1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 62 #include <linux/filter.h> 63 #include <linux/rculist_nulls.h> 64 #include <linux/poll.h> 65 66 #include <linux/atomic.h> 67 #include <net/dst.h> 68 #include <net/checksum.h> 69 #include <net/tcp_states.h> 70 #include <linux/net_tstamp.h> 71 72 struct cgroup; 73 struct cgroup_subsys; 74 #ifdef CONFIG_NET 75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 77 #else 78 static inline 79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 80 { 81 return 0; 82 } 83 static inline 84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 85 { 86 } 87 #endif 88 /* 89 * This structure really needs to be cleaned up. 90 * Most of it is for TCP, and not used by any of 91 * the other protocols. 92 */ 93 94 /* Define this to get the SOCK_DBG debugging facility. */ 95 #define SOCK_DEBUGGING 96 #ifdef SOCK_DEBUGGING 97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 98 printk(KERN_DEBUG msg); } while (0) 99 #else 100 /* Validate arguments and do nothing */ 101 static inline __printf(2, 3) 102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 103 { 104 } 105 #endif 106 107 /* This is the per-socket lock. The spinlock provides a synchronization 108 * between user contexts and software interrupt processing, whereas the 109 * mini-semaphore synchronizes multiple users amongst themselves. 110 */ 111 typedef struct { 112 spinlock_t slock; 113 int owned; 114 wait_queue_head_t wq; 115 /* 116 * We express the mutex-alike socket_lock semantics 117 * to the lock validator by explicitly managing 118 * the slock as a lock variant (in addition to 119 * the slock itself): 120 */ 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 struct lockdep_map dep_map; 123 #endif 124 } socket_lock_t; 125 126 struct sock; 127 struct proto; 128 struct net; 129 130 typedef __u32 __bitwise __portpair; 131 typedef __u64 __bitwise __addrpair; 132 133 /** 134 * struct sock_common - minimal network layer representation of sockets 135 * @skc_daddr: Foreign IPv4 addr 136 * @skc_rcv_saddr: Bound local IPv4 addr 137 * @skc_hash: hash value used with various protocol lookup tables 138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 139 * @skc_dport: placeholder for inet_dport/tw_dport 140 * @skc_num: placeholder for inet_num/tw_num 141 * @skc_family: network address family 142 * @skc_state: Connection state 143 * @skc_reuse: %SO_REUSEADDR setting 144 * @skc_reuseport: %SO_REUSEPORT setting 145 * @skc_bound_dev_if: bound device index if != 0 146 * @skc_bind_node: bind hash linkage for various protocol lookup tables 147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 148 * @skc_prot: protocol handlers inside a network family 149 * @skc_net: reference to the network namespace of this socket 150 * @skc_node: main hash linkage for various protocol lookup tables 151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 152 * @skc_tx_queue_mapping: tx queue number for this connection 153 * @skc_refcnt: reference count 154 * 155 * This is the minimal network layer representation of sockets, the header 156 * for struct sock and struct inet_timewait_sock. 157 */ 158 struct sock_common { 159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 160 * address on 64bit arches : cf INET_MATCH() 161 */ 162 union { 163 __addrpair skc_addrpair; 164 struct { 165 __be32 skc_daddr; 166 __be32 skc_rcv_saddr; 167 }; 168 }; 169 union { 170 unsigned int skc_hash; 171 __u16 skc_u16hashes[2]; 172 }; 173 /* skc_dport && skc_num must be grouped as well */ 174 union { 175 __portpair skc_portpair; 176 struct { 177 __be16 skc_dport; 178 __u16 skc_num; 179 }; 180 }; 181 182 unsigned short skc_family; 183 volatile unsigned char skc_state; 184 unsigned char skc_reuse:4; 185 unsigned char skc_reuseport:1; 186 unsigned char skc_ipv6only:1; 187 unsigned char skc_net_refcnt:1; 188 int skc_bound_dev_if; 189 union { 190 struct hlist_node skc_bind_node; 191 struct hlist_nulls_node skc_portaddr_node; 192 }; 193 struct proto *skc_prot; 194 possible_net_t skc_net; 195 196 #if IS_ENABLED(CONFIG_IPV6) 197 struct in6_addr skc_v6_daddr; 198 struct in6_addr skc_v6_rcv_saddr; 199 #endif 200 201 atomic64_t skc_cookie; 202 203 /* 204 * fields between dontcopy_begin/dontcopy_end 205 * are not copied in sock_copy() 206 */ 207 /* private: */ 208 int skc_dontcopy_begin[0]; 209 /* public: */ 210 union { 211 struct hlist_node skc_node; 212 struct hlist_nulls_node skc_nulls_node; 213 }; 214 int skc_tx_queue_mapping; 215 atomic_t skc_refcnt; 216 /* private: */ 217 int skc_dontcopy_end[0]; 218 /* public: */ 219 }; 220 221 struct cg_proto; 222 /** 223 * struct sock - network layer representation of sockets 224 * @__sk_common: shared layout with inet_timewait_sock 225 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 226 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 227 * @sk_lock: synchronizer 228 * @sk_rcvbuf: size of receive buffer in bytes 229 * @sk_wq: sock wait queue and async head 230 * @sk_rx_dst: receive input route used by early demux 231 * @sk_dst_cache: destination cache 232 * @sk_dst_lock: destination cache lock 233 * @sk_policy: flow policy 234 * @sk_receive_queue: incoming packets 235 * @sk_wmem_alloc: transmit queue bytes committed 236 * @sk_write_queue: Packet sending queue 237 * @sk_omem_alloc: "o" is "option" or "other" 238 * @sk_wmem_queued: persistent queue size 239 * @sk_forward_alloc: space allocated forward 240 * @sk_napi_id: id of the last napi context to receive data for sk 241 * @sk_ll_usec: usecs to busypoll when there is no data 242 * @sk_allocation: allocation mode 243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 245 * @sk_sndbuf: size of send buffer in bytes 246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 249 * @sk_no_check_rx: allow zero checksum in RX packets 250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 253 * @sk_gso_max_size: Maximum GSO segment size to build 254 * @sk_gso_max_segs: Maximum number of GSO segments 255 * @sk_lingertime: %SO_LINGER l_linger setting 256 * @sk_backlog: always used with the per-socket spinlock held 257 * @sk_callback_lock: used with the callbacks in the end of this struct 258 * @sk_error_queue: rarely used 259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 260 * IPV6_ADDRFORM for instance) 261 * @sk_err: last error 262 * @sk_err_soft: errors that don't cause failure but are the cause of a 263 * persistent failure not just 'timed out' 264 * @sk_drops: raw/udp drops counter 265 * @sk_ack_backlog: current listen backlog 266 * @sk_max_ack_backlog: listen backlog set in listen() 267 * @sk_priority: %SO_PRIORITY setting 268 * @sk_cgrp_prioidx: socket group's priority map index 269 * @sk_type: socket type (%SOCK_STREAM, etc) 270 * @sk_protocol: which protocol this socket belongs in this network family 271 * @sk_peer_pid: &struct pid for this socket's peer 272 * @sk_peer_cred: %SO_PEERCRED setting 273 * @sk_rcvlowat: %SO_RCVLOWAT setting 274 * @sk_rcvtimeo: %SO_RCVTIMEO setting 275 * @sk_sndtimeo: %SO_SNDTIMEO setting 276 * @sk_rxhash: flow hash received from netif layer 277 * @sk_incoming_cpu: record cpu processing incoming packets 278 * @sk_txhash: computed flow hash for use on transmit 279 * @sk_filter: socket filtering instructions 280 * @sk_timer: sock cleanup timer 281 * @sk_stamp: time stamp of last packet received 282 * @sk_tsflags: SO_TIMESTAMPING socket options 283 * @sk_tskey: counter to disambiguate concurrent tstamp requests 284 * @sk_socket: Identd and reporting IO signals 285 * @sk_user_data: RPC layer private data 286 * @sk_frag: cached page frag 287 * @sk_peek_off: current peek_offset value 288 * @sk_send_head: front of stuff to transmit 289 * @sk_security: used by security modules 290 * @sk_mark: generic packet mark 291 * @sk_classid: this socket's cgroup classid 292 * @sk_cgrp: this socket's cgroup-specific proto data 293 * @sk_write_pending: a write to stream socket waits to start 294 * @sk_state_change: callback to indicate change in the state of the sock 295 * @sk_data_ready: callback to indicate there is data to be processed 296 * @sk_write_space: callback to indicate there is bf sending space available 297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 298 * @sk_backlog_rcv: callback to process the backlog 299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 300 */ 301 struct sock { 302 /* 303 * Now struct inet_timewait_sock also uses sock_common, so please just 304 * don't add nothing before this first member (__sk_common) --acme 305 */ 306 struct sock_common __sk_common; 307 #define sk_node __sk_common.skc_node 308 #define sk_nulls_node __sk_common.skc_nulls_node 309 #define sk_refcnt __sk_common.skc_refcnt 310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 311 312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 314 #define sk_hash __sk_common.skc_hash 315 #define sk_portpair __sk_common.skc_portpair 316 #define sk_num __sk_common.skc_num 317 #define sk_dport __sk_common.skc_dport 318 #define sk_addrpair __sk_common.skc_addrpair 319 #define sk_daddr __sk_common.skc_daddr 320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 321 #define sk_family __sk_common.skc_family 322 #define sk_state __sk_common.skc_state 323 #define sk_reuse __sk_common.skc_reuse 324 #define sk_reuseport __sk_common.skc_reuseport 325 #define sk_ipv6only __sk_common.skc_ipv6only 326 #define sk_net_refcnt __sk_common.skc_net_refcnt 327 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 328 #define sk_bind_node __sk_common.skc_bind_node 329 #define sk_prot __sk_common.skc_prot 330 #define sk_net __sk_common.skc_net 331 #define sk_v6_daddr __sk_common.skc_v6_daddr 332 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 333 #define sk_cookie __sk_common.skc_cookie 334 335 socket_lock_t sk_lock; 336 struct sk_buff_head sk_receive_queue; 337 /* 338 * The backlog queue is special, it is always used with 339 * the per-socket spinlock held and requires low latency 340 * access. Therefore we special case it's implementation. 341 * Note : rmem_alloc is in this structure to fill a hole 342 * on 64bit arches, not because its logically part of 343 * backlog. 344 */ 345 struct { 346 atomic_t rmem_alloc; 347 int len; 348 struct sk_buff *head; 349 struct sk_buff *tail; 350 } sk_backlog; 351 #define sk_rmem_alloc sk_backlog.rmem_alloc 352 int sk_forward_alloc; 353 #ifdef CONFIG_RPS 354 __u32 sk_rxhash; 355 #endif 356 u16 sk_incoming_cpu; 357 /* 16bit hole 358 * Warned : sk_incoming_cpu can be set from softirq, 359 * Do not use this hole without fully understanding possible issues. 360 */ 361 362 __u32 sk_txhash; 363 #ifdef CONFIG_NET_RX_BUSY_POLL 364 unsigned int sk_napi_id; 365 unsigned int sk_ll_usec; 366 #endif 367 atomic_t sk_drops; 368 int sk_rcvbuf; 369 370 struct sk_filter __rcu *sk_filter; 371 struct socket_wq __rcu *sk_wq; 372 373 #ifdef CONFIG_XFRM 374 struct xfrm_policy *sk_policy[2]; 375 #endif 376 unsigned long sk_flags; 377 struct dst_entry *sk_rx_dst; 378 struct dst_entry __rcu *sk_dst_cache; 379 spinlock_t sk_dst_lock; 380 atomic_t sk_wmem_alloc; 381 atomic_t sk_omem_alloc; 382 int sk_sndbuf; 383 struct sk_buff_head sk_write_queue; 384 kmemcheck_bitfield_begin(flags); 385 unsigned int sk_shutdown : 2, 386 sk_no_check_tx : 1, 387 sk_no_check_rx : 1, 388 sk_userlocks : 4, 389 sk_protocol : 8, 390 sk_type : 16; 391 kmemcheck_bitfield_end(flags); 392 int sk_wmem_queued; 393 gfp_t sk_allocation; 394 u32 sk_pacing_rate; /* bytes per second */ 395 u32 sk_max_pacing_rate; 396 netdev_features_t sk_route_caps; 397 netdev_features_t sk_route_nocaps; 398 int sk_gso_type; 399 unsigned int sk_gso_max_size; 400 u16 sk_gso_max_segs; 401 int sk_rcvlowat; 402 unsigned long sk_lingertime; 403 struct sk_buff_head sk_error_queue; 404 struct proto *sk_prot_creator; 405 rwlock_t sk_callback_lock; 406 int sk_err, 407 sk_err_soft; 408 u32 sk_ack_backlog; 409 u32 sk_max_ack_backlog; 410 __u32 sk_priority; 411 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 412 __u32 sk_cgrp_prioidx; 413 #endif 414 struct pid *sk_peer_pid; 415 const struct cred *sk_peer_cred; 416 long sk_rcvtimeo; 417 long sk_sndtimeo; 418 struct timer_list sk_timer; 419 ktime_t sk_stamp; 420 u16 sk_tsflags; 421 u32 sk_tskey; 422 struct socket *sk_socket; 423 void *sk_user_data; 424 struct page_frag sk_frag; 425 struct sk_buff *sk_send_head; 426 __s32 sk_peek_off; 427 int sk_write_pending; 428 #ifdef CONFIG_SECURITY 429 void *sk_security; 430 #endif 431 __u32 sk_mark; 432 u32 sk_classid; 433 struct cg_proto *sk_cgrp; 434 void (*sk_state_change)(struct sock *sk); 435 void (*sk_data_ready)(struct sock *sk); 436 void (*sk_write_space)(struct sock *sk); 437 void (*sk_error_report)(struct sock *sk); 438 int (*sk_backlog_rcv)(struct sock *sk, 439 struct sk_buff *skb); 440 void (*sk_destruct)(struct sock *sk); 441 }; 442 443 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 444 445 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 446 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 447 448 /* 449 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 450 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 451 * on a socket means that the socket will reuse everybody else's port 452 * without looking at the other's sk_reuse value. 453 */ 454 455 #define SK_NO_REUSE 0 456 #define SK_CAN_REUSE 1 457 #define SK_FORCE_REUSE 2 458 459 static inline int sk_peek_offset(struct sock *sk, int flags) 460 { 461 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 462 return sk->sk_peek_off; 463 else 464 return 0; 465 } 466 467 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 468 { 469 if (sk->sk_peek_off >= 0) { 470 if (sk->sk_peek_off >= val) 471 sk->sk_peek_off -= val; 472 else 473 sk->sk_peek_off = 0; 474 } 475 } 476 477 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 478 { 479 if (sk->sk_peek_off >= 0) 480 sk->sk_peek_off += val; 481 } 482 483 /* 484 * Hashed lists helper routines 485 */ 486 static inline struct sock *sk_entry(const struct hlist_node *node) 487 { 488 return hlist_entry(node, struct sock, sk_node); 489 } 490 491 static inline struct sock *__sk_head(const struct hlist_head *head) 492 { 493 return hlist_entry(head->first, struct sock, sk_node); 494 } 495 496 static inline struct sock *sk_head(const struct hlist_head *head) 497 { 498 return hlist_empty(head) ? NULL : __sk_head(head); 499 } 500 501 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 502 { 503 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 504 } 505 506 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 507 { 508 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 509 } 510 511 static inline struct sock *sk_next(const struct sock *sk) 512 { 513 return sk->sk_node.next ? 514 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 515 } 516 517 static inline struct sock *sk_nulls_next(const struct sock *sk) 518 { 519 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 520 hlist_nulls_entry(sk->sk_nulls_node.next, 521 struct sock, sk_nulls_node) : 522 NULL; 523 } 524 525 static inline bool sk_unhashed(const struct sock *sk) 526 { 527 return hlist_unhashed(&sk->sk_node); 528 } 529 530 static inline bool sk_hashed(const struct sock *sk) 531 { 532 return !sk_unhashed(sk); 533 } 534 535 static inline void sk_node_init(struct hlist_node *node) 536 { 537 node->pprev = NULL; 538 } 539 540 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 541 { 542 node->pprev = NULL; 543 } 544 545 static inline void __sk_del_node(struct sock *sk) 546 { 547 __hlist_del(&sk->sk_node); 548 } 549 550 /* NB: equivalent to hlist_del_init_rcu */ 551 static inline bool __sk_del_node_init(struct sock *sk) 552 { 553 if (sk_hashed(sk)) { 554 __sk_del_node(sk); 555 sk_node_init(&sk->sk_node); 556 return true; 557 } 558 return false; 559 } 560 561 /* Grab socket reference count. This operation is valid only 562 when sk is ALREADY grabbed f.e. it is found in hash table 563 or a list and the lookup is made under lock preventing hash table 564 modifications. 565 */ 566 567 static inline void sock_hold(struct sock *sk) 568 { 569 atomic_inc(&sk->sk_refcnt); 570 } 571 572 /* Ungrab socket in the context, which assumes that socket refcnt 573 cannot hit zero, f.e. it is true in context of any socketcall. 574 */ 575 static inline void __sock_put(struct sock *sk) 576 { 577 atomic_dec(&sk->sk_refcnt); 578 } 579 580 static inline bool sk_del_node_init(struct sock *sk) 581 { 582 bool rc = __sk_del_node_init(sk); 583 584 if (rc) { 585 /* paranoid for a while -acme */ 586 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 587 __sock_put(sk); 588 } 589 return rc; 590 } 591 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 592 593 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 594 { 595 if (sk_hashed(sk)) { 596 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 597 return true; 598 } 599 return false; 600 } 601 602 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 603 { 604 bool rc = __sk_nulls_del_node_init_rcu(sk); 605 606 if (rc) { 607 /* paranoid for a while -acme */ 608 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 609 __sock_put(sk); 610 } 611 return rc; 612 } 613 614 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 615 { 616 hlist_add_head(&sk->sk_node, list); 617 } 618 619 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 620 { 621 sock_hold(sk); 622 __sk_add_node(sk, list); 623 } 624 625 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 626 { 627 sock_hold(sk); 628 hlist_add_head_rcu(&sk->sk_node, list); 629 } 630 631 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 632 { 633 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 634 } 635 636 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 637 { 638 sock_hold(sk); 639 __sk_nulls_add_node_rcu(sk, list); 640 } 641 642 static inline void __sk_del_bind_node(struct sock *sk) 643 { 644 __hlist_del(&sk->sk_bind_node); 645 } 646 647 static inline void sk_add_bind_node(struct sock *sk, 648 struct hlist_head *list) 649 { 650 hlist_add_head(&sk->sk_bind_node, list); 651 } 652 653 #define sk_for_each(__sk, list) \ 654 hlist_for_each_entry(__sk, list, sk_node) 655 #define sk_for_each_rcu(__sk, list) \ 656 hlist_for_each_entry_rcu(__sk, list, sk_node) 657 #define sk_nulls_for_each(__sk, node, list) \ 658 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 659 #define sk_nulls_for_each_rcu(__sk, node, list) \ 660 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 661 #define sk_for_each_from(__sk) \ 662 hlist_for_each_entry_from(__sk, sk_node) 663 #define sk_nulls_for_each_from(__sk, node) \ 664 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 665 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 666 #define sk_for_each_safe(__sk, tmp, list) \ 667 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 668 #define sk_for_each_bound(__sk, list) \ 669 hlist_for_each_entry(__sk, list, sk_bind_node) 670 671 /** 672 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 673 * @tpos: the type * to use as a loop cursor. 674 * @pos: the &struct hlist_node to use as a loop cursor. 675 * @head: the head for your list. 676 * @offset: offset of hlist_node within the struct. 677 * 678 */ 679 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 680 for (pos = (head)->first; \ 681 (!is_a_nulls(pos)) && \ 682 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 683 pos = pos->next) 684 685 static inline struct user_namespace *sk_user_ns(struct sock *sk) 686 { 687 /* Careful only use this in a context where these parameters 688 * can not change and must all be valid, such as recvmsg from 689 * userspace. 690 */ 691 return sk->sk_socket->file->f_cred->user_ns; 692 } 693 694 /* Sock flags */ 695 enum sock_flags { 696 SOCK_DEAD, 697 SOCK_DONE, 698 SOCK_URGINLINE, 699 SOCK_KEEPOPEN, 700 SOCK_LINGER, 701 SOCK_DESTROY, 702 SOCK_BROADCAST, 703 SOCK_TIMESTAMP, 704 SOCK_ZAPPED, 705 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 706 SOCK_DBG, /* %SO_DEBUG setting */ 707 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 708 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 709 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 710 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 711 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 712 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 713 SOCK_FASYNC, /* fasync() active */ 714 SOCK_RXQ_OVFL, 715 SOCK_ZEROCOPY, /* buffers from userspace */ 716 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 717 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 718 * Will use last 4 bytes of packet sent from 719 * user-space instead. 720 */ 721 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 722 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 723 }; 724 725 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 726 { 727 nsk->sk_flags = osk->sk_flags; 728 } 729 730 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 731 { 732 __set_bit(flag, &sk->sk_flags); 733 } 734 735 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 736 { 737 __clear_bit(flag, &sk->sk_flags); 738 } 739 740 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 741 { 742 return test_bit(flag, &sk->sk_flags); 743 } 744 745 #ifdef CONFIG_NET 746 extern struct static_key memalloc_socks; 747 static inline int sk_memalloc_socks(void) 748 { 749 return static_key_false(&memalloc_socks); 750 } 751 #else 752 753 static inline int sk_memalloc_socks(void) 754 { 755 return 0; 756 } 757 758 #endif 759 760 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 761 { 762 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 763 } 764 765 static inline void sk_acceptq_removed(struct sock *sk) 766 { 767 sk->sk_ack_backlog--; 768 } 769 770 static inline void sk_acceptq_added(struct sock *sk) 771 { 772 sk->sk_ack_backlog++; 773 } 774 775 static inline bool sk_acceptq_is_full(const struct sock *sk) 776 { 777 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 778 } 779 780 /* 781 * Compute minimal free write space needed to queue new packets. 782 */ 783 static inline int sk_stream_min_wspace(const struct sock *sk) 784 { 785 return sk->sk_wmem_queued >> 1; 786 } 787 788 static inline int sk_stream_wspace(const struct sock *sk) 789 { 790 return sk->sk_sndbuf - sk->sk_wmem_queued; 791 } 792 793 void sk_stream_write_space(struct sock *sk); 794 795 /* OOB backlog add */ 796 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 797 { 798 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 799 skb_dst_force(skb); 800 801 if (!sk->sk_backlog.tail) 802 sk->sk_backlog.head = skb; 803 else 804 sk->sk_backlog.tail->next = skb; 805 806 sk->sk_backlog.tail = skb; 807 skb->next = NULL; 808 } 809 810 /* 811 * Take into account size of receive queue and backlog queue 812 * Do not take into account this skb truesize, 813 * to allow even a single big packet to come. 814 */ 815 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 816 { 817 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 818 819 return qsize > limit; 820 } 821 822 /* The per-socket spinlock must be held here. */ 823 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 824 unsigned int limit) 825 { 826 if (sk_rcvqueues_full(sk, limit)) 827 return -ENOBUFS; 828 829 __sk_add_backlog(sk, skb); 830 sk->sk_backlog.len += skb->truesize; 831 return 0; 832 } 833 834 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 835 836 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 837 { 838 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 839 return __sk_backlog_rcv(sk, skb); 840 841 return sk->sk_backlog_rcv(sk, skb); 842 } 843 844 static inline void sk_incoming_cpu_update(struct sock *sk) 845 { 846 sk->sk_incoming_cpu = raw_smp_processor_id(); 847 } 848 849 static inline void sock_rps_record_flow_hash(__u32 hash) 850 { 851 #ifdef CONFIG_RPS 852 struct rps_sock_flow_table *sock_flow_table; 853 854 rcu_read_lock(); 855 sock_flow_table = rcu_dereference(rps_sock_flow_table); 856 rps_record_sock_flow(sock_flow_table, hash); 857 rcu_read_unlock(); 858 #endif 859 } 860 861 static inline void sock_rps_record_flow(const struct sock *sk) 862 { 863 #ifdef CONFIG_RPS 864 sock_rps_record_flow_hash(sk->sk_rxhash); 865 #endif 866 } 867 868 static inline void sock_rps_save_rxhash(struct sock *sk, 869 const struct sk_buff *skb) 870 { 871 #ifdef CONFIG_RPS 872 if (unlikely(sk->sk_rxhash != skb->hash)) 873 sk->sk_rxhash = skb->hash; 874 #endif 875 } 876 877 static inline void sock_rps_reset_rxhash(struct sock *sk) 878 { 879 #ifdef CONFIG_RPS 880 sk->sk_rxhash = 0; 881 #endif 882 } 883 884 #define sk_wait_event(__sk, __timeo, __condition) \ 885 ({ int __rc; \ 886 release_sock(__sk); \ 887 __rc = __condition; \ 888 if (!__rc) { \ 889 *(__timeo) = schedule_timeout(*(__timeo)); \ 890 } \ 891 sched_annotate_sleep(); \ 892 lock_sock(__sk); \ 893 __rc = __condition; \ 894 __rc; \ 895 }) 896 897 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 898 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 899 void sk_stream_wait_close(struct sock *sk, long timeo_p); 900 int sk_stream_error(struct sock *sk, int flags, int err); 901 void sk_stream_kill_queues(struct sock *sk); 902 void sk_set_memalloc(struct sock *sk); 903 void sk_clear_memalloc(struct sock *sk); 904 905 int sk_wait_data(struct sock *sk, long *timeo); 906 907 struct request_sock_ops; 908 struct timewait_sock_ops; 909 struct inet_hashinfo; 910 struct raw_hashinfo; 911 struct module; 912 913 /* 914 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 915 * un-modified. Special care is taken when initializing object to zero. 916 */ 917 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 918 { 919 if (offsetof(struct sock, sk_node.next) != 0) 920 memset(sk, 0, offsetof(struct sock, sk_node.next)); 921 memset(&sk->sk_node.pprev, 0, 922 size - offsetof(struct sock, sk_node.pprev)); 923 } 924 925 /* Networking protocol blocks we attach to sockets. 926 * socket layer -> transport layer interface 927 */ 928 struct proto { 929 void (*close)(struct sock *sk, 930 long timeout); 931 int (*connect)(struct sock *sk, 932 struct sockaddr *uaddr, 933 int addr_len); 934 int (*disconnect)(struct sock *sk, int flags); 935 936 struct sock * (*accept)(struct sock *sk, int flags, int *err); 937 938 int (*ioctl)(struct sock *sk, int cmd, 939 unsigned long arg); 940 int (*init)(struct sock *sk); 941 void (*destroy)(struct sock *sk); 942 void (*shutdown)(struct sock *sk, int how); 943 int (*setsockopt)(struct sock *sk, int level, 944 int optname, char __user *optval, 945 unsigned int optlen); 946 int (*getsockopt)(struct sock *sk, int level, 947 int optname, char __user *optval, 948 int __user *option); 949 #ifdef CONFIG_COMPAT 950 int (*compat_setsockopt)(struct sock *sk, 951 int level, 952 int optname, char __user *optval, 953 unsigned int optlen); 954 int (*compat_getsockopt)(struct sock *sk, 955 int level, 956 int optname, char __user *optval, 957 int __user *option); 958 int (*compat_ioctl)(struct sock *sk, 959 unsigned int cmd, unsigned long arg); 960 #endif 961 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 962 size_t len); 963 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 964 size_t len, int noblock, int flags, 965 int *addr_len); 966 int (*sendpage)(struct sock *sk, struct page *page, 967 int offset, size_t size, int flags); 968 int (*bind)(struct sock *sk, 969 struct sockaddr *uaddr, int addr_len); 970 971 int (*backlog_rcv) (struct sock *sk, 972 struct sk_buff *skb); 973 974 void (*release_cb)(struct sock *sk); 975 976 /* Keeping track of sk's, looking them up, and port selection methods. */ 977 void (*hash)(struct sock *sk); 978 void (*unhash)(struct sock *sk); 979 void (*rehash)(struct sock *sk); 980 int (*get_port)(struct sock *sk, unsigned short snum); 981 void (*clear_sk)(struct sock *sk, int size); 982 983 /* Keeping track of sockets in use */ 984 #ifdef CONFIG_PROC_FS 985 unsigned int inuse_idx; 986 #endif 987 988 bool (*stream_memory_free)(const struct sock *sk); 989 /* Memory pressure */ 990 void (*enter_memory_pressure)(struct sock *sk); 991 atomic_long_t *memory_allocated; /* Current allocated memory. */ 992 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 993 /* 994 * Pressure flag: try to collapse. 995 * Technical note: it is used by multiple contexts non atomically. 996 * All the __sk_mem_schedule() is of this nature: accounting 997 * is strict, actions are advisory and have some latency. 998 */ 999 int *memory_pressure; 1000 long *sysctl_mem; 1001 int *sysctl_wmem; 1002 int *sysctl_rmem; 1003 int max_header; 1004 bool no_autobind; 1005 1006 struct kmem_cache *slab; 1007 unsigned int obj_size; 1008 int slab_flags; 1009 1010 struct percpu_counter *orphan_count; 1011 1012 struct request_sock_ops *rsk_prot; 1013 struct timewait_sock_ops *twsk_prot; 1014 1015 union { 1016 struct inet_hashinfo *hashinfo; 1017 struct udp_table *udp_table; 1018 struct raw_hashinfo *raw_hash; 1019 } h; 1020 1021 struct module *owner; 1022 1023 char name[32]; 1024 1025 struct list_head node; 1026 #ifdef SOCK_REFCNT_DEBUG 1027 atomic_t socks; 1028 #endif 1029 #ifdef CONFIG_MEMCG_KMEM 1030 /* 1031 * cgroup specific init/deinit functions. Called once for all 1032 * protocols that implement it, from cgroups populate function. 1033 * This function has to setup any files the protocol want to 1034 * appear in the kmem cgroup filesystem. 1035 */ 1036 int (*init_cgroup)(struct mem_cgroup *memcg, 1037 struct cgroup_subsys *ss); 1038 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1039 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1040 #endif 1041 }; 1042 1043 /* 1044 * Bits in struct cg_proto.flags 1045 */ 1046 enum cg_proto_flags { 1047 /* Currently active and new sockets should be assigned to cgroups */ 1048 MEMCG_SOCK_ACTIVE, 1049 /* It was ever activated; we must disarm static keys on destruction */ 1050 MEMCG_SOCK_ACTIVATED, 1051 }; 1052 1053 struct cg_proto { 1054 struct page_counter memory_allocated; /* Current allocated memory. */ 1055 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1056 int memory_pressure; 1057 long sysctl_mem[3]; 1058 unsigned long flags; 1059 /* 1060 * memcg field is used to find which memcg we belong directly 1061 * Each memcg struct can hold more than one cg_proto, so container_of 1062 * won't really cut. 1063 * 1064 * The elegant solution would be having an inverse function to 1065 * proto_cgroup in struct proto, but that means polluting the structure 1066 * for everybody, instead of just for memcg users. 1067 */ 1068 struct mem_cgroup *memcg; 1069 }; 1070 1071 int proto_register(struct proto *prot, int alloc_slab); 1072 void proto_unregister(struct proto *prot); 1073 1074 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1075 { 1076 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1077 } 1078 1079 #ifdef SOCK_REFCNT_DEBUG 1080 static inline void sk_refcnt_debug_inc(struct sock *sk) 1081 { 1082 atomic_inc(&sk->sk_prot->socks); 1083 } 1084 1085 static inline void sk_refcnt_debug_dec(struct sock *sk) 1086 { 1087 atomic_dec(&sk->sk_prot->socks); 1088 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1089 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1090 } 1091 1092 static inline void sk_refcnt_debug_release(const struct sock *sk) 1093 { 1094 if (atomic_read(&sk->sk_refcnt) != 1) 1095 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1096 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1097 } 1098 #else /* SOCK_REFCNT_DEBUG */ 1099 #define sk_refcnt_debug_inc(sk) do { } while (0) 1100 #define sk_refcnt_debug_dec(sk) do { } while (0) 1101 #define sk_refcnt_debug_release(sk) do { } while (0) 1102 #endif /* SOCK_REFCNT_DEBUG */ 1103 1104 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1105 extern struct static_key memcg_socket_limit_enabled; 1106 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1107 struct cg_proto *cg_proto) 1108 { 1109 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1110 } 1111 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1112 #else 1113 #define mem_cgroup_sockets_enabled 0 1114 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1115 struct cg_proto *cg_proto) 1116 { 1117 return NULL; 1118 } 1119 #endif 1120 1121 static inline bool sk_stream_memory_free(const struct sock *sk) 1122 { 1123 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1124 return false; 1125 1126 return sk->sk_prot->stream_memory_free ? 1127 sk->sk_prot->stream_memory_free(sk) : true; 1128 } 1129 1130 static inline bool sk_stream_is_writeable(const struct sock *sk) 1131 { 1132 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1133 sk_stream_memory_free(sk); 1134 } 1135 1136 1137 static inline bool sk_has_memory_pressure(const struct sock *sk) 1138 { 1139 return sk->sk_prot->memory_pressure != NULL; 1140 } 1141 1142 static inline bool sk_under_memory_pressure(const struct sock *sk) 1143 { 1144 if (!sk->sk_prot->memory_pressure) 1145 return false; 1146 1147 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1148 return !!sk->sk_cgrp->memory_pressure; 1149 1150 return !!*sk->sk_prot->memory_pressure; 1151 } 1152 1153 static inline void sk_leave_memory_pressure(struct sock *sk) 1154 { 1155 int *memory_pressure = sk->sk_prot->memory_pressure; 1156 1157 if (!memory_pressure) 1158 return; 1159 1160 if (*memory_pressure) 1161 *memory_pressure = 0; 1162 1163 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1164 struct cg_proto *cg_proto = sk->sk_cgrp; 1165 struct proto *prot = sk->sk_prot; 1166 1167 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1168 cg_proto->memory_pressure = 0; 1169 } 1170 1171 } 1172 1173 static inline void sk_enter_memory_pressure(struct sock *sk) 1174 { 1175 if (!sk->sk_prot->enter_memory_pressure) 1176 return; 1177 1178 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1179 struct cg_proto *cg_proto = sk->sk_cgrp; 1180 struct proto *prot = sk->sk_prot; 1181 1182 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1183 cg_proto->memory_pressure = 1; 1184 } 1185 1186 sk->sk_prot->enter_memory_pressure(sk); 1187 } 1188 1189 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1190 { 1191 long *prot = sk->sk_prot->sysctl_mem; 1192 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1193 prot = sk->sk_cgrp->sysctl_mem; 1194 return prot[index]; 1195 } 1196 1197 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1198 unsigned long amt, 1199 int *parent_status) 1200 { 1201 page_counter_charge(&prot->memory_allocated, amt); 1202 1203 if (page_counter_read(&prot->memory_allocated) > 1204 prot->memory_allocated.limit) 1205 *parent_status = OVER_LIMIT; 1206 } 1207 1208 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1209 unsigned long amt) 1210 { 1211 page_counter_uncharge(&prot->memory_allocated, amt); 1212 } 1213 1214 static inline long 1215 sk_memory_allocated(const struct sock *sk) 1216 { 1217 struct proto *prot = sk->sk_prot; 1218 1219 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1220 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1221 1222 return atomic_long_read(prot->memory_allocated); 1223 } 1224 1225 static inline long 1226 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1227 { 1228 struct proto *prot = sk->sk_prot; 1229 1230 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1231 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1232 /* update the root cgroup regardless */ 1233 atomic_long_add_return(amt, prot->memory_allocated); 1234 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1235 } 1236 1237 return atomic_long_add_return(amt, prot->memory_allocated); 1238 } 1239 1240 static inline void 1241 sk_memory_allocated_sub(struct sock *sk, int amt) 1242 { 1243 struct proto *prot = sk->sk_prot; 1244 1245 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1246 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1247 1248 atomic_long_sub(amt, prot->memory_allocated); 1249 } 1250 1251 static inline void sk_sockets_allocated_dec(struct sock *sk) 1252 { 1253 struct proto *prot = sk->sk_prot; 1254 1255 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1256 struct cg_proto *cg_proto = sk->sk_cgrp; 1257 1258 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1259 percpu_counter_dec(&cg_proto->sockets_allocated); 1260 } 1261 1262 percpu_counter_dec(prot->sockets_allocated); 1263 } 1264 1265 static inline void sk_sockets_allocated_inc(struct sock *sk) 1266 { 1267 struct proto *prot = sk->sk_prot; 1268 1269 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1270 struct cg_proto *cg_proto = sk->sk_cgrp; 1271 1272 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1273 percpu_counter_inc(&cg_proto->sockets_allocated); 1274 } 1275 1276 percpu_counter_inc(prot->sockets_allocated); 1277 } 1278 1279 static inline int 1280 sk_sockets_allocated_read_positive(struct sock *sk) 1281 { 1282 struct proto *prot = sk->sk_prot; 1283 1284 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1285 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1286 1287 return percpu_counter_read_positive(prot->sockets_allocated); 1288 } 1289 1290 static inline int 1291 proto_sockets_allocated_sum_positive(struct proto *prot) 1292 { 1293 return percpu_counter_sum_positive(prot->sockets_allocated); 1294 } 1295 1296 static inline long 1297 proto_memory_allocated(struct proto *prot) 1298 { 1299 return atomic_long_read(prot->memory_allocated); 1300 } 1301 1302 static inline bool 1303 proto_memory_pressure(struct proto *prot) 1304 { 1305 if (!prot->memory_pressure) 1306 return false; 1307 return !!*prot->memory_pressure; 1308 } 1309 1310 1311 #ifdef CONFIG_PROC_FS 1312 /* Called with local bh disabled */ 1313 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1314 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1315 #else 1316 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1317 int inc) 1318 { 1319 } 1320 #endif 1321 1322 1323 /* With per-bucket locks this operation is not-atomic, so that 1324 * this version is not worse. 1325 */ 1326 static inline void __sk_prot_rehash(struct sock *sk) 1327 { 1328 sk->sk_prot->unhash(sk); 1329 sk->sk_prot->hash(sk); 1330 } 1331 1332 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1333 1334 /* About 10 seconds */ 1335 #define SOCK_DESTROY_TIME (10*HZ) 1336 1337 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1338 #define PROT_SOCK 1024 1339 1340 #define SHUTDOWN_MASK 3 1341 #define RCV_SHUTDOWN 1 1342 #define SEND_SHUTDOWN 2 1343 1344 #define SOCK_SNDBUF_LOCK 1 1345 #define SOCK_RCVBUF_LOCK 2 1346 #define SOCK_BINDADDR_LOCK 4 1347 #define SOCK_BINDPORT_LOCK 8 1348 1349 struct socket_alloc { 1350 struct socket socket; 1351 struct inode vfs_inode; 1352 }; 1353 1354 static inline struct socket *SOCKET_I(struct inode *inode) 1355 { 1356 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1357 } 1358 1359 static inline struct inode *SOCK_INODE(struct socket *socket) 1360 { 1361 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1362 } 1363 1364 /* 1365 * Functions for memory accounting 1366 */ 1367 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1368 void __sk_mem_reclaim(struct sock *sk, int amount); 1369 1370 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1371 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1372 #define SK_MEM_SEND 0 1373 #define SK_MEM_RECV 1 1374 1375 static inline int sk_mem_pages(int amt) 1376 { 1377 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1378 } 1379 1380 static inline bool sk_has_account(struct sock *sk) 1381 { 1382 /* return true if protocol supports memory accounting */ 1383 return !!sk->sk_prot->memory_allocated; 1384 } 1385 1386 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1387 { 1388 if (!sk_has_account(sk)) 1389 return true; 1390 return size <= sk->sk_forward_alloc || 1391 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1392 } 1393 1394 static inline bool 1395 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1396 { 1397 if (!sk_has_account(sk)) 1398 return true; 1399 return size<= sk->sk_forward_alloc || 1400 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1401 skb_pfmemalloc(skb); 1402 } 1403 1404 static inline void sk_mem_reclaim(struct sock *sk) 1405 { 1406 if (!sk_has_account(sk)) 1407 return; 1408 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1409 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1410 } 1411 1412 static inline void sk_mem_reclaim_partial(struct sock *sk) 1413 { 1414 if (!sk_has_account(sk)) 1415 return; 1416 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1417 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1418 } 1419 1420 static inline void sk_mem_charge(struct sock *sk, int size) 1421 { 1422 if (!sk_has_account(sk)) 1423 return; 1424 sk->sk_forward_alloc -= size; 1425 } 1426 1427 static inline void sk_mem_uncharge(struct sock *sk, int size) 1428 { 1429 if (!sk_has_account(sk)) 1430 return; 1431 sk->sk_forward_alloc += size; 1432 } 1433 1434 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1435 { 1436 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1437 sk->sk_wmem_queued -= skb->truesize; 1438 sk_mem_uncharge(sk, skb->truesize); 1439 __kfree_skb(skb); 1440 } 1441 1442 /* Used by processes to "lock" a socket state, so that 1443 * interrupts and bottom half handlers won't change it 1444 * from under us. It essentially blocks any incoming 1445 * packets, so that we won't get any new data or any 1446 * packets that change the state of the socket. 1447 * 1448 * While locked, BH processing will add new packets to 1449 * the backlog queue. This queue is processed by the 1450 * owner of the socket lock right before it is released. 1451 * 1452 * Since ~2.3.5 it is also exclusive sleep lock serializing 1453 * accesses from user process context. 1454 */ 1455 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1456 1457 static inline void sock_release_ownership(struct sock *sk) 1458 { 1459 sk->sk_lock.owned = 0; 1460 } 1461 1462 /* 1463 * Macro so as to not evaluate some arguments when 1464 * lockdep is not enabled. 1465 * 1466 * Mark both the sk_lock and the sk_lock.slock as a 1467 * per-address-family lock class. 1468 */ 1469 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1470 do { \ 1471 sk->sk_lock.owned = 0; \ 1472 init_waitqueue_head(&sk->sk_lock.wq); \ 1473 spin_lock_init(&(sk)->sk_lock.slock); \ 1474 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1475 sizeof((sk)->sk_lock)); \ 1476 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1477 (skey), (sname)); \ 1478 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1479 } while (0) 1480 1481 void lock_sock_nested(struct sock *sk, int subclass); 1482 1483 static inline void lock_sock(struct sock *sk) 1484 { 1485 lock_sock_nested(sk, 0); 1486 } 1487 1488 void release_sock(struct sock *sk); 1489 1490 /* BH context may only use the following locking interface. */ 1491 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1492 #define bh_lock_sock_nested(__sk) \ 1493 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1494 SINGLE_DEPTH_NESTING) 1495 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1496 1497 bool lock_sock_fast(struct sock *sk); 1498 /** 1499 * unlock_sock_fast - complement of lock_sock_fast 1500 * @sk: socket 1501 * @slow: slow mode 1502 * 1503 * fast unlock socket for user context. 1504 * If slow mode is on, we call regular release_sock() 1505 */ 1506 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1507 { 1508 if (slow) 1509 release_sock(sk); 1510 else 1511 spin_unlock_bh(&sk->sk_lock.slock); 1512 } 1513 1514 1515 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1516 struct proto *prot, int kern); 1517 void sk_free(struct sock *sk); 1518 void sk_destruct(struct sock *sk); 1519 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1520 1521 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1522 gfp_t priority); 1523 void sock_wfree(struct sk_buff *skb); 1524 void skb_orphan_partial(struct sk_buff *skb); 1525 void sock_rfree(struct sk_buff *skb); 1526 void sock_efree(struct sk_buff *skb); 1527 #ifdef CONFIG_INET 1528 void sock_edemux(struct sk_buff *skb); 1529 #else 1530 #define sock_edemux(skb) sock_efree(skb) 1531 #endif 1532 1533 int sock_setsockopt(struct socket *sock, int level, int op, 1534 char __user *optval, unsigned int optlen); 1535 1536 int sock_getsockopt(struct socket *sock, int level, int op, 1537 char __user *optval, int __user *optlen); 1538 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1539 int noblock, int *errcode); 1540 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1541 unsigned long data_len, int noblock, 1542 int *errcode, int max_page_order); 1543 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1544 void sock_kfree_s(struct sock *sk, void *mem, int size); 1545 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1546 void sk_send_sigurg(struct sock *sk); 1547 1548 /* 1549 * Functions to fill in entries in struct proto_ops when a protocol 1550 * does not implement a particular function. 1551 */ 1552 int sock_no_bind(struct socket *, struct sockaddr *, int); 1553 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1554 int sock_no_socketpair(struct socket *, struct socket *); 1555 int sock_no_accept(struct socket *, struct socket *, int); 1556 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1557 unsigned int sock_no_poll(struct file *, struct socket *, 1558 struct poll_table_struct *); 1559 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1560 int sock_no_listen(struct socket *, int); 1561 int sock_no_shutdown(struct socket *, int); 1562 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1563 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1564 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1565 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1566 int sock_no_mmap(struct file *file, struct socket *sock, 1567 struct vm_area_struct *vma); 1568 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1569 size_t size, int flags); 1570 1571 /* 1572 * Functions to fill in entries in struct proto_ops when a protocol 1573 * uses the inet style. 1574 */ 1575 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1576 char __user *optval, int __user *optlen); 1577 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1578 int flags); 1579 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1580 char __user *optval, unsigned int optlen); 1581 int compat_sock_common_getsockopt(struct socket *sock, int level, 1582 int optname, char __user *optval, int __user *optlen); 1583 int compat_sock_common_setsockopt(struct socket *sock, int level, 1584 int optname, char __user *optval, unsigned int optlen); 1585 1586 void sk_common_release(struct sock *sk); 1587 1588 /* 1589 * Default socket callbacks and setup code 1590 */ 1591 1592 /* Initialise core socket variables */ 1593 void sock_init_data(struct socket *sock, struct sock *sk); 1594 1595 /* 1596 * Socket reference counting postulates. 1597 * 1598 * * Each user of socket SHOULD hold a reference count. 1599 * * Each access point to socket (an hash table bucket, reference from a list, 1600 * running timer, skb in flight MUST hold a reference count. 1601 * * When reference count hits 0, it means it will never increase back. 1602 * * When reference count hits 0, it means that no references from 1603 * outside exist to this socket and current process on current CPU 1604 * is last user and may/should destroy this socket. 1605 * * sk_free is called from any context: process, BH, IRQ. When 1606 * it is called, socket has no references from outside -> sk_free 1607 * may release descendant resources allocated by the socket, but 1608 * to the time when it is called, socket is NOT referenced by any 1609 * hash tables, lists etc. 1610 * * Packets, delivered from outside (from network or from another process) 1611 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1612 * when they sit in queue. Otherwise, packets will leak to hole, when 1613 * socket is looked up by one cpu and unhasing is made by another CPU. 1614 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1615 * (leak to backlog). Packet socket does all the processing inside 1616 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1617 * use separate SMP lock, so that they are prone too. 1618 */ 1619 1620 /* Ungrab socket and destroy it, if it was the last reference. */ 1621 static inline void sock_put(struct sock *sk) 1622 { 1623 if (atomic_dec_and_test(&sk->sk_refcnt)) 1624 sk_free(sk); 1625 } 1626 /* Generic version of sock_put(), dealing with all sockets 1627 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1628 */ 1629 void sock_gen_put(struct sock *sk); 1630 1631 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1632 1633 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1634 { 1635 sk->sk_tx_queue_mapping = tx_queue; 1636 } 1637 1638 static inline void sk_tx_queue_clear(struct sock *sk) 1639 { 1640 sk->sk_tx_queue_mapping = -1; 1641 } 1642 1643 static inline int sk_tx_queue_get(const struct sock *sk) 1644 { 1645 return sk ? sk->sk_tx_queue_mapping : -1; 1646 } 1647 1648 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1649 { 1650 sk_tx_queue_clear(sk); 1651 sk->sk_socket = sock; 1652 } 1653 1654 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1655 { 1656 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1657 return &rcu_dereference_raw(sk->sk_wq)->wait; 1658 } 1659 /* Detach socket from process context. 1660 * Announce socket dead, detach it from wait queue and inode. 1661 * Note that parent inode held reference count on this struct sock, 1662 * we do not release it in this function, because protocol 1663 * probably wants some additional cleanups or even continuing 1664 * to work with this socket (TCP). 1665 */ 1666 static inline void sock_orphan(struct sock *sk) 1667 { 1668 write_lock_bh(&sk->sk_callback_lock); 1669 sock_set_flag(sk, SOCK_DEAD); 1670 sk_set_socket(sk, NULL); 1671 sk->sk_wq = NULL; 1672 write_unlock_bh(&sk->sk_callback_lock); 1673 } 1674 1675 static inline void sock_graft(struct sock *sk, struct socket *parent) 1676 { 1677 write_lock_bh(&sk->sk_callback_lock); 1678 sk->sk_wq = parent->wq; 1679 parent->sk = sk; 1680 sk_set_socket(sk, parent); 1681 security_sock_graft(sk, parent); 1682 write_unlock_bh(&sk->sk_callback_lock); 1683 } 1684 1685 kuid_t sock_i_uid(struct sock *sk); 1686 unsigned long sock_i_ino(struct sock *sk); 1687 1688 static inline struct dst_entry * 1689 __sk_dst_get(struct sock *sk) 1690 { 1691 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1692 lockdep_is_held(&sk->sk_lock.slock)); 1693 } 1694 1695 static inline struct dst_entry * 1696 sk_dst_get(struct sock *sk) 1697 { 1698 struct dst_entry *dst; 1699 1700 rcu_read_lock(); 1701 dst = rcu_dereference(sk->sk_dst_cache); 1702 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1703 dst = NULL; 1704 rcu_read_unlock(); 1705 return dst; 1706 } 1707 1708 static inline void dst_negative_advice(struct sock *sk) 1709 { 1710 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1711 1712 if (dst && dst->ops->negative_advice) { 1713 ndst = dst->ops->negative_advice(dst); 1714 1715 if (ndst != dst) { 1716 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1717 sk_tx_queue_clear(sk); 1718 } 1719 } 1720 } 1721 1722 static inline void 1723 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1724 { 1725 struct dst_entry *old_dst; 1726 1727 sk_tx_queue_clear(sk); 1728 /* 1729 * This can be called while sk is owned by the caller only, 1730 * with no state that can be checked in a rcu_dereference_check() cond 1731 */ 1732 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1733 rcu_assign_pointer(sk->sk_dst_cache, dst); 1734 dst_release(old_dst); 1735 } 1736 1737 static inline void 1738 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1739 { 1740 struct dst_entry *old_dst; 1741 1742 sk_tx_queue_clear(sk); 1743 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1744 dst_release(old_dst); 1745 } 1746 1747 static inline void 1748 __sk_dst_reset(struct sock *sk) 1749 { 1750 __sk_dst_set(sk, NULL); 1751 } 1752 1753 static inline void 1754 sk_dst_reset(struct sock *sk) 1755 { 1756 sk_dst_set(sk, NULL); 1757 } 1758 1759 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1760 1761 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1762 1763 bool sk_mc_loop(struct sock *sk); 1764 1765 static inline bool sk_can_gso(const struct sock *sk) 1766 { 1767 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1768 } 1769 1770 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1771 1772 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1773 { 1774 sk->sk_route_nocaps |= flags; 1775 sk->sk_route_caps &= ~flags; 1776 } 1777 1778 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1779 struct iov_iter *from, char *to, 1780 int copy, int offset) 1781 { 1782 if (skb->ip_summed == CHECKSUM_NONE) { 1783 __wsum csum = 0; 1784 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy) 1785 return -EFAULT; 1786 skb->csum = csum_block_add(skb->csum, csum, offset); 1787 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1788 if (copy_from_iter_nocache(to, copy, from) != copy) 1789 return -EFAULT; 1790 } else if (copy_from_iter(to, copy, from) != copy) 1791 return -EFAULT; 1792 1793 return 0; 1794 } 1795 1796 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1797 struct iov_iter *from, int copy) 1798 { 1799 int err, offset = skb->len; 1800 1801 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1802 copy, offset); 1803 if (err) 1804 __skb_trim(skb, offset); 1805 1806 return err; 1807 } 1808 1809 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1810 struct sk_buff *skb, 1811 struct page *page, 1812 int off, int copy) 1813 { 1814 int err; 1815 1816 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1817 copy, skb->len); 1818 if (err) 1819 return err; 1820 1821 skb->len += copy; 1822 skb->data_len += copy; 1823 skb->truesize += copy; 1824 sk->sk_wmem_queued += copy; 1825 sk_mem_charge(sk, copy); 1826 return 0; 1827 } 1828 1829 /** 1830 * sk_wmem_alloc_get - returns write allocations 1831 * @sk: socket 1832 * 1833 * Returns sk_wmem_alloc minus initial offset of one 1834 */ 1835 static inline int sk_wmem_alloc_get(const struct sock *sk) 1836 { 1837 return atomic_read(&sk->sk_wmem_alloc) - 1; 1838 } 1839 1840 /** 1841 * sk_rmem_alloc_get - returns read allocations 1842 * @sk: socket 1843 * 1844 * Returns sk_rmem_alloc 1845 */ 1846 static inline int sk_rmem_alloc_get(const struct sock *sk) 1847 { 1848 return atomic_read(&sk->sk_rmem_alloc); 1849 } 1850 1851 /** 1852 * sk_has_allocations - check if allocations are outstanding 1853 * @sk: socket 1854 * 1855 * Returns true if socket has write or read allocations 1856 */ 1857 static inline bool sk_has_allocations(const struct sock *sk) 1858 { 1859 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1860 } 1861 1862 /** 1863 * wq_has_sleeper - check if there are any waiting processes 1864 * @wq: struct socket_wq 1865 * 1866 * Returns true if socket_wq has waiting processes 1867 * 1868 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1869 * barrier call. They were added due to the race found within the tcp code. 1870 * 1871 * Consider following tcp code paths: 1872 * 1873 * CPU1 CPU2 1874 * 1875 * sys_select receive packet 1876 * ... ... 1877 * __add_wait_queue update tp->rcv_nxt 1878 * ... ... 1879 * tp->rcv_nxt check sock_def_readable 1880 * ... { 1881 * schedule rcu_read_lock(); 1882 * wq = rcu_dereference(sk->sk_wq); 1883 * if (wq && waitqueue_active(&wq->wait)) 1884 * wake_up_interruptible(&wq->wait) 1885 * ... 1886 * } 1887 * 1888 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1889 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1890 * could then endup calling schedule and sleep forever if there are no more 1891 * data on the socket. 1892 * 1893 */ 1894 static inline bool wq_has_sleeper(struct socket_wq *wq) 1895 { 1896 /* We need to be sure we are in sync with the 1897 * add_wait_queue modifications to the wait queue. 1898 * 1899 * This memory barrier is paired in the sock_poll_wait. 1900 */ 1901 smp_mb(); 1902 return wq && waitqueue_active(&wq->wait); 1903 } 1904 1905 /** 1906 * sock_poll_wait - place memory barrier behind the poll_wait call. 1907 * @filp: file 1908 * @wait_address: socket wait queue 1909 * @p: poll_table 1910 * 1911 * See the comments in the wq_has_sleeper function. 1912 */ 1913 static inline void sock_poll_wait(struct file *filp, 1914 wait_queue_head_t *wait_address, poll_table *p) 1915 { 1916 if (!poll_does_not_wait(p) && wait_address) { 1917 poll_wait(filp, wait_address, p); 1918 /* We need to be sure we are in sync with the 1919 * socket flags modification. 1920 * 1921 * This memory barrier is paired in the wq_has_sleeper. 1922 */ 1923 smp_mb(); 1924 } 1925 } 1926 1927 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1928 { 1929 if (sk->sk_txhash) { 1930 skb->l4_hash = 1; 1931 skb->hash = sk->sk_txhash; 1932 } 1933 } 1934 1935 /* 1936 * Queue a received datagram if it will fit. Stream and sequenced 1937 * protocols can't normally use this as they need to fit buffers in 1938 * and play with them. 1939 * 1940 * Inlined as it's very short and called for pretty much every 1941 * packet ever received. 1942 */ 1943 1944 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1945 { 1946 skb_orphan(skb); 1947 skb->sk = sk; 1948 skb->destructor = sock_wfree; 1949 skb_set_hash_from_sk(skb, sk); 1950 /* 1951 * We used to take a refcount on sk, but following operation 1952 * is enough to guarantee sk_free() wont free this sock until 1953 * all in-flight packets are completed 1954 */ 1955 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1956 } 1957 1958 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1959 { 1960 skb_orphan(skb); 1961 skb->sk = sk; 1962 skb->destructor = sock_rfree; 1963 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1964 sk_mem_charge(sk, skb->truesize); 1965 } 1966 1967 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 1968 unsigned long expires); 1969 1970 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 1971 1972 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1973 1974 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1975 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 1976 1977 /* 1978 * Recover an error report and clear atomically 1979 */ 1980 1981 static inline int sock_error(struct sock *sk) 1982 { 1983 int err; 1984 if (likely(!sk->sk_err)) 1985 return 0; 1986 err = xchg(&sk->sk_err, 0); 1987 return -err; 1988 } 1989 1990 static inline unsigned long sock_wspace(struct sock *sk) 1991 { 1992 int amt = 0; 1993 1994 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1995 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1996 if (amt < 0) 1997 amt = 0; 1998 } 1999 return amt; 2000 } 2001 2002 static inline void sk_wake_async(struct sock *sk, int how, int band) 2003 { 2004 if (sock_flag(sk, SOCK_FASYNC)) 2005 sock_wake_async(sk->sk_socket, how, band); 2006 } 2007 2008 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2009 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2010 * Note: for send buffers, TCP works better if we can build two skbs at 2011 * minimum. 2012 */ 2013 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2014 2015 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2016 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2017 2018 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2019 { 2020 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2021 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2022 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2023 } 2024 } 2025 2026 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2027 bool force_schedule); 2028 2029 /** 2030 * sk_page_frag - return an appropriate page_frag 2031 * @sk: socket 2032 * 2033 * If socket allocation mode allows current thread to sleep, it means its 2034 * safe to use the per task page_frag instead of the per socket one. 2035 */ 2036 static inline struct page_frag *sk_page_frag(struct sock *sk) 2037 { 2038 if (sk->sk_allocation & __GFP_WAIT) 2039 return ¤t->task_frag; 2040 2041 return &sk->sk_frag; 2042 } 2043 2044 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2045 2046 /* 2047 * Default write policy as shown to user space via poll/select/SIGIO 2048 */ 2049 static inline bool sock_writeable(const struct sock *sk) 2050 { 2051 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2052 } 2053 2054 static inline gfp_t gfp_any(void) 2055 { 2056 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2057 } 2058 2059 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2060 { 2061 return noblock ? 0 : sk->sk_rcvtimeo; 2062 } 2063 2064 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2065 { 2066 return noblock ? 0 : sk->sk_sndtimeo; 2067 } 2068 2069 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2070 { 2071 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2072 } 2073 2074 /* Alas, with timeout socket operations are not restartable. 2075 * Compare this to poll(). 2076 */ 2077 static inline int sock_intr_errno(long timeo) 2078 { 2079 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2080 } 2081 2082 struct sock_skb_cb { 2083 u32 dropcount; 2084 }; 2085 2086 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2087 * using skb->cb[] would keep using it directly and utilize its 2088 * alignement guarantee. 2089 */ 2090 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2091 sizeof(struct sock_skb_cb))) 2092 2093 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2094 SOCK_SKB_CB_OFFSET)) 2095 2096 #define sock_skb_cb_check_size(size) \ 2097 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2098 2099 static inline void 2100 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2101 { 2102 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops); 2103 } 2104 2105 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2106 struct sk_buff *skb); 2107 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2108 struct sk_buff *skb); 2109 2110 static inline void 2111 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2112 { 2113 ktime_t kt = skb->tstamp; 2114 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2115 2116 /* 2117 * generate control messages if 2118 * - receive time stamping in software requested 2119 * - software time stamp available and wanted 2120 * - hardware time stamps available and wanted 2121 */ 2122 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2123 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2124 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2125 (hwtstamps->hwtstamp.tv64 && 2126 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2127 __sock_recv_timestamp(msg, sk, skb); 2128 else 2129 sk->sk_stamp = kt; 2130 2131 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2132 __sock_recv_wifi_status(msg, sk, skb); 2133 } 2134 2135 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2136 struct sk_buff *skb); 2137 2138 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2139 struct sk_buff *skb) 2140 { 2141 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2142 (1UL << SOCK_RCVTSTAMP)) 2143 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2144 SOF_TIMESTAMPING_RAW_HARDWARE) 2145 2146 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2147 __sock_recv_ts_and_drops(msg, sk, skb); 2148 else 2149 sk->sk_stamp = skb->tstamp; 2150 } 2151 2152 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags); 2153 2154 /** 2155 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2156 * @sk: socket sending this packet 2157 * @tx_flags: completed with instructions for time stamping 2158 * 2159 * Note : callers should take care of initial *tx_flags value (usually 0) 2160 */ 2161 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 2162 { 2163 if (unlikely(sk->sk_tsflags)) 2164 __sock_tx_timestamp(sk, tx_flags); 2165 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2166 *tx_flags |= SKBTX_WIFI_STATUS; 2167 } 2168 2169 /** 2170 * sk_eat_skb - Release a skb if it is no longer needed 2171 * @sk: socket to eat this skb from 2172 * @skb: socket buffer to eat 2173 * 2174 * This routine must be called with interrupts disabled or with the socket 2175 * locked so that the sk_buff queue operation is ok. 2176 */ 2177 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2178 { 2179 __skb_unlink(skb, &sk->sk_receive_queue); 2180 __kfree_skb(skb); 2181 } 2182 2183 static inline 2184 struct net *sock_net(const struct sock *sk) 2185 { 2186 return read_pnet(&sk->sk_net); 2187 } 2188 2189 static inline 2190 void sock_net_set(struct sock *sk, struct net *net) 2191 { 2192 write_pnet(&sk->sk_net, net); 2193 } 2194 2195 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2196 { 2197 if (skb->sk) { 2198 struct sock *sk = skb->sk; 2199 2200 skb->destructor = NULL; 2201 skb->sk = NULL; 2202 return sk; 2203 } 2204 return NULL; 2205 } 2206 2207 /* This helper checks if a socket is a full socket, 2208 * ie _not_ a timewait or request socket. 2209 */ 2210 static inline bool sk_fullsock(const struct sock *sk) 2211 { 2212 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2213 } 2214 2215 void sock_enable_timestamp(struct sock *sk, int flag); 2216 int sock_get_timestamp(struct sock *, struct timeval __user *); 2217 int sock_get_timestampns(struct sock *, struct timespec __user *); 2218 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2219 int type); 2220 2221 bool sk_ns_capable(const struct sock *sk, 2222 struct user_namespace *user_ns, int cap); 2223 bool sk_capable(const struct sock *sk, int cap); 2224 bool sk_net_capable(const struct sock *sk, int cap); 2225 2226 extern __u32 sysctl_wmem_max; 2227 extern __u32 sysctl_rmem_max; 2228 2229 extern int sysctl_tstamp_allow_data; 2230 extern int sysctl_optmem_max; 2231 2232 extern __u32 sysctl_wmem_default; 2233 extern __u32 sysctl_rmem_default; 2234 2235 #endif /* _SOCK_H */ 2236