1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <net/dst.h> 66 #include <net/checksum.h> 67 #include <net/tcp_states.h> 68 #include <linux/net_tstamp.h> 69 #include <net/l3mdev.h> 70 71 /* 72 * This structure really needs to be cleaned up. 73 * Most of it is for TCP, and not used by any of 74 * the other protocols. 75 */ 76 77 /* Define this to get the SOCK_DBG debugging facility. */ 78 #define SOCK_DEBUGGING 79 #ifdef SOCK_DEBUGGING 80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 81 printk(KERN_DEBUG msg); } while (0) 82 #else 83 /* Validate arguments and do nothing */ 84 static inline __printf(2, 3) 85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 86 { 87 } 88 #endif 89 90 /* This is the per-socket lock. The spinlock provides a synchronization 91 * between user contexts and software interrupt processing, whereas the 92 * mini-semaphore synchronizes multiple users amongst themselves. 93 */ 94 typedef struct { 95 spinlock_t slock; 96 int owned; 97 wait_queue_head_t wq; 98 /* 99 * We express the mutex-alike socket_lock semantics 100 * to the lock validator by explicitly managing 101 * the slock as a lock variant (in addition to 102 * the slock itself): 103 */ 104 #ifdef CONFIG_DEBUG_LOCK_ALLOC 105 struct lockdep_map dep_map; 106 #endif 107 } socket_lock_t; 108 109 struct sock; 110 struct proto; 111 struct net; 112 113 typedef __u32 __bitwise __portpair; 114 typedef __u64 __bitwise __addrpair; 115 116 /** 117 * struct sock_common - minimal network layer representation of sockets 118 * @skc_daddr: Foreign IPv4 addr 119 * @skc_rcv_saddr: Bound local IPv4 addr 120 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 121 * @skc_hash: hash value used with various protocol lookup tables 122 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 123 * @skc_dport: placeholder for inet_dport/tw_dport 124 * @skc_num: placeholder for inet_num/tw_num 125 * @skc_portpair: __u32 union of @skc_dport & @skc_num 126 * @skc_family: network address family 127 * @skc_state: Connection state 128 * @skc_reuse: %SO_REUSEADDR setting 129 * @skc_reuseport: %SO_REUSEPORT setting 130 * @skc_ipv6only: socket is IPV6 only 131 * @skc_net_refcnt: socket is using net ref counting 132 * @skc_bound_dev_if: bound device index if != 0 133 * @skc_bind_node: bind hash linkage for various protocol lookup tables 134 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 135 * @skc_prot: protocol handlers inside a network family 136 * @skc_net: reference to the network namespace of this socket 137 * @skc_v6_daddr: IPV6 destination address 138 * @skc_v6_rcv_saddr: IPV6 source address 139 * @skc_cookie: socket's cookie value 140 * @skc_node: main hash linkage for various protocol lookup tables 141 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 142 * @skc_tx_queue_mapping: tx queue number for this connection 143 * @skc_rx_queue_mapping: rx queue number for this connection 144 * @skc_flags: place holder for sk_flags 145 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 146 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 147 * @skc_listener: connection request listener socket (aka rsk_listener) 148 * [union with @skc_flags] 149 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 150 * [union with @skc_flags] 151 * @skc_incoming_cpu: record/match cpu processing incoming packets 152 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 153 * [union with @skc_incoming_cpu] 154 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 155 * [union with @skc_incoming_cpu] 156 * @skc_refcnt: reference count 157 * 158 * This is the minimal network layer representation of sockets, the header 159 * for struct sock and struct inet_timewait_sock. 160 */ 161 struct sock_common { 162 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 163 * address on 64bit arches : cf INET_MATCH() 164 */ 165 union { 166 __addrpair skc_addrpair; 167 struct { 168 __be32 skc_daddr; 169 __be32 skc_rcv_saddr; 170 }; 171 }; 172 union { 173 unsigned int skc_hash; 174 __u16 skc_u16hashes[2]; 175 }; 176 /* skc_dport && skc_num must be grouped as well */ 177 union { 178 __portpair skc_portpair; 179 struct { 180 __be16 skc_dport; 181 __u16 skc_num; 182 }; 183 }; 184 185 unsigned short skc_family; 186 volatile unsigned char skc_state; 187 unsigned char skc_reuse:4; 188 unsigned char skc_reuseport:1; 189 unsigned char skc_ipv6only:1; 190 unsigned char skc_net_refcnt:1; 191 int skc_bound_dev_if; 192 union { 193 struct hlist_node skc_bind_node; 194 struct hlist_node skc_portaddr_node; 195 }; 196 struct proto *skc_prot; 197 possible_net_t skc_net; 198 199 #if IS_ENABLED(CONFIG_IPV6) 200 struct in6_addr skc_v6_daddr; 201 struct in6_addr skc_v6_rcv_saddr; 202 #endif 203 204 atomic64_t skc_cookie; 205 206 /* following fields are padding to force 207 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 208 * assuming IPV6 is enabled. We use this padding differently 209 * for different kind of 'sockets' 210 */ 211 union { 212 unsigned long skc_flags; 213 struct sock *skc_listener; /* request_sock */ 214 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 215 }; 216 /* 217 * fields between dontcopy_begin/dontcopy_end 218 * are not copied in sock_copy() 219 */ 220 /* private: */ 221 int skc_dontcopy_begin[0]; 222 /* public: */ 223 union { 224 struct hlist_node skc_node; 225 struct hlist_nulls_node skc_nulls_node; 226 }; 227 unsigned short skc_tx_queue_mapping; 228 #ifdef CONFIG_XPS 229 unsigned short skc_rx_queue_mapping; 230 #endif 231 union { 232 int skc_incoming_cpu; 233 u32 skc_rcv_wnd; 234 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 235 }; 236 237 refcount_t skc_refcnt; 238 /* private: */ 239 int skc_dontcopy_end[0]; 240 union { 241 u32 skc_rxhash; 242 u32 skc_window_clamp; 243 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 244 }; 245 /* public: */ 246 }; 247 248 struct bpf_sk_storage; 249 250 /** 251 * struct sock - network layer representation of sockets 252 * @__sk_common: shared layout with inet_timewait_sock 253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 255 * @sk_lock: synchronizer 256 * @sk_kern_sock: True if sock is using kernel lock classes 257 * @sk_rcvbuf: size of receive buffer in bytes 258 * @sk_wq: sock wait queue and async head 259 * @sk_rx_dst: receive input route used by early demux 260 * @sk_dst_cache: destination cache 261 * @sk_dst_pending_confirm: need to confirm neighbour 262 * @sk_policy: flow policy 263 * @sk_rx_skb_cache: cache copy of recently accessed RX skb 264 * @sk_receive_queue: incoming packets 265 * @sk_wmem_alloc: transmit queue bytes committed 266 * @sk_tsq_flags: TCP Small Queues flags 267 * @sk_write_queue: Packet sending queue 268 * @sk_omem_alloc: "o" is "option" or "other" 269 * @sk_wmem_queued: persistent queue size 270 * @sk_forward_alloc: space allocated forward 271 * @sk_napi_id: id of the last napi context to receive data for sk 272 * @sk_ll_usec: usecs to busypoll when there is no data 273 * @sk_allocation: allocation mode 274 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 275 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 276 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 277 * @sk_sndbuf: size of send buffer in bytes 278 * @__sk_flags_offset: empty field used to determine location of bitfield 279 * @sk_padding: unused element for alignment 280 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 281 * @sk_no_check_rx: allow zero checksum in RX packets 282 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 283 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 284 * @sk_route_forced_caps: static, forced route capabilities 285 * (set in tcp_init_sock()) 286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 287 * @sk_gso_max_size: Maximum GSO segment size to build 288 * @sk_gso_max_segs: Maximum number of GSO segments 289 * @sk_pacing_shift: scaling factor for TCP Small Queues 290 * @sk_lingertime: %SO_LINGER l_linger setting 291 * @sk_backlog: always used with the per-socket spinlock held 292 * @sk_callback_lock: used with the callbacks in the end of this struct 293 * @sk_error_queue: rarely used 294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 295 * IPV6_ADDRFORM for instance) 296 * @sk_err: last error 297 * @sk_err_soft: errors that don't cause failure but are the cause of a 298 * persistent failure not just 'timed out' 299 * @sk_drops: raw/udp drops counter 300 * @sk_ack_backlog: current listen backlog 301 * @sk_max_ack_backlog: listen backlog set in listen() 302 * @sk_uid: user id of owner 303 * @sk_priority: %SO_PRIORITY setting 304 * @sk_type: socket type (%SOCK_STREAM, etc) 305 * @sk_protocol: which protocol this socket belongs in this network family 306 * @sk_peer_pid: &struct pid for this socket's peer 307 * @sk_peer_cred: %SO_PEERCRED setting 308 * @sk_rcvlowat: %SO_RCVLOWAT setting 309 * @sk_rcvtimeo: %SO_RCVTIMEO setting 310 * @sk_sndtimeo: %SO_SNDTIMEO setting 311 * @sk_txhash: computed flow hash for use on transmit 312 * @sk_filter: socket filtering instructions 313 * @sk_timer: sock cleanup timer 314 * @sk_stamp: time stamp of last packet received 315 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 316 * @sk_tsflags: SO_TIMESTAMPING socket options 317 * @sk_tskey: counter to disambiguate concurrent tstamp requests 318 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 319 * @sk_socket: Identd and reporting IO signals 320 * @sk_user_data: RPC layer private data 321 * @sk_frag: cached page frag 322 * @sk_peek_off: current peek_offset value 323 * @sk_send_head: front of stuff to transmit 324 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 325 * @sk_tx_skb_cache: cache copy of recently accessed TX skb 326 * @sk_security: used by security modules 327 * @sk_mark: generic packet mark 328 * @sk_cgrp_data: cgroup data for this cgroup 329 * @sk_memcg: this socket's memory cgroup association 330 * @sk_write_pending: a write to stream socket waits to start 331 * @sk_state_change: callback to indicate change in the state of the sock 332 * @sk_data_ready: callback to indicate there is data to be processed 333 * @sk_write_space: callback to indicate there is bf sending space available 334 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 335 * @sk_backlog_rcv: callback to process the backlog 336 * @sk_validate_xmit_skb: ptr to an optional validate function 337 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 338 * @sk_reuseport_cb: reuseport group container 339 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 340 * @sk_rcu: used during RCU grace period 341 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 342 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 343 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 344 * @sk_txtime_unused: unused txtime flags 345 */ 346 struct sock { 347 /* 348 * Now struct inet_timewait_sock also uses sock_common, so please just 349 * don't add nothing before this first member (__sk_common) --acme 350 */ 351 struct sock_common __sk_common; 352 #define sk_node __sk_common.skc_node 353 #define sk_nulls_node __sk_common.skc_nulls_node 354 #define sk_refcnt __sk_common.skc_refcnt 355 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 356 #ifdef CONFIG_XPS 357 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 358 #endif 359 360 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 361 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 362 #define sk_hash __sk_common.skc_hash 363 #define sk_portpair __sk_common.skc_portpair 364 #define sk_num __sk_common.skc_num 365 #define sk_dport __sk_common.skc_dport 366 #define sk_addrpair __sk_common.skc_addrpair 367 #define sk_daddr __sk_common.skc_daddr 368 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 369 #define sk_family __sk_common.skc_family 370 #define sk_state __sk_common.skc_state 371 #define sk_reuse __sk_common.skc_reuse 372 #define sk_reuseport __sk_common.skc_reuseport 373 #define sk_ipv6only __sk_common.skc_ipv6only 374 #define sk_net_refcnt __sk_common.skc_net_refcnt 375 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 376 #define sk_bind_node __sk_common.skc_bind_node 377 #define sk_prot __sk_common.skc_prot 378 #define sk_net __sk_common.skc_net 379 #define sk_v6_daddr __sk_common.skc_v6_daddr 380 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 381 #define sk_cookie __sk_common.skc_cookie 382 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 383 #define sk_flags __sk_common.skc_flags 384 #define sk_rxhash __sk_common.skc_rxhash 385 386 socket_lock_t sk_lock; 387 atomic_t sk_drops; 388 int sk_rcvlowat; 389 struct sk_buff_head sk_error_queue; 390 struct sk_buff *sk_rx_skb_cache; 391 struct sk_buff_head sk_receive_queue; 392 /* 393 * The backlog queue is special, it is always used with 394 * the per-socket spinlock held and requires low latency 395 * access. Therefore we special case it's implementation. 396 * Note : rmem_alloc is in this structure to fill a hole 397 * on 64bit arches, not because its logically part of 398 * backlog. 399 */ 400 struct { 401 atomic_t rmem_alloc; 402 int len; 403 struct sk_buff *head; 404 struct sk_buff *tail; 405 } sk_backlog; 406 #define sk_rmem_alloc sk_backlog.rmem_alloc 407 408 int sk_forward_alloc; 409 #ifdef CONFIG_NET_RX_BUSY_POLL 410 unsigned int sk_ll_usec; 411 /* ===== mostly read cache line ===== */ 412 unsigned int sk_napi_id; 413 #endif 414 int sk_rcvbuf; 415 416 struct sk_filter __rcu *sk_filter; 417 union { 418 struct socket_wq __rcu *sk_wq; 419 /* private: */ 420 struct socket_wq *sk_wq_raw; 421 /* public: */ 422 }; 423 #ifdef CONFIG_XFRM 424 struct xfrm_policy __rcu *sk_policy[2]; 425 #endif 426 struct dst_entry *sk_rx_dst; 427 struct dst_entry __rcu *sk_dst_cache; 428 atomic_t sk_omem_alloc; 429 int sk_sndbuf; 430 431 /* ===== cache line for TX ===== */ 432 int sk_wmem_queued; 433 refcount_t sk_wmem_alloc; 434 unsigned long sk_tsq_flags; 435 union { 436 struct sk_buff *sk_send_head; 437 struct rb_root tcp_rtx_queue; 438 }; 439 struct sk_buff *sk_tx_skb_cache; 440 struct sk_buff_head sk_write_queue; 441 __s32 sk_peek_off; 442 int sk_write_pending; 443 __u32 sk_dst_pending_confirm; 444 u32 sk_pacing_status; /* see enum sk_pacing */ 445 long sk_sndtimeo; 446 struct timer_list sk_timer; 447 __u32 sk_priority; 448 __u32 sk_mark; 449 unsigned long sk_pacing_rate; /* bytes per second */ 450 unsigned long sk_max_pacing_rate; 451 struct page_frag sk_frag; 452 netdev_features_t sk_route_caps; 453 netdev_features_t sk_route_nocaps; 454 netdev_features_t sk_route_forced_caps; 455 int sk_gso_type; 456 unsigned int sk_gso_max_size; 457 gfp_t sk_allocation; 458 __u32 sk_txhash; 459 460 /* 461 * Because of non atomicity rules, all 462 * changes are protected by socket lock. 463 */ 464 u8 sk_padding : 1, 465 sk_kern_sock : 1, 466 sk_no_check_tx : 1, 467 sk_no_check_rx : 1, 468 sk_userlocks : 4; 469 u8 sk_pacing_shift; 470 u16 sk_type; 471 u16 sk_protocol; 472 u16 sk_gso_max_segs; 473 unsigned long sk_lingertime; 474 struct proto *sk_prot_creator; 475 rwlock_t sk_callback_lock; 476 int sk_err, 477 sk_err_soft; 478 u32 sk_ack_backlog; 479 u32 sk_max_ack_backlog; 480 kuid_t sk_uid; 481 struct pid *sk_peer_pid; 482 const struct cred *sk_peer_cred; 483 long sk_rcvtimeo; 484 ktime_t sk_stamp; 485 #if BITS_PER_LONG==32 486 seqlock_t sk_stamp_seq; 487 #endif 488 u16 sk_tsflags; 489 u8 sk_shutdown; 490 u32 sk_tskey; 491 atomic_t sk_zckey; 492 493 u8 sk_clockid; 494 u8 sk_txtime_deadline_mode : 1, 495 sk_txtime_report_errors : 1, 496 sk_txtime_unused : 6; 497 498 struct socket *sk_socket; 499 void *sk_user_data; 500 #ifdef CONFIG_SECURITY 501 void *sk_security; 502 #endif 503 struct sock_cgroup_data sk_cgrp_data; 504 struct mem_cgroup *sk_memcg; 505 void (*sk_state_change)(struct sock *sk); 506 void (*sk_data_ready)(struct sock *sk); 507 void (*sk_write_space)(struct sock *sk); 508 void (*sk_error_report)(struct sock *sk); 509 int (*sk_backlog_rcv)(struct sock *sk, 510 struct sk_buff *skb); 511 #ifdef CONFIG_SOCK_VALIDATE_XMIT 512 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 513 struct net_device *dev, 514 struct sk_buff *skb); 515 #endif 516 void (*sk_destruct)(struct sock *sk); 517 struct sock_reuseport __rcu *sk_reuseport_cb; 518 #ifdef CONFIG_BPF_SYSCALL 519 struct bpf_sk_storage __rcu *sk_bpf_storage; 520 #endif 521 struct rcu_head sk_rcu; 522 }; 523 524 enum sk_pacing { 525 SK_PACING_NONE = 0, 526 SK_PACING_NEEDED = 1, 527 SK_PACING_FQ = 2, 528 }; 529 530 /* Pointer stored in sk_user_data might not be suitable for copying 531 * when cloning the socket. For instance, it can point to a reference 532 * counted object. sk_user_data bottom bit is set if pointer must not 533 * be copied. 534 */ 535 #define SK_USER_DATA_NOCOPY 1UL 536 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY) 537 538 /** 539 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 540 * @sk: socket 541 */ 542 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 543 { 544 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 545 } 546 547 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 548 549 #define rcu_dereference_sk_user_data(sk) \ 550 ({ \ 551 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 552 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 553 }) 554 #define rcu_assign_sk_user_data(sk, ptr) \ 555 ({ \ 556 uintptr_t __tmp = (uintptr_t)(ptr); \ 557 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 558 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 559 }) 560 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 561 ({ \ 562 uintptr_t __tmp = (uintptr_t)(ptr); \ 563 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 564 rcu_assign_pointer(__sk_user_data((sk)), \ 565 __tmp | SK_USER_DATA_NOCOPY); \ 566 }) 567 568 /* 569 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 570 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 571 * on a socket means that the socket will reuse everybody else's port 572 * without looking at the other's sk_reuse value. 573 */ 574 575 #define SK_NO_REUSE 0 576 #define SK_CAN_REUSE 1 577 #define SK_FORCE_REUSE 2 578 579 int sk_set_peek_off(struct sock *sk, int val); 580 581 static inline int sk_peek_offset(struct sock *sk, int flags) 582 { 583 if (unlikely(flags & MSG_PEEK)) { 584 return READ_ONCE(sk->sk_peek_off); 585 } 586 587 return 0; 588 } 589 590 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 591 { 592 s32 off = READ_ONCE(sk->sk_peek_off); 593 594 if (unlikely(off >= 0)) { 595 off = max_t(s32, off - val, 0); 596 WRITE_ONCE(sk->sk_peek_off, off); 597 } 598 } 599 600 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 601 { 602 sk_peek_offset_bwd(sk, -val); 603 } 604 605 /* 606 * Hashed lists helper routines 607 */ 608 static inline struct sock *sk_entry(const struct hlist_node *node) 609 { 610 return hlist_entry(node, struct sock, sk_node); 611 } 612 613 static inline struct sock *__sk_head(const struct hlist_head *head) 614 { 615 return hlist_entry(head->first, struct sock, sk_node); 616 } 617 618 static inline struct sock *sk_head(const struct hlist_head *head) 619 { 620 return hlist_empty(head) ? NULL : __sk_head(head); 621 } 622 623 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 624 { 625 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 626 } 627 628 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 629 { 630 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 631 } 632 633 static inline struct sock *sk_next(const struct sock *sk) 634 { 635 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 636 } 637 638 static inline struct sock *sk_nulls_next(const struct sock *sk) 639 { 640 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 641 hlist_nulls_entry(sk->sk_nulls_node.next, 642 struct sock, sk_nulls_node) : 643 NULL; 644 } 645 646 static inline bool sk_unhashed(const struct sock *sk) 647 { 648 return hlist_unhashed(&sk->sk_node); 649 } 650 651 static inline bool sk_hashed(const struct sock *sk) 652 { 653 return !sk_unhashed(sk); 654 } 655 656 static inline void sk_node_init(struct hlist_node *node) 657 { 658 node->pprev = NULL; 659 } 660 661 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 662 { 663 node->pprev = NULL; 664 } 665 666 static inline void __sk_del_node(struct sock *sk) 667 { 668 __hlist_del(&sk->sk_node); 669 } 670 671 /* NB: equivalent to hlist_del_init_rcu */ 672 static inline bool __sk_del_node_init(struct sock *sk) 673 { 674 if (sk_hashed(sk)) { 675 __sk_del_node(sk); 676 sk_node_init(&sk->sk_node); 677 return true; 678 } 679 return false; 680 } 681 682 /* Grab socket reference count. This operation is valid only 683 when sk is ALREADY grabbed f.e. it is found in hash table 684 or a list and the lookup is made under lock preventing hash table 685 modifications. 686 */ 687 688 static __always_inline void sock_hold(struct sock *sk) 689 { 690 refcount_inc(&sk->sk_refcnt); 691 } 692 693 /* Ungrab socket in the context, which assumes that socket refcnt 694 cannot hit zero, f.e. it is true in context of any socketcall. 695 */ 696 static __always_inline void __sock_put(struct sock *sk) 697 { 698 refcount_dec(&sk->sk_refcnt); 699 } 700 701 static inline bool sk_del_node_init(struct sock *sk) 702 { 703 bool rc = __sk_del_node_init(sk); 704 705 if (rc) { 706 /* paranoid for a while -acme */ 707 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 708 __sock_put(sk); 709 } 710 return rc; 711 } 712 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 713 714 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 715 { 716 if (sk_hashed(sk)) { 717 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 718 return true; 719 } 720 return false; 721 } 722 723 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 724 { 725 bool rc = __sk_nulls_del_node_init_rcu(sk); 726 727 if (rc) { 728 /* paranoid for a while -acme */ 729 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 730 __sock_put(sk); 731 } 732 return rc; 733 } 734 735 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 736 { 737 hlist_add_head(&sk->sk_node, list); 738 } 739 740 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 741 { 742 sock_hold(sk); 743 __sk_add_node(sk, list); 744 } 745 746 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 747 { 748 sock_hold(sk); 749 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 750 sk->sk_family == AF_INET6) 751 hlist_add_tail_rcu(&sk->sk_node, list); 752 else 753 hlist_add_head_rcu(&sk->sk_node, list); 754 } 755 756 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 757 { 758 sock_hold(sk); 759 hlist_add_tail_rcu(&sk->sk_node, list); 760 } 761 762 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 763 { 764 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 765 } 766 767 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 768 { 769 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 770 } 771 772 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 773 { 774 sock_hold(sk); 775 __sk_nulls_add_node_rcu(sk, list); 776 } 777 778 static inline void __sk_del_bind_node(struct sock *sk) 779 { 780 __hlist_del(&sk->sk_bind_node); 781 } 782 783 static inline void sk_add_bind_node(struct sock *sk, 784 struct hlist_head *list) 785 { 786 hlist_add_head(&sk->sk_bind_node, list); 787 } 788 789 #define sk_for_each(__sk, list) \ 790 hlist_for_each_entry(__sk, list, sk_node) 791 #define sk_for_each_rcu(__sk, list) \ 792 hlist_for_each_entry_rcu(__sk, list, sk_node) 793 #define sk_nulls_for_each(__sk, node, list) \ 794 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 795 #define sk_nulls_for_each_rcu(__sk, node, list) \ 796 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 797 #define sk_for_each_from(__sk) \ 798 hlist_for_each_entry_from(__sk, sk_node) 799 #define sk_nulls_for_each_from(__sk, node) \ 800 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 801 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 802 #define sk_for_each_safe(__sk, tmp, list) \ 803 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 804 #define sk_for_each_bound(__sk, list) \ 805 hlist_for_each_entry(__sk, list, sk_bind_node) 806 807 /** 808 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 809 * @tpos: the type * to use as a loop cursor. 810 * @pos: the &struct hlist_node to use as a loop cursor. 811 * @head: the head for your list. 812 * @offset: offset of hlist_node within the struct. 813 * 814 */ 815 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 816 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 817 pos != NULL && \ 818 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 819 pos = rcu_dereference(hlist_next_rcu(pos))) 820 821 static inline struct user_namespace *sk_user_ns(struct sock *sk) 822 { 823 /* Careful only use this in a context where these parameters 824 * can not change and must all be valid, such as recvmsg from 825 * userspace. 826 */ 827 return sk->sk_socket->file->f_cred->user_ns; 828 } 829 830 /* Sock flags */ 831 enum sock_flags { 832 SOCK_DEAD, 833 SOCK_DONE, 834 SOCK_URGINLINE, 835 SOCK_KEEPOPEN, 836 SOCK_LINGER, 837 SOCK_DESTROY, 838 SOCK_BROADCAST, 839 SOCK_TIMESTAMP, 840 SOCK_ZAPPED, 841 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 842 SOCK_DBG, /* %SO_DEBUG setting */ 843 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 844 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 845 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 846 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 847 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 848 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 849 SOCK_FASYNC, /* fasync() active */ 850 SOCK_RXQ_OVFL, 851 SOCK_ZEROCOPY, /* buffers from userspace */ 852 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 853 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 854 * Will use last 4 bytes of packet sent from 855 * user-space instead. 856 */ 857 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 858 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 859 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 860 SOCK_TXTIME, 861 SOCK_XDP, /* XDP is attached */ 862 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 863 }; 864 865 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 866 867 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 868 { 869 nsk->sk_flags = osk->sk_flags; 870 } 871 872 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 873 { 874 __set_bit(flag, &sk->sk_flags); 875 } 876 877 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 878 { 879 __clear_bit(flag, &sk->sk_flags); 880 } 881 882 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 883 { 884 return test_bit(flag, &sk->sk_flags); 885 } 886 887 #ifdef CONFIG_NET 888 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 889 static inline int sk_memalloc_socks(void) 890 { 891 return static_branch_unlikely(&memalloc_socks_key); 892 } 893 #else 894 895 static inline int sk_memalloc_socks(void) 896 { 897 return 0; 898 } 899 900 #endif 901 902 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 903 { 904 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 905 } 906 907 static inline void sk_acceptq_removed(struct sock *sk) 908 { 909 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 910 } 911 912 static inline void sk_acceptq_added(struct sock *sk) 913 { 914 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 915 } 916 917 static inline bool sk_acceptq_is_full(const struct sock *sk) 918 { 919 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 920 } 921 922 /* 923 * Compute minimal free write space needed to queue new packets. 924 */ 925 static inline int sk_stream_min_wspace(const struct sock *sk) 926 { 927 return READ_ONCE(sk->sk_wmem_queued) >> 1; 928 } 929 930 static inline int sk_stream_wspace(const struct sock *sk) 931 { 932 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 933 } 934 935 static inline void sk_wmem_queued_add(struct sock *sk, int val) 936 { 937 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 938 } 939 940 void sk_stream_write_space(struct sock *sk); 941 942 /* OOB backlog add */ 943 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 944 { 945 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 946 skb_dst_force(skb); 947 948 if (!sk->sk_backlog.tail) 949 WRITE_ONCE(sk->sk_backlog.head, skb); 950 else 951 sk->sk_backlog.tail->next = skb; 952 953 WRITE_ONCE(sk->sk_backlog.tail, skb); 954 skb->next = NULL; 955 } 956 957 /* 958 * Take into account size of receive queue and backlog queue 959 * Do not take into account this skb truesize, 960 * to allow even a single big packet to come. 961 */ 962 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 963 { 964 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 965 966 return qsize > limit; 967 } 968 969 /* The per-socket spinlock must be held here. */ 970 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 971 unsigned int limit) 972 { 973 if (sk_rcvqueues_full(sk, limit)) 974 return -ENOBUFS; 975 976 /* 977 * If the skb was allocated from pfmemalloc reserves, only 978 * allow SOCK_MEMALLOC sockets to use it as this socket is 979 * helping free memory 980 */ 981 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 982 return -ENOMEM; 983 984 __sk_add_backlog(sk, skb); 985 sk->sk_backlog.len += skb->truesize; 986 return 0; 987 } 988 989 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 990 991 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 992 { 993 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 994 return __sk_backlog_rcv(sk, skb); 995 996 return sk->sk_backlog_rcv(sk, skb); 997 } 998 999 static inline void sk_incoming_cpu_update(struct sock *sk) 1000 { 1001 int cpu = raw_smp_processor_id(); 1002 1003 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1004 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1005 } 1006 1007 static inline void sock_rps_record_flow_hash(__u32 hash) 1008 { 1009 #ifdef CONFIG_RPS 1010 struct rps_sock_flow_table *sock_flow_table; 1011 1012 rcu_read_lock(); 1013 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1014 rps_record_sock_flow(sock_flow_table, hash); 1015 rcu_read_unlock(); 1016 #endif 1017 } 1018 1019 static inline void sock_rps_record_flow(const struct sock *sk) 1020 { 1021 #ifdef CONFIG_RPS 1022 if (static_branch_unlikely(&rfs_needed)) { 1023 /* Reading sk->sk_rxhash might incur an expensive cache line 1024 * miss. 1025 * 1026 * TCP_ESTABLISHED does cover almost all states where RFS 1027 * might be useful, and is cheaper [1] than testing : 1028 * IPv4: inet_sk(sk)->inet_daddr 1029 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1030 * OR an additional socket flag 1031 * [1] : sk_state and sk_prot are in the same cache line. 1032 */ 1033 if (sk->sk_state == TCP_ESTABLISHED) 1034 sock_rps_record_flow_hash(sk->sk_rxhash); 1035 } 1036 #endif 1037 } 1038 1039 static inline void sock_rps_save_rxhash(struct sock *sk, 1040 const struct sk_buff *skb) 1041 { 1042 #ifdef CONFIG_RPS 1043 if (unlikely(sk->sk_rxhash != skb->hash)) 1044 sk->sk_rxhash = skb->hash; 1045 #endif 1046 } 1047 1048 static inline void sock_rps_reset_rxhash(struct sock *sk) 1049 { 1050 #ifdef CONFIG_RPS 1051 sk->sk_rxhash = 0; 1052 #endif 1053 } 1054 1055 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1056 ({ int __rc; \ 1057 release_sock(__sk); \ 1058 __rc = __condition; \ 1059 if (!__rc) { \ 1060 *(__timeo) = wait_woken(__wait, \ 1061 TASK_INTERRUPTIBLE, \ 1062 *(__timeo)); \ 1063 } \ 1064 sched_annotate_sleep(); \ 1065 lock_sock(__sk); \ 1066 __rc = __condition; \ 1067 __rc; \ 1068 }) 1069 1070 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1071 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1072 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1073 int sk_stream_error(struct sock *sk, int flags, int err); 1074 void sk_stream_kill_queues(struct sock *sk); 1075 void sk_set_memalloc(struct sock *sk); 1076 void sk_clear_memalloc(struct sock *sk); 1077 1078 void __sk_flush_backlog(struct sock *sk); 1079 1080 static inline bool sk_flush_backlog(struct sock *sk) 1081 { 1082 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1083 __sk_flush_backlog(sk); 1084 return true; 1085 } 1086 return false; 1087 } 1088 1089 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1090 1091 struct request_sock_ops; 1092 struct timewait_sock_ops; 1093 struct inet_hashinfo; 1094 struct raw_hashinfo; 1095 struct smc_hashinfo; 1096 struct module; 1097 1098 /* 1099 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1100 * un-modified. Special care is taken when initializing object to zero. 1101 */ 1102 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1103 { 1104 if (offsetof(struct sock, sk_node.next) != 0) 1105 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1106 memset(&sk->sk_node.pprev, 0, 1107 size - offsetof(struct sock, sk_node.pprev)); 1108 } 1109 1110 /* Networking protocol blocks we attach to sockets. 1111 * socket layer -> transport layer interface 1112 */ 1113 struct proto { 1114 void (*close)(struct sock *sk, 1115 long timeout); 1116 int (*pre_connect)(struct sock *sk, 1117 struct sockaddr *uaddr, 1118 int addr_len); 1119 int (*connect)(struct sock *sk, 1120 struct sockaddr *uaddr, 1121 int addr_len); 1122 int (*disconnect)(struct sock *sk, int flags); 1123 1124 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1125 bool kern); 1126 1127 int (*ioctl)(struct sock *sk, int cmd, 1128 unsigned long arg); 1129 int (*init)(struct sock *sk); 1130 void (*destroy)(struct sock *sk); 1131 void (*shutdown)(struct sock *sk, int how); 1132 int (*setsockopt)(struct sock *sk, int level, 1133 int optname, char __user *optval, 1134 unsigned int optlen); 1135 int (*getsockopt)(struct sock *sk, int level, 1136 int optname, char __user *optval, 1137 int __user *option); 1138 void (*keepalive)(struct sock *sk, int valbool); 1139 #ifdef CONFIG_COMPAT 1140 int (*compat_setsockopt)(struct sock *sk, 1141 int level, 1142 int optname, char __user *optval, 1143 unsigned int optlen); 1144 int (*compat_getsockopt)(struct sock *sk, 1145 int level, 1146 int optname, char __user *optval, 1147 int __user *option); 1148 int (*compat_ioctl)(struct sock *sk, 1149 unsigned int cmd, unsigned long arg); 1150 #endif 1151 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1152 size_t len); 1153 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1154 size_t len, int noblock, int flags, 1155 int *addr_len); 1156 int (*sendpage)(struct sock *sk, struct page *page, 1157 int offset, size_t size, int flags); 1158 int (*bind)(struct sock *sk, 1159 struct sockaddr *addr, int addr_len); 1160 int (*bind_add)(struct sock *sk, 1161 struct sockaddr *addr, int addr_len); 1162 1163 int (*backlog_rcv) (struct sock *sk, 1164 struct sk_buff *skb); 1165 1166 void (*release_cb)(struct sock *sk); 1167 1168 /* Keeping track of sk's, looking them up, and port selection methods. */ 1169 int (*hash)(struct sock *sk); 1170 void (*unhash)(struct sock *sk); 1171 void (*rehash)(struct sock *sk); 1172 int (*get_port)(struct sock *sk, unsigned short snum); 1173 1174 /* Keeping track of sockets in use */ 1175 #ifdef CONFIG_PROC_FS 1176 unsigned int inuse_idx; 1177 #endif 1178 1179 bool (*stream_memory_free)(const struct sock *sk, int wake); 1180 bool (*stream_memory_read)(const struct sock *sk); 1181 /* Memory pressure */ 1182 void (*enter_memory_pressure)(struct sock *sk); 1183 void (*leave_memory_pressure)(struct sock *sk); 1184 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1185 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1186 /* 1187 * Pressure flag: try to collapse. 1188 * Technical note: it is used by multiple contexts non atomically. 1189 * All the __sk_mem_schedule() is of this nature: accounting 1190 * is strict, actions are advisory and have some latency. 1191 */ 1192 unsigned long *memory_pressure; 1193 long *sysctl_mem; 1194 1195 int *sysctl_wmem; 1196 int *sysctl_rmem; 1197 u32 sysctl_wmem_offset; 1198 u32 sysctl_rmem_offset; 1199 1200 int max_header; 1201 bool no_autobind; 1202 1203 struct kmem_cache *slab; 1204 unsigned int obj_size; 1205 slab_flags_t slab_flags; 1206 unsigned int useroffset; /* Usercopy region offset */ 1207 unsigned int usersize; /* Usercopy region size */ 1208 1209 struct percpu_counter *orphan_count; 1210 1211 struct request_sock_ops *rsk_prot; 1212 struct timewait_sock_ops *twsk_prot; 1213 1214 union { 1215 struct inet_hashinfo *hashinfo; 1216 struct udp_table *udp_table; 1217 struct raw_hashinfo *raw_hash; 1218 struct smc_hashinfo *smc_hash; 1219 } h; 1220 1221 struct module *owner; 1222 1223 char name[32]; 1224 1225 struct list_head node; 1226 #ifdef SOCK_REFCNT_DEBUG 1227 atomic_t socks; 1228 #endif 1229 int (*diag_destroy)(struct sock *sk, int err); 1230 } __randomize_layout; 1231 1232 int proto_register(struct proto *prot, int alloc_slab); 1233 void proto_unregister(struct proto *prot); 1234 int sock_load_diag_module(int family, int protocol); 1235 1236 #ifdef SOCK_REFCNT_DEBUG 1237 static inline void sk_refcnt_debug_inc(struct sock *sk) 1238 { 1239 atomic_inc(&sk->sk_prot->socks); 1240 } 1241 1242 static inline void sk_refcnt_debug_dec(struct sock *sk) 1243 { 1244 atomic_dec(&sk->sk_prot->socks); 1245 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1246 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1247 } 1248 1249 static inline void sk_refcnt_debug_release(const struct sock *sk) 1250 { 1251 if (refcount_read(&sk->sk_refcnt) != 1) 1252 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1253 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1254 } 1255 #else /* SOCK_REFCNT_DEBUG */ 1256 #define sk_refcnt_debug_inc(sk) do { } while (0) 1257 #define sk_refcnt_debug_dec(sk) do { } while (0) 1258 #define sk_refcnt_debug_release(sk) do { } while (0) 1259 #endif /* SOCK_REFCNT_DEBUG */ 1260 1261 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1262 { 1263 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1264 return false; 1265 1266 return sk->sk_prot->stream_memory_free ? 1267 sk->sk_prot->stream_memory_free(sk, wake) : true; 1268 } 1269 1270 static inline bool sk_stream_memory_free(const struct sock *sk) 1271 { 1272 return __sk_stream_memory_free(sk, 0); 1273 } 1274 1275 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1276 { 1277 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1278 __sk_stream_memory_free(sk, wake); 1279 } 1280 1281 static inline bool sk_stream_is_writeable(const struct sock *sk) 1282 { 1283 return __sk_stream_is_writeable(sk, 0); 1284 } 1285 1286 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1287 struct cgroup *ancestor) 1288 { 1289 #ifdef CONFIG_SOCK_CGROUP_DATA 1290 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1291 ancestor); 1292 #else 1293 return -ENOTSUPP; 1294 #endif 1295 } 1296 1297 static inline bool sk_has_memory_pressure(const struct sock *sk) 1298 { 1299 return sk->sk_prot->memory_pressure != NULL; 1300 } 1301 1302 static inline bool sk_under_memory_pressure(const struct sock *sk) 1303 { 1304 if (!sk->sk_prot->memory_pressure) 1305 return false; 1306 1307 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1308 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1309 return true; 1310 1311 return !!*sk->sk_prot->memory_pressure; 1312 } 1313 1314 static inline long 1315 sk_memory_allocated(const struct sock *sk) 1316 { 1317 return atomic_long_read(sk->sk_prot->memory_allocated); 1318 } 1319 1320 static inline long 1321 sk_memory_allocated_add(struct sock *sk, int amt) 1322 { 1323 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1324 } 1325 1326 static inline void 1327 sk_memory_allocated_sub(struct sock *sk, int amt) 1328 { 1329 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1330 } 1331 1332 static inline void sk_sockets_allocated_dec(struct sock *sk) 1333 { 1334 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1335 } 1336 1337 static inline void sk_sockets_allocated_inc(struct sock *sk) 1338 { 1339 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1340 } 1341 1342 static inline u64 1343 sk_sockets_allocated_read_positive(struct sock *sk) 1344 { 1345 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1346 } 1347 1348 static inline int 1349 proto_sockets_allocated_sum_positive(struct proto *prot) 1350 { 1351 return percpu_counter_sum_positive(prot->sockets_allocated); 1352 } 1353 1354 static inline long 1355 proto_memory_allocated(struct proto *prot) 1356 { 1357 return atomic_long_read(prot->memory_allocated); 1358 } 1359 1360 static inline bool 1361 proto_memory_pressure(struct proto *prot) 1362 { 1363 if (!prot->memory_pressure) 1364 return false; 1365 return !!*prot->memory_pressure; 1366 } 1367 1368 1369 #ifdef CONFIG_PROC_FS 1370 /* Called with local bh disabled */ 1371 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1372 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1373 int sock_inuse_get(struct net *net); 1374 #else 1375 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1376 int inc) 1377 { 1378 } 1379 #endif 1380 1381 1382 /* With per-bucket locks this operation is not-atomic, so that 1383 * this version is not worse. 1384 */ 1385 static inline int __sk_prot_rehash(struct sock *sk) 1386 { 1387 sk->sk_prot->unhash(sk); 1388 return sk->sk_prot->hash(sk); 1389 } 1390 1391 /* About 10 seconds */ 1392 #define SOCK_DESTROY_TIME (10*HZ) 1393 1394 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1395 #define PROT_SOCK 1024 1396 1397 #define SHUTDOWN_MASK 3 1398 #define RCV_SHUTDOWN 1 1399 #define SEND_SHUTDOWN 2 1400 1401 #define SOCK_SNDBUF_LOCK 1 1402 #define SOCK_RCVBUF_LOCK 2 1403 #define SOCK_BINDADDR_LOCK 4 1404 #define SOCK_BINDPORT_LOCK 8 1405 1406 struct socket_alloc { 1407 struct socket socket; 1408 struct inode vfs_inode; 1409 }; 1410 1411 static inline struct socket *SOCKET_I(struct inode *inode) 1412 { 1413 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1414 } 1415 1416 static inline struct inode *SOCK_INODE(struct socket *socket) 1417 { 1418 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1419 } 1420 1421 /* 1422 * Functions for memory accounting 1423 */ 1424 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1425 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1426 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1427 void __sk_mem_reclaim(struct sock *sk, int amount); 1428 1429 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1430 * do not necessarily have 16x time more memory than 4KB ones. 1431 */ 1432 #define SK_MEM_QUANTUM 4096 1433 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1434 #define SK_MEM_SEND 0 1435 #define SK_MEM_RECV 1 1436 1437 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1438 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1439 { 1440 long val = sk->sk_prot->sysctl_mem[index]; 1441 1442 #if PAGE_SIZE > SK_MEM_QUANTUM 1443 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1444 #elif PAGE_SIZE < SK_MEM_QUANTUM 1445 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1446 #endif 1447 return val; 1448 } 1449 1450 static inline int sk_mem_pages(int amt) 1451 { 1452 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1453 } 1454 1455 static inline bool sk_has_account(struct sock *sk) 1456 { 1457 /* return true if protocol supports memory accounting */ 1458 return !!sk->sk_prot->memory_allocated; 1459 } 1460 1461 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1462 { 1463 if (!sk_has_account(sk)) 1464 return true; 1465 return size <= sk->sk_forward_alloc || 1466 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1467 } 1468 1469 static inline bool 1470 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1471 { 1472 if (!sk_has_account(sk)) 1473 return true; 1474 return size<= sk->sk_forward_alloc || 1475 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1476 skb_pfmemalloc(skb); 1477 } 1478 1479 static inline void sk_mem_reclaim(struct sock *sk) 1480 { 1481 if (!sk_has_account(sk)) 1482 return; 1483 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1484 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1485 } 1486 1487 static inline void sk_mem_reclaim_partial(struct sock *sk) 1488 { 1489 if (!sk_has_account(sk)) 1490 return; 1491 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1492 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1493 } 1494 1495 static inline void sk_mem_charge(struct sock *sk, int size) 1496 { 1497 if (!sk_has_account(sk)) 1498 return; 1499 sk->sk_forward_alloc -= size; 1500 } 1501 1502 static inline void sk_mem_uncharge(struct sock *sk, int size) 1503 { 1504 if (!sk_has_account(sk)) 1505 return; 1506 sk->sk_forward_alloc += size; 1507 1508 /* Avoid a possible overflow. 1509 * TCP send queues can make this happen, if sk_mem_reclaim() 1510 * is not called and more than 2 GBytes are released at once. 1511 * 1512 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1513 * no need to hold that much forward allocation anyway. 1514 */ 1515 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1516 __sk_mem_reclaim(sk, 1 << 20); 1517 } 1518 1519 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 1520 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1521 { 1522 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1523 sk_wmem_queued_add(sk, -skb->truesize); 1524 sk_mem_uncharge(sk, skb->truesize); 1525 if (static_branch_unlikely(&tcp_tx_skb_cache_key) && 1526 !sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1527 skb_ext_reset(skb); 1528 skb_zcopy_clear(skb, true); 1529 sk->sk_tx_skb_cache = skb; 1530 return; 1531 } 1532 __kfree_skb(skb); 1533 } 1534 1535 static inline void sock_release_ownership(struct sock *sk) 1536 { 1537 if (sk->sk_lock.owned) { 1538 sk->sk_lock.owned = 0; 1539 1540 /* The sk_lock has mutex_unlock() semantics: */ 1541 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1542 } 1543 } 1544 1545 /* 1546 * Macro so as to not evaluate some arguments when 1547 * lockdep is not enabled. 1548 * 1549 * Mark both the sk_lock and the sk_lock.slock as a 1550 * per-address-family lock class. 1551 */ 1552 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1553 do { \ 1554 sk->sk_lock.owned = 0; \ 1555 init_waitqueue_head(&sk->sk_lock.wq); \ 1556 spin_lock_init(&(sk)->sk_lock.slock); \ 1557 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1558 sizeof((sk)->sk_lock)); \ 1559 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1560 (skey), (sname)); \ 1561 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1562 } while (0) 1563 1564 #ifdef CONFIG_LOCKDEP 1565 static inline bool lockdep_sock_is_held(const struct sock *sk) 1566 { 1567 return lockdep_is_held(&sk->sk_lock) || 1568 lockdep_is_held(&sk->sk_lock.slock); 1569 } 1570 #endif 1571 1572 void lock_sock_nested(struct sock *sk, int subclass); 1573 1574 static inline void lock_sock(struct sock *sk) 1575 { 1576 lock_sock_nested(sk, 0); 1577 } 1578 1579 void __release_sock(struct sock *sk); 1580 void release_sock(struct sock *sk); 1581 1582 /* BH context may only use the following locking interface. */ 1583 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1584 #define bh_lock_sock_nested(__sk) \ 1585 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1586 SINGLE_DEPTH_NESTING) 1587 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1588 1589 bool lock_sock_fast(struct sock *sk); 1590 /** 1591 * unlock_sock_fast - complement of lock_sock_fast 1592 * @sk: socket 1593 * @slow: slow mode 1594 * 1595 * fast unlock socket for user context. 1596 * If slow mode is on, we call regular release_sock() 1597 */ 1598 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1599 { 1600 if (slow) 1601 release_sock(sk); 1602 else 1603 spin_unlock_bh(&sk->sk_lock.slock); 1604 } 1605 1606 /* Used by processes to "lock" a socket state, so that 1607 * interrupts and bottom half handlers won't change it 1608 * from under us. It essentially blocks any incoming 1609 * packets, so that we won't get any new data or any 1610 * packets that change the state of the socket. 1611 * 1612 * While locked, BH processing will add new packets to 1613 * the backlog queue. This queue is processed by the 1614 * owner of the socket lock right before it is released. 1615 * 1616 * Since ~2.3.5 it is also exclusive sleep lock serializing 1617 * accesses from user process context. 1618 */ 1619 1620 static inline void sock_owned_by_me(const struct sock *sk) 1621 { 1622 #ifdef CONFIG_LOCKDEP 1623 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1624 #endif 1625 } 1626 1627 static inline bool sock_owned_by_user(const struct sock *sk) 1628 { 1629 sock_owned_by_me(sk); 1630 return sk->sk_lock.owned; 1631 } 1632 1633 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1634 { 1635 return sk->sk_lock.owned; 1636 } 1637 1638 /* no reclassification while locks are held */ 1639 static inline bool sock_allow_reclassification(const struct sock *csk) 1640 { 1641 struct sock *sk = (struct sock *)csk; 1642 1643 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1644 } 1645 1646 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1647 struct proto *prot, int kern); 1648 void sk_free(struct sock *sk); 1649 void sk_destruct(struct sock *sk); 1650 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1651 void sk_free_unlock_clone(struct sock *sk); 1652 1653 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1654 gfp_t priority); 1655 void __sock_wfree(struct sk_buff *skb); 1656 void sock_wfree(struct sk_buff *skb); 1657 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1658 gfp_t priority); 1659 void skb_orphan_partial(struct sk_buff *skb); 1660 void sock_rfree(struct sk_buff *skb); 1661 void sock_efree(struct sk_buff *skb); 1662 #ifdef CONFIG_INET 1663 void sock_edemux(struct sk_buff *skb); 1664 void sock_pfree(struct sk_buff *skb); 1665 #else 1666 #define sock_edemux sock_efree 1667 #endif 1668 1669 int sock_setsockopt(struct socket *sock, int level, int op, 1670 char __user *optval, unsigned int optlen); 1671 1672 int sock_getsockopt(struct socket *sock, int level, int op, 1673 char __user *optval, int __user *optlen); 1674 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1675 bool timeval, bool time32); 1676 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1677 int noblock, int *errcode); 1678 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1679 unsigned long data_len, int noblock, 1680 int *errcode, int max_page_order); 1681 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1682 void sock_kfree_s(struct sock *sk, void *mem, int size); 1683 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1684 void sk_send_sigurg(struct sock *sk); 1685 1686 struct sockcm_cookie { 1687 u64 transmit_time; 1688 u32 mark; 1689 u16 tsflags; 1690 }; 1691 1692 static inline void sockcm_init(struct sockcm_cookie *sockc, 1693 const struct sock *sk) 1694 { 1695 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1696 } 1697 1698 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1699 struct sockcm_cookie *sockc); 1700 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1701 struct sockcm_cookie *sockc); 1702 1703 /* 1704 * Functions to fill in entries in struct proto_ops when a protocol 1705 * does not implement a particular function. 1706 */ 1707 int sock_no_bind(struct socket *, struct sockaddr *, int); 1708 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1709 int sock_no_socketpair(struct socket *, struct socket *); 1710 int sock_no_accept(struct socket *, struct socket *, int, bool); 1711 int sock_no_getname(struct socket *, struct sockaddr *, int); 1712 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1713 int sock_no_listen(struct socket *, int); 1714 int sock_no_shutdown(struct socket *, int); 1715 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1716 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1717 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1718 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1719 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1720 int sock_no_mmap(struct file *file, struct socket *sock, 1721 struct vm_area_struct *vma); 1722 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1723 size_t size, int flags); 1724 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1725 int offset, size_t size, int flags); 1726 1727 /* 1728 * Functions to fill in entries in struct proto_ops when a protocol 1729 * uses the inet style. 1730 */ 1731 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1732 char __user *optval, int __user *optlen); 1733 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1734 int flags); 1735 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1736 char __user *optval, unsigned int optlen); 1737 int compat_sock_common_getsockopt(struct socket *sock, int level, 1738 int optname, char __user *optval, int __user *optlen); 1739 int compat_sock_common_setsockopt(struct socket *sock, int level, 1740 int optname, char __user *optval, unsigned int optlen); 1741 1742 void sk_common_release(struct sock *sk); 1743 1744 /* 1745 * Default socket callbacks and setup code 1746 */ 1747 1748 /* Initialise core socket variables */ 1749 void sock_init_data(struct socket *sock, struct sock *sk); 1750 1751 /* 1752 * Socket reference counting postulates. 1753 * 1754 * * Each user of socket SHOULD hold a reference count. 1755 * * Each access point to socket (an hash table bucket, reference from a list, 1756 * running timer, skb in flight MUST hold a reference count. 1757 * * When reference count hits 0, it means it will never increase back. 1758 * * When reference count hits 0, it means that no references from 1759 * outside exist to this socket and current process on current CPU 1760 * is last user and may/should destroy this socket. 1761 * * sk_free is called from any context: process, BH, IRQ. When 1762 * it is called, socket has no references from outside -> sk_free 1763 * may release descendant resources allocated by the socket, but 1764 * to the time when it is called, socket is NOT referenced by any 1765 * hash tables, lists etc. 1766 * * Packets, delivered from outside (from network or from another process) 1767 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1768 * when they sit in queue. Otherwise, packets will leak to hole, when 1769 * socket is looked up by one cpu and unhasing is made by another CPU. 1770 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1771 * (leak to backlog). Packet socket does all the processing inside 1772 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1773 * use separate SMP lock, so that they are prone too. 1774 */ 1775 1776 /* Ungrab socket and destroy it, if it was the last reference. */ 1777 static inline void sock_put(struct sock *sk) 1778 { 1779 if (refcount_dec_and_test(&sk->sk_refcnt)) 1780 sk_free(sk); 1781 } 1782 /* Generic version of sock_put(), dealing with all sockets 1783 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1784 */ 1785 void sock_gen_put(struct sock *sk); 1786 1787 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1788 unsigned int trim_cap, bool refcounted); 1789 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1790 const int nested) 1791 { 1792 return __sk_receive_skb(sk, skb, nested, 1, true); 1793 } 1794 1795 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1796 { 1797 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1798 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1799 return; 1800 sk->sk_tx_queue_mapping = tx_queue; 1801 } 1802 1803 #define NO_QUEUE_MAPPING USHRT_MAX 1804 1805 static inline void sk_tx_queue_clear(struct sock *sk) 1806 { 1807 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1808 } 1809 1810 static inline int sk_tx_queue_get(const struct sock *sk) 1811 { 1812 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1813 return sk->sk_tx_queue_mapping; 1814 1815 return -1; 1816 } 1817 1818 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1819 { 1820 #ifdef CONFIG_XPS 1821 if (skb_rx_queue_recorded(skb)) { 1822 u16 rx_queue = skb_get_rx_queue(skb); 1823 1824 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1825 return; 1826 1827 sk->sk_rx_queue_mapping = rx_queue; 1828 } 1829 #endif 1830 } 1831 1832 static inline void sk_rx_queue_clear(struct sock *sk) 1833 { 1834 #ifdef CONFIG_XPS 1835 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1836 #endif 1837 } 1838 1839 #ifdef CONFIG_XPS 1840 static inline int sk_rx_queue_get(const struct sock *sk) 1841 { 1842 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1843 return sk->sk_rx_queue_mapping; 1844 1845 return -1; 1846 } 1847 #endif 1848 1849 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1850 { 1851 sk->sk_socket = sock; 1852 } 1853 1854 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1855 { 1856 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1857 return &rcu_dereference_raw(sk->sk_wq)->wait; 1858 } 1859 /* Detach socket from process context. 1860 * Announce socket dead, detach it from wait queue and inode. 1861 * Note that parent inode held reference count on this struct sock, 1862 * we do not release it in this function, because protocol 1863 * probably wants some additional cleanups or even continuing 1864 * to work with this socket (TCP). 1865 */ 1866 static inline void sock_orphan(struct sock *sk) 1867 { 1868 write_lock_bh(&sk->sk_callback_lock); 1869 sock_set_flag(sk, SOCK_DEAD); 1870 sk_set_socket(sk, NULL); 1871 sk->sk_wq = NULL; 1872 write_unlock_bh(&sk->sk_callback_lock); 1873 } 1874 1875 static inline void sock_graft(struct sock *sk, struct socket *parent) 1876 { 1877 WARN_ON(parent->sk); 1878 write_lock_bh(&sk->sk_callback_lock); 1879 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1880 parent->sk = sk; 1881 sk_set_socket(sk, parent); 1882 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1883 security_sock_graft(sk, parent); 1884 write_unlock_bh(&sk->sk_callback_lock); 1885 } 1886 1887 kuid_t sock_i_uid(struct sock *sk); 1888 unsigned long sock_i_ino(struct sock *sk); 1889 1890 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1891 { 1892 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1893 } 1894 1895 static inline u32 net_tx_rndhash(void) 1896 { 1897 u32 v = prandom_u32(); 1898 1899 return v ?: 1; 1900 } 1901 1902 static inline void sk_set_txhash(struct sock *sk) 1903 { 1904 sk->sk_txhash = net_tx_rndhash(); 1905 } 1906 1907 static inline void sk_rethink_txhash(struct sock *sk) 1908 { 1909 if (sk->sk_txhash) 1910 sk_set_txhash(sk); 1911 } 1912 1913 static inline struct dst_entry * 1914 __sk_dst_get(struct sock *sk) 1915 { 1916 return rcu_dereference_check(sk->sk_dst_cache, 1917 lockdep_sock_is_held(sk)); 1918 } 1919 1920 static inline struct dst_entry * 1921 sk_dst_get(struct sock *sk) 1922 { 1923 struct dst_entry *dst; 1924 1925 rcu_read_lock(); 1926 dst = rcu_dereference(sk->sk_dst_cache); 1927 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1928 dst = NULL; 1929 rcu_read_unlock(); 1930 return dst; 1931 } 1932 1933 static inline void dst_negative_advice(struct sock *sk) 1934 { 1935 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1936 1937 sk_rethink_txhash(sk); 1938 1939 if (dst && dst->ops->negative_advice) { 1940 ndst = dst->ops->negative_advice(dst); 1941 1942 if (ndst != dst) { 1943 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1944 sk_tx_queue_clear(sk); 1945 sk->sk_dst_pending_confirm = 0; 1946 } 1947 } 1948 } 1949 1950 static inline void 1951 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1952 { 1953 struct dst_entry *old_dst; 1954 1955 sk_tx_queue_clear(sk); 1956 sk->sk_dst_pending_confirm = 0; 1957 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1958 lockdep_sock_is_held(sk)); 1959 rcu_assign_pointer(sk->sk_dst_cache, dst); 1960 dst_release(old_dst); 1961 } 1962 1963 static inline void 1964 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1965 { 1966 struct dst_entry *old_dst; 1967 1968 sk_tx_queue_clear(sk); 1969 sk->sk_dst_pending_confirm = 0; 1970 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1971 dst_release(old_dst); 1972 } 1973 1974 static inline void 1975 __sk_dst_reset(struct sock *sk) 1976 { 1977 __sk_dst_set(sk, NULL); 1978 } 1979 1980 static inline void 1981 sk_dst_reset(struct sock *sk) 1982 { 1983 sk_dst_set(sk, NULL); 1984 } 1985 1986 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1987 1988 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1989 1990 static inline void sk_dst_confirm(struct sock *sk) 1991 { 1992 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 1993 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 1994 } 1995 1996 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1997 { 1998 if (skb_get_dst_pending_confirm(skb)) { 1999 struct sock *sk = skb->sk; 2000 unsigned long now = jiffies; 2001 2002 /* avoid dirtying neighbour */ 2003 if (READ_ONCE(n->confirmed) != now) 2004 WRITE_ONCE(n->confirmed, now); 2005 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2006 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2007 } 2008 } 2009 2010 bool sk_mc_loop(struct sock *sk); 2011 2012 static inline bool sk_can_gso(const struct sock *sk) 2013 { 2014 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2015 } 2016 2017 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2018 2019 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 2020 { 2021 sk->sk_route_nocaps |= flags; 2022 sk->sk_route_caps &= ~flags; 2023 } 2024 2025 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2026 struct iov_iter *from, char *to, 2027 int copy, int offset) 2028 { 2029 if (skb->ip_summed == CHECKSUM_NONE) { 2030 __wsum csum = 0; 2031 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2032 return -EFAULT; 2033 skb->csum = csum_block_add(skb->csum, csum, offset); 2034 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2035 if (!copy_from_iter_full_nocache(to, copy, from)) 2036 return -EFAULT; 2037 } else if (!copy_from_iter_full(to, copy, from)) 2038 return -EFAULT; 2039 2040 return 0; 2041 } 2042 2043 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2044 struct iov_iter *from, int copy) 2045 { 2046 int err, offset = skb->len; 2047 2048 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2049 copy, offset); 2050 if (err) 2051 __skb_trim(skb, offset); 2052 2053 return err; 2054 } 2055 2056 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2057 struct sk_buff *skb, 2058 struct page *page, 2059 int off, int copy) 2060 { 2061 int err; 2062 2063 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2064 copy, skb->len); 2065 if (err) 2066 return err; 2067 2068 skb->len += copy; 2069 skb->data_len += copy; 2070 skb->truesize += copy; 2071 sk_wmem_queued_add(sk, copy); 2072 sk_mem_charge(sk, copy); 2073 return 0; 2074 } 2075 2076 /** 2077 * sk_wmem_alloc_get - returns write allocations 2078 * @sk: socket 2079 * 2080 * Return: sk_wmem_alloc minus initial offset of one 2081 */ 2082 static inline int sk_wmem_alloc_get(const struct sock *sk) 2083 { 2084 return refcount_read(&sk->sk_wmem_alloc) - 1; 2085 } 2086 2087 /** 2088 * sk_rmem_alloc_get - returns read allocations 2089 * @sk: socket 2090 * 2091 * Return: sk_rmem_alloc 2092 */ 2093 static inline int sk_rmem_alloc_get(const struct sock *sk) 2094 { 2095 return atomic_read(&sk->sk_rmem_alloc); 2096 } 2097 2098 /** 2099 * sk_has_allocations - check if allocations are outstanding 2100 * @sk: socket 2101 * 2102 * Return: true if socket has write or read allocations 2103 */ 2104 static inline bool sk_has_allocations(const struct sock *sk) 2105 { 2106 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2107 } 2108 2109 /** 2110 * skwq_has_sleeper - check if there are any waiting processes 2111 * @wq: struct socket_wq 2112 * 2113 * Return: true if socket_wq has waiting processes 2114 * 2115 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2116 * barrier call. They were added due to the race found within the tcp code. 2117 * 2118 * Consider following tcp code paths:: 2119 * 2120 * CPU1 CPU2 2121 * sys_select receive packet 2122 * ... ... 2123 * __add_wait_queue update tp->rcv_nxt 2124 * ... ... 2125 * tp->rcv_nxt check sock_def_readable 2126 * ... { 2127 * schedule rcu_read_lock(); 2128 * wq = rcu_dereference(sk->sk_wq); 2129 * if (wq && waitqueue_active(&wq->wait)) 2130 * wake_up_interruptible(&wq->wait) 2131 * ... 2132 * } 2133 * 2134 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2135 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2136 * could then endup calling schedule and sleep forever if there are no more 2137 * data on the socket. 2138 * 2139 */ 2140 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2141 { 2142 return wq && wq_has_sleeper(&wq->wait); 2143 } 2144 2145 /** 2146 * sock_poll_wait - place memory barrier behind the poll_wait call. 2147 * @filp: file 2148 * @sock: socket to wait on 2149 * @p: poll_table 2150 * 2151 * See the comments in the wq_has_sleeper function. 2152 */ 2153 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2154 poll_table *p) 2155 { 2156 if (!poll_does_not_wait(p)) { 2157 poll_wait(filp, &sock->wq.wait, p); 2158 /* We need to be sure we are in sync with the 2159 * socket flags modification. 2160 * 2161 * This memory barrier is paired in the wq_has_sleeper. 2162 */ 2163 smp_mb(); 2164 } 2165 } 2166 2167 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2168 { 2169 if (sk->sk_txhash) { 2170 skb->l4_hash = 1; 2171 skb->hash = sk->sk_txhash; 2172 } 2173 } 2174 2175 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2176 2177 /* 2178 * Queue a received datagram if it will fit. Stream and sequenced 2179 * protocols can't normally use this as they need to fit buffers in 2180 * and play with them. 2181 * 2182 * Inlined as it's very short and called for pretty much every 2183 * packet ever received. 2184 */ 2185 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2186 { 2187 skb_orphan(skb); 2188 skb->sk = sk; 2189 skb->destructor = sock_rfree; 2190 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2191 sk_mem_charge(sk, skb->truesize); 2192 } 2193 2194 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2195 unsigned long expires); 2196 2197 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2198 2199 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2200 struct sk_buff *skb, unsigned int flags, 2201 void (*destructor)(struct sock *sk, 2202 struct sk_buff *skb)); 2203 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2204 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2205 2206 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2207 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2208 2209 /* 2210 * Recover an error report and clear atomically 2211 */ 2212 2213 static inline int sock_error(struct sock *sk) 2214 { 2215 int err; 2216 if (likely(!sk->sk_err)) 2217 return 0; 2218 err = xchg(&sk->sk_err, 0); 2219 return -err; 2220 } 2221 2222 static inline unsigned long sock_wspace(struct sock *sk) 2223 { 2224 int amt = 0; 2225 2226 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2227 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2228 if (amt < 0) 2229 amt = 0; 2230 } 2231 return amt; 2232 } 2233 2234 /* Note: 2235 * We use sk->sk_wq_raw, from contexts knowing this 2236 * pointer is not NULL and cannot disappear/change. 2237 */ 2238 static inline void sk_set_bit(int nr, struct sock *sk) 2239 { 2240 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2241 !sock_flag(sk, SOCK_FASYNC)) 2242 return; 2243 2244 set_bit(nr, &sk->sk_wq_raw->flags); 2245 } 2246 2247 static inline void sk_clear_bit(int nr, struct sock *sk) 2248 { 2249 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2250 !sock_flag(sk, SOCK_FASYNC)) 2251 return; 2252 2253 clear_bit(nr, &sk->sk_wq_raw->flags); 2254 } 2255 2256 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2257 { 2258 if (sock_flag(sk, SOCK_FASYNC)) { 2259 rcu_read_lock(); 2260 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2261 rcu_read_unlock(); 2262 } 2263 } 2264 2265 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2266 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2267 * Note: for send buffers, TCP works better if we can build two skbs at 2268 * minimum. 2269 */ 2270 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2271 2272 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2273 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2274 2275 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2276 { 2277 u32 val; 2278 2279 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2280 return; 2281 2282 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2283 2284 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2285 } 2286 2287 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2288 bool force_schedule); 2289 2290 /** 2291 * sk_page_frag - return an appropriate page_frag 2292 * @sk: socket 2293 * 2294 * Use the per task page_frag instead of the per socket one for 2295 * optimization when we know that we're in the normal context and owns 2296 * everything that's associated with %current. 2297 * 2298 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2299 * inside other socket operations and end up recursing into sk_page_frag() 2300 * while it's already in use. 2301 * 2302 * Return: a per task page_frag if context allows that, 2303 * otherwise a per socket one. 2304 */ 2305 static inline struct page_frag *sk_page_frag(struct sock *sk) 2306 { 2307 if (gfpflags_normal_context(sk->sk_allocation)) 2308 return ¤t->task_frag; 2309 2310 return &sk->sk_frag; 2311 } 2312 2313 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2314 2315 /* 2316 * Default write policy as shown to user space via poll/select/SIGIO 2317 */ 2318 static inline bool sock_writeable(const struct sock *sk) 2319 { 2320 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2321 } 2322 2323 static inline gfp_t gfp_any(void) 2324 { 2325 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2326 } 2327 2328 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2329 { 2330 return noblock ? 0 : sk->sk_rcvtimeo; 2331 } 2332 2333 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2334 { 2335 return noblock ? 0 : sk->sk_sndtimeo; 2336 } 2337 2338 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2339 { 2340 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2341 2342 return v ?: 1; 2343 } 2344 2345 /* Alas, with timeout socket operations are not restartable. 2346 * Compare this to poll(). 2347 */ 2348 static inline int sock_intr_errno(long timeo) 2349 { 2350 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2351 } 2352 2353 struct sock_skb_cb { 2354 u32 dropcount; 2355 }; 2356 2357 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2358 * using skb->cb[] would keep using it directly and utilize its 2359 * alignement guarantee. 2360 */ 2361 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2362 sizeof(struct sock_skb_cb))) 2363 2364 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2365 SOCK_SKB_CB_OFFSET)) 2366 2367 #define sock_skb_cb_check_size(size) \ 2368 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2369 2370 static inline void 2371 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2372 { 2373 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2374 atomic_read(&sk->sk_drops) : 0; 2375 } 2376 2377 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2378 { 2379 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2380 2381 atomic_add(segs, &sk->sk_drops); 2382 } 2383 2384 static inline ktime_t sock_read_timestamp(struct sock *sk) 2385 { 2386 #if BITS_PER_LONG==32 2387 unsigned int seq; 2388 ktime_t kt; 2389 2390 do { 2391 seq = read_seqbegin(&sk->sk_stamp_seq); 2392 kt = sk->sk_stamp; 2393 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2394 2395 return kt; 2396 #else 2397 return READ_ONCE(sk->sk_stamp); 2398 #endif 2399 } 2400 2401 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2402 { 2403 #if BITS_PER_LONG==32 2404 write_seqlock(&sk->sk_stamp_seq); 2405 sk->sk_stamp = kt; 2406 write_sequnlock(&sk->sk_stamp_seq); 2407 #else 2408 WRITE_ONCE(sk->sk_stamp, kt); 2409 #endif 2410 } 2411 2412 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2413 struct sk_buff *skb); 2414 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2415 struct sk_buff *skb); 2416 2417 static inline void 2418 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2419 { 2420 ktime_t kt = skb->tstamp; 2421 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2422 2423 /* 2424 * generate control messages if 2425 * - receive time stamping in software requested 2426 * - software time stamp available and wanted 2427 * - hardware time stamps available and wanted 2428 */ 2429 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2430 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2431 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2432 (hwtstamps->hwtstamp && 2433 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2434 __sock_recv_timestamp(msg, sk, skb); 2435 else 2436 sock_write_timestamp(sk, kt); 2437 2438 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2439 __sock_recv_wifi_status(msg, sk, skb); 2440 } 2441 2442 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2443 struct sk_buff *skb); 2444 2445 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2446 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2447 struct sk_buff *skb) 2448 { 2449 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2450 (1UL << SOCK_RCVTSTAMP)) 2451 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2452 SOF_TIMESTAMPING_RAW_HARDWARE) 2453 2454 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2455 __sock_recv_ts_and_drops(msg, sk, skb); 2456 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2457 sock_write_timestamp(sk, skb->tstamp); 2458 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2459 sock_write_timestamp(sk, 0); 2460 } 2461 2462 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2463 2464 /** 2465 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2466 * @sk: socket sending this packet 2467 * @tsflags: timestamping flags to use 2468 * @tx_flags: completed with instructions for time stamping 2469 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2470 * 2471 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2472 */ 2473 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2474 __u8 *tx_flags, __u32 *tskey) 2475 { 2476 if (unlikely(tsflags)) { 2477 __sock_tx_timestamp(tsflags, tx_flags); 2478 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2479 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2480 *tskey = sk->sk_tskey++; 2481 } 2482 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2483 *tx_flags |= SKBTX_WIFI_STATUS; 2484 } 2485 2486 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2487 __u8 *tx_flags) 2488 { 2489 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2490 } 2491 2492 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2493 { 2494 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2495 &skb_shinfo(skb)->tskey); 2496 } 2497 2498 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 2499 /** 2500 * sk_eat_skb - Release a skb if it is no longer needed 2501 * @sk: socket to eat this skb from 2502 * @skb: socket buffer to eat 2503 * 2504 * This routine must be called with interrupts disabled or with the socket 2505 * locked so that the sk_buff queue operation is ok. 2506 */ 2507 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2508 { 2509 __skb_unlink(skb, &sk->sk_receive_queue); 2510 if (static_branch_unlikely(&tcp_rx_skb_cache_key) && 2511 !sk->sk_rx_skb_cache) { 2512 sk->sk_rx_skb_cache = skb; 2513 skb_orphan(skb); 2514 return; 2515 } 2516 __kfree_skb(skb); 2517 } 2518 2519 static inline 2520 struct net *sock_net(const struct sock *sk) 2521 { 2522 return read_pnet(&sk->sk_net); 2523 } 2524 2525 static inline 2526 void sock_net_set(struct sock *sk, struct net *net) 2527 { 2528 write_pnet(&sk->sk_net, net); 2529 } 2530 2531 static inline bool 2532 skb_sk_is_prefetched(struct sk_buff *skb) 2533 { 2534 #ifdef CONFIG_INET 2535 return skb->destructor == sock_pfree; 2536 #else 2537 return false; 2538 #endif /* CONFIG_INET */ 2539 } 2540 2541 /* This helper checks if a socket is a full socket, 2542 * ie _not_ a timewait or request socket. 2543 */ 2544 static inline bool sk_fullsock(const struct sock *sk) 2545 { 2546 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2547 } 2548 2549 static inline bool 2550 sk_is_refcounted(struct sock *sk) 2551 { 2552 /* Only full sockets have sk->sk_flags. */ 2553 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2554 } 2555 2556 /** 2557 * skb_steal_sock - steal a socket from an sk_buff 2558 * @skb: sk_buff to steal the socket from 2559 * @refcounted: is set to true if the socket is reference-counted 2560 */ 2561 static inline struct sock * 2562 skb_steal_sock(struct sk_buff *skb, bool *refcounted) 2563 { 2564 if (skb->sk) { 2565 struct sock *sk = skb->sk; 2566 2567 *refcounted = true; 2568 if (skb_sk_is_prefetched(skb)) 2569 *refcounted = sk_is_refcounted(sk); 2570 skb->destructor = NULL; 2571 skb->sk = NULL; 2572 return sk; 2573 } 2574 *refcounted = false; 2575 return NULL; 2576 } 2577 2578 /* Checks if this SKB belongs to an HW offloaded socket 2579 * and whether any SW fallbacks are required based on dev. 2580 * Check decrypted mark in case skb_orphan() cleared socket. 2581 */ 2582 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2583 struct net_device *dev) 2584 { 2585 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2586 struct sock *sk = skb->sk; 2587 2588 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2589 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2590 #ifdef CONFIG_TLS_DEVICE 2591 } else if (unlikely(skb->decrypted)) { 2592 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2593 kfree_skb(skb); 2594 skb = NULL; 2595 #endif 2596 } 2597 #endif 2598 2599 return skb; 2600 } 2601 2602 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2603 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2604 */ 2605 static inline bool sk_listener(const struct sock *sk) 2606 { 2607 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2608 } 2609 2610 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2611 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2612 int type); 2613 2614 bool sk_ns_capable(const struct sock *sk, 2615 struct user_namespace *user_ns, int cap); 2616 bool sk_capable(const struct sock *sk, int cap); 2617 bool sk_net_capable(const struct sock *sk, int cap); 2618 2619 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2620 2621 /* Take into consideration the size of the struct sk_buff overhead in the 2622 * determination of these values, since that is non-constant across 2623 * platforms. This makes socket queueing behavior and performance 2624 * not depend upon such differences. 2625 */ 2626 #define _SK_MEM_PACKETS 256 2627 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2628 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2629 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2630 2631 extern __u32 sysctl_wmem_max; 2632 extern __u32 sysctl_rmem_max; 2633 2634 extern int sysctl_tstamp_allow_data; 2635 extern int sysctl_optmem_max; 2636 2637 extern __u32 sysctl_wmem_default; 2638 extern __u32 sysctl_rmem_default; 2639 2640 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2641 2642 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2643 { 2644 /* Does this proto have per netns sysctl_wmem ? */ 2645 if (proto->sysctl_wmem_offset) 2646 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2647 2648 return *proto->sysctl_wmem; 2649 } 2650 2651 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2652 { 2653 /* Does this proto have per netns sysctl_rmem ? */ 2654 if (proto->sysctl_rmem_offset) 2655 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2656 2657 return *proto->sysctl_rmem; 2658 } 2659 2660 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2661 * Some wifi drivers need to tweak it to get more chunks. 2662 * They can use this helper from their ndo_start_xmit() 2663 */ 2664 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2665 { 2666 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2667 return; 2668 WRITE_ONCE(sk->sk_pacing_shift, val); 2669 } 2670 2671 /* if a socket is bound to a device, check that the given device 2672 * index is either the same or that the socket is bound to an L3 2673 * master device and the given device index is also enslaved to 2674 * that L3 master 2675 */ 2676 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2677 { 2678 int mdif; 2679 2680 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2681 return true; 2682 2683 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2684 if (mdif && mdif == sk->sk_bound_dev_if) 2685 return true; 2686 2687 return false; 2688 } 2689 2690 void sock_def_readable(struct sock *sk); 2691 2692 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2693 void sock_enable_timestamps(struct sock *sk); 2694 void sock_no_linger(struct sock *sk); 2695 void sock_set_keepalive(struct sock *sk); 2696 void sock_set_priority(struct sock *sk, u32 priority); 2697 void sock_set_rcvbuf(struct sock *sk, int val); 2698 void sock_set_reuseaddr(struct sock *sk); 2699 void sock_set_reuseport(struct sock *sk); 2700 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2701 2702 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2703 2704 #endif /* _SOCK_H */ 2705