xref: /openbmc/linux/include/net/sock.h (revision a080a92a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67 #include <net/tcp_states.h>
68 #include <linux/net_tstamp.h>
69 #include <net/l3mdev.h>
70 
71 /*
72  * This structure really needs to be cleaned up.
73  * Most of it is for TCP, and not used by any of
74  * the other protocols.
75  */
76 
77 /* Define this to get the SOCK_DBG debugging facility. */
78 #define SOCK_DEBUGGING
79 #ifdef SOCK_DEBUGGING
80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
81 					printk(KERN_DEBUG msg); } while (0)
82 #else
83 /* Validate arguments and do nothing */
84 static inline __printf(2, 3)
85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
86 {
87 }
88 #endif
89 
90 /* This is the per-socket lock.  The spinlock provides a synchronization
91  * between user contexts and software interrupt processing, whereas the
92  * mini-semaphore synchronizes multiple users amongst themselves.
93  */
94 typedef struct {
95 	spinlock_t		slock;
96 	int			owned;
97 	wait_queue_head_t	wq;
98 	/*
99 	 * We express the mutex-alike socket_lock semantics
100 	 * to the lock validator by explicitly managing
101 	 * the slock as a lock variant (in addition to
102 	 * the slock itself):
103 	 */
104 #ifdef CONFIG_DEBUG_LOCK_ALLOC
105 	struct lockdep_map dep_map;
106 #endif
107 } socket_lock_t;
108 
109 struct sock;
110 struct proto;
111 struct net;
112 
113 typedef __u32 __bitwise __portpair;
114 typedef __u64 __bitwise __addrpair;
115 
116 /**
117  *	struct sock_common - minimal network layer representation of sockets
118  *	@skc_daddr: Foreign IPv4 addr
119  *	@skc_rcv_saddr: Bound local IPv4 addr
120  *	@skc_hash: hash value used with various protocol lookup tables
121  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
122  *	@skc_dport: placeholder for inet_dport/tw_dport
123  *	@skc_num: placeholder for inet_num/tw_num
124  *	@skc_family: network address family
125  *	@skc_state: Connection state
126  *	@skc_reuse: %SO_REUSEADDR setting
127  *	@skc_reuseport: %SO_REUSEPORT setting
128  *	@skc_bound_dev_if: bound device index if != 0
129  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
130  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
131  *	@skc_prot: protocol handlers inside a network family
132  *	@skc_net: reference to the network namespace of this socket
133  *	@skc_node: main hash linkage for various protocol lookup tables
134  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
135  *	@skc_tx_queue_mapping: tx queue number for this connection
136  *	@skc_rx_queue_mapping: rx queue number for this connection
137  *	@skc_flags: place holder for sk_flags
138  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
139  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
140  *	@skc_incoming_cpu: record/match cpu processing incoming packets
141  *	@skc_refcnt: reference count
142  *
143  *	This is the minimal network layer representation of sockets, the header
144  *	for struct sock and struct inet_timewait_sock.
145  */
146 struct sock_common {
147 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
148 	 * address on 64bit arches : cf INET_MATCH()
149 	 */
150 	union {
151 		__addrpair	skc_addrpair;
152 		struct {
153 			__be32	skc_daddr;
154 			__be32	skc_rcv_saddr;
155 		};
156 	};
157 	union  {
158 		unsigned int	skc_hash;
159 		__u16		skc_u16hashes[2];
160 	};
161 	/* skc_dport && skc_num must be grouped as well */
162 	union {
163 		__portpair	skc_portpair;
164 		struct {
165 			__be16	skc_dport;
166 			__u16	skc_num;
167 		};
168 	};
169 
170 	unsigned short		skc_family;
171 	volatile unsigned char	skc_state;
172 	unsigned char		skc_reuse:4;
173 	unsigned char		skc_reuseport:1;
174 	unsigned char		skc_ipv6only:1;
175 	unsigned char		skc_net_refcnt:1;
176 	int			skc_bound_dev_if;
177 	union {
178 		struct hlist_node	skc_bind_node;
179 		struct hlist_node	skc_portaddr_node;
180 	};
181 	struct proto		*skc_prot;
182 	possible_net_t		skc_net;
183 
184 #if IS_ENABLED(CONFIG_IPV6)
185 	struct in6_addr		skc_v6_daddr;
186 	struct in6_addr		skc_v6_rcv_saddr;
187 #endif
188 
189 	atomic64_t		skc_cookie;
190 
191 	/* following fields are padding to force
192 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
193 	 * assuming IPV6 is enabled. We use this padding differently
194 	 * for different kind of 'sockets'
195 	 */
196 	union {
197 		unsigned long	skc_flags;
198 		struct sock	*skc_listener; /* request_sock */
199 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
200 	};
201 	/*
202 	 * fields between dontcopy_begin/dontcopy_end
203 	 * are not copied in sock_copy()
204 	 */
205 	/* private: */
206 	int			skc_dontcopy_begin[0];
207 	/* public: */
208 	union {
209 		struct hlist_node	skc_node;
210 		struct hlist_nulls_node skc_nulls_node;
211 	};
212 	unsigned short		skc_tx_queue_mapping;
213 #ifdef CONFIG_XPS
214 	unsigned short		skc_rx_queue_mapping;
215 #endif
216 	union {
217 		int		skc_incoming_cpu;
218 		u32		skc_rcv_wnd;
219 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
220 	};
221 
222 	refcount_t		skc_refcnt;
223 	/* private: */
224 	int                     skc_dontcopy_end[0];
225 	union {
226 		u32		skc_rxhash;
227 		u32		skc_window_clamp;
228 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
229 	};
230 	/* public: */
231 };
232 
233 struct bpf_sk_storage;
234 
235 /**
236   *	struct sock - network layer representation of sockets
237   *	@__sk_common: shared layout with inet_timewait_sock
238   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
239   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
240   *	@sk_lock:	synchronizer
241   *	@sk_kern_sock: True if sock is using kernel lock classes
242   *	@sk_rcvbuf: size of receive buffer in bytes
243   *	@sk_wq: sock wait queue and async head
244   *	@sk_rx_dst: receive input route used by early demux
245   *	@sk_dst_cache: destination cache
246   *	@sk_dst_pending_confirm: need to confirm neighbour
247   *	@sk_policy: flow policy
248   *	@sk_receive_queue: incoming packets
249   *	@sk_wmem_alloc: transmit queue bytes committed
250   *	@sk_tsq_flags: TCP Small Queues flags
251   *	@sk_write_queue: Packet sending queue
252   *	@sk_omem_alloc: "o" is "option" or "other"
253   *	@sk_wmem_queued: persistent queue size
254   *	@sk_forward_alloc: space allocated forward
255   *	@sk_napi_id: id of the last napi context to receive data for sk
256   *	@sk_ll_usec: usecs to busypoll when there is no data
257   *	@sk_allocation: allocation mode
258   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
259   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
260   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
261   *	@sk_sndbuf: size of send buffer in bytes
262   *	@__sk_flags_offset: empty field used to determine location of bitfield
263   *	@sk_padding: unused element for alignment
264   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
265   *	@sk_no_check_rx: allow zero checksum in RX packets
266   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
267   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
268   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
269   *	@sk_gso_max_size: Maximum GSO segment size to build
270   *	@sk_gso_max_segs: Maximum number of GSO segments
271   *	@sk_pacing_shift: scaling factor for TCP Small Queues
272   *	@sk_lingertime: %SO_LINGER l_linger setting
273   *	@sk_backlog: always used with the per-socket spinlock held
274   *	@sk_callback_lock: used with the callbacks in the end of this struct
275   *	@sk_error_queue: rarely used
276   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
277   *			  IPV6_ADDRFORM for instance)
278   *	@sk_err: last error
279   *	@sk_err_soft: errors that don't cause failure but are the cause of a
280   *		      persistent failure not just 'timed out'
281   *	@sk_drops: raw/udp drops counter
282   *	@sk_ack_backlog: current listen backlog
283   *	@sk_max_ack_backlog: listen backlog set in listen()
284   *	@sk_uid: user id of owner
285   *	@sk_priority: %SO_PRIORITY setting
286   *	@sk_type: socket type (%SOCK_STREAM, etc)
287   *	@sk_protocol: which protocol this socket belongs in this network family
288   *	@sk_peer_pid: &struct pid for this socket's peer
289   *	@sk_peer_cred: %SO_PEERCRED setting
290   *	@sk_rcvlowat: %SO_RCVLOWAT setting
291   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
292   *	@sk_sndtimeo: %SO_SNDTIMEO setting
293   *	@sk_txhash: computed flow hash for use on transmit
294   *	@sk_filter: socket filtering instructions
295   *	@sk_timer: sock cleanup timer
296   *	@sk_stamp: time stamp of last packet received
297   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
298   *	@sk_tsflags: SO_TIMESTAMPING socket options
299   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
300   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
301   *	@sk_socket: Identd and reporting IO signals
302   *	@sk_user_data: RPC layer private data
303   *	@sk_frag: cached page frag
304   *	@sk_peek_off: current peek_offset value
305   *	@sk_send_head: front of stuff to transmit
306   *	@sk_security: used by security modules
307   *	@sk_mark: generic packet mark
308   *	@sk_cgrp_data: cgroup data for this cgroup
309   *	@sk_memcg: this socket's memory cgroup association
310   *	@sk_write_pending: a write to stream socket waits to start
311   *	@sk_state_change: callback to indicate change in the state of the sock
312   *	@sk_data_ready: callback to indicate there is data to be processed
313   *	@sk_write_space: callback to indicate there is bf sending space available
314   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
315   *	@sk_backlog_rcv: callback to process the backlog
316   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
317   *	@sk_reuseport_cb: reuseport group container
318   *	@sk_rcu: used during RCU grace period
319   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
320   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
321   *	@sk_txtime_unused: unused txtime flags
322   */
323 struct sock {
324 	/*
325 	 * Now struct inet_timewait_sock also uses sock_common, so please just
326 	 * don't add nothing before this first member (__sk_common) --acme
327 	 */
328 	struct sock_common	__sk_common;
329 #define sk_node			__sk_common.skc_node
330 #define sk_nulls_node		__sk_common.skc_nulls_node
331 #define sk_refcnt		__sk_common.skc_refcnt
332 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
333 #ifdef CONFIG_XPS
334 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
335 #endif
336 
337 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
338 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
339 #define sk_hash			__sk_common.skc_hash
340 #define sk_portpair		__sk_common.skc_portpair
341 #define sk_num			__sk_common.skc_num
342 #define sk_dport		__sk_common.skc_dport
343 #define sk_addrpair		__sk_common.skc_addrpair
344 #define sk_daddr		__sk_common.skc_daddr
345 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
346 #define sk_family		__sk_common.skc_family
347 #define sk_state		__sk_common.skc_state
348 #define sk_reuse		__sk_common.skc_reuse
349 #define sk_reuseport		__sk_common.skc_reuseport
350 #define sk_ipv6only		__sk_common.skc_ipv6only
351 #define sk_net_refcnt		__sk_common.skc_net_refcnt
352 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
353 #define sk_bind_node		__sk_common.skc_bind_node
354 #define sk_prot			__sk_common.skc_prot
355 #define sk_net			__sk_common.skc_net
356 #define sk_v6_daddr		__sk_common.skc_v6_daddr
357 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
358 #define sk_cookie		__sk_common.skc_cookie
359 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
360 #define sk_flags		__sk_common.skc_flags
361 #define sk_rxhash		__sk_common.skc_rxhash
362 
363 	socket_lock_t		sk_lock;
364 	atomic_t		sk_drops;
365 	int			sk_rcvlowat;
366 	struct sk_buff_head	sk_error_queue;
367 	struct sk_buff		*sk_rx_skb_cache;
368 	struct sk_buff_head	sk_receive_queue;
369 	/*
370 	 * The backlog queue is special, it is always used with
371 	 * the per-socket spinlock held and requires low latency
372 	 * access. Therefore we special case it's implementation.
373 	 * Note : rmem_alloc is in this structure to fill a hole
374 	 * on 64bit arches, not because its logically part of
375 	 * backlog.
376 	 */
377 	struct {
378 		atomic_t	rmem_alloc;
379 		int		len;
380 		struct sk_buff	*head;
381 		struct sk_buff	*tail;
382 	} sk_backlog;
383 #define sk_rmem_alloc sk_backlog.rmem_alloc
384 
385 	int			sk_forward_alloc;
386 #ifdef CONFIG_NET_RX_BUSY_POLL
387 	unsigned int		sk_ll_usec;
388 	/* ===== mostly read cache line ===== */
389 	unsigned int		sk_napi_id;
390 #endif
391 	int			sk_rcvbuf;
392 
393 	struct sk_filter __rcu	*sk_filter;
394 	union {
395 		struct socket_wq __rcu	*sk_wq;
396 		struct socket_wq	*sk_wq_raw;
397 	};
398 #ifdef CONFIG_XFRM
399 	struct xfrm_policy __rcu *sk_policy[2];
400 #endif
401 	struct dst_entry	*sk_rx_dst;
402 	struct dst_entry __rcu	*sk_dst_cache;
403 	atomic_t		sk_omem_alloc;
404 	int			sk_sndbuf;
405 
406 	/* ===== cache line for TX ===== */
407 	int			sk_wmem_queued;
408 	refcount_t		sk_wmem_alloc;
409 	unsigned long		sk_tsq_flags;
410 	union {
411 		struct sk_buff	*sk_send_head;
412 		struct rb_root	tcp_rtx_queue;
413 	};
414 	struct sk_buff		*sk_tx_skb_cache;
415 	struct sk_buff_head	sk_write_queue;
416 	__s32			sk_peek_off;
417 	int			sk_write_pending;
418 	__u32			sk_dst_pending_confirm;
419 	u32			sk_pacing_status; /* see enum sk_pacing */
420 	long			sk_sndtimeo;
421 	struct timer_list	sk_timer;
422 	__u32			sk_priority;
423 	__u32			sk_mark;
424 	unsigned long		sk_pacing_rate; /* bytes per second */
425 	unsigned long		sk_max_pacing_rate;
426 	struct page_frag	sk_frag;
427 	netdev_features_t	sk_route_caps;
428 	netdev_features_t	sk_route_nocaps;
429 	netdev_features_t	sk_route_forced_caps;
430 	int			sk_gso_type;
431 	unsigned int		sk_gso_max_size;
432 	gfp_t			sk_allocation;
433 	__u32			sk_txhash;
434 
435 	/*
436 	 * Because of non atomicity rules, all
437 	 * changes are protected by socket lock.
438 	 */
439 	u8			sk_padding : 1,
440 				sk_kern_sock : 1,
441 				sk_no_check_tx : 1,
442 				sk_no_check_rx : 1,
443 				sk_userlocks : 4;
444 	u8			sk_pacing_shift;
445 	u16			sk_type;
446 	u16			sk_protocol;
447 	u16			sk_gso_max_segs;
448 	unsigned long	        sk_lingertime;
449 	struct proto		*sk_prot_creator;
450 	rwlock_t		sk_callback_lock;
451 	int			sk_err,
452 				sk_err_soft;
453 	u32			sk_ack_backlog;
454 	u32			sk_max_ack_backlog;
455 	kuid_t			sk_uid;
456 	struct pid		*sk_peer_pid;
457 	const struct cred	*sk_peer_cred;
458 	long			sk_rcvtimeo;
459 	ktime_t			sk_stamp;
460 #if BITS_PER_LONG==32
461 	seqlock_t		sk_stamp_seq;
462 #endif
463 	u16			sk_tsflags;
464 	u8			sk_shutdown;
465 	u32			sk_tskey;
466 	atomic_t		sk_zckey;
467 
468 	u8			sk_clockid;
469 	u8			sk_txtime_deadline_mode : 1,
470 				sk_txtime_report_errors : 1,
471 				sk_txtime_unused : 6;
472 
473 	struct socket		*sk_socket;
474 	void			*sk_user_data;
475 #ifdef CONFIG_SECURITY
476 	void			*sk_security;
477 #endif
478 	struct sock_cgroup_data	sk_cgrp_data;
479 	struct mem_cgroup	*sk_memcg;
480 	void			(*sk_state_change)(struct sock *sk);
481 	void			(*sk_data_ready)(struct sock *sk);
482 	void			(*sk_write_space)(struct sock *sk);
483 	void			(*sk_error_report)(struct sock *sk);
484 	int			(*sk_backlog_rcv)(struct sock *sk,
485 						  struct sk_buff *skb);
486 #ifdef CONFIG_SOCK_VALIDATE_XMIT
487 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
488 							struct net_device *dev,
489 							struct sk_buff *skb);
490 #endif
491 	void                    (*sk_destruct)(struct sock *sk);
492 	struct sock_reuseport __rcu	*sk_reuseport_cb;
493 #ifdef CONFIG_BPF_SYSCALL
494 	struct bpf_sk_storage __rcu	*sk_bpf_storage;
495 #endif
496 	struct rcu_head		sk_rcu;
497 };
498 
499 enum sk_pacing {
500 	SK_PACING_NONE		= 0,
501 	SK_PACING_NEEDED	= 1,
502 	SK_PACING_FQ		= 2,
503 };
504 
505 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
506 
507 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
508 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
509 
510 /*
511  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
512  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
513  * on a socket means that the socket will reuse everybody else's port
514  * without looking at the other's sk_reuse value.
515  */
516 
517 #define SK_NO_REUSE	0
518 #define SK_CAN_REUSE	1
519 #define SK_FORCE_REUSE	2
520 
521 int sk_set_peek_off(struct sock *sk, int val);
522 
523 static inline int sk_peek_offset(struct sock *sk, int flags)
524 {
525 	if (unlikely(flags & MSG_PEEK)) {
526 		return READ_ONCE(sk->sk_peek_off);
527 	}
528 
529 	return 0;
530 }
531 
532 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
533 {
534 	s32 off = READ_ONCE(sk->sk_peek_off);
535 
536 	if (unlikely(off >= 0)) {
537 		off = max_t(s32, off - val, 0);
538 		WRITE_ONCE(sk->sk_peek_off, off);
539 	}
540 }
541 
542 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
543 {
544 	sk_peek_offset_bwd(sk, -val);
545 }
546 
547 /*
548  * Hashed lists helper routines
549  */
550 static inline struct sock *sk_entry(const struct hlist_node *node)
551 {
552 	return hlist_entry(node, struct sock, sk_node);
553 }
554 
555 static inline struct sock *__sk_head(const struct hlist_head *head)
556 {
557 	return hlist_entry(head->first, struct sock, sk_node);
558 }
559 
560 static inline struct sock *sk_head(const struct hlist_head *head)
561 {
562 	return hlist_empty(head) ? NULL : __sk_head(head);
563 }
564 
565 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
566 {
567 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
568 }
569 
570 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
571 {
572 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
573 }
574 
575 static inline struct sock *sk_next(const struct sock *sk)
576 {
577 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
578 }
579 
580 static inline struct sock *sk_nulls_next(const struct sock *sk)
581 {
582 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
583 		hlist_nulls_entry(sk->sk_nulls_node.next,
584 				  struct sock, sk_nulls_node) :
585 		NULL;
586 }
587 
588 static inline bool sk_unhashed(const struct sock *sk)
589 {
590 	return hlist_unhashed(&sk->sk_node);
591 }
592 
593 static inline bool sk_hashed(const struct sock *sk)
594 {
595 	return !sk_unhashed(sk);
596 }
597 
598 static inline void sk_node_init(struct hlist_node *node)
599 {
600 	node->pprev = NULL;
601 }
602 
603 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
604 {
605 	node->pprev = NULL;
606 }
607 
608 static inline void __sk_del_node(struct sock *sk)
609 {
610 	__hlist_del(&sk->sk_node);
611 }
612 
613 /* NB: equivalent to hlist_del_init_rcu */
614 static inline bool __sk_del_node_init(struct sock *sk)
615 {
616 	if (sk_hashed(sk)) {
617 		__sk_del_node(sk);
618 		sk_node_init(&sk->sk_node);
619 		return true;
620 	}
621 	return false;
622 }
623 
624 /* Grab socket reference count. This operation is valid only
625    when sk is ALREADY grabbed f.e. it is found in hash table
626    or a list and the lookup is made under lock preventing hash table
627    modifications.
628  */
629 
630 static __always_inline void sock_hold(struct sock *sk)
631 {
632 	refcount_inc(&sk->sk_refcnt);
633 }
634 
635 /* Ungrab socket in the context, which assumes that socket refcnt
636    cannot hit zero, f.e. it is true in context of any socketcall.
637  */
638 static __always_inline void __sock_put(struct sock *sk)
639 {
640 	refcount_dec(&sk->sk_refcnt);
641 }
642 
643 static inline bool sk_del_node_init(struct sock *sk)
644 {
645 	bool rc = __sk_del_node_init(sk);
646 
647 	if (rc) {
648 		/* paranoid for a while -acme */
649 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
650 		__sock_put(sk);
651 	}
652 	return rc;
653 }
654 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
655 
656 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
657 {
658 	if (sk_hashed(sk)) {
659 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
660 		return true;
661 	}
662 	return false;
663 }
664 
665 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
666 {
667 	bool rc = __sk_nulls_del_node_init_rcu(sk);
668 
669 	if (rc) {
670 		/* paranoid for a while -acme */
671 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
672 		__sock_put(sk);
673 	}
674 	return rc;
675 }
676 
677 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
678 {
679 	hlist_add_head(&sk->sk_node, list);
680 }
681 
682 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
683 {
684 	sock_hold(sk);
685 	__sk_add_node(sk, list);
686 }
687 
688 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
689 {
690 	sock_hold(sk);
691 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
692 	    sk->sk_family == AF_INET6)
693 		hlist_add_tail_rcu(&sk->sk_node, list);
694 	else
695 		hlist_add_head_rcu(&sk->sk_node, list);
696 }
697 
698 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
699 {
700 	sock_hold(sk);
701 	hlist_add_tail_rcu(&sk->sk_node, list);
702 }
703 
704 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
705 {
706 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
707 }
708 
709 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
710 {
711 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
712 }
713 
714 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
715 {
716 	sock_hold(sk);
717 	__sk_nulls_add_node_rcu(sk, list);
718 }
719 
720 static inline void __sk_del_bind_node(struct sock *sk)
721 {
722 	__hlist_del(&sk->sk_bind_node);
723 }
724 
725 static inline void sk_add_bind_node(struct sock *sk,
726 					struct hlist_head *list)
727 {
728 	hlist_add_head(&sk->sk_bind_node, list);
729 }
730 
731 #define sk_for_each(__sk, list) \
732 	hlist_for_each_entry(__sk, list, sk_node)
733 #define sk_for_each_rcu(__sk, list) \
734 	hlist_for_each_entry_rcu(__sk, list, sk_node)
735 #define sk_nulls_for_each(__sk, node, list) \
736 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
737 #define sk_nulls_for_each_rcu(__sk, node, list) \
738 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
739 #define sk_for_each_from(__sk) \
740 	hlist_for_each_entry_from(__sk, sk_node)
741 #define sk_nulls_for_each_from(__sk, node) \
742 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
743 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
744 #define sk_for_each_safe(__sk, tmp, list) \
745 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
746 #define sk_for_each_bound(__sk, list) \
747 	hlist_for_each_entry(__sk, list, sk_bind_node)
748 
749 /**
750  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
751  * @tpos:	the type * to use as a loop cursor.
752  * @pos:	the &struct hlist_node to use as a loop cursor.
753  * @head:	the head for your list.
754  * @offset:	offset of hlist_node within the struct.
755  *
756  */
757 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
758 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
759 	     pos != NULL &&						       \
760 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
761 	     pos = rcu_dereference(hlist_next_rcu(pos)))
762 
763 static inline struct user_namespace *sk_user_ns(struct sock *sk)
764 {
765 	/* Careful only use this in a context where these parameters
766 	 * can not change and must all be valid, such as recvmsg from
767 	 * userspace.
768 	 */
769 	return sk->sk_socket->file->f_cred->user_ns;
770 }
771 
772 /* Sock flags */
773 enum sock_flags {
774 	SOCK_DEAD,
775 	SOCK_DONE,
776 	SOCK_URGINLINE,
777 	SOCK_KEEPOPEN,
778 	SOCK_LINGER,
779 	SOCK_DESTROY,
780 	SOCK_BROADCAST,
781 	SOCK_TIMESTAMP,
782 	SOCK_ZAPPED,
783 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
784 	SOCK_DBG, /* %SO_DEBUG setting */
785 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
786 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
787 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
788 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
789 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
790 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
791 	SOCK_FASYNC, /* fasync() active */
792 	SOCK_RXQ_OVFL,
793 	SOCK_ZEROCOPY, /* buffers from userspace */
794 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
795 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
796 		     * Will use last 4 bytes of packet sent from
797 		     * user-space instead.
798 		     */
799 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
800 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
801 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
802 	SOCK_TXTIME,
803 	SOCK_XDP, /* XDP is attached */
804 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
805 };
806 
807 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
808 
809 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
810 {
811 	nsk->sk_flags = osk->sk_flags;
812 }
813 
814 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
815 {
816 	__set_bit(flag, &sk->sk_flags);
817 }
818 
819 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
820 {
821 	__clear_bit(flag, &sk->sk_flags);
822 }
823 
824 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
825 {
826 	return test_bit(flag, &sk->sk_flags);
827 }
828 
829 #ifdef CONFIG_NET
830 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
831 static inline int sk_memalloc_socks(void)
832 {
833 	return static_branch_unlikely(&memalloc_socks_key);
834 }
835 #else
836 
837 static inline int sk_memalloc_socks(void)
838 {
839 	return 0;
840 }
841 
842 #endif
843 
844 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
845 {
846 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
847 }
848 
849 static inline void sk_acceptq_removed(struct sock *sk)
850 {
851 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
852 }
853 
854 static inline void sk_acceptq_added(struct sock *sk)
855 {
856 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
857 }
858 
859 static inline bool sk_acceptq_is_full(const struct sock *sk)
860 {
861 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
862 }
863 
864 /*
865  * Compute minimal free write space needed to queue new packets.
866  */
867 static inline int sk_stream_min_wspace(const struct sock *sk)
868 {
869 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
870 }
871 
872 static inline int sk_stream_wspace(const struct sock *sk)
873 {
874 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
875 }
876 
877 static inline void sk_wmem_queued_add(struct sock *sk, int val)
878 {
879 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
880 }
881 
882 void sk_stream_write_space(struct sock *sk);
883 
884 /* OOB backlog add */
885 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
886 {
887 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
888 	skb_dst_force(skb);
889 
890 	if (!sk->sk_backlog.tail)
891 		WRITE_ONCE(sk->sk_backlog.head, skb);
892 	else
893 		sk->sk_backlog.tail->next = skb;
894 
895 	WRITE_ONCE(sk->sk_backlog.tail, skb);
896 	skb->next = NULL;
897 }
898 
899 /*
900  * Take into account size of receive queue and backlog queue
901  * Do not take into account this skb truesize,
902  * to allow even a single big packet to come.
903  */
904 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
905 {
906 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
907 
908 	return qsize > limit;
909 }
910 
911 /* The per-socket spinlock must be held here. */
912 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
913 					      unsigned int limit)
914 {
915 	if (sk_rcvqueues_full(sk, limit))
916 		return -ENOBUFS;
917 
918 	/*
919 	 * If the skb was allocated from pfmemalloc reserves, only
920 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
921 	 * helping free memory
922 	 */
923 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
924 		return -ENOMEM;
925 
926 	__sk_add_backlog(sk, skb);
927 	sk->sk_backlog.len += skb->truesize;
928 	return 0;
929 }
930 
931 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
932 
933 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
934 {
935 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
936 		return __sk_backlog_rcv(sk, skb);
937 
938 	return sk->sk_backlog_rcv(sk, skb);
939 }
940 
941 static inline void sk_incoming_cpu_update(struct sock *sk)
942 {
943 	int cpu = raw_smp_processor_id();
944 
945 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
946 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
947 }
948 
949 static inline void sock_rps_record_flow_hash(__u32 hash)
950 {
951 #ifdef CONFIG_RPS
952 	struct rps_sock_flow_table *sock_flow_table;
953 
954 	rcu_read_lock();
955 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
956 	rps_record_sock_flow(sock_flow_table, hash);
957 	rcu_read_unlock();
958 #endif
959 }
960 
961 static inline void sock_rps_record_flow(const struct sock *sk)
962 {
963 #ifdef CONFIG_RPS
964 	if (static_branch_unlikely(&rfs_needed)) {
965 		/* Reading sk->sk_rxhash might incur an expensive cache line
966 		 * miss.
967 		 *
968 		 * TCP_ESTABLISHED does cover almost all states where RFS
969 		 * might be useful, and is cheaper [1] than testing :
970 		 *	IPv4: inet_sk(sk)->inet_daddr
971 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
972 		 * OR	an additional socket flag
973 		 * [1] : sk_state and sk_prot are in the same cache line.
974 		 */
975 		if (sk->sk_state == TCP_ESTABLISHED)
976 			sock_rps_record_flow_hash(sk->sk_rxhash);
977 	}
978 #endif
979 }
980 
981 static inline void sock_rps_save_rxhash(struct sock *sk,
982 					const struct sk_buff *skb)
983 {
984 #ifdef CONFIG_RPS
985 	if (unlikely(sk->sk_rxhash != skb->hash))
986 		sk->sk_rxhash = skb->hash;
987 #endif
988 }
989 
990 static inline void sock_rps_reset_rxhash(struct sock *sk)
991 {
992 #ifdef CONFIG_RPS
993 	sk->sk_rxhash = 0;
994 #endif
995 }
996 
997 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
998 	({	int __rc;						\
999 		release_sock(__sk);					\
1000 		__rc = __condition;					\
1001 		if (!__rc) {						\
1002 			*(__timeo) = wait_woken(__wait,			\
1003 						TASK_INTERRUPTIBLE,	\
1004 						*(__timeo));		\
1005 		}							\
1006 		sched_annotate_sleep();					\
1007 		lock_sock(__sk);					\
1008 		__rc = __condition;					\
1009 		__rc;							\
1010 	})
1011 
1012 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1013 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1014 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1015 int sk_stream_error(struct sock *sk, int flags, int err);
1016 void sk_stream_kill_queues(struct sock *sk);
1017 void sk_set_memalloc(struct sock *sk);
1018 void sk_clear_memalloc(struct sock *sk);
1019 
1020 void __sk_flush_backlog(struct sock *sk);
1021 
1022 static inline bool sk_flush_backlog(struct sock *sk)
1023 {
1024 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1025 		__sk_flush_backlog(sk);
1026 		return true;
1027 	}
1028 	return false;
1029 }
1030 
1031 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1032 
1033 struct request_sock_ops;
1034 struct timewait_sock_ops;
1035 struct inet_hashinfo;
1036 struct raw_hashinfo;
1037 struct smc_hashinfo;
1038 struct module;
1039 
1040 /*
1041  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1042  * un-modified. Special care is taken when initializing object to zero.
1043  */
1044 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1045 {
1046 	if (offsetof(struct sock, sk_node.next) != 0)
1047 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1048 	memset(&sk->sk_node.pprev, 0,
1049 	       size - offsetof(struct sock, sk_node.pprev));
1050 }
1051 
1052 /* Networking protocol blocks we attach to sockets.
1053  * socket layer -> transport layer interface
1054  */
1055 struct proto {
1056 	void			(*close)(struct sock *sk,
1057 					long timeout);
1058 	int			(*pre_connect)(struct sock *sk,
1059 					struct sockaddr *uaddr,
1060 					int addr_len);
1061 	int			(*connect)(struct sock *sk,
1062 					struct sockaddr *uaddr,
1063 					int addr_len);
1064 	int			(*disconnect)(struct sock *sk, int flags);
1065 
1066 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1067 					  bool kern);
1068 
1069 	int			(*ioctl)(struct sock *sk, int cmd,
1070 					 unsigned long arg);
1071 	int			(*init)(struct sock *sk);
1072 	void			(*destroy)(struct sock *sk);
1073 	void			(*shutdown)(struct sock *sk, int how);
1074 	int			(*setsockopt)(struct sock *sk, int level,
1075 					int optname, char __user *optval,
1076 					unsigned int optlen);
1077 	int			(*getsockopt)(struct sock *sk, int level,
1078 					int optname, char __user *optval,
1079 					int __user *option);
1080 	void			(*keepalive)(struct sock *sk, int valbool);
1081 #ifdef CONFIG_COMPAT
1082 	int			(*compat_setsockopt)(struct sock *sk,
1083 					int level,
1084 					int optname, char __user *optval,
1085 					unsigned int optlen);
1086 	int			(*compat_getsockopt)(struct sock *sk,
1087 					int level,
1088 					int optname, char __user *optval,
1089 					int __user *option);
1090 	int			(*compat_ioctl)(struct sock *sk,
1091 					unsigned int cmd, unsigned long arg);
1092 #endif
1093 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1094 					   size_t len);
1095 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1096 					   size_t len, int noblock, int flags,
1097 					   int *addr_len);
1098 	int			(*sendpage)(struct sock *sk, struct page *page,
1099 					int offset, size_t size, int flags);
1100 	int			(*bind)(struct sock *sk,
1101 					struct sockaddr *uaddr, int addr_len);
1102 
1103 	int			(*backlog_rcv) (struct sock *sk,
1104 						struct sk_buff *skb);
1105 
1106 	void		(*release_cb)(struct sock *sk);
1107 
1108 	/* Keeping track of sk's, looking them up, and port selection methods. */
1109 	int			(*hash)(struct sock *sk);
1110 	void			(*unhash)(struct sock *sk);
1111 	void			(*rehash)(struct sock *sk);
1112 	int			(*get_port)(struct sock *sk, unsigned short snum);
1113 
1114 	/* Keeping track of sockets in use */
1115 #ifdef CONFIG_PROC_FS
1116 	unsigned int		inuse_idx;
1117 #endif
1118 
1119 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1120 	bool			(*stream_memory_read)(const struct sock *sk);
1121 	/* Memory pressure */
1122 	void			(*enter_memory_pressure)(struct sock *sk);
1123 	void			(*leave_memory_pressure)(struct sock *sk);
1124 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1125 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1126 	/*
1127 	 * Pressure flag: try to collapse.
1128 	 * Technical note: it is used by multiple contexts non atomically.
1129 	 * All the __sk_mem_schedule() is of this nature: accounting
1130 	 * is strict, actions are advisory and have some latency.
1131 	 */
1132 	unsigned long		*memory_pressure;
1133 	long			*sysctl_mem;
1134 
1135 	int			*sysctl_wmem;
1136 	int			*sysctl_rmem;
1137 	u32			sysctl_wmem_offset;
1138 	u32			sysctl_rmem_offset;
1139 
1140 	int			max_header;
1141 	bool			no_autobind;
1142 
1143 	struct kmem_cache	*slab;
1144 	unsigned int		obj_size;
1145 	slab_flags_t		slab_flags;
1146 	unsigned int		useroffset;	/* Usercopy region offset */
1147 	unsigned int		usersize;	/* Usercopy region size */
1148 
1149 	struct percpu_counter	*orphan_count;
1150 
1151 	struct request_sock_ops	*rsk_prot;
1152 	struct timewait_sock_ops *twsk_prot;
1153 
1154 	union {
1155 		struct inet_hashinfo	*hashinfo;
1156 		struct udp_table	*udp_table;
1157 		struct raw_hashinfo	*raw_hash;
1158 		struct smc_hashinfo	*smc_hash;
1159 	} h;
1160 
1161 	struct module		*owner;
1162 
1163 	char			name[32];
1164 
1165 	struct list_head	node;
1166 #ifdef SOCK_REFCNT_DEBUG
1167 	atomic_t		socks;
1168 #endif
1169 	int			(*diag_destroy)(struct sock *sk, int err);
1170 } __randomize_layout;
1171 
1172 int proto_register(struct proto *prot, int alloc_slab);
1173 void proto_unregister(struct proto *prot);
1174 int sock_load_diag_module(int family, int protocol);
1175 
1176 #ifdef SOCK_REFCNT_DEBUG
1177 static inline void sk_refcnt_debug_inc(struct sock *sk)
1178 {
1179 	atomic_inc(&sk->sk_prot->socks);
1180 }
1181 
1182 static inline void sk_refcnt_debug_dec(struct sock *sk)
1183 {
1184 	atomic_dec(&sk->sk_prot->socks);
1185 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1186 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1187 }
1188 
1189 static inline void sk_refcnt_debug_release(const struct sock *sk)
1190 {
1191 	if (refcount_read(&sk->sk_refcnt) != 1)
1192 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1193 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1194 }
1195 #else /* SOCK_REFCNT_DEBUG */
1196 #define sk_refcnt_debug_inc(sk) do { } while (0)
1197 #define sk_refcnt_debug_dec(sk) do { } while (0)
1198 #define sk_refcnt_debug_release(sk) do { } while (0)
1199 #endif /* SOCK_REFCNT_DEBUG */
1200 
1201 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1202 {
1203 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1204 		return false;
1205 
1206 	return sk->sk_prot->stream_memory_free ?
1207 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1208 }
1209 
1210 static inline bool sk_stream_memory_free(const struct sock *sk)
1211 {
1212 	return __sk_stream_memory_free(sk, 0);
1213 }
1214 
1215 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1216 {
1217 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1218 	       __sk_stream_memory_free(sk, wake);
1219 }
1220 
1221 static inline bool sk_stream_is_writeable(const struct sock *sk)
1222 {
1223 	return __sk_stream_is_writeable(sk, 0);
1224 }
1225 
1226 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1227 					    struct cgroup *ancestor)
1228 {
1229 #ifdef CONFIG_SOCK_CGROUP_DATA
1230 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1231 				    ancestor);
1232 #else
1233 	return -ENOTSUPP;
1234 #endif
1235 }
1236 
1237 static inline bool sk_has_memory_pressure(const struct sock *sk)
1238 {
1239 	return sk->sk_prot->memory_pressure != NULL;
1240 }
1241 
1242 static inline bool sk_under_memory_pressure(const struct sock *sk)
1243 {
1244 	if (!sk->sk_prot->memory_pressure)
1245 		return false;
1246 
1247 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1248 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1249 		return true;
1250 
1251 	return !!*sk->sk_prot->memory_pressure;
1252 }
1253 
1254 static inline long
1255 sk_memory_allocated(const struct sock *sk)
1256 {
1257 	return atomic_long_read(sk->sk_prot->memory_allocated);
1258 }
1259 
1260 static inline long
1261 sk_memory_allocated_add(struct sock *sk, int amt)
1262 {
1263 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1264 }
1265 
1266 static inline void
1267 sk_memory_allocated_sub(struct sock *sk, int amt)
1268 {
1269 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1270 }
1271 
1272 static inline void sk_sockets_allocated_dec(struct sock *sk)
1273 {
1274 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1275 }
1276 
1277 static inline void sk_sockets_allocated_inc(struct sock *sk)
1278 {
1279 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1280 }
1281 
1282 static inline u64
1283 sk_sockets_allocated_read_positive(struct sock *sk)
1284 {
1285 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1286 }
1287 
1288 static inline int
1289 proto_sockets_allocated_sum_positive(struct proto *prot)
1290 {
1291 	return percpu_counter_sum_positive(prot->sockets_allocated);
1292 }
1293 
1294 static inline long
1295 proto_memory_allocated(struct proto *prot)
1296 {
1297 	return atomic_long_read(prot->memory_allocated);
1298 }
1299 
1300 static inline bool
1301 proto_memory_pressure(struct proto *prot)
1302 {
1303 	if (!prot->memory_pressure)
1304 		return false;
1305 	return !!*prot->memory_pressure;
1306 }
1307 
1308 
1309 #ifdef CONFIG_PROC_FS
1310 /* Called with local bh disabled */
1311 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1312 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1313 int sock_inuse_get(struct net *net);
1314 #else
1315 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1316 		int inc)
1317 {
1318 }
1319 #endif
1320 
1321 
1322 /* With per-bucket locks this operation is not-atomic, so that
1323  * this version is not worse.
1324  */
1325 static inline int __sk_prot_rehash(struct sock *sk)
1326 {
1327 	sk->sk_prot->unhash(sk);
1328 	return sk->sk_prot->hash(sk);
1329 }
1330 
1331 /* About 10 seconds */
1332 #define SOCK_DESTROY_TIME (10*HZ)
1333 
1334 /* Sockets 0-1023 can't be bound to unless you are superuser */
1335 #define PROT_SOCK	1024
1336 
1337 #define SHUTDOWN_MASK	3
1338 #define RCV_SHUTDOWN	1
1339 #define SEND_SHUTDOWN	2
1340 
1341 #define SOCK_SNDBUF_LOCK	1
1342 #define SOCK_RCVBUF_LOCK	2
1343 #define SOCK_BINDADDR_LOCK	4
1344 #define SOCK_BINDPORT_LOCK	8
1345 
1346 struct socket_alloc {
1347 	struct socket socket;
1348 	struct inode vfs_inode;
1349 };
1350 
1351 static inline struct socket *SOCKET_I(struct inode *inode)
1352 {
1353 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1354 }
1355 
1356 static inline struct inode *SOCK_INODE(struct socket *socket)
1357 {
1358 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1359 }
1360 
1361 /*
1362  * Functions for memory accounting
1363  */
1364 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1365 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1366 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1367 void __sk_mem_reclaim(struct sock *sk, int amount);
1368 
1369 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1370  * do not necessarily have 16x time more memory than 4KB ones.
1371  */
1372 #define SK_MEM_QUANTUM 4096
1373 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1374 #define SK_MEM_SEND	0
1375 #define SK_MEM_RECV	1
1376 
1377 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1378 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1379 {
1380 	long val = sk->sk_prot->sysctl_mem[index];
1381 
1382 #if PAGE_SIZE > SK_MEM_QUANTUM
1383 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1384 #elif PAGE_SIZE < SK_MEM_QUANTUM
1385 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1386 #endif
1387 	return val;
1388 }
1389 
1390 static inline int sk_mem_pages(int amt)
1391 {
1392 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1393 }
1394 
1395 static inline bool sk_has_account(struct sock *sk)
1396 {
1397 	/* return true if protocol supports memory accounting */
1398 	return !!sk->sk_prot->memory_allocated;
1399 }
1400 
1401 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1402 {
1403 	if (!sk_has_account(sk))
1404 		return true;
1405 	return size <= sk->sk_forward_alloc ||
1406 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1407 }
1408 
1409 static inline bool
1410 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1411 {
1412 	if (!sk_has_account(sk))
1413 		return true;
1414 	return size<= sk->sk_forward_alloc ||
1415 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1416 		skb_pfmemalloc(skb);
1417 }
1418 
1419 static inline void sk_mem_reclaim(struct sock *sk)
1420 {
1421 	if (!sk_has_account(sk))
1422 		return;
1423 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1424 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1425 }
1426 
1427 static inline void sk_mem_reclaim_partial(struct sock *sk)
1428 {
1429 	if (!sk_has_account(sk))
1430 		return;
1431 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1432 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1433 }
1434 
1435 static inline void sk_mem_charge(struct sock *sk, int size)
1436 {
1437 	if (!sk_has_account(sk))
1438 		return;
1439 	sk->sk_forward_alloc -= size;
1440 }
1441 
1442 static inline void sk_mem_uncharge(struct sock *sk, int size)
1443 {
1444 	if (!sk_has_account(sk))
1445 		return;
1446 	sk->sk_forward_alloc += size;
1447 
1448 	/* Avoid a possible overflow.
1449 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1450 	 * is not called and more than 2 GBytes are released at once.
1451 	 *
1452 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1453 	 * no need to hold that much forward allocation anyway.
1454 	 */
1455 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1456 		__sk_mem_reclaim(sk, 1 << 20);
1457 }
1458 
1459 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1460 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1461 {
1462 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1463 	sk_wmem_queued_add(sk, -skb->truesize);
1464 	sk_mem_uncharge(sk, skb->truesize);
1465 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1466 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1467 		skb_ext_reset(skb);
1468 		skb_zcopy_clear(skb, true);
1469 		sk->sk_tx_skb_cache = skb;
1470 		return;
1471 	}
1472 	__kfree_skb(skb);
1473 }
1474 
1475 static inline void sock_release_ownership(struct sock *sk)
1476 {
1477 	if (sk->sk_lock.owned) {
1478 		sk->sk_lock.owned = 0;
1479 
1480 		/* The sk_lock has mutex_unlock() semantics: */
1481 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1482 	}
1483 }
1484 
1485 /*
1486  * Macro so as to not evaluate some arguments when
1487  * lockdep is not enabled.
1488  *
1489  * Mark both the sk_lock and the sk_lock.slock as a
1490  * per-address-family lock class.
1491  */
1492 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1493 do {									\
1494 	sk->sk_lock.owned = 0;						\
1495 	init_waitqueue_head(&sk->sk_lock.wq);				\
1496 	spin_lock_init(&(sk)->sk_lock.slock);				\
1497 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1498 			sizeof((sk)->sk_lock));				\
1499 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1500 				(skey), (sname));				\
1501 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1502 } while (0)
1503 
1504 #ifdef CONFIG_LOCKDEP
1505 static inline bool lockdep_sock_is_held(const struct sock *sk)
1506 {
1507 	return lockdep_is_held(&sk->sk_lock) ||
1508 	       lockdep_is_held(&sk->sk_lock.slock);
1509 }
1510 #endif
1511 
1512 void lock_sock_nested(struct sock *sk, int subclass);
1513 
1514 static inline void lock_sock(struct sock *sk)
1515 {
1516 	lock_sock_nested(sk, 0);
1517 }
1518 
1519 void __release_sock(struct sock *sk);
1520 void release_sock(struct sock *sk);
1521 
1522 /* BH context may only use the following locking interface. */
1523 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1524 #define bh_lock_sock_nested(__sk) \
1525 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1526 				SINGLE_DEPTH_NESTING)
1527 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1528 
1529 bool lock_sock_fast(struct sock *sk);
1530 /**
1531  * unlock_sock_fast - complement of lock_sock_fast
1532  * @sk: socket
1533  * @slow: slow mode
1534  *
1535  * fast unlock socket for user context.
1536  * If slow mode is on, we call regular release_sock()
1537  */
1538 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1539 {
1540 	if (slow)
1541 		release_sock(sk);
1542 	else
1543 		spin_unlock_bh(&sk->sk_lock.slock);
1544 }
1545 
1546 /* Used by processes to "lock" a socket state, so that
1547  * interrupts and bottom half handlers won't change it
1548  * from under us. It essentially blocks any incoming
1549  * packets, so that we won't get any new data or any
1550  * packets that change the state of the socket.
1551  *
1552  * While locked, BH processing will add new packets to
1553  * the backlog queue.  This queue is processed by the
1554  * owner of the socket lock right before it is released.
1555  *
1556  * Since ~2.3.5 it is also exclusive sleep lock serializing
1557  * accesses from user process context.
1558  */
1559 
1560 static inline void sock_owned_by_me(const struct sock *sk)
1561 {
1562 #ifdef CONFIG_LOCKDEP
1563 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1564 #endif
1565 }
1566 
1567 static inline bool sock_owned_by_user(const struct sock *sk)
1568 {
1569 	sock_owned_by_me(sk);
1570 	return sk->sk_lock.owned;
1571 }
1572 
1573 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1574 {
1575 	return sk->sk_lock.owned;
1576 }
1577 
1578 /* no reclassification while locks are held */
1579 static inline bool sock_allow_reclassification(const struct sock *csk)
1580 {
1581 	struct sock *sk = (struct sock *)csk;
1582 
1583 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1584 }
1585 
1586 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1587 		      struct proto *prot, int kern);
1588 void sk_free(struct sock *sk);
1589 void sk_destruct(struct sock *sk);
1590 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1591 void sk_free_unlock_clone(struct sock *sk);
1592 
1593 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1594 			     gfp_t priority);
1595 void __sock_wfree(struct sk_buff *skb);
1596 void sock_wfree(struct sk_buff *skb);
1597 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1598 			     gfp_t priority);
1599 void skb_orphan_partial(struct sk_buff *skb);
1600 void sock_rfree(struct sk_buff *skb);
1601 void sock_efree(struct sk_buff *skb);
1602 #ifdef CONFIG_INET
1603 void sock_edemux(struct sk_buff *skb);
1604 #else
1605 #define sock_edemux sock_efree
1606 #endif
1607 
1608 int sock_setsockopt(struct socket *sock, int level, int op,
1609 		    char __user *optval, unsigned int optlen);
1610 
1611 int sock_getsockopt(struct socket *sock, int level, int op,
1612 		    char __user *optval, int __user *optlen);
1613 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1614 		   bool timeval, bool time32);
1615 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1616 				    int noblock, int *errcode);
1617 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1618 				     unsigned long data_len, int noblock,
1619 				     int *errcode, int max_page_order);
1620 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1621 void sock_kfree_s(struct sock *sk, void *mem, int size);
1622 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1623 void sk_send_sigurg(struct sock *sk);
1624 
1625 struct sockcm_cookie {
1626 	u64 transmit_time;
1627 	u32 mark;
1628 	u16 tsflags;
1629 };
1630 
1631 static inline void sockcm_init(struct sockcm_cookie *sockc,
1632 			       const struct sock *sk)
1633 {
1634 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1635 }
1636 
1637 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1638 		     struct sockcm_cookie *sockc);
1639 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1640 		   struct sockcm_cookie *sockc);
1641 
1642 /*
1643  * Functions to fill in entries in struct proto_ops when a protocol
1644  * does not implement a particular function.
1645  */
1646 int sock_no_bind(struct socket *, struct sockaddr *, int);
1647 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1648 int sock_no_socketpair(struct socket *, struct socket *);
1649 int sock_no_accept(struct socket *, struct socket *, int, bool);
1650 int sock_no_getname(struct socket *, struct sockaddr *, int);
1651 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1652 int sock_no_listen(struct socket *, int);
1653 int sock_no_shutdown(struct socket *, int);
1654 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1655 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1656 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1657 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1658 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1659 int sock_no_mmap(struct file *file, struct socket *sock,
1660 		 struct vm_area_struct *vma);
1661 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1662 			 size_t size, int flags);
1663 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1664 				int offset, size_t size, int flags);
1665 
1666 /*
1667  * Functions to fill in entries in struct proto_ops when a protocol
1668  * uses the inet style.
1669  */
1670 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1671 				  char __user *optval, int __user *optlen);
1672 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1673 			int flags);
1674 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1675 				  char __user *optval, unsigned int optlen);
1676 int compat_sock_common_getsockopt(struct socket *sock, int level,
1677 		int optname, char __user *optval, int __user *optlen);
1678 int compat_sock_common_setsockopt(struct socket *sock, int level,
1679 		int optname, char __user *optval, unsigned int optlen);
1680 
1681 void sk_common_release(struct sock *sk);
1682 
1683 /*
1684  *	Default socket callbacks and setup code
1685  */
1686 
1687 /* Initialise core socket variables */
1688 void sock_init_data(struct socket *sock, struct sock *sk);
1689 
1690 /*
1691  * Socket reference counting postulates.
1692  *
1693  * * Each user of socket SHOULD hold a reference count.
1694  * * Each access point to socket (an hash table bucket, reference from a list,
1695  *   running timer, skb in flight MUST hold a reference count.
1696  * * When reference count hits 0, it means it will never increase back.
1697  * * When reference count hits 0, it means that no references from
1698  *   outside exist to this socket and current process on current CPU
1699  *   is last user and may/should destroy this socket.
1700  * * sk_free is called from any context: process, BH, IRQ. When
1701  *   it is called, socket has no references from outside -> sk_free
1702  *   may release descendant resources allocated by the socket, but
1703  *   to the time when it is called, socket is NOT referenced by any
1704  *   hash tables, lists etc.
1705  * * Packets, delivered from outside (from network or from another process)
1706  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1707  *   when they sit in queue. Otherwise, packets will leak to hole, when
1708  *   socket is looked up by one cpu and unhasing is made by another CPU.
1709  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1710  *   (leak to backlog). Packet socket does all the processing inside
1711  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1712  *   use separate SMP lock, so that they are prone too.
1713  */
1714 
1715 /* Ungrab socket and destroy it, if it was the last reference. */
1716 static inline void sock_put(struct sock *sk)
1717 {
1718 	if (refcount_dec_and_test(&sk->sk_refcnt))
1719 		sk_free(sk);
1720 }
1721 /* Generic version of sock_put(), dealing with all sockets
1722  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1723  */
1724 void sock_gen_put(struct sock *sk);
1725 
1726 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1727 		     unsigned int trim_cap, bool refcounted);
1728 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1729 				 const int nested)
1730 {
1731 	return __sk_receive_skb(sk, skb, nested, 1, true);
1732 }
1733 
1734 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1735 {
1736 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1737 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1738 		return;
1739 	sk->sk_tx_queue_mapping = tx_queue;
1740 }
1741 
1742 #define NO_QUEUE_MAPPING	USHRT_MAX
1743 
1744 static inline void sk_tx_queue_clear(struct sock *sk)
1745 {
1746 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1747 }
1748 
1749 static inline int sk_tx_queue_get(const struct sock *sk)
1750 {
1751 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1752 		return sk->sk_tx_queue_mapping;
1753 
1754 	return -1;
1755 }
1756 
1757 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1758 {
1759 #ifdef CONFIG_XPS
1760 	if (skb_rx_queue_recorded(skb)) {
1761 		u16 rx_queue = skb_get_rx_queue(skb);
1762 
1763 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1764 			return;
1765 
1766 		sk->sk_rx_queue_mapping = rx_queue;
1767 	}
1768 #endif
1769 }
1770 
1771 static inline void sk_rx_queue_clear(struct sock *sk)
1772 {
1773 #ifdef CONFIG_XPS
1774 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1775 #endif
1776 }
1777 
1778 #ifdef CONFIG_XPS
1779 static inline int sk_rx_queue_get(const struct sock *sk)
1780 {
1781 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1782 		return sk->sk_rx_queue_mapping;
1783 
1784 	return -1;
1785 }
1786 #endif
1787 
1788 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1789 {
1790 	sk_tx_queue_clear(sk);
1791 	sk->sk_socket = sock;
1792 }
1793 
1794 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1795 {
1796 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1797 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1798 }
1799 /* Detach socket from process context.
1800  * Announce socket dead, detach it from wait queue and inode.
1801  * Note that parent inode held reference count on this struct sock,
1802  * we do not release it in this function, because protocol
1803  * probably wants some additional cleanups or even continuing
1804  * to work with this socket (TCP).
1805  */
1806 static inline void sock_orphan(struct sock *sk)
1807 {
1808 	write_lock_bh(&sk->sk_callback_lock);
1809 	sock_set_flag(sk, SOCK_DEAD);
1810 	sk_set_socket(sk, NULL);
1811 	sk->sk_wq  = NULL;
1812 	write_unlock_bh(&sk->sk_callback_lock);
1813 }
1814 
1815 static inline void sock_graft(struct sock *sk, struct socket *parent)
1816 {
1817 	WARN_ON(parent->sk);
1818 	write_lock_bh(&sk->sk_callback_lock);
1819 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1820 	parent->sk = sk;
1821 	sk_set_socket(sk, parent);
1822 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1823 	security_sock_graft(sk, parent);
1824 	write_unlock_bh(&sk->sk_callback_lock);
1825 }
1826 
1827 kuid_t sock_i_uid(struct sock *sk);
1828 unsigned long sock_i_ino(struct sock *sk);
1829 
1830 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1831 {
1832 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1833 }
1834 
1835 static inline u32 net_tx_rndhash(void)
1836 {
1837 	u32 v = prandom_u32();
1838 
1839 	return v ?: 1;
1840 }
1841 
1842 static inline void sk_set_txhash(struct sock *sk)
1843 {
1844 	sk->sk_txhash = net_tx_rndhash();
1845 }
1846 
1847 static inline void sk_rethink_txhash(struct sock *sk)
1848 {
1849 	if (sk->sk_txhash)
1850 		sk_set_txhash(sk);
1851 }
1852 
1853 static inline struct dst_entry *
1854 __sk_dst_get(struct sock *sk)
1855 {
1856 	return rcu_dereference_check(sk->sk_dst_cache,
1857 				     lockdep_sock_is_held(sk));
1858 }
1859 
1860 static inline struct dst_entry *
1861 sk_dst_get(struct sock *sk)
1862 {
1863 	struct dst_entry *dst;
1864 
1865 	rcu_read_lock();
1866 	dst = rcu_dereference(sk->sk_dst_cache);
1867 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1868 		dst = NULL;
1869 	rcu_read_unlock();
1870 	return dst;
1871 }
1872 
1873 static inline void dst_negative_advice(struct sock *sk)
1874 {
1875 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1876 
1877 	sk_rethink_txhash(sk);
1878 
1879 	if (dst && dst->ops->negative_advice) {
1880 		ndst = dst->ops->negative_advice(dst);
1881 
1882 		if (ndst != dst) {
1883 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1884 			sk_tx_queue_clear(sk);
1885 			sk->sk_dst_pending_confirm = 0;
1886 		}
1887 	}
1888 }
1889 
1890 static inline void
1891 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1892 {
1893 	struct dst_entry *old_dst;
1894 
1895 	sk_tx_queue_clear(sk);
1896 	sk->sk_dst_pending_confirm = 0;
1897 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1898 					    lockdep_sock_is_held(sk));
1899 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1900 	dst_release(old_dst);
1901 }
1902 
1903 static inline void
1904 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1905 {
1906 	struct dst_entry *old_dst;
1907 
1908 	sk_tx_queue_clear(sk);
1909 	sk->sk_dst_pending_confirm = 0;
1910 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1911 	dst_release(old_dst);
1912 }
1913 
1914 static inline void
1915 __sk_dst_reset(struct sock *sk)
1916 {
1917 	__sk_dst_set(sk, NULL);
1918 }
1919 
1920 static inline void
1921 sk_dst_reset(struct sock *sk)
1922 {
1923 	sk_dst_set(sk, NULL);
1924 }
1925 
1926 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1927 
1928 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1929 
1930 static inline void sk_dst_confirm(struct sock *sk)
1931 {
1932 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1933 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1934 }
1935 
1936 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1937 {
1938 	if (skb_get_dst_pending_confirm(skb)) {
1939 		struct sock *sk = skb->sk;
1940 		unsigned long now = jiffies;
1941 
1942 		/* avoid dirtying neighbour */
1943 		if (READ_ONCE(n->confirmed) != now)
1944 			WRITE_ONCE(n->confirmed, now);
1945 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
1946 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
1947 	}
1948 }
1949 
1950 bool sk_mc_loop(struct sock *sk);
1951 
1952 static inline bool sk_can_gso(const struct sock *sk)
1953 {
1954 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1955 }
1956 
1957 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1958 
1959 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1960 {
1961 	sk->sk_route_nocaps |= flags;
1962 	sk->sk_route_caps &= ~flags;
1963 }
1964 
1965 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1966 					   struct iov_iter *from, char *to,
1967 					   int copy, int offset)
1968 {
1969 	if (skb->ip_summed == CHECKSUM_NONE) {
1970 		__wsum csum = 0;
1971 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1972 			return -EFAULT;
1973 		skb->csum = csum_block_add(skb->csum, csum, offset);
1974 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1975 		if (!copy_from_iter_full_nocache(to, copy, from))
1976 			return -EFAULT;
1977 	} else if (!copy_from_iter_full(to, copy, from))
1978 		return -EFAULT;
1979 
1980 	return 0;
1981 }
1982 
1983 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1984 				       struct iov_iter *from, int copy)
1985 {
1986 	int err, offset = skb->len;
1987 
1988 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1989 				       copy, offset);
1990 	if (err)
1991 		__skb_trim(skb, offset);
1992 
1993 	return err;
1994 }
1995 
1996 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1997 					   struct sk_buff *skb,
1998 					   struct page *page,
1999 					   int off, int copy)
2000 {
2001 	int err;
2002 
2003 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2004 				       copy, skb->len);
2005 	if (err)
2006 		return err;
2007 
2008 	skb->len	     += copy;
2009 	skb->data_len	     += copy;
2010 	skb->truesize	     += copy;
2011 	sk_wmem_queued_add(sk, copy);
2012 	sk_mem_charge(sk, copy);
2013 	return 0;
2014 }
2015 
2016 /**
2017  * sk_wmem_alloc_get - returns write allocations
2018  * @sk: socket
2019  *
2020  * Returns sk_wmem_alloc minus initial offset of one
2021  */
2022 static inline int sk_wmem_alloc_get(const struct sock *sk)
2023 {
2024 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2025 }
2026 
2027 /**
2028  * sk_rmem_alloc_get - returns read allocations
2029  * @sk: socket
2030  *
2031  * Returns sk_rmem_alloc
2032  */
2033 static inline int sk_rmem_alloc_get(const struct sock *sk)
2034 {
2035 	return atomic_read(&sk->sk_rmem_alloc);
2036 }
2037 
2038 /**
2039  * sk_has_allocations - check if allocations are outstanding
2040  * @sk: socket
2041  *
2042  * Returns true if socket has write or read allocations
2043  */
2044 static inline bool sk_has_allocations(const struct sock *sk)
2045 {
2046 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2047 }
2048 
2049 /**
2050  * skwq_has_sleeper - check if there are any waiting processes
2051  * @wq: struct socket_wq
2052  *
2053  * Returns true if socket_wq has waiting processes
2054  *
2055  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2056  * barrier call. They were added due to the race found within the tcp code.
2057  *
2058  * Consider following tcp code paths::
2059  *
2060  *   CPU1                CPU2
2061  *   sys_select          receive packet
2062  *   ...                 ...
2063  *   __add_wait_queue    update tp->rcv_nxt
2064  *   ...                 ...
2065  *   tp->rcv_nxt check   sock_def_readable
2066  *   ...                 {
2067  *   schedule               rcu_read_lock();
2068  *                          wq = rcu_dereference(sk->sk_wq);
2069  *                          if (wq && waitqueue_active(&wq->wait))
2070  *                              wake_up_interruptible(&wq->wait)
2071  *                          ...
2072  *                       }
2073  *
2074  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2075  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2076  * could then endup calling schedule and sleep forever if there are no more
2077  * data on the socket.
2078  *
2079  */
2080 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2081 {
2082 	return wq && wq_has_sleeper(&wq->wait);
2083 }
2084 
2085 /**
2086  * sock_poll_wait - place memory barrier behind the poll_wait call.
2087  * @filp:           file
2088  * @sock:           socket to wait on
2089  * @p:              poll_table
2090  *
2091  * See the comments in the wq_has_sleeper function.
2092  */
2093 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2094 				  poll_table *p)
2095 {
2096 	if (!poll_does_not_wait(p)) {
2097 		poll_wait(filp, &sock->wq.wait, p);
2098 		/* We need to be sure we are in sync with the
2099 		 * socket flags modification.
2100 		 *
2101 		 * This memory barrier is paired in the wq_has_sleeper.
2102 		 */
2103 		smp_mb();
2104 	}
2105 }
2106 
2107 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2108 {
2109 	if (sk->sk_txhash) {
2110 		skb->l4_hash = 1;
2111 		skb->hash = sk->sk_txhash;
2112 	}
2113 }
2114 
2115 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2116 
2117 /*
2118  *	Queue a received datagram if it will fit. Stream and sequenced
2119  *	protocols can't normally use this as they need to fit buffers in
2120  *	and play with them.
2121  *
2122  *	Inlined as it's very short and called for pretty much every
2123  *	packet ever received.
2124  */
2125 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2126 {
2127 	skb_orphan(skb);
2128 	skb->sk = sk;
2129 	skb->destructor = sock_rfree;
2130 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2131 	sk_mem_charge(sk, skb->truesize);
2132 }
2133 
2134 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2135 		    unsigned long expires);
2136 
2137 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2138 
2139 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2140 			struct sk_buff *skb, unsigned int flags,
2141 			void (*destructor)(struct sock *sk,
2142 					   struct sk_buff *skb));
2143 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2144 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2145 
2146 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2147 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2148 
2149 /*
2150  *	Recover an error report and clear atomically
2151  */
2152 
2153 static inline int sock_error(struct sock *sk)
2154 {
2155 	int err;
2156 	if (likely(!sk->sk_err))
2157 		return 0;
2158 	err = xchg(&sk->sk_err, 0);
2159 	return -err;
2160 }
2161 
2162 static inline unsigned long sock_wspace(struct sock *sk)
2163 {
2164 	int amt = 0;
2165 
2166 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2167 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2168 		if (amt < 0)
2169 			amt = 0;
2170 	}
2171 	return amt;
2172 }
2173 
2174 /* Note:
2175  *  We use sk->sk_wq_raw, from contexts knowing this
2176  *  pointer is not NULL and cannot disappear/change.
2177  */
2178 static inline void sk_set_bit(int nr, struct sock *sk)
2179 {
2180 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2181 	    !sock_flag(sk, SOCK_FASYNC))
2182 		return;
2183 
2184 	set_bit(nr, &sk->sk_wq_raw->flags);
2185 }
2186 
2187 static inline void sk_clear_bit(int nr, struct sock *sk)
2188 {
2189 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2190 	    !sock_flag(sk, SOCK_FASYNC))
2191 		return;
2192 
2193 	clear_bit(nr, &sk->sk_wq_raw->flags);
2194 }
2195 
2196 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2197 {
2198 	if (sock_flag(sk, SOCK_FASYNC)) {
2199 		rcu_read_lock();
2200 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2201 		rcu_read_unlock();
2202 	}
2203 }
2204 
2205 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2206  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2207  * Note: for send buffers, TCP works better if we can build two skbs at
2208  * minimum.
2209  */
2210 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2211 
2212 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2213 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2214 
2215 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2216 {
2217 	u32 val;
2218 
2219 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2220 		return;
2221 
2222 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2223 
2224 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2225 }
2226 
2227 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2228 				    bool force_schedule);
2229 
2230 /**
2231  * sk_page_frag - return an appropriate page_frag
2232  * @sk: socket
2233  *
2234  * Use the per task page_frag instead of the per socket one for
2235  * optimization when we know that we're in the normal context and owns
2236  * everything that's associated with %current.
2237  *
2238  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2239  * inside other socket operations and end up recursing into sk_page_frag()
2240  * while it's already in use.
2241  */
2242 static inline struct page_frag *sk_page_frag(struct sock *sk)
2243 {
2244 	if (gfpflags_normal_context(sk->sk_allocation))
2245 		return &current->task_frag;
2246 
2247 	return &sk->sk_frag;
2248 }
2249 
2250 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2251 
2252 /*
2253  *	Default write policy as shown to user space via poll/select/SIGIO
2254  */
2255 static inline bool sock_writeable(const struct sock *sk)
2256 {
2257 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2258 }
2259 
2260 static inline gfp_t gfp_any(void)
2261 {
2262 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2263 }
2264 
2265 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2266 {
2267 	return noblock ? 0 : sk->sk_rcvtimeo;
2268 }
2269 
2270 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2271 {
2272 	return noblock ? 0 : sk->sk_sndtimeo;
2273 }
2274 
2275 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2276 {
2277 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2278 
2279 	return v ?: 1;
2280 }
2281 
2282 /* Alas, with timeout socket operations are not restartable.
2283  * Compare this to poll().
2284  */
2285 static inline int sock_intr_errno(long timeo)
2286 {
2287 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2288 }
2289 
2290 struct sock_skb_cb {
2291 	u32 dropcount;
2292 };
2293 
2294 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2295  * using skb->cb[] would keep using it directly and utilize its
2296  * alignement guarantee.
2297  */
2298 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2299 			    sizeof(struct sock_skb_cb)))
2300 
2301 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2302 			    SOCK_SKB_CB_OFFSET))
2303 
2304 #define sock_skb_cb_check_size(size) \
2305 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2306 
2307 static inline void
2308 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2309 {
2310 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2311 						atomic_read(&sk->sk_drops) : 0;
2312 }
2313 
2314 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2315 {
2316 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2317 
2318 	atomic_add(segs, &sk->sk_drops);
2319 }
2320 
2321 static inline ktime_t sock_read_timestamp(struct sock *sk)
2322 {
2323 #if BITS_PER_LONG==32
2324 	unsigned int seq;
2325 	ktime_t kt;
2326 
2327 	do {
2328 		seq = read_seqbegin(&sk->sk_stamp_seq);
2329 		kt = sk->sk_stamp;
2330 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2331 
2332 	return kt;
2333 #else
2334 	return READ_ONCE(sk->sk_stamp);
2335 #endif
2336 }
2337 
2338 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2339 {
2340 #if BITS_PER_LONG==32
2341 	write_seqlock(&sk->sk_stamp_seq);
2342 	sk->sk_stamp = kt;
2343 	write_sequnlock(&sk->sk_stamp_seq);
2344 #else
2345 	WRITE_ONCE(sk->sk_stamp, kt);
2346 #endif
2347 }
2348 
2349 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2350 			   struct sk_buff *skb);
2351 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2352 			     struct sk_buff *skb);
2353 
2354 static inline void
2355 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2356 {
2357 	ktime_t kt = skb->tstamp;
2358 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2359 
2360 	/*
2361 	 * generate control messages if
2362 	 * - receive time stamping in software requested
2363 	 * - software time stamp available and wanted
2364 	 * - hardware time stamps available and wanted
2365 	 */
2366 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2367 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2368 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2369 	    (hwtstamps->hwtstamp &&
2370 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2371 		__sock_recv_timestamp(msg, sk, skb);
2372 	else
2373 		sock_write_timestamp(sk, kt);
2374 
2375 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2376 		__sock_recv_wifi_status(msg, sk, skb);
2377 }
2378 
2379 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2380 			      struct sk_buff *skb);
2381 
2382 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2383 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2384 					  struct sk_buff *skb)
2385 {
2386 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2387 			   (1UL << SOCK_RCVTSTAMP))
2388 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2389 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2390 
2391 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2392 		__sock_recv_ts_and_drops(msg, sk, skb);
2393 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2394 		sock_write_timestamp(sk, skb->tstamp);
2395 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2396 		sock_write_timestamp(sk, 0);
2397 }
2398 
2399 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2400 
2401 /**
2402  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2403  * @sk:		socket sending this packet
2404  * @tsflags:	timestamping flags to use
2405  * @tx_flags:	completed with instructions for time stamping
2406  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2407  *
2408  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2409  */
2410 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2411 				      __u8 *tx_flags, __u32 *tskey)
2412 {
2413 	if (unlikely(tsflags)) {
2414 		__sock_tx_timestamp(tsflags, tx_flags);
2415 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2416 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2417 			*tskey = sk->sk_tskey++;
2418 	}
2419 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2420 		*tx_flags |= SKBTX_WIFI_STATUS;
2421 }
2422 
2423 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2424 				     __u8 *tx_flags)
2425 {
2426 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2427 }
2428 
2429 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2430 {
2431 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2432 			   &skb_shinfo(skb)->tskey);
2433 }
2434 
2435 /**
2436  * sk_eat_skb - Release a skb if it is no longer needed
2437  * @sk: socket to eat this skb from
2438  * @skb: socket buffer to eat
2439  *
2440  * This routine must be called with interrupts disabled or with the socket
2441  * locked so that the sk_buff queue operation is ok.
2442 */
2443 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2444 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2445 {
2446 	__skb_unlink(skb, &sk->sk_receive_queue);
2447 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2448 	    !sk->sk_rx_skb_cache) {
2449 		sk->sk_rx_skb_cache = skb;
2450 		skb_orphan(skb);
2451 		return;
2452 	}
2453 	__kfree_skb(skb);
2454 }
2455 
2456 static inline
2457 struct net *sock_net(const struct sock *sk)
2458 {
2459 	return read_pnet(&sk->sk_net);
2460 }
2461 
2462 static inline
2463 void sock_net_set(struct sock *sk, struct net *net)
2464 {
2465 	write_pnet(&sk->sk_net, net);
2466 }
2467 
2468 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2469 {
2470 	if (skb->sk) {
2471 		struct sock *sk = skb->sk;
2472 
2473 		skb->destructor = NULL;
2474 		skb->sk = NULL;
2475 		return sk;
2476 	}
2477 	return NULL;
2478 }
2479 
2480 /* This helper checks if a socket is a full socket,
2481  * ie _not_ a timewait or request socket.
2482  */
2483 static inline bool sk_fullsock(const struct sock *sk)
2484 {
2485 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2486 }
2487 
2488 /* Checks if this SKB belongs to an HW offloaded socket
2489  * and whether any SW fallbacks are required based on dev.
2490  * Check decrypted mark in case skb_orphan() cleared socket.
2491  */
2492 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2493 						   struct net_device *dev)
2494 {
2495 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2496 	struct sock *sk = skb->sk;
2497 
2498 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2499 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2500 #ifdef CONFIG_TLS_DEVICE
2501 	} else if (unlikely(skb->decrypted)) {
2502 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2503 		kfree_skb(skb);
2504 		skb = NULL;
2505 #endif
2506 	}
2507 #endif
2508 
2509 	return skb;
2510 }
2511 
2512 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2513  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2514  */
2515 static inline bool sk_listener(const struct sock *sk)
2516 {
2517 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2518 }
2519 
2520 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2521 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2522 		       int type);
2523 
2524 bool sk_ns_capable(const struct sock *sk,
2525 		   struct user_namespace *user_ns, int cap);
2526 bool sk_capable(const struct sock *sk, int cap);
2527 bool sk_net_capable(const struct sock *sk, int cap);
2528 
2529 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2530 
2531 /* Take into consideration the size of the struct sk_buff overhead in the
2532  * determination of these values, since that is non-constant across
2533  * platforms.  This makes socket queueing behavior and performance
2534  * not depend upon such differences.
2535  */
2536 #define _SK_MEM_PACKETS		256
2537 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2538 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2539 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2540 
2541 extern __u32 sysctl_wmem_max;
2542 extern __u32 sysctl_rmem_max;
2543 
2544 extern int sysctl_tstamp_allow_data;
2545 extern int sysctl_optmem_max;
2546 
2547 extern __u32 sysctl_wmem_default;
2548 extern __u32 sysctl_rmem_default;
2549 
2550 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2551 
2552 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2553 {
2554 	/* Does this proto have per netns sysctl_wmem ? */
2555 	if (proto->sysctl_wmem_offset)
2556 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2557 
2558 	return *proto->sysctl_wmem;
2559 }
2560 
2561 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2562 {
2563 	/* Does this proto have per netns sysctl_rmem ? */
2564 	if (proto->sysctl_rmem_offset)
2565 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2566 
2567 	return *proto->sysctl_rmem;
2568 }
2569 
2570 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2571  * Some wifi drivers need to tweak it to get more chunks.
2572  * They can use this helper from their ndo_start_xmit()
2573  */
2574 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2575 {
2576 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2577 		return;
2578 	WRITE_ONCE(sk->sk_pacing_shift, val);
2579 }
2580 
2581 /* if a socket is bound to a device, check that the given device
2582  * index is either the same or that the socket is bound to an L3
2583  * master device and the given device index is also enslaved to
2584  * that L3 master
2585  */
2586 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2587 {
2588 	int mdif;
2589 
2590 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2591 		return true;
2592 
2593 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2594 	if (mdif && mdif == sk->sk_bound_dev_if)
2595 		return true;
2596 
2597 	return false;
2598 }
2599 
2600 void sock_def_readable(struct sock *sk);
2601 
2602 #endif	/* _SOCK_H */
2603