_URGINLINE, 777 SOCK_KEEPOPEN, 778 SOCK_LINGER, 779 SOCK_DESTROY, 780 SOCK_BROADCAST, 781 SOCK_TIMESTAMP, 782 SOCK_ZAPPED, 783 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 784 SOCK_DBG, /* %SO_DEBUG setting */ 785 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 786 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 787 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 788 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 789 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 790 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 791 SOCK_FASYNC, /* fasync() active */ 792 SOCK_RXQ_OVFL, 793 SOCK_ZEROCOPY, /* buffers from userspace */ 794 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 795 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 796 * Will use last 4 bytes of packet sent from 797 * user-space instead. 798 */ 799 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 800 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 801 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 802 SOCK_TXTIME, 803 }; 804 805 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 806 807 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 808 { 809 nsk->sk_flags = osk->sk_flags; 810 } 811 812 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 813 { 814 __set_bit(flag, &sk->sk_flags); 815 } 816 817 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 818 { 819 __clear_bit(flag, &sk->sk_flags); 820 } 821 822 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 823 { 824 return test_bit(flag, &sk->sk_flags); 825 } 826 827 #ifdef CONFIG_NET 828 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 829 static inline int sk_memalloc_socks(void) 830 { 831 return static_branch_unlikely(&memalloc_socks_key); 832 } 833 #else 834 835 static inline int sk_memalloc_socks(void) 836 { 837 return 0; 838 } 839 840 #endif 841 842 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 843 { 844 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 845 } 846 847 static inline void sk_acceptq_removed(struct sock *sk) 848 { 849 sk->sk_ack_backlog--; 850 } 851 852 static inline void sk_acceptq_added(struct sock *sk) 853 { 854 sk->sk_ack_backlog++; 855 } 856 857 static inline bool sk_acceptq_is_full(const struct sock *sk) 858 { 859 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 860 } 861 862 /* 863 * Compute minimal free write space needed to queue new packets. 864 */ 865 static inline int sk_stream_min_wspace(const struct sock *sk) 866 { 867 return sk->sk_wmem_queued >> 1; 868 } 869 870 static inline int sk_stream_wspace(const struct sock *sk) 871 { 872 return sk->sk_sndbuf - sk->sk_wmem_queued; 873 } 874 875 void sk_stream_write_space(struct sock *sk); 876 877 /* OOB backlog add */ 878 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 879 { 880 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 881 skb_dst_force(skb); 882 883 if (!sk->sk_backlog.tail) 884 sk->sk_backlog.head = skb; 885 else 886 sk->sk_backlog.tail->next = skb; 887 888 sk->sk_backlog.tail = skb; 889 skb->next = NULL; 890 } 891 892 /* 893 * Take into account size of receive queue and backlog queue 894 * Do not take into account this skb truesize, 895 * to allow even a single big packet to come. 896 */ 897 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 898 { 899 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 900 901 return qsize > limit; 902 } 903 904 /* The per-socket spinlock must be held here. */ 905 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 906 unsigned int limit) 907 { 908 if (sk_rcvqueues_full(sk, limit)) 909 return -ENOBUFS; 910 911 /* 912 * If the skb was allocated from pfmemalloc reserves, only 913 * allow SOCK_MEMALLOC sockets to use it as this socket is 914 * helping free memory 915 */ 916 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 917 return -ENOMEM; 918 919 __sk_add_backlog(sk, skb); 920 sk->sk_backlog.len += skb->truesize; 921 return 0; 922 } 923 924 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 925 926 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 927 { 928 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 929 return __sk_backlog_rcv(sk, skb); 930 931 return sk->sk_backlog_rcv(sk, skb); 932 } 933 934 static inline void sk_incoming_cpu_update(struct sock *sk) 935 { 936 int cpu = raw_smp_processor_id(); 937 938 if (unlikely(sk->sk_incoming_cpu != cpu)) 939 sk->sk_incoming_cpu = cpu; 940 } 941 942 static inline void sock_rps_record_flow_hash(__u32 hash) 943 { 944 #ifdef CONFIG_RPS 945 struct rps_sock_flow_table *sock_flow_table; 946 947 rcu_read_lock(); 948 sock_flow_table = rcu_dereference(rps_sock_flow_table); 949 rps_record_sock_flow(sock_flow_table, hash); 950 rcu_read_unlock(); 951 #endif 952 } 953 954 static inline void sock_rps_record_flow(const struct sock *sk) 955 { 956 #ifdef CONFIG_RPS 957 if (static_key_false(&rfs_needed)) { 958 /* Reading sk->sk_rxhash might incur an expensive cache line 959 * miss. 960 * 961 * TCP_ESTABLISHED does cover almost all states where RFS 962 * might be useful, and is cheaper [1] than testing : 963 * IPv4: inet_sk(sk)->inet_daddr 964 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 965 * OR an additional socket flag 966 * [1] : sk_state and sk_prot are in the same cache line. 967 */ 968 if (sk->sk_state == TCP_ESTABLISHED) 969 sock_rps_record_flow_hash(sk->sk_rxhash); 970 } 971 #endif 972 } 973 974 static inline void sock_rps_save_rxhash(struct sock *sk, 975 const struct sk_buff *skb) 976 { 977 #ifdef CONFIG_RPS 978 if (unlikely(sk->sk_rxhash != skb->hash)) 979 sk->sk_rxhash = skb->hash; 980 #endif 981 } 982 983 static inline void sock_rps_reset_rxhash(struct sock *sk) 984 { 985 #ifdef CONFIG_RPS 986 sk->sk_rxhash = 0; 987 #endif 988 } 989 990 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 991 ({ int __rc; \ 992 release_sock(__sk); \ 993 __rc = __condition; \ 994 if (!__rc) { \ 995 *(__timeo) = wait_woken(__wait, \ 996 TASK_INTERRUPTIBLE, \ 997 *(__timeo)); \ 998 } \ 999 sched_annotate_sleep(); \ 1000 lock_sock(__sk); \ 1001 __rc = __condition; \ 1002 __rc; \ 1003 }) 1004 1005 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1006 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1007 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1008 int sk_stream_error(struct sock *sk, int flags, int err); 1009 void sk_stream_kill_queues(struct sock *sk); 1010 void sk_set_memalloc(struct sock *sk); 1011 void sk_clear_memalloc(struct sock *sk); 1012 1013 void __sk_flush_backlog(struct sock *sk); 1014 1015 static inline bool sk_flush_backlog(struct sock *sk) 1016 { 1017 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1018 __sk_flush_backlog(sk); 1019 return true; 1020 } 1021 return false; 1022 } 1023 1024 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1025 1026 struct request_sock_ops; 1027 struct timewait_sock_ops; 1028 struct inet_hashinfo; 1029 struct raw_hashinfo; 1030 struct smc_hashinfo; 1031 struct module; 1032 1033 /* 1034 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1035 * un-modified. Special care is taken when initializing object to zero. 1036 */ 1037 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1038 { 1039 if (offsetof(struct sock, sk_node.next) != 0) 1040 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1041 memset(&sk->sk_node.pprev, 0, 1042 size - offsetof(struct sock, sk_node.pprev)); 1043 } 1044 1045 /* Networking protocol blocks we attach to sockets. 1046 * socket layer -> transport layer interface 1047 */ 1048 struct proto { 1049 void (*close)(struct sock *sk, 1050 long timeout); 1051 int (*pre_connect)(struct sock *sk, 1052 struct sockaddr *uaddr, 1053 int addr_len); 1054 int (*connect)(struct sock *sk, 1055 struct sockaddr *uaddr, 1056 int addr_len); 1057 int (*disconnect)(struct sock *sk, int flags); 1058 1059 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1060 bool kern); 1061 1062 int (*ioctl)(struct sock *sk, int cmd, 1063 unsigned long arg); 1064 int (*init)(struct sock *sk); 1065 void (*destroy)(struct sock *sk); 1066 void (*shutdown)(struct sock *sk, int how); 1067 int (*setsockopt)(struct sock *sk, int level, 1068 int optname, char __user *optval, 1069 unsigned int optlen); 1070 int (*getsockopt)(struct sock *sk, int level, 1071 int optname, char __user *optval, 1072 int __user *option); 1073 void (*keepalive)(struct sock *sk, int valbool); 1074 #ifdef CONFIG_COMPAT 1075 int (*compat_setsockopt)(struct sock *sk, 1076 int level, 1077 int optname, char __user *optval, 1078 unsigned int optlen); 1079 int (*compat_getsockopt)(struct sock *sk, 1080 int level, 1081 int optname, char __user *optval, 1082 int __user *option); 1083 int (*compat_ioctl)(struct sock *sk, 1084 unsigned int cmd, unsigned long arg); 1085 #endif 1086 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1087 size_t len); 1088 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1089 size_t len, int noblock, int flags, 1090 int *addr_len); 1091 int (*sendpage)(struct sock *sk, struct page *page, 1092 int offset, size_t size, int flags); 1093 int (*bind)(struct sock *sk, 1094 struct sockaddr *uaddr, int addr_len); 1095 1096 int (*backlog_rcv) (struct sock *sk, 1097 struct sk_buff *skb); 1098 1099 void (*release_cb)(struct sock *sk); 1100 1101 /* Keeping track of sk's, looking them up, and port selection methods. */ 1102 int (*hash)(struct sock *sk); 1103 void (*unhash)(struct sock *sk); 1104 void (*rehash)(struct sock *sk); 1105 int (*get_port)(struct sock *sk, unsigned short snum); 1106 1107 /* Keeping track of sockets in use */ 1108 #ifdef CONFIG_PROC_FS 1109 unsigned int inuse_idx; 1110 #endif 1111 1112 bool (*stream_memory_free)(const struct sock *sk); 1113 bool (*stream_memory_read)(const struct sock *sk); 1114 /* Memory pressure */ 1115 void (*enter_memory_pressure)(struct sock *sk); 1116 void (*leave_memory_pressure)(struct sock *sk); 1117 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1118 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1119 /* 1120 * Pressure flag: try to collapse. 1121 * Technical note: it is used by multiple contexts non atomically. 1122 * All the __sk_mem_schedule() is of this nature: accounting 1123 * is strict, actions are advisory and have some latency. 1124 */ 1125 unsigned long *memory_pressure; 1126 long *sysctl_mem; 1127 1128 int *sysctl_wmem; 1129 int *sysctl_rmem; 1130 u32 sysctl_wmem_offset; 1131 u32 sysctl_rmem_offset; 1132 1133 int max_header; 1134 bool no_autobind; 1135 1136 struct kmem_cache *slab; 1137 unsigned int obj_size; 1138 slab_flags_t slab_flags; 1139 unsigned int useroffset; /* Usercopy region offset */ 1140 unsigned int usersize; /* Usercopy region size */ 1141 1142 struct percpu_counter *orphan_count; 1143 1144 struct request_sock_ops *rsk_prot; 1145 struct timewait_sock_ops *twsk_prot; 1146 1147 union { 1148 struct inet_hashinfo *hashinfo; 1149 struct udp_table *udp_table; 1150 struct raw_hashinfo *raw_hash; 1151 struct smc_hashinfo *smc_hash; 1152 } h; 1153 1154 struct module *owner; 1155 1156 char name[32]; 1157 1158 struct list_head node; 1159 #ifdef SOCK_REFCNT_DEBUG 1160 atomic_t socks; 1161 #endif 1162 int (*diag_destroy)(struct sock *sk, int err); 1163 } __randomize_layout; 1164 1165 int proto_register(struct proto *prot, int alloc_slab); 1166 void proto_unregister(struct proto *prot); 1167 int sock_load_diag_module(int family, int protocol); 1168 1169 #ifdef SOCK_REFCNT_DEBUG 1170 static inline void sk_refcnt_debug_inc(struct sock *sk) 1171 { 1172 atomic_inc(&sk->sk_prot->socks); 1173 } 1174 1175 static inline void sk_refcnt_debug_dec(struct sock *sk) 1176 { 1177 atomic_dec(&sk->sk_prot->socks); 1178 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1179 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1180 } 1181 1182 static inline void sk_refcnt_debug_release(const struct sock *sk) 1183 { 1184 if (refcount_read(&sk->sk_refcnt) != 1) 1185 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1186 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1187 } 1188 #else /* SOCK_REFCNT_DEBUG */ 1189 #define sk_refcnt_debug_inc(sk) do { } while (0) 1190 #define sk_refcnt_debug_dec(sk) do { } while (0) 1191 #define sk_refcnt_debug_release(sk) do { } while (0) 1192 #endif /* SOCK_REFCNT_DEBUG */ 1193 1194 static inline bool sk_stream_memory_free(const struct sock *sk) 1195 { 1196 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1197 return false; 1198 1199 return sk->sk_prot->stream_memory_free ? 1200 sk->sk_prot->stream_memory_free(sk) : true; 1201 } 1202 1203 static inline bool sk_stream_is_writeable(const struct sock *sk) 1204 { 1205 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1206 sk_stream_memory_free(sk); 1207 } 1208 1209 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1210 struct cgroup *ancestor) 1211 { 1212 #ifdef CONFIG_SOCK_CGROUP_DATA 1213 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1214 ancestor); 1215 #else 1216 return -ENOTSUPP; 1217 #endif 1218 } 1219 1220 static inline bool sk_has_memory_pressure(const struct sock *sk) 1221 { 1222 return sk->sk_prot->memory_pressure != NULL; 1223 } 1224 1225 static inline bool sk_under_memory_pressure(const struct sock *sk) 1226 { 1227 if (!sk->sk_prot->memory_pressure) 1228 return false; 1229 1230 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1231 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1232 return true; 1233 1234 return !!*sk->sk_prot->memory_pressure; 1235 } 1236 1237 static inline long 1238 sk_memory_allocated(const struct sock *sk) 1239 { 1240 return atomic_long_read(sk->sk_prot->memory_allocated); 1241 } 1242 1243 static inline long 1244 sk_memory_allocated_add(struct sock *sk, int amt) 1245 { 1246 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1247 } 1248 1249 static inline void 1250 sk_memory_allocated_sub(struct sock *sk, int amt) 1251 { 1252 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1253 } 1254 1255 static inline void sk_sockets_allocated_dec(struct sock *sk) 1256 { 1257 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1258 } 1259 1260 static inline void sk_sockets_allocated_inc(struct sock *sk) 1261 { 1262 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1263 } 1264 1265 static inline int 1266 sk_sockets_allocated_read_positive(struct sock *sk) 1267 { 1268 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1269 } 1270 1271 static inline int 1272 proto_sockets_allocated_sum_positive(struct proto *prot) 1273 { 1274 return percpu_counter_sum_positive(prot->sockets_allocated); 1275 } 1276 1277 static inline long 1278 proto_memory_allocated(struct proto *prot) 1279 { 1280 return atomic_long_read(prot->memory_allocated); 1281 } 1282 1283 static inline bool 1284 proto_memory_pressure(struct proto *prot) 1285 { 1286 if (!prot->memory_pressure) 1287 return false; 1288 return !!*prot->memory_pressure; 1289 } 1290 1291 1292 #ifdef CONFIG_PROC_FS 1293 /* Called with local bh disabled */ 1294 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1295 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1296 int sock_inuse_get(struct net *net); 1297 #else 1298 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1299 int inc) 1300 { 1301 } 1302 #endif 1303 1304 1305 /* With per-bucket locks this operation is not-atomic, so that 1306 * this version is not worse. 1307 */ 1308 static inline int __sk_prot_rehash(struct sock *sk) 1309 { 1310 sk->sk_prot->unhash(sk); 1311 return sk->sk_prot->hash(sk); 1312 } 1313 1314 /* About 10 seconds */ 1315 #define SOCK_DESTROY_TIME (10*HZ) 1316 1317 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1318 #define PROT_SOCK 1024 1319 1320 #define SHUTDOWN_MASK 3 1321 #define RCV_SHUTDOWN 1 1322 #define SEND_SHUTDOWN 2 1323 1324 #define SOCK_SNDBUF_LOCK 1 1325 #define SOCK_RCVBUF_LOCK 2 1326 #define SOCK_BINDADDR_LOCK 4 1327 #define SOCK_BINDPORT_LOCK 8 1328 1329 struct socket_alloc { 1330 struct socket socket; 1331 struct inode vfs_inode; 1332 }; 1333 1334 static inline struct socket *SOCKET_I(struct inode *inode) 1335 { 1336 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1337 } 1338 1339 static inline struct inode *SOCK_INODE(struct socket *socket) 1340 { 1341 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1342 } 1343 1344 /* 1345 * Functions for memory accounting 1346 */ 1347 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1348 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1349 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1350 void __sk_mem_reclaim(struct sock *sk, int amount); 1351 1352 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1353 * do not necessarily have 16x time more memory than 4KB ones. 1354 */ 1355 #define SK_MEM_QUANTUM 4096 1356 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1357 #define SK_MEM_SEND 0 1358 #define SK_MEM_RECV 1 1359 1360 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1361 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1362 { 1363 long val = sk->sk_prot->sysctl_mem[index]; 1364 1365 #if PAGE_SIZE > SK_MEM_QUANTUM 1366 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1367 #elif PAGE_SIZE < SK_MEM_QUANTUM 1368 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1369 #endif 1370 return val; 1371 } 1372 1373 static inline int sk_mem_pages(int amt) 1374 { 1375 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1376 } 1377 1378 static inline bool sk_has_account(struct sock *sk) 1379 { 1380 /* return true if protocol supports memory accounting */ 1381 return !!sk->sk_prot->memory_allocated; 1382 } 1383 1384 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1385 { 1386 if (!sk_has_account(sk)) 1387 return true; 1388 return size <= sk->sk_forward_alloc || 1389 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1390 } 1391 1392 static inline bool 1393 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1394 { 1395 if (!sk_has_account(sk)) 1396 return true; 1397 return size<= sk->sk_forward_alloc || 1398 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1399 skb_pfmemalloc(skb); 1400 } 1401 1402 static inline void sk_mem_reclaim(struct sock *sk) 1403 { 1404 if (!sk_has_account(sk)) 1405 return; 1406 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1407 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1408 } 1409 1410 static inline void sk_mem_reclaim_partial(struct sock *sk) 1411 { 1412 if (!sk_has_account(sk)) 1413 return; 1414 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1415 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1416 } 1417 1418 static inline void sk_mem_charge(struct sock *sk, int size) 1419 { 1420 if (!sk_has_account(sk)) 1421 return; 1422 sk->sk_forward_alloc -= size; 1423 } 1424 1425 static inline void sk_mem_uncharge(struct sock *sk, int size) 1426 { 1427 if (!sk_has_account(sk)) 1428 return; 1429 sk->sk_forward_alloc += size; 1430 1431 /* Avoid a possible overflow. 1432 * TCP send queues can make this happen, if sk_mem_reclaim() 1433 * is not called and more than 2 GBytes are released at once. 1434 * 1435 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1436 * no need to hold that much forward allocation anyway. 1437 */ 1438 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1439 __sk_mem_reclaim(sk, 1 << 20); 1440 } 1441 1442 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1443 { 1444 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1445 sk->sk_wmem_queued -= skb->truesize; 1446 sk_mem_uncharge(sk, skb->truesize); 1447 __kfree_skb(skb); 1448 } 1449 1450 static inline void sock_release_ownership(struct sock *sk) 1451 { 1452 if (sk->sk_lock.owned) { 1453 sk->sk_lock.owned = 0; 1454 1455 /* The sk_lock has mutex_unlock() semantics: */ 1456 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1457 } 1458 } 1459 1460 /* 1461 * Macro so as to not evaluate some arguments when 1462 * lockdep is not enabled. 1463 * 1464 * Mark both the sk_lock and the sk_lock.slock as a 1465 * per-address-family lock class. 1466 */ 1467 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1468 do { \ 1469 sk->sk_lock.owned = 0; \ 1470 init_waitqueue_head(&sk->sk_lock.wq); \ 1471 spin_lock_init(&(sk)->sk_lock.slock); \ 1472 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1473 sizeof((sk)->sk_lock)); \ 1474 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1475 (skey), (sname)); \ 1476 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1477 } while (0) 1478 1479 #ifdef CONFIG_LOCKDEP 1480 static inline bool lockdep_sock_is_held(const struct sock *sk) 1481 { 1482 return lockdep_is_held(&sk->sk_lock) || 1483 lockdep_is_held(&sk->sk_lock.slock); 1484 } 1485 #endif 1486 1487 void lock_sock_nested(struct sock *sk, int subclass); 1488 1489 static inline void lock_sock(struct sock *sk) 1490 { 1491 lock_sock_nested(sk, 0); 1492 } 1493 1494 void release_sock(struct sock *sk); 1495 1496 /* BH context may only use the following locking interface. */ 1497 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1498 #define bh_lock_sock_nested(__sk) \ 1499 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1500 SINGLE_DEPTH_NESTING) 1501 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1502 1503 bool lock_sock_fast(struct sock *sk); 1504 /** 1505 * unlock_sock_fast - complement of lock_sock_fast 1506 * @sk: socket 1507 * @slow: slow mode 1508 * 1509 * fast unlock socket for user context. 1510 * If slow mode is on, we call regular release_sock() 1511 */ 1512 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1513 { 1514 if (slow) 1515 release_sock(sk); 1516 else 1517 spin_unlock_bh(&sk->sk_lock.slock); 1518 } 1519 1520 /* Used by processes to "lock" a socket state, so that 1521 * interrupts and bottom half handlers won't change it 1522 * from under us. It essentially blocks any incoming 1523 * packets, so that we won't get any new data or any 1524 * packets that change the state of the socket. 1525 * 1526 * While locked, BH processing will add new packets to 1527 * the backlog queue. This queue is processed by the 1528 * owner of the socket lock right before it is released. 1529 * 1530 * Since ~2.3.5 it is also exclusive sleep lock serializing 1531 * accesses from user process context. 1532 */ 1533 1534 static inline void sock_owned_by_me(const struct sock *sk) 1535 { 1536 #ifdef CONFIG_LOCKDEP 1537 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1538 #endif 1539 } 1540 1541 static inline bool sock_owned_by_user(const struct sock *sk) 1542 { 1543 sock_owned_by_me(sk); 1544 return sk->sk_lock.owned; 1545 } 1546 1547 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1548 { 1549 return sk->sk_lock.owned; 1550 } 1551 1552 /* no reclassification while locks are held */ 1553 static inline bool sock_allow_reclassification(const struct sock *csk) 1554 { 1555 struct sock *sk = (struct sock *)csk; 1556 1557 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1558 } 1559 1560 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1561 struct proto *prot, int kern); 1562 void sk_free(struct sock *sk); 1563 void sk_destruct(struct sock *sk); 1564 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1565 void sk_free_unlock_clone(struct sock *sk); 1566 1567 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1568 gfp_t priority); 1569 void __sock_wfree(struct sk_buff *skb); 1570 void sock_wfree(struct sk_buff *skb); 1571 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1572 gfp_t priority); 1573 void skb_orphan_partial(struct sk_buff *skb); 1574 void sock_rfree(struct sk_buff *skb); 1575 void sock_efree(struct sk_buff *skb); 1576 #ifdef CONFIG_INET 1577 void sock_edemux(struct sk_buff *skb); 1578 #else 1579 #define sock_edemux sock_efree 1580 #endif 1581 1582 int sock_setsockopt(struct socket *sock, int level, int op, 1583 char __user *optval, unsigned int optlen); 1584 1585 int sock_getsockopt(struct socket *sock, int level, int op, 1586 char __user *optval, int __user *optlen); 1587 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1588 int noblock, int *errcode); 1589 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1590 unsigned long data_len, int noblock, 1591 int *errcode, int max_page_order); 1592 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1593 void sock_kfree_s(struct sock *sk, void *mem, int size); 1594 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1595 void sk_send_sigurg(struct sock *sk); 1596 1597 struct sockcm_cookie { 1598 u64 transmit_time; 1599 u32 mark; 1600 u16 tsflags; 1601 }; 1602 1603 static inline void sockcm_init(struct sockcm_cookie *sockc, 1604 const struct sock *sk) 1605 { 1606 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1607 } 1608 1609 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1610 struct sockcm_cookie *sockc); 1611 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1612 struct sockcm_cookie *sockc); 1613 1614 /* 1615 * Functions to fill in entries in struct proto_ops when a protocol 1616 * does not implement a particular function. 1617 */ 1618 int sock_no_bind(struct socket *, struct sockaddr *, int); 1619 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1620 int sock_no_socketpair(struct socket *, struct socket *); 1621 int sock_no_accept(struct socket *, struct socket *, int, bool); 1622 int sock_no_getname(struct socket *, struct sockaddr *, int); 1623 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1624 int sock_no_listen(struct socket *, int); 1625 int sock_no_shutdown(struct socket *, int); 1626 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1627 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1628 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1629 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1630 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1631 int sock_no_mmap(struct file *file, struct socket *sock, 1632 struct vm_area_struct *vma); 1633 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1634 size_t size, int flags); 1635 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1636 int offset, size_t size, int flags); 1637 1638 /* 1639 * Functions to fill in entries in struct proto_ops when a protocol 1640 * uses the inet style. 1641 */ 1642 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1643 char __user *optval, int __user *optlen); 1644 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1645 int flags); 1646 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1647 char __user *optval, unsigned int optlen); 1648 int compat_sock_common_getsockopt(struct socket *sock, int level, 1649 int optname, char __user *optval, int __user *optlen); 1650 int compat_sock_common_setsockopt(struct socket *sock, int level, 1651 int optname, char __user *optval, unsigned int optlen); 1652 1653 void sk_common_release(struct sock *sk); 1654 1655 /* 1656 * Default socket callbacks and setup code 1657 */ 1658 1659 /* Initialise core socket variables */ 1660 void sock_init_data(struct socket *sock, struct sock *sk); 1661 1662 /* 1663 * Socket reference counting postulates. 1664 * 1665 * * Each user of socket SHOULD hold a reference count. 1666 * * Each access point to socket (an hash table bucket, reference from a list, 1667 * running timer, skb in flight MUST hold a reference count. 1668 * * When reference count hits 0, it means it will never increase back. 1669 * * When reference count hits 0, it means that no references from 1670 * outside exist to this socket and current process on current CPU 1671 * is last user and may/should destroy this socket. 1672 * * sk_free is called from any context: process, BH, IRQ. When 1673 * it is called, socket has no references from outside -> sk_free 1674 * may release descendant resources allocated by the socket, but 1675 * to the time when it is called, socket is NOT referenced by any 1676 * hash tables, lists etc. 1677 * * Packets, delivered from outside (from network or from another process) 1678 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1679 * when they sit in queue. Otherwise, packets will leak to hole, when 1680 * socket is looked up by one cpu and unhasing is made by another CPU. 1681 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1682 * (leak to backlog). Packet socket does all the processing inside 1683 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1684 * use separate SMP lock, so that they are prone too. 1685 */ 1686 1687 /* Ungrab socket and destroy it, if it was the last reference. */ 1688 static inline void sock_put(struct sock *sk) 1689 { 1690 if (refcount_dec_and_test(&sk->sk_refcnt)) 1691 sk_free(sk); 1692 } 1693 /* Generic version of sock_put(), dealing with all sockets 1694 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1695 */ 1696 void sock_gen_put(struct sock *sk); 1697 1698 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1699 unsigned int trim_cap, bool refcounted); 1700 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1701 const int nested) 1702 { 1703 return __sk_receive_skb(sk, skb, nested, 1, true); 1704 } 1705 1706 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1707 { 1708 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1709 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1710 return; 1711 sk->sk_tx_queue_mapping = tx_queue; 1712 } 1713 1714 #define NO_QUEUE_MAPPING USHRT_MAX 1715 1716 static inline void sk_tx_queue_clear(struct sock *sk) 1717 { 1718 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1719 } 1720 1721 static inline int sk_tx_queue_get(const struct sock *sk) 1722 { 1723 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1724 return sk->sk_tx_queue_mapping; 1725 1726 return -1; 1727 } 1728 1729 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1730 { 1731 #ifdef CONFIG_XPS 1732 if (skb_rx_queue_recorded(skb)) { 1733 u16 rx_queue = skb_get_rx_queue(skb); 1734 1735 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1736 return; 1737 1738 sk->sk_rx_queue_mapping = rx_queue; 1739 } 1740 #endif 1741 } 1742 1743 static inline void sk_rx_queue_clear(struct sock *sk) 1744 { 1745 #ifdef CONFIG_XPS 1746 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1747 #endif 1748 } 1749 1750 #ifdef CONFIG_XPS 1751 static inline int sk_rx_queue_get(const struct sock *sk) 1752 { 1753 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1754 return sk->sk_rx_queue_mapping; 1755 1756 return -1; 1757 } 1758 #endif 1759 1760 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1761 { 1762 sk_tx_queue_clear(sk); 1763 sk->sk_socket = sock; 1764 } 1765 1766 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1767 { 1768 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1769 return &rcu_dereference_raw(sk->sk_wq)->wait; 1770 } 1771 /* Detach socket from process context. 1772 * Announce socket dead, detach it from wait queue and inode. 1773 * Note that parent inode held reference count on this struct sock, 1774 * we do not release it in this function, because protocol 1775 * probably wants some additional cleanups or even continuing 1776 * to work with this socket (TCP). 1777 */ 1778 static inline void sock_orphan(struct sock *sk) 1779 { 1780 write_lock_bh(&sk->sk_callback_lock); 1781 sock_set_flag(sk, SOCK_DEAD); 1782 sk_set_socket(sk, NULL); 1783 sk->sk_wq = NULL; 1784 write_unlock_bh(&sk->sk_callback_lock); 1785 } 1786 1787 static inline void sock_graft(struct sock *sk, struct socket *parent) 1788 { 1789 WARN_ON(parent->sk); 1790 write_lock_bh(&sk->sk_callback_lock); 1791 sk->sk_wq = parent->wq; 1792 parent->sk = sk; 1793 sk_set_socket(sk, parent); 1794 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1795 security_sock_graft(sk, parent); 1796 write_unlock_bh(&sk->sk_callback_lock); 1797 } 1798 1799 kuid_t sock_i_uid(struct sock *sk); 1800 unsigned long sock_i_ino(struct sock *sk); 1801 1802 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1803 { 1804 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1805 } 1806 1807 static inline u32 net_tx_rndhash(void) 1808 { 1809 u32 v = prandom_u32(); 1810 1811 return v ?: 1; 1812 } 1813 1814 static inline void sk_set_txhash(struct sock *sk) 1815 { 1816 sk->sk_txhash = net_tx_rndhash(); 1817 } 1818 1819 static inline void sk_rethink_txhash(struct sock *sk) 1820 { 1821 if (sk->sk_txhash) 1822 sk_set_txhash(sk); 1823 } 1824 1825 static inline struct dst_entry * 1826 __sk_dst_get(struct sock *sk) 1827 { 1828 return rcu_dereference_check(sk->sk_dst_cache, 1829 lockdep_sock_is_held(sk)); 1830 } 1831 1832 static inline struct dst_entry * 1833 sk_dst_get(struct sock *sk) 1834 { 1835 struct dst_entry *dst; 1836 1837 rcu_read_lock(); 1838 dst = rcu_dereference(sk->sk_dst_cache); 1839 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1840 dst = NULL; 1841 rcu_read_unlock(); 1842 return dst; 1843 } 1844 1845 static inline void dst_negative_advice(struct sock *sk) 1846 { 1847 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1848 1849 sk_rethink_txhash(sk); 1850 1851 if (dst && dst->ops->negative_advice) { 1852 ndst = dst->ops->negative_advice(dst); 1853 1854 if (ndst != dst) { 1855 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1856 sk_tx_queue_clear(sk); 1857 sk->sk_dst_pending_confirm = 0; 1858 } 1859 } 1860 } 1861 1862 static inline void 1863 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1864 { 1865 struct dst_entry *old_dst; 1866 1867 sk_tx_queue_clear(sk); 1868 sk->sk_dst_pending_confirm = 0; 1869 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1870 lockdep_sock_is_held(sk)); 1871 rcu_assign_pointer(sk->sk_dst_cache, dst); 1872 dst_release(old_dst); 1873 } 1874 1875 static inline void 1876 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1877 { 1878 struct dst_entry *old_dst; 1879 1880 sk_tx_queue_clear(sk); 1881 sk->sk_dst_pending_confirm = 0; 1882 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1883 dst_release(old_dst); 1884 } 1885 1886 static inline void 1887 __sk_dst_reset(struct sock *sk) 1888 { 1889 __sk_dst_set(sk, NULL); 1890 } 1891 1892 static inline void 1893 sk_dst_reset(struct sock *sk) 1894 { 1895 sk_dst_set(sk, NULL); 1896 } 1897 1898 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1899 1900 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1901 1902 static inline void sk_dst_confirm(struct sock *sk) 1903 { 1904 if (!sk->sk_dst_pending_confirm) 1905 sk->sk_dst_pending_confirm = 1; 1906 } 1907 1908 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1909 { 1910 if (skb_get_dst_pending_confirm(skb)) { 1911 struct sock *sk = skb->sk; 1912 unsigned long now = jiffies; 1913 1914 /* avoid dirtying neighbour */ 1915 if (n->confirmed != now) 1916 n->confirmed = now; 1917 if (sk && sk->sk_dst_pending_confirm) 1918 sk->sk_dst_pending_confirm = 0; 1919 } 1920 } 1921 1922 bool sk_mc_loop(struct sock *sk); 1923 1924 static inline bool sk_can_gso(const struct sock *sk) 1925 { 1926 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1927 } 1928 1929 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1930 1931 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1932 { 1933 sk->sk_route_nocaps |= flags; 1934 sk->sk_route_caps &= ~flags; 1935 } 1936 1937 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1938 struct iov_iter *from, char *to, 1939 int copy, int offset) 1940 { 1941 if (skb->ip_summed == CHECKSUM_NONE) { 1942 __wsum csum = 0; 1943 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 1944 return -EFAULT; 1945 skb->csum = csum_block_add(skb->csum, csum, offset); 1946 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1947 if (!copy_from_iter_full_nocache(to, copy, from)) 1948 return -EFAULT; 1949 } else if (!copy_from_iter_full(to, copy, from)) 1950 return -EFAULT; 1951 1952 return 0; 1953 } 1954 1955 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1956 struct iov_iter *from, int copy) 1957 { 1958 int err, offset = skb->len; 1959 1960 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1961 copy, offset); 1962 if (err) 1963 __skb_trim(skb, offset); 1964 1965 return err; 1966 } 1967 1968 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1969 struct sk_buff *skb, 1970 struct page *page, 1971 int off, int copy) 1972 { 1973 int err; 1974 1975 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1976 copy, skb->len); 1977 if (err) 1978 return err; 1979 1980 skb->len += copy; 1981 skb->data_len += copy; 1982 skb->truesize += copy; 1983 sk->sk_wmem_queued += copy; 1984 sk_mem_charge(sk, copy); 1985 return 0; 1986 } 1987 1988 /** 1989 * sk_wmem_alloc_get - returns write allocations 1990 * @sk: socket 1991 * 1992 * Returns sk_wmem_alloc minus initial offset of one 1993 */ 1994 static inline int sk_wmem_alloc_get(const struct sock *sk) 1995 { 1996 return refcount_read(&sk->sk_wmem_alloc) - 1; 1997 } 1998 1999 /** 2000 * sk_rmem_alloc_get - returns read allocations 2001 * @sk: socket 2002 * 2003 * Returns sk_rmem_alloc 2004 */ 2005 static inline int sk_rmem_alloc_get(const struct sock *sk) 2006 { 2007 return atomic_read(&sk->sk_rmem_alloc); 2008 } 2009 2010 /** 2011 * sk_has_allocations - check if allocations are outstanding 2012 * @sk: socket 2013 * 2014 * Returns true if socket has write or read allocations 2015 */ 2016 static inline bool sk_has_allocations(const struct sock *sk) 2017 { 2018 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2019 } 2020 2021 /** 2022 * skwq_has_sleeper - check if there are any waiting processes 2023 * @wq: struct socket_wq 2024 * 2025 * Returns true if socket_wq has waiting processes 2026 * 2027 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2028 * barrier call. They were added due to the race found within the tcp code. 2029 * 2030 * Consider following tcp code paths:: 2031 * 2032 * CPU1 CPU2 2033 * sys_select receive packet 2034 * ... ... 2035 * __add_wait_queue update tp->rcv_nxt 2036 * ... ... 2037 * tp->rcv_nxt check sock_def_readable 2038 * ... { 2039 * schedule rcu_read_lock(); 2040 * wq = rcu_dereference(sk->sk_wq); 2041 * if (wq && waitqueue_active(&wq->wait)) 2042 * wake_up_interruptible(&wq->wait) 2043 * ... 2044 * } 2045 * 2046 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2047 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2048 * could then endup calling schedule and sleep forever if there are no more 2049 * data on the socket. 2050 * 2051 */ 2052 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2053 { 2054 return wq && wq_has_sleeper(&wq->wait); 2055 } 2056 2057 /** 2058 * sock_poll_wait - place memory barrier behind the poll_wait call. 2059 * @filp: file 2060 * @wait_address: socket wait queue 2061 * @p: poll_table 2062 * 2063 * See the comments in the wq_has_sleeper function. 2064 */ 2065 static inline void sock_poll_wait(struct file *filp, 2066 wait_queue_head_t *wait_address, poll_table *p) 2067 { 2068 if (!poll_does_not_wait(p) && wait_address) { 2069 poll_wait(filp, wait_address, p); 2070 /* We need to be sure we are in sync with the 2071 * socket flags modification. 2072 * 2073 * This memory barrier is paired in the wq_has_sleeper. 2074 */ 2075 smp_mb(); 2076 } 2077 } 2078 2079 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2080 { 2081 if (sk->sk_txhash) { 2082 skb->l4_hash = 1; 2083 skb->hash = sk->sk_txhash; 2084 } 2085 } 2086 2087 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2088 2089 /* 2090 * Queue a received datagram if it will fit. Stream and sequenced 2091 * protocols can't normally use this as they need to fit buffers in 2092 * and play with them. 2093 * 2094 * Inlined as it's very short and called for pretty much every 2095 * packet ever received. 2096 */ 2097 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2098 { 2099 skb_orphan(skb); 2100 skb->sk = sk; 2101 skb->destructor = sock_rfree; 2102 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2103 sk_mem_charge(sk, skb->truesize); 2104 } 2105 2106 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2107 unsigned long expires); 2108 2109 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2110 2111 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2112 struct sk_buff *skb, unsigned int flags, 2113 void (*destructor)(struct sock *sk, 2114 struct sk_buff *skb)); 2115 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2116 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2117 2118 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2119 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2120 2121 /* 2122 * Recover an error report and clear atomically 2123 */ 2124 2125 static inline int sock_error(struct sock *sk) 2126 { 2127 int err; 2128 if (likely(!sk->sk_err)) 2129 return 0; 2130 err = xchg(&sk->sk_err, 0); 2131 return -err; 2132 } 2133 2134 static inline unsigned long sock_wspace(struct sock *sk) 2135 { 2136 int amt = 0; 2137 2138 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2139 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2140 if (amt < 0) 2141 amt = 0; 2142 } 2143 return amt; 2144 } 2145 2146 /* Note: 2147 * We use sk->sk_wq_raw, from contexts knowing this 2148 * pointer is not NULL and cannot disappear/change. 2149 */ 2150 static inline void sk_set_bit(int nr, struct sock *sk) 2151 { 2152 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2153 !sock_flag(sk, SOCK_FASYNC)) 2154 return; 2155 2156 set_bit(nr, &sk->sk_wq_raw->flags); 2157 } 2158 2159 static inline void sk_clear_bit(int nr, struct sock *sk) 2160 { 2161 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2162 !sock_flag(sk, SOCK_FASYNC)) 2163 return; 2164 2165 clear_bit(nr, &sk->sk_wq_raw->flags); 2166 } 2167 2168 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2169 { 2170 if (sock_flag(sk, SOCK_FASYNC)) { 2171 rcu_read_lock(); 2172 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2173 rcu_read_unlock(); 2174 } 2175 } 2176 2177 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2178 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2179 * Note: for send buffers, TCP works better if we can build two skbs at 2180 * minimum. 2181 */ 2182 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2183 2184 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2185 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2186 2187 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2188 { 2189 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2190 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2191 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2192 } 2193 } 2194 2195 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2196 bool force_schedule); 2197 2198 /** 2199 * sk_page_frag - return an appropriate page_frag 2200 * @sk: socket 2201 * 2202 * If socket allocation mode allows current thread to sleep, it means its 2203 * safe to use the per task page_frag instead of the per socket one. 2204 */ 2205 static inline struct page_frag *sk_page_frag(struct sock *sk) 2206 { 2207 if (gfpflags_allow_blocking(sk->sk_allocation)) 2208 return ¤t->task_frag; 2209 2210 return &sk->sk_frag; 2211 } 2212 2213 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2214 2215 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg, 2216 int sg_start, int *sg_curr, unsigned int *sg_size, 2217 int first_coalesce); 2218 2219 /* 2220 * Default write policy as shown to user space via poll/select/SIGIO 2221 */ 2222 static inline bool sock_writeable(const struct sock *sk) 2223 { 2224 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2225 } 2226 2227 static inline gfp_t gfp_any(void) 2228 { 2229 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2230 } 2231 2232 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2233 { 2234 return noblock ? 0 : sk->sk_rcvtimeo; 2235 } 2236 2237 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2238 { 2239 return noblock ? 0 : sk->sk_sndtimeo; 2240 } 2241 2242 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2243 { 2244 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2245 } 2246 2247 /* Alas, with timeout socket operations are not restartable. 2248 * Compare this to poll(). 2249 */ 2250 static inline int sock_intr_errno(long timeo) 2251 { 2252 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2253 } 2254 2255 struct sock_skb_cb { 2256 u32 dropcount; 2257 }; 2258 2259 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2260 * using skb->cb[] would keep using it directly and utilize its 2261 * alignement guarantee. 2262 */ 2263 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2264 sizeof(struct sock_skb_cb))) 2265 2266 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2267 SOCK_SKB_CB_OFFSET)) 2268 2269 #define sock_skb_cb_check_size(size) \ 2270 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2271 2272 static inline void 2273 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2274 { 2275 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2276 atomic_read(&sk->sk_drops) : 0; 2277 } 2278 2279 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2280 { 2281 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2282 2283 atomic_add(segs, &sk->sk_drops); 2284 } 2285 2286 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2287 struct sk_buff *skb); 2288 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2289 struct sk_buff *skb); 2290 2291 static inline void 2292 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2293 { 2294 ktime_t kt = skb->tstamp; 2295 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2296 2297 /* 2298 * generate control messages if 2299 * - receive time stamping in software requested 2300 * - software time stamp available and wanted 2301 * - hardware time stamps available and wanted 2302 */ 2303 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2304 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2305 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2306 (hwtstamps->hwtstamp && 2307 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2308 __sock_recv_timestamp(msg, sk, skb); 2309 else 2310 sk->sk_stamp = kt; 2311 2312 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2313 __sock_recv_wifi_status(msg, sk, skb); 2314 } 2315 2316 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2317 struct sk_buff *skb); 2318 2319 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2320 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2321 struct sk_buff *skb) 2322 { 2323 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2324 (1UL << SOCK_RCVTSTAMP)) 2325 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2326 SOF_TIMESTAMPING_RAW_HARDWARE) 2327 2328 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2329 __sock_recv_ts_and_drops(msg, sk, skb); 2330 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2331 sk->sk_stamp = skb->tstamp; 2332 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2333 sk->sk_stamp = 0; 2334 } 2335 2336 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2337 2338 /** 2339 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2340 * @sk: socket sending this packet 2341 * @tsflags: timestamping flags to use 2342 * @tx_flags: completed with instructions for time stamping 2343 * 2344 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2345 */ 2346 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags, 2347 __u8 *tx_flags) 2348 { 2349 if (unlikely(tsflags)) 2350 __sock_tx_timestamp(tsflags, tx_flags); 2351 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2352 *tx_flags |= SKBTX_WIFI_STATUS; 2353 } 2354 2355 /** 2356 * sk_eat_skb - Release a skb if it is no longer needed 2357 * @sk: socket to eat this skb from 2358 * @skb: socket buffer to eat 2359 * 2360 * This routine must be called with interrupts disabled or with the socket 2361 * locked so that the sk_buff queue operation is ok. 2362 */ 2363 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2364 { 2365 __skb_unlink(skb, &sk->sk_receive_queue); 2366 __kfree_skb(skb); 2367 } 2368 2369 static inline 2370 struct net *sock_net(const struct sock *sk) 2371 { 2372 return read_pnet(&sk->sk_net); 2373 } 2374 2375 static inline 2376 void sock_net_set(struct sock *sk, struct net *net) 2377 { 2378 write_pnet(&sk->sk_net, net); 2379 } 2380 2381 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2382 { 2383 if (skb->sk) { 2384 struct sock *sk = skb->sk; 2385 2386 skb->destructor = NULL; 2387 skb->sk = NULL; 2388 return sk; 2389 } 2390 return NULL; 2391 } 2392 2393 /* This helper checks if a socket is a full socket, 2394 * ie _not_ a timewait or request socket. 2395 */ 2396 static inline bool sk_fullsock(const struct sock *sk) 2397 { 2398 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2399 } 2400 2401 /* Checks if this SKB belongs to an HW offloaded socket 2402 * and whether any SW fallbacks are required based on dev. 2403 */ 2404 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2405 struct net_device *dev) 2406 { 2407 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2408 struct sock *sk = skb->sk; 2409 2410 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) 2411 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2412 #endif 2413 2414 return skb; 2415 } 2416 2417 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2418 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2419 */ 2420 static inline bool sk_listener(const struct sock *sk) 2421 { 2422 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2423 } 2424 2425 void sock_enable_timestamp(struct sock *sk, int flag); 2426 int sock_get_timestamp(struct sock *, struct timeval __user *); 2427 int sock_get_timestampns(struct sock *, struct timespec __user *); 2428 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2429 int type); 2430 2431 bool sk_ns_capable(const struct sock *sk, 2432 struct user_namespace *user_ns, int cap); 2433 bool sk_capable(const struct sock *sk, int cap); 2434 bool sk_net_capable(const struct sock *sk, int cap); 2435 2436 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2437 2438 /* Take into consideration the size of the struct sk_buff overhead in the 2439 * determination of these values, since that is non-constant across 2440 * platforms. This makes socket queueing behavior and performance 2441 * not depend upon such differences. 2442 */ 2443 #define _SK_MEM_PACKETS 256 2444 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2445 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2446 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2447 2448 extern __u32 sysctl_wmem_max; 2449 extern __u32 sysctl_rmem_max; 2450 2451 extern int sysctl_tstamp_allow_data; 2452 extern int sysctl_optmem_max; 2453 2454 extern __u32 sysctl_wmem_default; 2455 extern __u32 sysctl_rmem_default; 2456 2457 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2458 { 2459 /* Does this proto have per netns sysctl_wmem ? */ 2460 if (proto->sysctl_wmem_offset) 2461 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2462 2463 return *proto->sysctl_wmem; 2464 } 2465 2466 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2467 { 2468 /* Does this proto have per netns sysctl_rmem ? */ 2469 if (proto->sysctl_rmem_offset) 2470 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2471 2472 return *proto->sysctl_rmem; 2473 } 2474 2475 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2476 * Some wifi drivers need to tweak it to get more chunks. 2477 * They can use this helper from their ndo_start_xmit() 2478 */ 2479 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2480 { 2481 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val) 2482 return; 2483 sk->sk_pacing_shift = val; 2484 } 2485 2486 /* if a socket is bound to a device, check that the given device 2487 * index is either the same or that the socket is bound to an L3 2488 * master device and the given device index is also enslaved to 2489 * that L3 master 2490 */ 2491 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2492 { 2493 int mdif; 2494 2495 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2496 return true; 2497 2498 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2499 if (mdif && mdif == sk->sk_bound_dev_if) 2500 return true; 2501 2502 return false; 2503 } 2504 2505 #endif /* _SOCK_H */ 2506