xref: /openbmc/linux/include/net/sock.h (revision a01822e9)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67 #include <net/tcp_states.h>
68 #include <linux/net_tstamp.h>
69 #include <net/l3mdev.h>
70 
71 /*
72  * This structure really needs to be cleaned up.
73  * Most of it is for TCP, and not used by any of
74  * the other protocols.
75  */
76 
77 /* Define this to get the SOCK_DBG debugging facility. */
78 #define SOCK_DEBUGGING
79 #ifdef SOCK_DEBUGGING
80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
81 					printk(KERN_DEBUG msg); } while (0)
82 #else
83 /* Validate arguments and do nothing */
84 static inline __printf(2, 3)
85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
86 {
87 }
88 #endif
89 
90 /* This is the per-socket lock.  The spinlock provides a synchronization
91  * between user contexts and software interrupt processing, whereas the
92  * mini-semaphore synchronizes multiple users amongst themselves.
93  */
94 typedef struct {
95 	spinlock_t		slock;
96 	int			owned;
97 	wait_queue_head_t	wq;
98 	/*
99 	 * We express the mutex-alike socket_lock semantics
100 	 * to the lock validator by explicitly managing
101 	 * the slock as a lock variant (in addition to
102 	 * the slock itself):
103 	 */
104 #ifdef CONFIG_DEBUG_LOCK_ALLOC
105 	struct lockdep_map dep_map;
106 #endif
107 } socket_lock_t;
108 
109 struct sock;
110 struct proto;
111 struct net;
112 
113 typedef __u32 __bitwise __portpair;
114 typedef __u64 __bitwise __addrpair;
115 
116 /**
117  *	struct sock_common - minimal network layer representation of sockets
118  *	@skc_daddr: Foreign IPv4 addr
119  *	@skc_rcv_saddr: Bound local IPv4 addr
120  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
121  *	@skc_hash: hash value used with various protocol lookup tables
122  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
123  *	@skc_dport: placeholder for inet_dport/tw_dport
124  *	@skc_num: placeholder for inet_num/tw_num
125  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
126  *	@skc_family: network address family
127  *	@skc_state: Connection state
128  *	@skc_reuse: %SO_REUSEADDR setting
129  *	@skc_reuseport: %SO_REUSEPORT setting
130  *	@skc_ipv6only: socket is IPV6 only
131  *	@skc_net_refcnt: socket is using net ref counting
132  *	@skc_bound_dev_if: bound device index if != 0
133  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
134  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
135  *	@skc_prot: protocol handlers inside a network family
136  *	@skc_net: reference to the network namespace of this socket
137  *	@skc_v6_daddr: IPV6 destination address
138  *	@skc_v6_rcv_saddr: IPV6 source address
139  *	@skc_cookie: socket's cookie value
140  *	@skc_node: main hash linkage for various protocol lookup tables
141  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
142  *	@skc_tx_queue_mapping: tx queue number for this connection
143  *	@skc_rx_queue_mapping: rx queue number for this connection
144  *	@skc_flags: place holder for sk_flags
145  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
146  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
147  *	@skc_listener: connection request listener socket (aka rsk_listener)
148  *		[union with @skc_flags]
149  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
150  *		[union with @skc_flags]
151  *	@skc_incoming_cpu: record/match cpu processing incoming packets
152  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
153  *		[union with @skc_incoming_cpu]
154  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
155  *		[union with @skc_incoming_cpu]
156  *	@skc_refcnt: reference count
157  *
158  *	This is the minimal network layer representation of sockets, the header
159  *	for struct sock and struct inet_timewait_sock.
160  */
161 struct sock_common {
162 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
163 	 * address on 64bit arches : cf INET_MATCH()
164 	 */
165 	union {
166 		__addrpair	skc_addrpair;
167 		struct {
168 			__be32	skc_daddr;
169 			__be32	skc_rcv_saddr;
170 		};
171 	};
172 	union  {
173 		unsigned int	skc_hash;
174 		__u16		skc_u16hashes[2];
175 	};
176 	/* skc_dport && skc_num must be grouped as well */
177 	union {
178 		__portpair	skc_portpair;
179 		struct {
180 			__be16	skc_dport;
181 			__u16	skc_num;
182 		};
183 	};
184 
185 	unsigned short		skc_family;
186 	volatile unsigned char	skc_state;
187 	unsigned char		skc_reuse:4;
188 	unsigned char		skc_reuseport:1;
189 	unsigned char		skc_ipv6only:1;
190 	unsigned char		skc_net_refcnt:1;
191 	int			skc_bound_dev_if;
192 	union {
193 		struct hlist_node	skc_bind_node;
194 		struct hlist_node	skc_portaddr_node;
195 	};
196 	struct proto		*skc_prot;
197 	possible_net_t		skc_net;
198 
199 #if IS_ENABLED(CONFIG_IPV6)
200 	struct in6_addr		skc_v6_daddr;
201 	struct in6_addr		skc_v6_rcv_saddr;
202 #endif
203 
204 	atomic64_t		skc_cookie;
205 
206 	/* following fields are padding to force
207 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
208 	 * assuming IPV6 is enabled. We use this padding differently
209 	 * for different kind of 'sockets'
210 	 */
211 	union {
212 		unsigned long	skc_flags;
213 		struct sock	*skc_listener; /* request_sock */
214 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
215 	};
216 	/*
217 	 * fields between dontcopy_begin/dontcopy_end
218 	 * are not copied in sock_copy()
219 	 */
220 	/* private: */
221 	int			skc_dontcopy_begin[0];
222 	/* public: */
223 	union {
224 		struct hlist_node	skc_node;
225 		struct hlist_nulls_node skc_nulls_node;
226 	};
227 	unsigned short		skc_tx_queue_mapping;
228 #ifdef CONFIG_XPS
229 	unsigned short		skc_rx_queue_mapping;
230 #endif
231 	union {
232 		int		skc_incoming_cpu;
233 		u32		skc_rcv_wnd;
234 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
235 	};
236 
237 	refcount_t		skc_refcnt;
238 	/* private: */
239 	int                     skc_dontcopy_end[0];
240 	union {
241 		u32		skc_rxhash;
242 		u32		skc_window_clamp;
243 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
244 	};
245 	/* public: */
246 };
247 
248 struct bpf_sk_storage;
249 
250 /**
251   *	struct sock - network layer representation of sockets
252   *	@__sk_common: shared layout with inet_timewait_sock
253   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255   *	@sk_lock:	synchronizer
256   *	@sk_kern_sock: True if sock is using kernel lock classes
257   *	@sk_rcvbuf: size of receive buffer in bytes
258   *	@sk_wq: sock wait queue and async head
259   *	@sk_rx_dst: receive input route used by early demux
260   *	@sk_dst_cache: destination cache
261   *	@sk_dst_pending_confirm: need to confirm neighbour
262   *	@sk_policy: flow policy
263   *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
264   *	@sk_receive_queue: incoming packets
265   *	@sk_wmem_alloc: transmit queue bytes committed
266   *	@sk_tsq_flags: TCP Small Queues flags
267   *	@sk_write_queue: Packet sending queue
268   *	@sk_omem_alloc: "o" is "option" or "other"
269   *	@sk_wmem_queued: persistent queue size
270   *	@sk_forward_alloc: space allocated forward
271   *	@sk_napi_id: id of the last napi context to receive data for sk
272   *	@sk_ll_usec: usecs to busypoll when there is no data
273   *	@sk_allocation: allocation mode
274   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
275   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
276   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
277   *	@sk_sndbuf: size of send buffer in bytes
278   *	@__sk_flags_offset: empty field used to determine location of bitfield
279   *	@sk_padding: unused element for alignment
280   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
281   *	@sk_no_check_rx: allow zero checksum in RX packets
282   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
283   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
284   *	@sk_route_forced_caps: static, forced route capabilities
285   *		(set in tcp_init_sock())
286   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287   *	@sk_gso_max_size: Maximum GSO segment size to build
288   *	@sk_gso_max_segs: Maximum number of GSO segments
289   *	@sk_pacing_shift: scaling factor for TCP Small Queues
290   *	@sk_lingertime: %SO_LINGER l_linger setting
291   *	@sk_backlog: always used with the per-socket spinlock held
292   *	@sk_callback_lock: used with the callbacks in the end of this struct
293   *	@sk_error_queue: rarely used
294   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295   *			  IPV6_ADDRFORM for instance)
296   *	@sk_err: last error
297   *	@sk_err_soft: errors that don't cause failure but are the cause of a
298   *		      persistent failure not just 'timed out'
299   *	@sk_drops: raw/udp drops counter
300   *	@sk_ack_backlog: current listen backlog
301   *	@sk_max_ack_backlog: listen backlog set in listen()
302   *	@sk_uid: user id of owner
303   *	@sk_priority: %SO_PRIORITY setting
304   *	@sk_type: socket type (%SOCK_STREAM, etc)
305   *	@sk_protocol: which protocol this socket belongs in this network family
306   *	@sk_peer_pid: &struct pid for this socket's peer
307   *	@sk_peer_cred: %SO_PEERCRED setting
308   *	@sk_rcvlowat: %SO_RCVLOWAT setting
309   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
310   *	@sk_sndtimeo: %SO_SNDTIMEO setting
311   *	@sk_txhash: computed flow hash for use on transmit
312   *	@sk_filter: socket filtering instructions
313   *	@sk_timer: sock cleanup timer
314   *	@sk_stamp: time stamp of last packet received
315   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
316   *	@sk_tsflags: SO_TIMESTAMPING socket options
317   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
318   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
319   *	@sk_socket: Identd and reporting IO signals
320   *	@sk_user_data: RPC layer private data
321   *	@sk_frag: cached page frag
322   *	@sk_peek_off: current peek_offset value
323   *	@sk_send_head: front of stuff to transmit
324   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
325   *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
326   *	@sk_security: used by security modules
327   *	@sk_mark: generic packet mark
328   *	@sk_cgrp_data: cgroup data for this cgroup
329   *	@sk_memcg: this socket's memory cgroup association
330   *	@sk_write_pending: a write to stream socket waits to start
331   *	@sk_state_change: callback to indicate change in the state of the sock
332   *	@sk_data_ready: callback to indicate there is data to be processed
333   *	@sk_write_space: callback to indicate there is bf sending space available
334   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
335   *	@sk_backlog_rcv: callback to process the backlog
336   *	@sk_validate_xmit_skb: ptr to an optional validate function
337   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
338   *	@sk_reuseport_cb: reuseport group container
339   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
340   *	@sk_rcu: used during RCU grace period
341   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
342   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
343   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
344   *	@sk_txtime_unused: unused txtime flags
345   */
346 struct sock {
347 	/*
348 	 * Now struct inet_timewait_sock also uses sock_common, so please just
349 	 * don't add nothing before this first member (__sk_common) --acme
350 	 */
351 	struct sock_common	__sk_common;
352 #define sk_node			__sk_common.skc_node
353 #define sk_nulls_node		__sk_common.skc_nulls_node
354 #define sk_refcnt		__sk_common.skc_refcnt
355 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
356 #ifdef CONFIG_XPS
357 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
358 #endif
359 
360 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
361 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
362 #define sk_hash			__sk_common.skc_hash
363 #define sk_portpair		__sk_common.skc_portpair
364 #define sk_num			__sk_common.skc_num
365 #define sk_dport		__sk_common.skc_dport
366 #define sk_addrpair		__sk_common.skc_addrpair
367 #define sk_daddr		__sk_common.skc_daddr
368 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
369 #define sk_family		__sk_common.skc_family
370 #define sk_state		__sk_common.skc_state
371 #define sk_reuse		__sk_common.skc_reuse
372 #define sk_reuseport		__sk_common.skc_reuseport
373 #define sk_ipv6only		__sk_common.skc_ipv6only
374 #define sk_net_refcnt		__sk_common.skc_net_refcnt
375 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
376 #define sk_bind_node		__sk_common.skc_bind_node
377 #define sk_prot			__sk_common.skc_prot
378 #define sk_net			__sk_common.skc_net
379 #define sk_v6_daddr		__sk_common.skc_v6_daddr
380 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
381 #define sk_cookie		__sk_common.skc_cookie
382 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
383 #define sk_flags		__sk_common.skc_flags
384 #define sk_rxhash		__sk_common.skc_rxhash
385 
386 	socket_lock_t		sk_lock;
387 	atomic_t		sk_drops;
388 	int			sk_rcvlowat;
389 	struct sk_buff_head	sk_error_queue;
390 	struct sk_buff		*sk_rx_skb_cache;
391 	struct sk_buff_head	sk_receive_queue;
392 	/*
393 	 * The backlog queue is special, it is always used with
394 	 * the per-socket spinlock held and requires low latency
395 	 * access. Therefore we special case it's implementation.
396 	 * Note : rmem_alloc is in this structure to fill a hole
397 	 * on 64bit arches, not because its logically part of
398 	 * backlog.
399 	 */
400 	struct {
401 		atomic_t	rmem_alloc;
402 		int		len;
403 		struct sk_buff	*head;
404 		struct sk_buff	*tail;
405 	} sk_backlog;
406 #define sk_rmem_alloc sk_backlog.rmem_alloc
407 
408 	int			sk_forward_alloc;
409 #ifdef CONFIG_NET_RX_BUSY_POLL
410 	unsigned int		sk_ll_usec;
411 	/* ===== mostly read cache line ===== */
412 	unsigned int		sk_napi_id;
413 #endif
414 	int			sk_rcvbuf;
415 
416 	struct sk_filter __rcu	*sk_filter;
417 	union {
418 		struct socket_wq __rcu	*sk_wq;
419 		/* private: */
420 		struct socket_wq	*sk_wq_raw;
421 		/* public: */
422 	};
423 #ifdef CONFIG_XFRM
424 	struct xfrm_policy __rcu *sk_policy[2];
425 #endif
426 	struct dst_entry	*sk_rx_dst;
427 	struct dst_entry __rcu	*sk_dst_cache;
428 	atomic_t		sk_omem_alloc;
429 	int			sk_sndbuf;
430 
431 	/* ===== cache line for TX ===== */
432 	int			sk_wmem_queued;
433 	refcount_t		sk_wmem_alloc;
434 	unsigned long		sk_tsq_flags;
435 	union {
436 		struct sk_buff	*sk_send_head;
437 		struct rb_root	tcp_rtx_queue;
438 	};
439 	struct sk_buff		*sk_tx_skb_cache;
440 	struct sk_buff_head	sk_write_queue;
441 	__s32			sk_peek_off;
442 	int			sk_write_pending;
443 	__u32			sk_dst_pending_confirm;
444 	u32			sk_pacing_status; /* see enum sk_pacing */
445 	long			sk_sndtimeo;
446 	struct timer_list	sk_timer;
447 	__u32			sk_priority;
448 	__u32			sk_mark;
449 	unsigned long		sk_pacing_rate; /* bytes per second */
450 	unsigned long		sk_max_pacing_rate;
451 	struct page_frag	sk_frag;
452 	netdev_features_t	sk_route_caps;
453 	netdev_features_t	sk_route_nocaps;
454 	netdev_features_t	sk_route_forced_caps;
455 	int			sk_gso_type;
456 	unsigned int		sk_gso_max_size;
457 	gfp_t			sk_allocation;
458 	__u32			sk_txhash;
459 
460 	/*
461 	 * Because of non atomicity rules, all
462 	 * changes are protected by socket lock.
463 	 */
464 	u8			sk_padding : 1,
465 				sk_kern_sock : 1,
466 				sk_no_check_tx : 1,
467 				sk_no_check_rx : 1,
468 				sk_userlocks : 4;
469 	u8			sk_pacing_shift;
470 	u16			sk_type;
471 	u16			sk_protocol;
472 	u16			sk_gso_max_segs;
473 	unsigned long	        sk_lingertime;
474 	struct proto		*sk_prot_creator;
475 	rwlock_t		sk_callback_lock;
476 	int			sk_err,
477 				sk_err_soft;
478 	u32			sk_ack_backlog;
479 	u32			sk_max_ack_backlog;
480 	kuid_t			sk_uid;
481 	struct pid		*sk_peer_pid;
482 	const struct cred	*sk_peer_cred;
483 	long			sk_rcvtimeo;
484 	ktime_t			sk_stamp;
485 #if BITS_PER_LONG==32
486 	seqlock_t		sk_stamp_seq;
487 #endif
488 	u16			sk_tsflags;
489 	u8			sk_shutdown;
490 	u32			sk_tskey;
491 	atomic_t		sk_zckey;
492 
493 	u8			sk_clockid;
494 	u8			sk_txtime_deadline_mode : 1,
495 				sk_txtime_report_errors : 1,
496 				sk_txtime_unused : 6;
497 
498 	struct socket		*sk_socket;
499 	void			*sk_user_data;
500 #ifdef CONFIG_SECURITY
501 	void			*sk_security;
502 #endif
503 	struct sock_cgroup_data	sk_cgrp_data;
504 	struct mem_cgroup	*sk_memcg;
505 	void			(*sk_state_change)(struct sock *sk);
506 	void			(*sk_data_ready)(struct sock *sk);
507 	void			(*sk_write_space)(struct sock *sk);
508 	void			(*sk_error_report)(struct sock *sk);
509 	int			(*sk_backlog_rcv)(struct sock *sk,
510 						  struct sk_buff *skb);
511 #ifdef CONFIG_SOCK_VALIDATE_XMIT
512 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
513 							struct net_device *dev,
514 							struct sk_buff *skb);
515 #endif
516 	void                    (*sk_destruct)(struct sock *sk);
517 	struct sock_reuseport __rcu	*sk_reuseport_cb;
518 #ifdef CONFIG_BPF_SYSCALL
519 	struct bpf_sk_storage __rcu	*sk_bpf_storage;
520 #endif
521 	struct rcu_head		sk_rcu;
522 };
523 
524 enum sk_pacing {
525 	SK_PACING_NONE		= 0,
526 	SK_PACING_NEEDED	= 1,
527 	SK_PACING_FQ		= 2,
528 };
529 
530 /* Pointer stored in sk_user_data might not be suitable for copying
531  * when cloning the socket. For instance, it can point to a reference
532  * counted object. sk_user_data bottom bit is set if pointer must not
533  * be copied.
534  */
535 #define SK_USER_DATA_NOCOPY	1UL
536 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY)
537 
538 /**
539  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
540  * @sk: socket
541  */
542 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
543 {
544 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
545 }
546 
547 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
548 
549 #define rcu_dereference_sk_user_data(sk)				\
550 ({									\
551 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
552 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
553 })
554 #define rcu_assign_sk_user_data(sk, ptr)				\
555 ({									\
556 	uintptr_t __tmp = (uintptr_t)(ptr);				\
557 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
558 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
559 })
560 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
561 ({									\
562 	uintptr_t __tmp = (uintptr_t)(ptr);				\
563 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
564 	rcu_assign_pointer(__sk_user_data((sk)),			\
565 			   __tmp | SK_USER_DATA_NOCOPY);		\
566 })
567 
568 /*
569  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
570  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
571  * on a socket means that the socket will reuse everybody else's port
572  * without looking at the other's sk_reuse value.
573  */
574 
575 #define SK_NO_REUSE	0
576 #define SK_CAN_REUSE	1
577 #define SK_FORCE_REUSE	2
578 
579 int sk_set_peek_off(struct sock *sk, int val);
580 
581 static inline int sk_peek_offset(struct sock *sk, int flags)
582 {
583 	if (unlikely(flags & MSG_PEEK)) {
584 		return READ_ONCE(sk->sk_peek_off);
585 	}
586 
587 	return 0;
588 }
589 
590 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
591 {
592 	s32 off = READ_ONCE(sk->sk_peek_off);
593 
594 	if (unlikely(off >= 0)) {
595 		off = max_t(s32, off - val, 0);
596 		WRITE_ONCE(sk->sk_peek_off, off);
597 	}
598 }
599 
600 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
601 {
602 	sk_peek_offset_bwd(sk, -val);
603 }
604 
605 /*
606  * Hashed lists helper routines
607  */
608 static inline struct sock *sk_entry(const struct hlist_node *node)
609 {
610 	return hlist_entry(node, struct sock, sk_node);
611 }
612 
613 static inline struct sock *__sk_head(const struct hlist_head *head)
614 {
615 	return hlist_entry(head->first, struct sock, sk_node);
616 }
617 
618 static inline struct sock *sk_head(const struct hlist_head *head)
619 {
620 	return hlist_empty(head) ? NULL : __sk_head(head);
621 }
622 
623 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
624 {
625 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
626 }
627 
628 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
629 {
630 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
631 }
632 
633 static inline struct sock *sk_next(const struct sock *sk)
634 {
635 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
636 }
637 
638 static inline struct sock *sk_nulls_next(const struct sock *sk)
639 {
640 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
641 		hlist_nulls_entry(sk->sk_nulls_node.next,
642 				  struct sock, sk_nulls_node) :
643 		NULL;
644 }
645 
646 static inline bool sk_unhashed(const struct sock *sk)
647 {
648 	return hlist_unhashed(&sk->sk_node);
649 }
650 
651 static inline bool sk_hashed(const struct sock *sk)
652 {
653 	return !sk_unhashed(sk);
654 }
655 
656 static inline void sk_node_init(struct hlist_node *node)
657 {
658 	node->pprev = NULL;
659 }
660 
661 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
662 {
663 	node->pprev = NULL;
664 }
665 
666 static inline void __sk_del_node(struct sock *sk)
667 {
668 	__hlist_del(&sk->sk_node);
669 }
670 
671 /* NB: equivalent to hlist_del_init_rcu */
672 static inline bool __sk_del_node_init(struct sock *sk)
673 {
674 	if (sk_hashed(sk)) {
675 		__sk_del_node(sk);
676 		sk_node_init(&sk->sk_node);
677 		return true;
678 	}
679 	return false;
680 }
681 
682 /* Grab socket reference count. This operation is valid only
683    when sk is ALREADY grabbed f.e. it is found in hash table
684    or a list and the lookup is made under lock preventing hash table
685    modifications.
686  */
687 
688 static __always_inline void sock_hold(struct sock *sk)
689 {
690 	refcount_inc(&sk->sk_refcnt);
691 }
692 
693 /* Ungrab socket in the context, which assumes that socket refcnt
694    cannot hit zero, f.e. it is true in context of any socketcall.
695  */
696 static __always_inline void __sock_put(struct sock *sk)
697 {
698 	refcount_dec(&sk->sk_refcnt);
699 }
700 
701 static inline bool sk_del_node_init(struct sock *sk)
702 {
703 	bool rc = __sk_del_node_init(sk);
704 
705 	if (rc) {
706 		/* paranoid for a while -acme */
707 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
708 		__sock_put(sk);
709 	}
710 	return rc;
711 }
712 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
713 
714 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
715 {
716 	if (sk_hashed(sk)) {
717 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
718 		return true;
719 	}
720 	return false;
721 }
722 
723 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
724 {
725 	bool rc = __sk_nulls_del_node_init_rcu(sk);
726 
727 	if (rc) {
728 		/* paranoid for a while -acme */
729 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
730 		__sock_put(sk);
731 	}
732 	return rc;
733 }
734 
735 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
736 {
737 	hlist_add_head(&sk->sk_node, list);
738 }
739 
740 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
741 {
742 	sock_hold(sk);
743 	__sk_add_node(sk, list);
744 }
745 
746 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
747 {
748 	sock_hold(sk);
749 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
750 	    sk->sk_family == AF_INET6)
751 		hlist_add_tail_rcu(&sk->sk_node, list);
752 	else
753 		hlist_add_head_rcu(&sk->sk_node, list);
754 }
755 
756 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
757 {
758 	sock_hold(sk);
759 	hlist_add_tail_rcu(&sk->sk_node, list);
760 }
761 
762 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
763 {
764 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
765 }
766 
767 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
768 {
769 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
770 }
771 
772 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
773 {
774 	sock_hold(sk);
775 	__sk_nulls_add_node_rcu(sk, list);
776 }
777 
778 static inline void __sk_del_bind_node(struct sock *sk)
779 {
780 	__hlist_del(&sk->sk_bind_node);
781 }
782 
783 static inline void sk_add_bind_node(struct sock *sk,
784 					struct hlist_head *list)
785 {
786 	hlist_add_head(&sk->sk_bind_node, list);
787 }
788 
789 #define sk_for_each(__sk, list) \
790 	hlist_for_each_entry(__sk, list, sk_node)
791 #define sk_for_each_rcu(__sk, list) \
792 	hlist_for_each_entry_rcu(__sk, list, sk_node)
793 #define sk_nulls_for_each(__sk, node, list) \
794 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
795 #define sk_nulls_for_each_rcu(__sk, node, list) \
796 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
797 #define sk_for_each_from(__sk) \
798 	hlist_for_each_entry_from(__sk, sk_node)
799 #define sk_nulls_for_each_from(__sk, node) \
800 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
801 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
802 #define sk_for_each_safe(__sk, tmp, list) \
803 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
804 #define sk_for_each_bound(__sk, list) \
805 	hlist_for_each_entry(__sk, list, sk_bind_node)
806 
807 /**
808  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
809  * @tpos:	the type * to use as a loop cursor.
810  * @pos:	the &struct hlist_node to use as a loop cursor.
811  * @head:	the head for your list.
812  * @offset:	offset of hlist_node within the struct.
813  *
814  */
815 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
816 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
817 	     pos != NULL &&						       \
818 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
819 	     pos = rcu_dereference(hlist_next_rcu(pos)))
820 
821 static inline struct user_namespace *sk_user_ns(struct sock *sk)
822 {
823 	/* Careful only use this in a context where these parameters
824 	 * can not change and must all be valid, such as recvmsg from
825 	 * userspace.
826 	 */
827 	return sk->sk_socket->file->f_cred->user_ns;
828 }
829 
830 /* Sock flags */
831 enum sock_flags {
832 	SOCK_DEAD,
833 	SOCK_DONE,
834 	SOCK_URGINLINE,
835 	SOCK_KEEPOPEN,
836 	SOCK_LINGER,
837 	SOCK_DESTROY,
838 	SOCK_BROADCAST,
839 	SOCK_TIMESTAMP,
840 	SOCK_ZAPPED,
841 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
842 	SOCK_DBG, /* %SO_DEBUG setting */
843 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
844 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
845 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
846 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
847 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
848 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
849 	SOCK_FASYNC, /* fasync() active */
850 	SOCK_RXQ_OVFL,
851 	SOCK_ZEROCOPY, /* buffers from userspace */
852 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
853 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
854 		     * Will use last 4 bytes of packet sent from
855 		     * user-space instead.
856 		     */
857 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
858 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
859 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
860 	SOCK_TXTIME,
861 	SOCK_XDP, /* XDP is attached */
862 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
863 };
864 
865 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
866 
867 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
868 {
869 	nsk->sk_flags = osk->sk_flags;
870 }
871 
872 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
873 {
874 	__set_bit(flag, &sk->sk_flags);
875 }
876 
877 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
878 {
879 	__clear_bit(flag, &sk->sk_flags);
880 }
881 
882 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
883 {
884 	return test_bit(flag, &sk->sk_flags);
885 }
886 
887 #ifdef CONFIG_NET
888 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
889 static inline int sk_memalloc_socks(void)
890 {
891 	return static_branch_unlikely(&memalloc_socks_key);
892 }
893 #else
894 
895 static inline int sk_memalloc_socks(void)
896 {
897 	return 0;
898 }
899 
900 #endif
901 
902 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
903 {
904 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
905 }
906 
907 static inline void sk_acceptq_removed(struct sock *sk)
908 {
909 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
910 }
911 
912 static inline void sk_acceptq_added(struct sock *sk)
913 {
914 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
915 }
916 
917 static inline bool sk_acceptq_is_full(const struct sock *sk)
918 {
919 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
920 }
921 
922 /*
923  * Compute minimal free write space needed to queue new packets.
924  */
925 static inline int sk_stream_min_wspace(const struct sock *sk)
926 {
927 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
928 }
929 
930 static inline int sk_stream_wspace(const struct sock *sk)
931 {
932 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
933 }
934 
935 static inline void sk_wmem_queued_add(struct sock *sk, int val)
936 {
937 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
938 }
939 
940 void sk_stream_write_space(struct sock *sk);
941 
942 /* OOB backlog add */
943 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
944 {
945 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
946 	skb_dst_force(skb);
947 
948 	if (!sk->sk_backlog.tail)
949 		WRITE_ONCE(sk->sk_backlog.head, skb);
950 	else
951 		sk->sk_backlog.tail->next = skb;
952 
953 	WRITE_ONCE(sk->sk_backlog.tail, skb);
954 	skb->next = NULL;
955 }
956 
957 /*
958  * Take into account size of receive queue and backlog queue
959  * Do not take into account this skb truesize,
960  * to allow even a single big packet to come.
961  */
962 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
963 {
964 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
965 
966 	return qsize > limit;
967 }
968 
969 /* The per-socket spinlock must be held here. */
970 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
971 					      unsigned int limit)
972 {
973 	if (sk_rcvqueues_full(sk, limit))
974 		return -ENOBUFS;
975 
976 	/*
977 	 * If the skb was allocated from pfmemalloc reserves, only
978 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
979 	 * helping free memory
980 	 */
981 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
982 		return -ENOMEM;
983 
984 	__sk_add_backlog(sk, skb);
985 	sk->sk_backlog.len += skb->truesize;
986 	return 0;
987 }
988 
989 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
990 
991 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
992 {
993 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
994 		return __sk_backlog_rcv(sk, skb);
995 
996 	return sk->sk_backlog_rcv(sk, skb);
997 }
998 
999 static inline void sk_incoming_cpu_update(struct sock *sk)
1000 {
1001 	int cpu = raw_smp_processor_id();
1002 
1003 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1004 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1005 }
1006 
1007 static inline void sock_rps_record_flow_hash(__u32 hash)
1008 {
1009 #ifdef CONFIG_RPS
1010 	struct rps_sock_flow_table *sock_flow_table;
1011 
1012 	rcu_read_lock();
1013 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1014 	rps_record_sock_flow(sock_flow_table, hash);
1015 	rcu_read_unlock();
1016 #endif
1017 }
1018 
1019 static inline void sock_rps_record_flow(const struct sock *sk)
1020 {
1021 #ifdef CONFIG_RPS
1022 	if (static_branch_unlikely(&rfs_needed)) {
1023 		/* Reading sk->sk_rxhash might incur an expensive cache line
1024 		 * miss.
1025 		 *
1026 		 * TCP_ESTABLISHED does cover almost all states where RFS
1027 		 * might be useful, and is cheaper [1] than testing :
1028 		 *	IPv4: inet_sk(sk)->inet_daddr
1029 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1030 		 * OR	an additional socket flag
1031 		 * [1] : sk_state and sk_prot are in the same cache line.
1032 		 */
1033 		if (sk->sk_state == TCP_ESTABLISHED)
1034 			sock_rps_record_flow_hash(sk->sk_rxhash);
1035 	}
1036 #endif
1037 }
1038 
1039 static inline void sock_rps_save_rxhash(struct sock *sk,
1040 					const struct sk_buff *skb)
1041 {
1042 #ifdef CONFIG_RPS
1043 	if (unlikely(sk->sk_rxhash != skb->hash))
1044 		sk->sk_rxhash = skb->hash;
1045 #endif
1046 }
1047 
1048 static inline void sock_rps_reset_rxhash(struct sock *sk)
1049 {
1050 #ifdef CONFIG_RPS
1051 	sk->sk_rxhash = 0;
1052 #endif
1053 }
1054 
1055 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1056 	({	int __rc;						\
1057 		release_sock(__sk);					\
1058 		__rc = __condition;					\
1059 		if (!__rc) {						\
1060 			*(__timeo) = wait_woken(__wait,			\
1061 						TASK_INTERRUPTIBLE,	\
1062 						*(__timeo));		\
1063 		}							\
1064 		sched_annotate_sleep();					\
1065 		lock_sock(__sk);					\
1066 		__rc = __condition;					\
1067 		__rc;							\
1068 	})
1069 
1070 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1071 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1072 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1073 int sk_stream_error(struct sock *sk, int flags, int err);
1074 void sk_stream_kill_queues(struct sock *sk);
1075 void sk_set_memalloc(struct sock *sk);
1076 void sk_clear_memalloc(struct sock *sk);
1077 
1078 void __sk_flush_backlog(struct sock *sk);
1079 
1080 static inline bool sk_flush_backlog(struct sock *sk)
1081 {
1082 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1083 		__sk_flush_backlog(sk);
1084 		return true;
1085 	}
1086 	return false;
1087 }
1088 
1089 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1090 
1091 struct request_sock_ops;
1092 struct timewait_sock_ops;
1093 struct inet_hashinfo;
1094 struct raw_hashinfo;
1095 struct smc_hashinfo;
1096 struct module;
1097 
1098 /*
1099  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1100  * un-modified. Special care is taken when initializing object to zero.
1101  */
1102 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1103 {
1104 	if (offsetof(struct sock, sk_node.next) != 0)
1105 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1106 	memset(&sk->sk_node.pprev, 0,
1107 	       size - offsetof(struct sock, sk_node.pprev));
1108 }
1109 
1110 /* Networking protocol blocks we attach to sockets.
1111  * socket layer -> transport layer interface
1112  */
1113 struct proto {
1114 	void			(*close)(struct sock *sk,
1115 					long timeout);
1116 	int			(*pre_connect)(struct sock *sk,
1117 					struct sockaddr *uaddr,
1118 					int addr_len);
1119 	int			(*connect)(struct sock *sk,
1120 					struct sockaddr *uaddr,
1121 					int addr_len);
1122 	int			(*disconnect)(struct sock *sk, int flags);
1123 
1124 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1125 					  bool kern);
1126 
1127 	int			(*ioctl)(struct sock *sk, int cmd,
1128 					 unsigned long arg);
1129 	int			(*init)(struct sock *sk);
1130 	void			(*destroy)(struct sock *sk);
1131 	void			(*shutdown)(struct sock *sk, int how);
1132 	int			(*setsockopt)(struct sock *sk, int level,
1133 					int optname, char __user *optval,
1134 					unsigned int optlen);
1135 	int			(*getsockopt)(struct sock *sk, int level,
1136 					int optname, char __user *optval,
1137 					int __user *option);
1138 	void			(*keepalive)(struct sock *sk, int valbool);
1139 #ifdef CONFIG_COMPAT
1140 	int			(*compat_setsockopt)(struct sock *sk,
1141 					int level,
1142 					int optname, char __user *optval,
1143 					unsigned int optlen);
1144 	int			(*compat_getsockopt)(struct sock *sk,
1145 					int level,
1146 					int optname, char __user *optval,
1147 					int __user *option);
1148 	int			(*compat_ioctl)(struct sock *sk,
1149 					unsigned int cmd, unsigned long arg);
1150 #endif
1151 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1152 					   size_t len);
1153 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1154 					   size_t len, int noblock, int flags,
1155 					   int *addr_len);
1156 	int			(*sendpage)(struct sock *sk, struct page *page,
1157 					int offset, size_t size, int flags);
1158 	int			(*bind)(struct sock *sk,
1159 					struct sockaddr *uaddr, int addr_len);
1160 
1161 	int			(*backlog_rcv) (struct sock *sk,
1162 						struct sk_buff *skb);
1163 
1164 	void		(*release_cb)(struct sock *sk);
1165 
1166 	/* Keeping track of sk's, looking them up, and port selection methods. */
1167 	int			(*hash)(struct sock *sk);
1168 	void			(*unhash)(struct sock *sk);
1169 	void			(*rehash)(struct sock *sk);
1170 	int			(*get_port)(struct sock *sk, unsigned short snum);
1171 
1172 	/* Keeping track of sockets in use */
1173 #ifdef CONFIG_PROC_FS
1174 	unsigned int		inuse_idx;
1175 #endif
1176 
1177 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1178 	bool			(*stream_memory_read)(const struct sock *sk);
1179 	/* Memory pressure */
1180 	void			(*enter_memory_pressure)(struct sock *sk);
1181 	void			(*leave_memory_pressure)(struct sock *sk);
1182 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1183 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1184 	/*
1185 	 * Pressure flag: try to collapse.
1186 	 * Technical note: it is used by multiple contexts non atomically.
1187 	 * All the __sk_mem_schedule() is of this nature: accounting
1188 	 * is strict, actions are advisory and have some latency.
1189 	 */
1190 	unsigned long		*memory_pressure;
1191 	long			*sysctl_mem;
1192 
1193 	int			*sysctl_wmem;
1194 	int			*sysctl_rmem;
1195 	u32			sysctl_wmem_offset;
1196 	u32			sysctl_rmem_offset;
1197 
1198 	int			max_header;
1199 	bool			no_autobind;
1200 
1201 	struct kmem_cache	*slab;
1202 	unsigned int		obj_size;
1203 	slab_flags_t		slab_flags;
1204 	unsigned int		useroffset;	/* Usercopy region offset */
1205 	unsigned int		usersize;	/* Usercopy region size */
1206 
1207 	struct percpu_counter	*orphan_count;
1208 
1209 	struct request_sock_ops	*rsk_prot;
1210 	struct timewait_sock_ops *twsk_prot;
1211 
1212 	union {
1213 		struct inet_hashinfo	*hashinfo;
1214 		struct udp_table	*udp_table;
1215 		struct raw_hashinfo	*raw_hash;
1216 		struct smc_hashinfo	*smc_hash;
1217 	} h;
1218 
1219 	struct module		*owner;
1220 
1221 	char			name[32];
1222 
1223 	struct list_head	node;
1224 #ifdef SOCK_REFCNT_DEBUG
1225 	atomic_t		socks;
1226 #endif
1227 	int			(*diag_destroy)(struct sock *sk, int err);
1228 } __randomize_layout;
1229 
1230 int proto_register(struct proto *prot, int alloc_slab);
1231 void proto_unregister(struct proto *prot);
1232 int sock_load_diag_module(int family, int protocol);
1233 
1234 #ifdef SOCK_REFCNT_DEBUG
1235 static inline void sk_refcnt_debug_inc(struct sock *sk)
1236 {
1237 	atomic_inc(&sk->sk_prot->socks);
1238 }
1239 
1240 static inline void sk_refcnt_debug_dec(struct sock *sk)
1241 {
1242 	atomic_dec(&sk->sk_prot->socks);
1243 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1244 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1245 }
1246 
1247 static inline void sk_refcnt_debug_release(const struct sock *sk)
1248 {
1249 	if (refcount_read(&sk->sk_refcnt) != 1)
1250 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1251 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1252 }
1253 #else /* SOCK_REFCNT_DEBUG */
1254 #define sk_refcnt_debug_inc(sk) do { } while (0)
1255 #define sk_refcnt_debug_dec(sk) do { } while (0)
1256 #define sk_refcnt_debug_release(sk) do { } while (0)
1257 #endif /* SOCK_REFCNT_DEBUG */
1258 
1259 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1260 {
1261 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1262 		return false;
1263 
1264 	return sk->sk_prot->stream_memory_free ?
1265 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1266 }
1267 
1268 static inline bool sk_stream_memory_free(const struct sock *sk)
1269 {
1270 	return __sk_stream_memory_free(sk, 0);
1271 }
1272 
1273 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1274 {
1275 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1276 	       __sk_stream_memory_free(sk, wake);
1277 }
1278 
1279 static inline bool sk_stream_is_writeable(const struct sock *sk)
1280 {
1281 	return __sk_stream_is_writeable(sk, 0);
1282 }
1283 
1284 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1285 					    struct cgroup *ancestor)
1286 {
1287 #ifdef CONFIG_SOCK_CGROUP_DATA
1288 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1289 				    ancestor);
1290 #else
1291 	return -ENOTSUPP;
1292 #endif
1293 }
1294 
1295 static inline bool sk_has_memory_pressure(const struct sock *sk)
1296 {
1297 	return sk->sk_prot->memory_pressure != NULL;
1298 }
1299 
1300 static inline bool sk_under_memory_pressure(const struct sock *sk)
1301 {
1302 	if (!sk->sk_prot->memory_pressure)
1303 		return false;
1304 
1305 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1306 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1307 		return true;
1308 
1309 	return !!*sk->sk_prot->memory_pressure;
1310 }
1311 
1312 static inline long
1313 sk_memory_allocated(const struct sock *sk)
1314 {
1315 	return atomic_long_read(sk->sk_prot->memory_allocated);
1316 }
1317 
1318 static inline long
1319 sk_memory_allocated_add(struct sock *sk, int amt)
1320 {
1321 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1322 }
1323 
1324 static inline void
1325 sk_memory_allocated_sub(struct sock *sk, int amt)
1326 {
1327 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1328 }
1329 
1330 static inline void sk_sockets_allocated_dec(struct sock *sk)
1331 {
1332 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1333 }
1334 
1335 static inline void sk_sockets_allocated_inc(struct sock *sk)
1336 {
1337 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1338 }
1339 
1340 static inline u64
1341 sk_sockets_allocated_read_positive(struct sock *sk)
1342 {
1343 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1344 }
1345 
1346 static inline int
1347 proto_sockets_allocated_sum_positive(struct proto *prot)
1348 {
1349 	return percpu_counter_sum_positive(prot->sockets_allocated);
1350 }
1351 
1352 static inline long
1353 proto_memory_allocated(struct proto *prot)
1354 {
1355 	return atomic_long_read(prot->memory_allocated);
1356 }
1357 
1358 static inline bool
1359 proto_memory_pressure(struct proto *prot)
1360 {
1361 	if (!prot->memory_pressure)
1362 		return false;
1363 	return !!*prot->memory_pressure;
1364 }
1365 
1366 
1367 #ifdef CONFIG_PROC_FS
1368 /* Called with local bh disabled */
1369 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1370 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1371 int sock_inuse_get(struct net *net);
1372 #else
1373 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1374 		int inc)
1375 {
1376 }
1377 #endif
1378 
1379 
1380 /* With per-bucket locks this operation is not-atomic, so that
1381  * this version is not worse.
1382  */
1383 static inline int __sk_prot_rehash(struct sock *sk)
1384 {
1385 	sk->sk_prot->unhash(sk);
1386 	return sk->sk_prot->hash(sk);
1387 }
1388 
1389 /* About 10 seconds */
1390 #define SOCK_DESTROY_TIME (10*HZ)
1391 
1392 /* Sockets 0-1023 can't be bound to unless you are superuser */
1393 #define PROT_SOCK	1024
1394 
1395 #define SHUTDOWN_MASK	3
1396 #define RCV_SHUTDOWN	1
1397 #define SEND_SHUTDOWN	2
1398 
1399 #define SOCK_SNDBUF_LOCK	1
1400 #define SOCK_RCVBUF_LOCK	2
1401 #define SOCK_BINDADDR_LOCK	4
1402 #define SOCK_BINDPORT_LOCK	8
1403 
1404 struct socket_alloc {
1405 	struct socket socket;
1406 	struct inode vfs_inode;
1407 };
1408 
1409 static inline struct socket *SOCKET_I(struct inode *inode)
1410 {
1411 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1412 }
1413 
1414 static inline struct inode *SOCK_INODE(struct socket *socket)
1415 {
1416 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1417 }
1418 
1419 /*
1420  * Functions for memory accounting
1421  */
1422 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1423 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1424 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1425 void __sk_mem_reclaim(struct sock *sk, int amount);
1426 
1427 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1428  * do not necessarily have 16x time more memory than 4KB ones.
1429  */
1430 #define SK_MEM_QUANTUM 4096
1431 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1432 #define SK_MEM_SEND	0
1433 #define SK_MEM_RECV	1
1434 
1435 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1436 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1437 {
1438 	long val = sk->sk_prot->sysctl_mem[index];
1439 
1440 #if PAGE_SIZE > SK_MEM_QUANTUM
1441 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1442 #elif PAGE_SIZE < SK_MEM_QUANTUM
1443 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1444 #endif
1445 	return val;
1446 }
1447 
1448 static inline int sk_mem_pages(int amt)
1449 {
1450 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1451 }
1452 
1453 static inline bool sk_has_account(struct sock *sk)
1454 {
1455 	/* return true if protocol supports memory accounting */
1456 	return !!sk->sk_prot->memory_allocated;
1457 }
1458 
1459 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1460 {
1461 	if (!sk_has_account(sk))
1462 		return true;
1463 	return size <= sk->sk_forward_alloc ||
1464 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1465 }
1466 
1467 static inline bool
1468 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1469 {
1470 	if (!sk_has_account(sk))
1471 		return true;
1472 	return size<= sk->sk_forward_alloc ||
1473 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1474 		skb_pfmemalloc(skb);
1475 }
1476 
1477 static inline void sk_mem_reclaim(struct sock *sk)
1478 {
1479 	if (!sk_has_account(sk))
1480 		return;
1481 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1482 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1483 }
1484 
1485 static inline void sk_mem_reclaim_partial(struct sock *sk)
1486 {
1487 	if (!sk_has_account(sk))
1488 		return;
1489 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1490 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1491 }
1492 
1493 static inline void sk_mem_charge(struct sock *sk, int size)
1494 {
1495 	if (!sk_has_account(sk))
1496 		return;
1497 	sk->sk_forward_alloc -= size;
1498 }
1499 
1500 static inline void sk_mem_uncharge(struct sock *sk, int size)
1501 {
1502 	if (!sk_has_account(sk))
1503 		return;
1504 	sk->sk_forward_alloc += size;
1505 
1506 	/* Avoid a possible overflow.
1507 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1508 	 * is not called and more than 2 GBytes are released at once.
1509 	 *
1510 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1511 	 * no need to hold that much forward allocation anyway.
1512 	 */
1513 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1514 		__sk_mem_reclaim(sk, 1 << 20);
1515 }
1516 
1517 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1518 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1519 {
1520 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1521 	sk_wmem_queued_add(sk, -skb->truesize);
1522 	sk_mem_uncharge(sk, skb->truesize);
1523 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1524 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1525 		skb_ext_reset(skb);
1526 		skb_zcopy_clear(skb, true);
1527 		sk->sk_tx_skb_cache = skb;
1528 		return;
1529 	}
1530 	__kfree_skb(skb);
1531 }
1532 
1533 static inline void sock_release_ownership(struct sock *sk)
1534 {
1535 	if (sk->sk_lock.owned) {
1536 		sk->sk_lock.owned = 0;
1537 
1538 		/* The sk_lock has mutex_unlock() semantics: */
1539 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1540 	}
1541 }
1542 
1543 /*
1544  * Macro so as to not evaluate some arguments when
1545  * lockdep is not enabled.
1546  *
1547  * Mark both the sk_lock and the sk_lock.slock as a
1548  * per-address-family lock class.
1549  */
1550 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1551 do {									\
1552 	sk->sk_lock.owned = 0;						\
1553 	init_waitqueue_head(&sk->sk_lock.wq);				\
1554 	spin_lock_init(&(sk)->sk_lock.slock);				\
1555 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1556 			sizeof((sk)->sk_lock));				\
1557 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1558 				(skey), (sname));				\
1559 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1560 } while (0)
1561 
1562 #ifdef CONFIG_LOCKDEP
1563 static inline bool lockdep_sock_is_held(const struct sock *sk)
1564 {
1565 	return lockdep_is_held(&sk->sk_lock) ||
1566 	       lockdep_is_held(&sk->sk_lock.slock);
1567 }
1568 #endif
1569 
1570 void lock_sock_nested(struct sock *sk, int subclass);
1571 
1572 static inline void lock_sock(struct sock *sk)
1573 {
1574 	lock_sock_nested(sk, 0);
1575 }
1576 
1577 void __release_sock(struct sock *sk);
1578 void release_sock(struct sock *sk);
1579 
1580 /* BH context may only use the following locking interface. */
1581 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1582 #define bh_lock_sock_nested(__sk) \
1583 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1584 				SINGLE_DEPTH_NESTING)
1585 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1586 
1587 bool lock_sock_fast(struct sock *sk);
1588 /**
1589  * unlock_sock_fast - complement of lock_sock_fast
1590  * @sk: socket
1591  * @slow: slow mode
1592  *
1593  * fast unlock socket for user context.
1594  * If slow mode is on, we call regular release_sock()
1595  */
1596 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1597 {
1598 	if (slow)
1599 		release_sock(sk);
1600 	else
1601 		spin_unlock_bh(&sk->sk_lock.slock);
1602 }
1603 
1604 /* Used by processes to "lock" a socket state, so that
1605  * interrupts and bottom half handlers won't change it
1606  * from under us. It essentially blocks any incoming
1607  * packets, so that we won't get any new data or any
1608  * packets that change the state of the socket.
1609  *
1610  * While locked, BH processing will add new packets to
1611  * the backlog queue.  This queue is processed by the
1612  * owner of the socket lock right before it is released.
1613  *
1614  * Since ~2.3.5 it is also exclusive sleep lock serializing
1615  * accesses from user process context.
1616  */
1617 
1618 static inline void sock_owned_by_me(const struct sock *sk)
1619 {
1620 #ifdef CONFIG_LOCKDEP
1621 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1622 #endif
1623 }
1624 
1625 static inline bool sock_owned_by_user(const struct sock *sk)
1626 {
1627 	sock_owned_by_me(sk);
1628 	return sk->sk_lock.owned;
1629 }
1630 
1631 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1632 {
1633 	return sk->sk_lock.owned;
1634 }
1635 
1636 /* no reclassification while locks are held */
1637 static inline bool sock_allow_reclassification(const struct sock *csk)
1638 {
1639 	struct sock *sk = (struct sock *)csk;
1640 
1641 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1642 }
1643 
1644 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1645 		      struct proto *prot, int kern);
1646 void sk_free(struct sock *sk);
1647 void sk_destruct(struct sock *sk);
1648 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1649 void sk_free_unlock_clone(struct sock *sk);
1650 
1651 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1652 			     gfp_t priority);
1653 void __sock_wfree(struct sk_buff *skb);
1654 void sock_wfree(struct sk_buff *skb);
1655 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1656 			     gfp_t priority);
1657 void skb_orphan_partial(struct sk_buff *skb);
1658 void sock_rfree(struct sk_buff *skb);
1659 void sock_efree(struct sk_buff *skb);
1660 #ifdef CONFIG_INET
1661 void sock_edemux(struct sk_buff *skb);
1662 void sock_pfree(struct sk_buff *skb);
1663 #else
1664 #define sock_edemux sock_efree
1665 #endif
1666 
1667 int sock_setsockopt(struct socket *sock, int level, int op,
1668 		    char __user *optval, unsigned int optlen);
1669 
1670 int sock_getsockopt(struct socket *sock, int level, int op,
1671 		    char __user *optval, int __user *optlen);
1672 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1673 		   bool timeval, bool time32);
1674 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1675 				    int noblock, int *errcode);
1676 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1677 				     unsigned long data_len, int noblock,
1678 				     int *errcode, int max_page_order);
1679 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1680 void sock_kfree_s(struct sock *sk, void *mem, int size);
1681 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1682 void sk_send_sigurg(struct sock *sk);
1683 
1684 struct sockcm_cookie {
1685 	u64 transmit_time;
1686 	u32 mark;
1687 	u16 tsflags;
1688 };
1689 
1690 static inline void sockcm_init(struct sockcm_cookie *sockc,
1691 			       const struct sock *sk)
1692 {
1693 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1694 }
1695 
1696 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1697 		     struct sockcm_cookie *sockc);
1698 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1699 		   struct sockcm_cookie *sockc);
1700 
1701 /*
1702  * Functions to fill in entries in struct proto_ops when a protocol
1703  * does not implement a particular function.
1704  */
1705 int sock_no_bind(struct socket *, struct sockaddr *, int);
1706 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1707 int sock_no_socketpair(struct socket *, struct socket *);
1708 int sock_no_accept(struct socket *, struct socket *, int, bool);
1709 int sock_no_getname(struct socket *, struct sockaddr *, int);
1710 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1711 int sock_no_listen(struct socket *, int);
1712 int sock_no_shutdown(struct socket *, int);
1713 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1714 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1715 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1716 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1717 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1718 int sock_no_mmap(struct file *file, struct socket *sock,
1719 		 struct vm_area_struct *vma);
1720 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1721 			 size_t size, int flags);
1722 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1723 				int offset, size_t size, int flags);
1724 
1725 /*
1726  * Functions to fill in entries in struct proto_ops when a protocol
1727  * uses the inet style.
1728  */
1729 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1730 				  char __user *optval, int __user *optlen);
1731 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1732 			int flags);
1733 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1734 				  char __user *optval, unsigned int optlen);
1735 int compat_sock_common_getsockopt(struct socket *sock, int level,
1736 		int optname, char __user *optval, int __user *optlen);
1737 int compat_sock_common_setsockopt(struct socket *sock, int level,
1738 		int optname, char __user *optval, unsigned int optlen);
1739 
1740 void sk_common_release(struct sock *sk);
1741 
1742 /*
1743  *	Default socket callbacks and setup code
1744  */
1745 
1746 /* Initialise core socket variables */
1747 void sock_init_data(struct socket *sock, struct sock *sk);
1748 
1749 /*
1750  * Socket reference counting postulates.
1751  *
1752  * * Each user of socket SHOULD hold a reference count.
1753  * * Each access point to socket (an hash table bucket, reference from a list,
1754  *   running timer, skb in flight MUST hold a reference count.
1755  * * When reference count hits 0, it means it will never increase back.
1756  * * When reference count hits 0, it means that no references from
1757  *   outside exist to this socket and current process on current CPU
1758  *   is last user and may/should destroy this socket.
1759  * * sk_free is called from any context: process, BH, IRQ. When
1760  *   it is called, socket has no references from outside -> sk_free
1761  *   may release descendant resources allocated by the socket, but
1762  *   to the time when it is called, socket is NOT referenced by any
1763  *   hash tables, lists etc.
1764  * * Packets, delivered from outside (from network or from another process)
1765  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1766  *   when they sit in queue. Otherwise, packets will leak to hole, when
1767  *   socket is looked up by one cpu and unhasing is made by another CPU.
1768  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1769  *   (leak to backlog). Packet socket does all the processing inside
1770  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1771  *   use separate SMP lock, so that they are prone too.
1772  */
1773 
1774 /* Ungrab socket and destroy it, if it was the last reference. */
1775 static inline void sock_put(struct sock *sk)
1776 {
1777 	if (refcount_dec_and_test(&sk->sk_refcnt))
1778 		sk_free(sk);
1779 }
1780 /* Generic version of sock_put(), dealing with all sockets
1781  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1782  */
1783 void sock_gen_put(struct sock *sk);
1784 
1785 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1786 		     unsigned int trim_cap, bool refcounted);
1787 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1788 				 const int nested)
1789 {
1790 	return __sk_receive_skb(sk, skb, nested, 1, true);
1791 }
1792 
1793 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1794 {
1795 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1796 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1797 		return;
1798 	sk->sk_tx_queue_mapping = tx_queue;
1799 }
1800 
1801 #define NO_QUEUE_MAPPING	USHRT_MAX
1802 
1803 static inline void sk_tx_queue_clear(struct sock *sk)
1804 {
1805 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1806 }
1807 
1808 static inline int sk_tx_queue_get(const struct sock *sk)
1809 {
1810 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1811 		return sk->sk_tx_queue_mapping;
1812 
1813 	return -1;
1814 }
1815 
1816 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1817 {
1818 #ifdef CONFIG_XPS
1819 	if (skb_rx_queue_recorded(skb)) {
1820 		u16 rx_queue = skb_get_rx_queue(skb);
1821 
1822 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1823 			return;
1824 
1825 		sk->sk_rx_queue_mapping = rx_queue;
1826 	}
1827 #endif
1828 }
1829 
1830 static inline void sk_rx_queue_clear(struct sock *sk)
1831 {
1832 #ifdef CONFIG_XPS
1833 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1834 #endif
1835 }
1836 
1837 #ifdef CONFIG_XPS
1838 static inline int sk_rx_queue_get(const struct sock *sk)
1839 {
1840 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1841 		return sk->sk_rx_queue_mapping;
1842 
1843 	return -1;
1844 }
1845 #endif
1846 
1847 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1848 {
1849 	sk_tx_queue_clear(sk);
1850 	sk->sk_socket = sock;
1851 }
1852 
1853 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1854 {
1855 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1856 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1857 }
1858 /* Detach socket from process context.
1859  * Announce socket dead, detach it from wait queue and inode.
1860  * Note that parent inode held reference count on this struct sock,
1861  * we do not release it in this function, because protocol
1862  * probably wants some additional cleanups or even continuing
1863  * to work with this socket (TCP).
1864  */
1865 static inline void sock_orphan(struct sock *sk)
1866 {
1867 	write_lock_bh(&sk->sk_callback_lock);
1868 	sock_set_flag(sk, SOCK_DEAD);
1869 	sk_set_socket(sk, NULL);
1870 	sk->sk_wq  = NULL;
1871 	write_unlock_bh(&sk->sk_callback_lock);
1872 }
1873 
1874 static inline void sock_graft(struct sock *sk, struct socket *parent)
1875 {
1876 	WARN_ON(parent->sk);
1877 	write_lock_bh(&sk->sk_callback_lock);
1878 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1879 	parent->sk = sk;
1880 	sk_set_socket(sk, parent);
1881 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1882 	security_sock_graft(sk, parent);
1883 	write_unlock_bh(&sk->sk_callback_lock);
1884 }
1885 
1886 kuid_t sock_i_uid(struct sock *sk);
1887 unsigned long sock_i_ino(struct sock *sk);
1888 
1889 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1890 {
1891 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1892 }
1893 
1894 static inline u32 net_tx_rndhash(void)
1895 {
1896 	u32 v = prandom_u32();
1897 
1898 	return v ?: 1;
1899 }
1900 
1901 static inline void sk_set_txhash(struct sock *sk)
1902 {
1903 	sk->sk_txhash = net_tx_rndhash();
1904 }
1905 
1906 static inline void sk_rethink_txhash(struct sock *sk)
1907 {
1908 	if (sk->sk_txhash)
1909 		sk_set_txhash(sk);
1910 }
1911 
1912 static inline struct dst_entry *
1913 __sk_dst_get(struct sock *sk)
1914 {
1915 	return rcu_dereference_check(sk->sk_dst_cache,
1916 				     lockdep_sock_is_held(sk));
1917 }
1918 
1919 static inline struct dst_entry *
1920 sk_dst_get(struct sock *sk)
1921 {
1922 	struct dst_entry *dst;
1923 
1924 	rcu_read_lock();
1925 	dst = rcu_dereference(sk->sk_dst_cache);
1926 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1927 		dst = NULL;
1928 	rcu_read_unlock();
1929 	return dst;
1930 }
1931 
1932 static inline void dst_negative_advice(struct sock *sk)
1933 {
1934 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1935 
1936 	sk_rethink_txhash(sk);
1937 
1938 	if (dst && dst->ops->negative_advice) {
1939 		ndst = dst->ops->negative_advice(dst);
1940 
1941 		if (ndst != dst) {
1942 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1943 			sk_tx_queue_clear(sk);
1944 			sk->sk_dst_pending_confirm = 0;
1945 		}
1946 	}
1947 }
1948 
1949 static inline void
1950 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1951 {
1952 	struct dst_entry *old_dst;
1953 
1954 	sk_tx_queue_clear(sk);
1955 	sk->sk_dst_pending_confirm = 0;
1956 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1957 					    lockdep_sock_is_held(sk));
1958 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1959 	dst_release(old_dst);
1960 }
1961 
1962 static inline void
1963 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1964 {
1965 	struct dst_entry *old_dst;
1966 
1967 	sk_tx_queue_clear(sk);
1968 	sk->sk_dst_pending_confirm = 0;
1969 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1970 	dst_release(old_dst);
1971 }
1972 
1973 static inline void
1974 __sk_dst_reset(struct sock *sk)
1975 {
1976 	__sk_dst_set(sk, NULL);
1977 }
1978 
1979 static inline void
1980 sk_dst_reset(struct sock *sk)
1981 {
1982 	sk_dst_set(sk, NULL);
1983 }
1984 
1985 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1986 
1987 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1988 
1989 static inline void sk_dst_confirm(struct sock *sk)
1990 {
1991 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1992 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1993 }
1994 
1995 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1996 {
1997 	if (skb_get_dst_pending_confirm(skb)) {
1998 		struct sock *sk = skb->sk;
1999 		unsigned long now = jiffies;
2000 
2001 		/* avoid dirtying neighbour */
2002 		if (READ_ONCE(n->confirmed) != now)
2003 			WRITE_ONCE(n->confirmed, now);
2004 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2005 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2006 	}
2007 }
2008 
2009 bool sk_mc_loop(struct sock *sk);
2010 
2011 static inline bool sk_can_gso(const struct sock *sk)
2012 {
2013 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2014 }
2015 
2016 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2017 
2018 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2019 {
2020 	sk->sk_route_nocaps |= flags;
2021 	sk->sk_route_caps &= ~flags;
2022 }
2023 
2024 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2025 					   struct iov_iter *from, char *to,
2026 					   int copy, int offset)
2027 {
2028 	if (skb->ip_summed == CHECKSUM_NONE) {
2029 		__wsum csum = 0;
2030 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2031 			return -EFAULT;
2032 		skb->csum = csum_block_add(skb->csum, csum, offset);
2033 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2034 		if (!copy_from_iter_full_nocache(to, copy, from))
2035 			return -EFAULT;
2036 	} else if (!copy_from_iter_full(to, copy, from))
2037 		return -EFAULT;
2038 
2039 	return 0;
2040 }
2041 
2042 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2043 				       struct iov_iter *from, int copy)
2044 {
2045 	int err, offset = skb->len;
2046 
2047 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2048 				       copy, offset);
2049 	if (err)
2050 		__skb_trim(skb, offset);
2051 
2052 	return err;
2053 }
2054 
2055 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2056 					   struct sk_buff *skb,
2057 					   struct page *page,
2058 					   int off, int copy)
2059 {
2060 	int err;
2061 
2062 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2063 				       copy, skb->len);
2064 	if (err)
2065 		return err;
2066 
2067 	skb->len	     += copy;
2068 	skb->data_len	     += copy;
2069 	skb->truesize	     += copy;
2070 	sk_wmem_queued_add(sk, copy);
2071 	sk_mem_charge(sk, copy);
2072 	return 0;
2073 }
2074 
2075 /**
2076  * sk_wmem_alloc_get - returns write allocations
2077  * @sk: socket
2078  *
2079  * Return: sk_wmem_alloc minus initial offset of one
2080  */
2081 static inline int sk_wmem_alloc_get(const struct sock *sk)
2082 {
2083 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2084 }
2085 
2086 /**
2087  * sk_rmem_alloc_get - returns read allocations
2088  * @sk: socket
2089  *
2090  * Return: sk_rmem_alloc
2091  */
2092 static inline int sk_rmem_alloc_get(const struct sock *sk)
2093 {
2094 	return atomic_read(&sk->sk_rmem_alloc);
2095 }
2096 
2097 /**
2098  * sk_has_allocations - check if allocations are outstanding
2099  * @sk: socket
2100  *
2101  * Return: true if socket has write or read allocations
2102  */
2103 static inline bool sk_has_allocations(const struct sock *sk)
2104 {
2105 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2106 }
2107 
2108 /**
2109  * skwq_has_sleeper - check if there are any waiting processes
2110  * @wq: struct socket_wq
2111  *
2112  * Return: true if socket_wq has waiting processes
2113  *
2114  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2115  * barrier call. They were added due to the race found within the tcp code.
2116  *
2117  * Consider following tcp code paths::
2118  *
2119  *   CPU1                CPU2
2120  *   sys_select          receive packet
2121  *   ...                 ...
2122  *   __add_wait_queue    update tp->rcv_nxt
2123  *   ...                 ...
2124  *   tp->rcv_nxt check   sock_def_readable
2125  *   ...                 {
2126  *   schedule               rcu_read_lock();
2127  *                          wq = rcu_dereference(sk->sk_wq);
2128  *                          if (wq && waitqueue_active(&wq->wait))
2129  *                              wake_up_interruptible(&wq->wait)
2130  *                          ...
2131  *                       }
2132  *
2133  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2134  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2135  * could then endup calling schedule and sleep forever if there are no more
2136  * data on the socket.
2137  *
2138  */
2139 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2140 {
2141 	return wq && wq_has_sleeper(&wq->wait);
2142 }
2143 
2144 /**
2145  * sock_poll_wait - place memory barrier behind the poll_wait call.
2146  * @filp:           file
2147  * @sock:           socket to wait on
2148  * @p:              poll_table
2149  *
2150  * See the comments in the wq_has_sleeper function.
2151  */
2152 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2153 				  poll_table *p)
2154 {
2155 	if (!poll_does_not_wait(p)) {
2156 		poll_wait(filp, &sock->wq.wait, p);
2157 		/* We need to be sure we are in sync with the
2158 		 * socket flags modification.
2159 		 *
2160 		 * This memory barrier is paired in the wq_has_sleeper.
2161 		 */
2162 		smp_mb();
2163 	}
2164 }
2165 
2166 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2167 {
2168 	if (sk->sk_txhash) {
2169 		skb->l4_hash = 1;
2170 		skb->hash = sk->sk_txhash;
2171 	}
2172 }
2173 
2174 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2175 
2176 /*
2177  *	Queue a received datagram if it will fit. Stream and sequenced
2178  *	protocols can't normally use this as they need to fit buffers in
2179  *	and play with them.
2180  *
2181  *	Inlined as it's very short and called for pretty much every
2182  *	packet ever received.
2183  */
2184 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2185 {
2186 	skb_orphan(skb);
2187 	skb->sk = sk;
2188 	skb->destructor = sock_rfree;
2189 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2190 	sk_mem_charge(sk, skb->truesize);
2191 }
2192 
2193 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2194 		    unsigned long expires);
2195 
2196 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2197 
2198 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2199 			struct sk_buff *skb, unsigned int flags,
2200 			void (*destructor)(struct sock *sk,
2201 					   struct sk_buff *skb));
2202 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2203 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2204 
2205 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2206 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2207 
2208 /*
2209  *	Recover an error report and clear atomically
2210  */
2211 
2212 static inline int sock_error(struct sock *sk)
2213 {
2214 	int err;
2215 	if (likely(!sk->sk_err))
2216 		return 0;
2217 	err = xchg(&sk->sk_err, 0);
2218 	return -err;
2219 }
2220 
2221 static inline unsigned long sock_wspace(struct sock *sk)
2222 {
2223 	int amt = 0;
2224 
2225 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2226 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2227 		if (amt < 0)
2228 			amt = 0;
2229 	}
2230 	return amt;
2231 }
2232 
2233 /* Note:
2234  *  We use sk->sk_wq_raw, from contexts knowing this
2235  *  pointer is not NULL and cannot disappear/change.
2236  */
2237 static inline void sk_set_bit(int nr, struct sock *sk)
2238 {
2239 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2240 	    !sock_flag(sk, SOCK_FASYNC))
2241 		return;
2242 
2243 	set_bit(nr, &sk->sk_wq_raw->flags);
2244 }
2245 
2246 static inline void sk_clear_bit(int nr, struct sock *sk)
2247 {
2248 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2249 	    !sock_flag(sk, SOCK_FASYNC))
2250 		return;
2251 
2252 	clear_bit(nr, &sk->sk_wq_raw->flags);
2253 }
2254 
2255 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2256 {
2257 	if (sock_flag(sk, SOCK_FASYNC)) {
2258 		rcu_read_lock();
2259 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2260 		rcu_read_unlock();
2261 	}
2262 }
2263 
2264 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2265  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2266  * Note: for send buffers, TCP works better if we can build two skbs at
2267  * minimum.
2268  */
2269 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2270 
2271 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2272 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2273 
2274 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2275 {
2276 	u32 val;
2277 
2278 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2279 		return;
2280 
2281 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2282 
2283 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2284 }
2285 
2286 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2287 				    bool force_schedule);
2288 
2289 /**
2290  * sk_page_frag - return an appropriate page_frag
2291  * @sk: socket
2292  *
2293  * Use the per task page_frag instead of the per socket one for
2294  * optimization when we know that we're in the normal context and owns
2295  * everything that's associated with %current.
2296  *
2297  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2298  * inside other socket operations and end up recursing into sk_page_frag()
2299  * while it's already in use.
2300  *
2301  * Return: a per task page_frag if context allows that,
2302  * otherwise a per socket one.
2303  */
2304 static inline struct page_frag *sk_page_frag(struct sock *sk)
2305 {
2306 	if (gfpflags_normal_context(sk->sk_allocation))
2307 		return &current->task_frag;
2308 
2309 	return &sk->sk_frag;
2310 }
2311 
2312 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2313 
2314 /*
2315  *	Default write policy as shown to user space via poll/select/SIGIO
2316  */
2317 static inline bool sock_writeable(const struct sock *sk)
2318 {
2319 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2320 }
2321 
2322 static inline gfp_t gfp_any(void)
2323 {
2324 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2325 }
2326 
2327 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2328 {
2329 	return noblock ? 0 : sk->sk_rcvtimeo;
2330 }
2331 
2332 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2333 {
2334 	return noblock ? 0 : sk->sk_sndtimeo;
2335 }
2336 
2337 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2338 {
2339 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2340 
2341 	return v ?: 1;
2342 }
2343 
2344 /* Alas, with timeout socket operations are not restartable.
2345  * Compare this to poll().
2346  */
2347 static inline int sock_intr_errno(long timeo)
2348 {
2349 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2350 }
2351 
2352 struct sock_skb_cb {
2353 	u32 dropcount;
2354 };
2355 
2356 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2357  * using skb->cb[] would keep using it directly and utilize its
2358  * alignement guarantee.
2359  */
2360 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2361 			    sizeof(struct sock_skb_cb)))
2362 
2363 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2364 			    SOCK_SKB_CB_OFFSET))
2365 
2366 #define sock_skb_cb_check_size(size) \
2367 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2368 
2369 static inline void
2370 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2371 {
2372 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2373 						atomic_read(&sk->sk_drops) : 0;
2374 }
2375 
2376 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2377 {
2378 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2379 
2380 	atomic_add(segs, &sk->sk_drops);
2381 }
2382 
2383 static inline ktime_t sock_read_timestamp(struct sock *sk)
2384 {
2385 #if BITS_PER_LONG==32
2386 	unsigned int seq;
2387 	ktime_t kt;
2388 
2389 	do {
2390 		seq = read_seqbegin(&sk->sk_stamp_seq);
2391 		kt = sk->sk_stamp;
2392 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2393 
2394 	return kt;
2395 #else
2396 	return READ_ONCE(sk->sk_stamp);
2397 #endif
2398 }
2399 
2400 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2401 {
2402 #if BITS_PER_LONG==32
2403 	write_seqlock(&sk->sk_stamp_seq);
2404 	sk->sk_stamp = kt;
2405 	write_sequnlock(&sk->sk_stamp_seq);
2406 #else
2407 	WRITE_ONCE(sk->sk_stamp, kt);
2408 #endif
2409 }
2410 
2411 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2412 			   struct sk_buff *skb);
2413 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2414 			     struct sk_buff *skb);
2415 
2416 static inline void
2417 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2418 {
2419 	ktime_t kt = skb->tstamp;
2420 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2421 
2422 	/*
2423 	 * generate control messages if
2424 	 * - receive time stamping in software requested
2425 	 * - software time stamp available and wanted
2426 	 * - hardware time stamps available and wanted
2427 	 */
2428 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2429 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2430 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2431 	    (hwtstamps->hwtstamp &&
2432 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2433 		__sock_recv_timestamp(msg, sk, skb);
2434 	else
2435 		sock_write_timestamp(sk, kt);
2436 
2437 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2438 		__sock_recv_wifi_status(msg, sk, skb);
2439 }
2440 
2441 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2442 			      struct sk_buff *skb);
2443 
2444 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2445 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2446 					  struct sk_buff *skb)
2447 {
2448 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2449 			   (1UL << SOCK_RCVTSTAMP))
2450 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2451 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2452 
2453 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2454 		__sock_recv_ts_and_drops(msg, sk, skb);
2455 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2456 		sock_write_timestamp(sk, skb->tstamp);
2457 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2458 		sock_write_timestamp(sk, 0);
2459 }
2460 
2461 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2462 
2463 /**
2464  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2465  * @sk:		socket sending this packet
2466  * @tsflags:	timestamping flags to use
2467  * @tx_flags:	completed with instructions for time stamping
2468  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2469  *
2470  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2471  */
2472 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2473 				      __u8 *tx_flags, __u32 *tskey)
2474 {
2475 	if (unlikely(tsflags)) {
2476 		__sock_tx_timestamp(tsflags, tx_flags);
2477 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2478 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2479 			*tskey = sk->sk_tskey++;
2480 	}
2481 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2482 		*tx_flags |= SKBTX_WIFI_STATUS;
2483 }
2484 
2485 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2486 				     __u8 *tx_flags)
2487 {
2488 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2489 }
2490 
2491 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2492 {
2493 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2494 			   &skb_shinfo(skb)->tskey);
2495 }
2496 
2497 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2498 /**
2499  * sk_eat_skb - Release a skb if it is no longer needed
2500  * @sk: socket to eat this skb from
2501  * @skb: socket buffer to eat
2502  *
2503  * This routine must be called with interrupts disabled or with the socket
2504  * locked so that the sk_buff queue operation is ok.
2505 */
2506 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2507 {
2508 	__skb_unlink(skb, &sk->sk_receive_queue);
2509 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2510 	    !sk->sk_rx_skb_cache) {
2511 		sk->sk_rx_skb_cache = skb;
2512 		skb_orphan(skb);
2513 		return;
2514 	}
2515 	__kfree_skb(skb);
2516 }
2517 
2518 static inline
2519 struct net *sock_net(const struct sock *sk)
2520 {
2521 	return read_pnet(&sk->sk_net);
2522 }
2523 
2524 static inline
2525 void sock_net_set(struct sock *sk, struct net *net)
2526 {
2527 	write_pnet(&sk->sk_net, net);
2528 }
2529 
2530 static inline bool
2531 skb_sk_is_prefetched(struct sk_buff *skb)
2532 {
2533 #ifdef CONFIG_INET
2534 	return skb->destructor == sock_pfree;
2535 #else
2536 	return false;
2537 #endif /* CONFIG_INET */
2538 }
2539 
2540 /* This helper checks if a socket is a full socket,
2541  * ie _not_ a timewait or request socket.
2542  */
2543 static inline bool sk_fullsock(const struct sock *sk)
2544 {
2545 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2546 }
2547 
2548 static inline bool
2549 sk_is_refcounted(struct sock *sk)
2550 {
2551 	/* Only full sockets have sk->sk_flags. */
2552 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2553 }
2554 
2555 /**
2556  * skb_steal_sock - steal a socket from an sk_buff
2557  * @skb: sk_buff to steal the socket from
2558  * @refcounted: is set to true if the socket is reference-counted
2559  */
2560 static inline struct sock *
2561 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2562 {
2563 	if (skb->sk) {
2564 		struct sock *sk = skb->sk;
2565 
2566 		*refcounted = true;
2567 		if (skb_sk_is_prefetched(skb))
2568 			*refcounted = sk_is_refcounted(sk);
2569 		skb->destructor = NULL;
2570 		skb->sk = NULL;
2571 		return sk;
2572 	}
2573 	*refcounted = false;
2574 	return NULL;
2575 }
2576 
2577 /* Checks if this SKB belongs to an HW offloaded socket
2578  * and whether any SW fallbacks are required based on dev.
2579  * Check decrypted mark in case skb_orphan() cleared socket.
2580  */
2581 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2582 						   struct net_device *dev)
2583 {
2584 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2585 	struct sock *sk = skb->sk;
2586 
2587 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2588 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2589 #ifdef CONFIG_TLS_DEVICE
2590 	} else if (unlikely(skb->decrypted)) {
2591 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2592 		kfree_skb(skb);
2593 		skb = NULL;
2594 #endif
2595 	}
2596 #endif
2597 
2598 	return skb;
2599 }
2600 
2601 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2602  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2603  */
2604 static inline bool sk_listener(const struct sock *sk)
2605 {
2606 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2607 }
2608 
2609 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2610 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2611 		       int type);
2612 
2613 bool sk_ns_capable(const struct sock *sk,
2614 		   struct user_namespace *user_ns, int cap);
2615 bool sk_capable(const struct sock *sk, int cap);
2616 bool sk_net_capable(const struct sock *sk, int cap);
2617 
2618 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2619 
2620 /* Take into consideration the size of the struct sk_buff overhead in the
2621  * determination of these values, since that is non-constant across
2622  * platforms.  This makes socket queueing behavior and performance
2623  * not depend upon such differences.
2624  */
2625 #define _SK_MEM_PACKETS		256
2626 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2627 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2628 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2629 
2630 extern __u32 sysctl_wmem_max;
2631 extern __u32 sysctl_rmem_max;
2632 
2633 extern int sysctl_tstamp_allow_data;
2634 extern int sysctl_optmem_max;
2635 
2636 extern __u32 sysctl_wmem_default;
2637 extern __u32 sysctl_rmem_default;
2638 
2639 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2640 
2641 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2642 {
2643 	/* Does this proto have per netns sysctl_wmem ? */
2644 	if (proto->sysctl_wmem_offset)
2645 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2646 
2647 	return *proto->sysctl_wmem;
2648 }
2649 
2650 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2651 {
2652 	/* Does this proto have per netns sysctl_rmem ? */
2653 	if (proto->sysctl_rmem_offset)
2654 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2655 
2656 	return *proto->sysctl_rmem;
2657 }
2658 
2659 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2660  * Some wifi drivers need to tweak it to get more chunks.
2661  * They can use this helper from their ndo_start_xmit()
2662  */
2663 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2664 {
2665 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2666 		return;
2667 	WRITE_ONCE(sk->sk_pacing_shift, val);
2668 }
2669 
2670 /* if a socket is bound to a device, check that the given device
2671  * index is either the same or that the socket is bound to an L3
2672  * master device and the given device index is also enslaved to
2673  * that L3 master
2674  */
2675 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2676 {
2677 	int mdif;
2678 
2679 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2680 		return true;
2681 
2682 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2683 	if (mdif && mdif == sk->sk_bound_dev_if)
2684 		return true;
2685 
2686 	return false;
2687 }
2688 
2689 void sock_def_readable(struct sock *sk);
2690 
2691 #endif	/* _SOCK_H */
2692