1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/memcontrol.h> 58 #include <linux/res_counter.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 71 struct cgroup; 72 struct cgroup_subsys; 73 #ifdef CONFIG_NET 74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 76 #else 77 static inline 78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 79 { 80 return 0; 81 } 82 static inline 83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 84 { 85 } 86 #endif 87 /* 88 * This structure really needs to be cleaned up. 89 * Most of it is for TCP, and not used by any of 90 * the other protocols. 91 */ 92 93 /* Define this to get the SOCK_DBG debugging facility. */ 94 #define SOCK_DEBUGGING 95 #ifdef SOCK_DEBUGGING 96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 97 printk(KERN_DEBUG msg); } while (0) 98 #else 99 /* Validate arguments and do nothing */ 100 static inline __printf(2, 3) 101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 102 { 103 } 104 #endif 105 106 /* This is the per-socket lock. The spinlock provides a synchronization 107 * between user contexts and software interrupt processing, whereas the 108 * mini-semaphore synchronizes multiple users amongst themselves. 109 */ 110 typedef struct { 111 spinlock_t slock; 112 int owned; 113 wait_queue_head_t wq; 114 /* 115 * We express the mutex-alike socket_lock semantics 116 * to the lock validator by explicitly managing 117 * the slock as a lock variant (in addition to 118 * the slock itself): 119 */ 120 #ifdef CONFIG_DEBUG_LOCK_ALLOC 121 struct lockdep_map dep_map; 122 #endif 123 } socket_lock_t; 124 125 struct sock; 126 struct proto; 127 struct net; 128 129 typedef __u32 __bitwise __portpair; 130 typedef __u64 __bitwise __addrpair; 131 132 /** 133 * struct sock_common - minimal network layer representation of sockets 134 * @skc_daddr: Foreign IPv4 addr 135 * @skc_rcv_saddr: Bound local IPv4 addr 136 * @skc_hash: hash value used with various protocol lookup tables 137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 138 * @skc_dport: placeholder for inet_dport/tw_dport 139 * @skc_num: placeholder for inet_num/tw_num 140 * @skc_family: network address family 141 * @skc_state: Connection state 142 * @skc_reuse: %SO_REUSEADDR setting 143 * @skc_reuseport: %SO_REUSEPORT setting 144 * @skc_bound_dev_if: bound device index if != 0 145 * @skc_bind_node: bind hash linkage for various protocol lookup tables 146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 147 * @skc_prot: protocol handlers inside a network family 148 * @skc_net: reference to the network namespace of this socket 149 * @skc_node: main hash linkage for various protocol lookup tables 150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 151 * @skc_tx_queue_mapping: tx queue number for this connection 152 * @skc_refcnt: reference count 153 * 154 * This is the minimal network layer representation of sockets, the header 155 * for struct sock and struct inet_timewait_sock. 156 */ 157 struct sock_common { 158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 159 * address on 64bit arches : cf INET_MATCH() 160 */ 161 union { 162 __addrpair skc_addrpair; 163 struct { 164 __be32 skc_daddr; 165 __be32 skc_rcv_saddr; 166 }; 167 }; 168 union { 169 unsigned int skc_hash; 170 __u16 skc_u16hashes[2]; 171 }; 172 /* skc_dport && skc_num must be grouped as well */ 173 union { 174 __portpair skc_portpair; 175 struct { 176 __be16 skc_dport; 177 __u16 skc_num; 178 }; 179 }; 180 181 unsigned short skc_family; 182 volatile unsigned char skc_state; 183 unsigned char skc_reuse:4; 184 unsigned char skc_reuseport:4; 185 int skc_bound_dev_if; 186 union { 187 struct hlist_node skc_bind_node; 188 struct hlist_nulls_node skc_portaddr_node; 189 }; 190 struct proto *skc_prot; 191 #ifdef CONFIG_NET_NS 192 struct net *skc_net; 193 #endif 194 195 #if IS_ENABLED(CONFIG_IPV6) 196 struct in6_addr skc_v6_daddr; 197 struct in6_addr skc_v6_rcv_saddr; 198 #endif 199 200 /* 201 * fields between dontcopy_begin/dontcopy_end 202 * are not copied in sock_copy() 203 */ 204 /* private: */ 205 int skc_dontcopy_begin[0]; 206 /* public: */ 207 union { 208 struct hlist_node skc_node; 209 struct hlist_nulls_node skc_nulls_node; 210 }; 211 int skc_tx_queue_mapping; 212 atomic_t skc_refcnt; 213 /* private: */ 214 int skc_dontcopy_end[0]; 215 /* public: */ 216 }; 217 218 struct cg_proto; 219 /** 220 * struct sock - network layer representation of sockets 221 * @__sk_common: shared layout with inet_timewait_sock 222 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 223 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 224 * @sk_lock: synchronizer 225 * @sk_rcvbuf: size of receive buffer in bytes 226 * @sk_wq: sock wait queue and async head 227 * @sk_rx_dst: receive input route used by early demux 228 * @sk_dst_cache: destination cache 229 * @sk_dst_lock: destination cache lock 230 * @sk_policy: flow policy 231 * @sk_receive_queue: incoming packets 232 * @sk_wmem_alloc: transmit queue bytes committed 233 * @sk_write_queue: Packet sending queue 234 * @sk_async_wait_queue: DMA copied packets 235 * @sk_omem_alloc: "o" is "option" or "other" 236 * @sk_wmem_queued: persistent queue size 237 * @sk_forward_alloc: space allocated forward 238 * @sk_napi_id: id of the last napi context to receive data for sk 239 * @sk_ll_usec: usecs to busypoll when there is no data 240 * @sk_allocation: allocation mode 241 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 242 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 243 * @sk_sndbuf: size of send buffer in bytes 244 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 245 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 246 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets 247 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 248 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 249 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 250 * @sk_gso_max_size: Maximum GSO segment size to build 251 * @sk_gso_max_segs: Maximum number of GSO segments 252 * @sk_lingertime: %SO_LINGER l_linger setting 253 * @sk_backlog: always used with the per-socket spinlock held 254 * @sk_callback_lock: used with the callbacks in the end of this struct 255 * @sk_error_queue: rarely used 256 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 257 * IPV6_ADDRFORM for instance) 258 * @sk_err: last error 259 * @sk_err_soft: errors that don't cause failure but are the cause of a 260 * persistent failure not just 'timed out' 261 * @sk_drops: raw/udp drops counter 262 * @sk_ack_backlog: current listen backlog 263 * @sk_max_ack_backlog: listen backlog set in listen() 264 * @sk_priority: %SO_PRIORITY setting 265 * @sk_cgrp_prioidx: socket group's priority map index 266 * @sk_type: socket type (%SOCK_STREAM, etc) 267 * @sk_protocol: which protocol this socket belongs in this network family 268 * @sk_peer_pid: &struct pid for this socket's peer 269 * @sk_peer_cred: %SO_PEERCRED setting 270 * @sk_rcvlowat: %SO_RCVLOWAT setting 271 * @sk_rcvtimeo: %SO_RCVTIMEO setting 272 * @sk_sndtimeo: %SO_SNDTIMEO setting 273 * @sk_rxhash: flow hash received from netif layer 274 * @sk_filter: socket filtering instructions 275 * @sk_protinfo: private area, net family specific, when not using slab 276 * @sk_timer: sock cleanup timer 277 * @sk_stamp: time stamp of last packet received 278 * @sk_socket: Identd and reporting IO signals 279 * @sk_user_data: RPC layer private data 280 * @sk_frag: cached page frag 281 * @sk_peek_off: current peek_offset value 282 * @sk_send_head: front of stuff to transmit 283 * @sk_security: used by security modules 284 * @sk_mark: generic packet mark 285 * @sk_classid: this socket's cgroup classid 286 * @sk_cgrp: this socket's cgroup-specific proto data 287 * @sk_write_pending: a write to stream socket waits to start 288 * @sk_state_change: callback to indicate change in the state of the sock 289 * @sk_data_ready: callback to indicate there is data to be processed 290 * @sk_write_space: callback to indicate there is bf sending space available 291 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 292 * @sk_backlog_rcv: callback to process the backlog 293 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 294 */ 295 struct sock { 296 /* 297 * Now struct inet_timewait_sock also uses sock_common, so please just 298 * don't add nothing before this first member (__sk_common) --acme 299 */ 300 struct sock_common __sk_common; 301 #define sk_node __sk_common.skc_node 302 #define sk_nulls_node __sk_common.skc_nulls_node 303 #define sk_refcnt __sk_common.skc_refcnt 304 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 305 306 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 307 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 308 #define sk_hash __sk_common.skc_hash 309 #define sk_portpair __sk_common.skc_portpair 310 #define sk_num __sk_common.skc_num 311 #define sk_dport __sk_common.skc_dport 312 #define sk_addrpair __sk_common.skc_addrpair 313 #define sk_daddr __sk_common.skc_daddr 314 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 315 #define sk_family __sk_common.skc_family 316 #define sk_state __sk_common.skc_state 317 #define sk_reuse __sk_common.skc_reuse 318 #define sk_reuseport __sk_common.skc_reuseport 319 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 320 #define sk_bind_node __sk_common.skc_bind_node 321 #define sk_prot __sk_common.skc_prot 322 #define sk_net __sk_common.skc_net 323 #define sk_v6_daddr __sk_common.skc_v6_daddr 324 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 325 326 socket_lock_t sk_lock; 327 struct sk_buff_head sk_receive_queue; 328 /* 329 * The backlog queue is special, it is always used with 330 * the per-socket spinlock held and requires low latency 331 * access. Therefore we special case it's implementation. 332 * Note : rmem_alloc is in this structure to fill a hole 333 * on 64bit arches, not because its logically part of 334 * backlog. 335 */ 336 struct { 337 atomic_t rmem_alloc; 338 int len; 339 struct sk_buff *head; 340 struct sk_buff *tail; 341 } sk_backlog; 342 #define sk_rmem_alloc sk_backlog.rmem_alloc 343 int sk_forward_alloc; 344 #ifdef CONFIG_RPS 345 __u32 sk_rxhash; 346 #endif 347 #ifdef CONFIG_NET_RX_BUSY_POLL 348 unsigned int sk_napi_id; 349 unsigned int sk_ll_usec; 350 #endif 351 atomic_t sk_drops; 352 int sk_rcvbuf; 353 354 struct sk_filter __rcu *sk_filter; 355 struct socket_wq __rcu *sk_wq; 356 357 #ifdef CONFIG_NET_DMA 358 struct sk_buff_head sk_async_wait_queue; 359 #endif 360 361 #ifdef CONFIG_XFRM 362 struct xfrm_policy *sk_policy[2]; 363 #endif 364 unsigned long sk_flags; 365 struct dst_entry *sk_rx_dst; 366 struct dst_entry __rcu *sk_dst_cache; 367 spinlock_t sk_dst_lock; 368 atomic_t sk_wmem_alloc; 369 atomic_t sk_omem_alloc; 370 int sk_sndbuf; 371 struct sk_buff_head sk_write_queue; 372 kmemcheck_bitfield_begin(flags); 373 unsigned int sk_shutdown : 2, 374 sk_no_check : 2, 375 sk_userlocks : 4, 376 sk_protocol : 8, 377 sk_type : 16; 378 kmemcheck_bitfield_end(flags); 379 int sk_wmem_queued; 380 gfp_t sk_allocation; 381 u32 sk_pacing_rate; /* bytes per second */ 382 u32 sk_max_pacing_rate; 383 netdev_features_t sk_route_caps; 384 netdev_features_t sk_route_nocaps; 385 int sk_gso_type; 386 unsigned int sk_gso_max_size; 387 u16 sk_gso_max_segs; 388 int sk_rcvlowat; 389 unsigned long sk_lingertime; 390 struct sk_buff_head sk_error_queue; 391 struct proto *sk_prot_creator; 392 rwlock_t sk_callback_lock; 393 int sk_err, 394 sk_err_soft; 395 unsigned short sk_ack_backlog; 396 unsigned short sk_max_ack_backlog; 397 __u32 sk_priority; 398 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 399 __u32 sk_cgrp_prioidx; 400 #endif 401 struct pid *sk_peer_pid; 402 const struct cred *sk_peer_cred; 403 long sk_rcvtimeo; 404 long sk_sndtimeo; 405 void *sk_protinfo; 406 struct timer_list sk_timer; 407 ktime_t sk_stamp; 408 struct socket *sk_socket; 409 void *sk_user_data; 410 struct page_frag sk_frag; 411 struct sk_buff *sk_send_head; 412 __s32 sk_peek_off; 413 int sk_write_pending; 414 #ifdef CONFIG_SECURITY 415 void *sk_security; 416 #endif 417 __u32 sk_mark; 418 u32 sk_classid; 419 struct cg_proto *sk_cgrp; 420 void (*sk_state_change)(struct sock *sk); 421 void (*sk_data_ready)(struct sock *sk, int bytes); 422 void (*sk_write_space)(struct sock *sk); 423 void (*sk_error_report)(struct sock *sk); 424 int (*sk_backlog_rcv)(struct sock *sk, 425 struct sk_buff *skb); 426 void (*sk_destruct)(struct sock *sk); 427 }; 428 429 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 430 431 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 432 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 433 434 /* 435 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 436 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 437 * on a socket means that the socket will reuse everybody else's port 438 * without looking at the other's sk_reuse value. 439 */ 440 441 #define SK_NO_REUSE 0 442 #define SK_CAN_REUSE 1 443 #define SK_FORCE_REUSE 2 444 445 static inline int sk_peek_offset(struct sock *sk, int flags) 446 { 447 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 448 return sk->sk_peek_off; 449 else 450 return 0; 451 } 452 453 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 454 { 455 if (sk->sk_peek_off >= 0) { 456 if (sk->sk_peek_off >= val) 457 sk->sk_peek_off -= val; 458 else 459 sk->sk_peek_off = 0; 460 } 461 } 462 463 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 464 { 465 if (sk->sk_peek_off >= 0) 466 sk->sk_peek_off += val; 467 } 468 469 /* 470 * Hashed lists helper routines 471 */ 472 static inline struct sock *sk_entry(const struct hlist_node *node) 473 { 474 return hlist_entry(node, struct sock, sk_node); 475 } 476 477 static inline struct sock *__sk_head(const struct hlist_head *head) 478 { 479 return hlist_entry(head->first, struct sock, sk_node); 480 } 481 482 static inline struct sock *sk_head(const struct hlist_head *head) 483 { 484 return hlist_empty(head) ? NULL : __sk_head(head); 485 } 486 487 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 488 { 489 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 490 } 491 492 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 493 { 494 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 495 } 496 497 static inline struct sock *sk_next(const struct sock *sk) 498 { 499 return sk->sk_node.next ? 500 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 501 } 502 503 static inline struct sock *sk_nulls_next(const struct sock *sk) 504 { 505 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 506 hlist_nulls_entry(sk->sk_nulls_node.next, 507 struct sock, sk_nulls_node) : 508 NULL; 509 } 510 511 static inline bool sk_unhashed(const struct sock *sk) 512 { 513 return hlist_unhashed(&sk->sk_node); 514 } 515 516 static inline bool sk_hashed(const struct sock *sk) 517 { 518 return !sk_unhashed(sk); 519 } 520 521 static inline void sk_node_init(struct hlist_node *node) 522 { 523 node->pprev = NULL; 524 } 525 526 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 527 { 528 node->pprev = NULL; 529 } 530 531 static inline void __sk_del_node(struct sock *sk) 532 { 533 __hlist_del(&sk->sk_node); 534 } 535 536 /* NB: equivalent to hlist_del_init_rcu */ 537 static inline bool __sk_del_node_init(struct sock *sk) 538 { 539 if (sk_hashed(sk)) { 540 __sk_del_node(sk); 541 sk_node_init(&sk->sk_node); 542 return true; 543 } 544 return false; 545 } 546 547 /* Grab socket reference count. This operation is valid only 548 when sk is ALREADY grabbed f.e. it is found in hash table 549 or a list and the lookup is made under lock preventing hash table 550 modifications. 551 */ 552 553 static inline void sock_hold(struct sock *sk) 554 { 555 atomic_inc(&sk->sk_refcnt); 556 } 557 558 /* Ungrab socket in the context, which assumes that socket refcnt 559 cannot hit zero, f.e. it is true in context of any socketcall. 560 */ 561 static inline void __sock_put(struct sock *sk) 562 { 563 atomic_dec(&sk->sk_refcnt); 564 } 565 566 static inline bool sk_del_node_init(struct sock *sk) 567 { 568 bool rc = __sk_del_node_init(sk); 569 570 if (rc) { 571 /* paranoid for a while -acme */ 572 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 573 __sock_put(sk); 574 } 575 return rc; 576 } 577 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 578 579 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 580 { 581 if (sk_hashed(sk)) { 582 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 583 return true; 584 } 585 return false; 586 } 587 588 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 589 { 590 bool rc = __sk_nulls_del_node_init_rcu(sk); 591 592 if (rc) { 593 /* paranoid for a while -acme */ 594 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 595 __sock_put(sk); 596 } 597 return rc; 598 } 599 600 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 601 { 602 hlist_add_head(&sk->sk_node, list); 603 } 604 605 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 606 { 607 sock_hold(sk); 608 __sk_add_node(sk, list); 609 } 610 611 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 612 { 613 sock_hold(sk); 614 hlist_add_head_rcu(&sk->sk_node, list); 615 } 616 617 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 618 { 619 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 620 } 621 622 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 623 { 624 sock_hold(sk); 625 __sk_nulls_add_node_rcu(sk, list); 626 } 627 628 static inline void __sk_del_bind_node(struct sock *sk) 629 { 630 __hlist_del(&sk->sk_bind_node); 631 } 632 633 static inline void sk_add_bind_node(struct sock *sk, 634 struct hlist_head *list) 635 { 636 hlist_add_head(&sk->sk_bind_node, list); 637 } 638 639 #define sk_for_each(__sk, list) \ 640 hlist_for_each_entry(__sk, list, sk_node) 641 #define sk_for_each_rcu(__sk, list) \ 642 hlist_for_each_entry_rcu(__sk, list, sk_node) 643 #define sk_nulls_for_each(__sk, node, list) \ 644 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 645 #define sk_nulls_for_each_rcu(__sk, node, list) \ 646 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 647 #define sk_for_each_from(__sk) \ 648 hlist_for_each_entry_from(__sk, sk_node) 649 #define sk_nulls_for_each_from(__sk, node) \ 650 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 651 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 652 #define sk_for_each_safe(__sk, tmp, list) \ 653 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 654 #define sk_for_each_bound(__sk, list) \ 655 hlist_for_each_entry(__sk, list, sk_bind_node) 656 657 static inline struct user_namespace *sk_user_ns(struct sock *sk) 658 { 659 /* Careful only use this in a context where these parameters 660 * can not change and must all be valid, such as recvmsg from 661 * userspace. 662 */ 663 return sk->sk_socket->file->f_cred->user_ns; 664 } 665 666 /* Sock flags */ 667 enum sock_flags { 668 SOCK_DEAD, 669 SOCK_DONE, 670 SOCK_URGINLINE, 671 SOCK_KEEPOPEN, 672 SOCK_LINGER, 673 SOCK_DESTROY, 674 SOCK_BROADCAST, 675 SOCK_TIMESTAMP, 676 SOCK_ZAPPED, 677 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 678 SOCK_DBG, /* %SO_DEBUG setting */ 679 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 680 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 681 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 682 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 683 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 684 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 685 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 686 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 687 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 688 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 689 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 690 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 691 SOCK_FASYNC, /* fasync() active */ 692 SOCK_RXQ_OVFL, 693 SOCK_ZEROCOPY, /* buffers from userspace */ 694 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 695 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 696 * Will use last 4 bytes of packet sent from 697 * user-space instead. 698 */ 699 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 700 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 701 }; 702 703 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 704 { 705 nsk->sk_flags = osk->sk_flags; 706 } 707 708 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 709 { 710 __set_bit(flag, &sk->sk_flags); 711 } 712 713 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 714 { 715 __clear_bit(flag, &sk->sk_flags); 716 } 717 718 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 719 { 720 return test_bit(flag, &sk->sk_flags); 721 } 722 723 #ifdef CONFIG_NET 724 extern struct static_key memalloc_socks; 725 static inline int sk_memalloc_socks(void) 726 { 727 return static_key_false(&memalloc_socks); 728 } 729 #else 730 731 static inline int sk_memalloc_socks(void) 732 { 733 return 0; 734 } 735 736 #endif 737 738 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 739 { 740 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 741 } 742 743 static inline void sk_acceptq_removed(struct sock *sk) 744 { 745 sk->sk_ack_backlog--; 746 } 747 748 static inline void sk_acceptq_added(struct sock *sk) 749 { 750 sk->sk_ack_backlog++; 751 } 752 753 static inline bool sk_acceptq_is_full(const struct sock *sk) 754 { 755 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 756 } 757 758 /* 759 * Compute minimal free write space needed to queue new packets. 760 */ 761 static inline int sk_stream_min_wspace(const struct sock *sk) 762 { 763 return sk->sk_wmem_queued >> 1; 764 } 765 766 static inline int sk_stream_wspace(const struct sock *sk) 767 { 768 return sk->sk_sndbuf - sk->sk_wmem_queued; 769 } 770 771 void sk_stream_write_space(struct sock *sk); 772 773 /* OOB backlog add */ 774 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 775 { 776 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 777 skb_dst_force(skb); 778 779 if (!sk->sk_backlog.tail) 780 sk->sk_backlog.head = skb; 781 else 782 sk->sk_backlog.tail->next = skb; 783 784 sk->sk_backlog.tail = skb; 785 skb->next = NULL; 786 } 787 788 /* 789 * Take into account size of receive queue and backlog queue 790 * Do not take into account this skb truesize, 791 * to allow even a single big packet to come. 792 */ 793 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb, 794 unsigned int limit) 795 { 796 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 797 798 return qsize > limit; 799 } 800 801 /* The per-socket spinlock must be held here. */ 802 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 803 unsigned int limit) 804 { 805 if (sk_rcvqueues_full(sk, skb, limit)) 806 return -ENOBUFS; 807 808 __sk_add_backlog(sk, skb); 809 sk->sk_backlog.len += skb->truesize; 810 return 0; 811 } 812 813 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 814 815 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 816 { 817 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 818 return __sk_backlog_rcv(sk, skb); 819 820 return sk->sk_backlog_rcv(sk, skb); 821 } 822 823 static inline void sock_rps_record_flow_hash(__u32 hash) 824 { 825 #ifdef CONFIG_RPS 826 struct rps_sock_flow_table *sock_flow_table; 827 828 rcu_read_lock(); 829 sock_flow_table = rcu_dereference(rps_sock_flow_table); 830 rps_record_sock_flow(sock_flow_table, hash); 831 rcu_read_unlock(); 832 #endif 833 } 834 835 static inline void sock_rps_reset_flow_hash(__u32 hash) 836 { 837 #ifdef CONFIG_RPS 838 struct rps_sock_flow_table *sock_flow_table; 839 840 rcu_read_lock(); 841 sock_flow_table = rcu_dereference(rps_sock_flow_table); 842 rps_reset_sock_flow(sock_flow_table, hash); 843 rcu_read_unlock(); 844 #endif 845 } 846 847 static inline void sock_rps_record_flow(const struct sock *sk) 848 { 849 #ifdef CONFIG_RPS 850 sock_rps_record_flow_hash(sk->sk_rxhash); 851 #endif 852 } 853 854 static inline void sock_rps_reset_flow(const struct sock *sk) 855 { 856 #ifdef CONFIG_RPS 857 sock_rps_reset_flow_hash(sk->sk_rxhash); 858 #endif 859 } 860 861 static inline void sock_rps_save_rxhash(struct sock *sk, 862 const struct sk_buff *skb) 863 { 864 #ifdef CONFIG_RPS 865 if (unlikely(sk->sk_rxhash != skb->rxhash)) { 866 sock_rps_reset_flow(sk); 867 sk->sk_rxhash = skb->rxhash; 868 } 869 #endif 870 } 871 872 static inline void sock_rps_reset_rxhash(struct sock *sk) 873 { 874 #ifdef CONFIG_RPS 875 sock_rps_reset_flow(sk); 876 sk->sk_rxhash = 0; 877 #endif 878 } 879 880 #define sk_wait_event(__sk, __timeo, __condition) \ 881 ({ int __rc; \ 882 release_sock(__sk); \ 883 __rc = __condition; \ 884 if (!__rc) { \ 885 *(__timeo) = schedule_timeout(*(__timeo)); \ 886 } \ 887 lock_sock(__sk); \ 888 __rc = __condition; \ 889 __rc; \ 890 }) 891 892 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 893 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 894 void sk_stream_wait_close(struct sock *sk, long timeo_p); 895 int sk_stream_error(struct sock *sk, int flags, int err); 896 void sk_stream_kill_queues(struct sock *sk); 897 void sk_set_memalloc(struct sock *sk); 898 void sk_clear_memalloc(struct sock *sk); 899 900 int sk_wait_data(struct sock *sk, long *timeo); 901 902 struct request_sock_ops; 903 struct timewait_sock_ops; 904 struct inet_hashinfo; 905 struct raw_hashinfo; 906 struct module; 907 908 /* 909 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 910 * un-modified. Special care is taken when initializing object to zero. 911 */ 912 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 913 { 914 if (offsetof(struct sock, sk_node.next) != 0) 915 memset(sk, 0, offsetof(struct sock, sk_node.next)); 916 memset(&sk->sk_node.pprev, 0, 917 size - offsetof(struct sock, sk_node.pprev)); 918 } 919 920 /* Networking protocol blocks we attach to sockets. 921 * socket layer -> transport layer interface 922 * transport -> network interface is defined by struct inet_proto 923 */ 924 struct proto { 925 void (*close)(struct sock *sk, 926 long timeout); 927 int (*connect)(struct sock *sk, 928 struct sockaddr *uaddr, 929 int addr_len); 930 int (*disconnect)(struct sock *sk, int flags); 931 932 struct sock * (*accept)(struct sock *sk, int flags, int *err); 933 934 int (*ioctl)(struct sock *sk, int cmd, 935 unsigned long arg); 936 int (*init)(struct sock *sk); 937 void (*destroy)(struct sock *sk); 938 void (*shutdown)(struct sock *sk, int how); 939 int (*setsockopt)(struct sock *sk, int level, 940 int optname, char __user *optval, 941 unsigned int optlen); 942 int (*getsockopt)(struct sock *sk, int level, 943 int optname, char __user *optval, 944 int __user *option); 945 #ifdef CONFIG_COMPAT 946 int (*compat_setsockopt)(struct sock *sk, 947 int level, 948 int optname, char __user *optval, 949 unsigned int optlen); 950 int (*compat_getsockopt)(struct sock *sk, 951 int level, 952 int optname, char __user *optval, 953 int __user *option); 954 int (*compat_ioctl)(struct sock *sk, 955 unsigned int cmd, unsigned long arg); 956 #endif 957 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 958 struct msghdr *msg, size_t len); 959 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 960 struct msghdr *msg, 961 size_t len, int noblock, int flags, 962 int *addr_len); 963 int (*sendpage)(struct sock *sk, struct page *page, 964 int offset, size_t size, int flags); 965 int (*bind)(struct sock *sk, 966 struct sockaddr *uaddr, int addr_len); 967 968 int (*backlog_rcv) (struct sock *sk, 969 struct sk_buff *skb); 970 971 void (*release_cb)(struct sock *sk); 972 void (*mtu_reduced)(struct sock *sk); 973 974 /* Keeping track of sk's, looking them up, and port selection methods. */ 975 void (*hash)(struct sock *sk); 976 void (*unhash)(struct sock *sk); 977 void (*rehash)(struct sock *sk); 978 int (*get_port)(struct sock *sk, unsigned short snum); 979 void (*clear_sk)(struct sock *sk, int size); 980 981 /* Keeping track of sockets in use */ 982 #ifdef CONFIG_PROC_FS 983 unsigned int inuse_idx; 984 #endif 985 986 bool (*stream_memory_free)(const struct sock *sk); 987 /* Memory pressure */ 988 void (*enter_memory_pressure)(struct sock *sk); 989 atomic_long_t *memory_allocated; /* Current allocated memory. */ 990 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 991 /* 992 * Pressure flag: try to collapse. 993 * Technical note: it is used by multiple contexts non atomically. 994 * All the __sk_mem_schedule() is of this nature: accounting 995 * is strict, actions are advisory and have some latency. 996 */ 997 int *memory_pressure; 998 long *sysctl_mem; 999 int *sysctl_wmem; 1000 int *sysctl_rmem; 1001 int max_header; 1002 bool no_autobind; 1003 1004 struct kmem_cache *slab; 1005 unsigned int obj_size; 1006 int slab_flags; 1007 1008 struct percpu_counter *orphan_count; 1009 1010 struct request_sock_ops *rsk_prot; 1011 struct timewait_sock_ops *twsk_prot; 1012 1013 union { 1014 struct inet_hashinfo *hashinfo; 1015 struct udp_table *udp_table; 1016 struct raw_hashinfo *raw_hash; 1017 } h; 1018 1019 struct module *owner; 1020 1021 char name[32]; 1022 1023 struct list_head node; 1024 #ifdef SOCK_REFCNT_DEBUG 1025 atomic_t socks; 1026 #endif 1027 #ifdef CONFIG_MEMCG_KMEM 1028 /* 1029 * cgroup specific init/deinit functions. Called once for all 1030 * protocols that implement it, from cgroups populate function. 1031 * This function has to setup any files the protocol want to 1032 * appear in the kmem cgroup filesystem. 1033 */ 1034 int (*init_cgroup)(struct mem_cgroup *memcg, 1035 struct cgroup_subsys *ss); 1036 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1037 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1038 #endif 1039 }; 1040 1041 /* 1042 * Bits in struct cg_proto.flags 1043 */ 1044 enum cg_proto_flags { 1045 /* Currently active and new sockets should be assigned to cgroups */ 1046 MEMCG_SOCK_ACTIVE, 1047 /* It was ever activated; we must disarm static keys on destruction */ 1048 MEMCG_SOCK_ACTIVATED, 1049 }; 1050 1051 struct cg_proto { 1052 struct res_counter memory_allocated; /* Current allocated memory. */ 1053 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1054 int memory_pressure; 1055 long sysctl_mem[3]; 1056 unsigned long flags; 1057 /* 1058 * memcg field is used to find which memcg we belong directly 1059 * Each memcg struct can hold more than one cg_proto, so container_of 1060 * won't really cut. 1061 * 1062 * The elegant solution would be having an inverse function to 1063 * proto_cgroup in struct proto, but that means polluting the structure 1064 * for everybody, instead of just for memcg users. 1065 */ 1066 struct mem_cgroup *memcg; 1067 }; 1068 1069 int proto_register(struct proto *prot, int alloc_slab); 1070 void proto_unregister(struct proto *prot); 1071 1072 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1073 { 1074 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1075 } 1076 1077 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 1078 { 1079 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1080 } 1081 1082 #ifdef SOCK_REFCNT_DEBUG 1083 static inline void sk_refcnt_debug_inc(struct sock *sk) 1084 { 1085 atomic_inc(&sk->sk_prot->socks); 1086 } 1087 1088 static inline void sk_refcnt_debug_dec(struct sock *sk) 1089 { 1090 atomic_dec(&sk->sk_prot->socks); 1091 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1092 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1093 } 1094 1095 static inline void sk_refcnt_debug_release(const struct sock *sk) 1096 { 1097 if (atomic_read(&sk->sk_refcnt) != 1) 1098 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1099 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1100 } 1101 #else /* SOCK_REFCNT_DEBUG */ 1102 #define sk_refcnt_debug_inc(sk) do { } while (0) 1103 #define sk_refcnt_debug_dec(sk) do { } while (0) 1104 #define sk_refcnt_debug_release(sk) do { } while (0) 1105 #endif /* SOCK_REFCNT_DEBUG */ 1106 1107 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1108 extern struct static_key memcg_socket_limit_enabled; 1109 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1110 struct cg_proto *cg_proto) 1111 { 1112 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1113 } 1114 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1115 #else 1116 #define mem_cgroup_sockets_enabled 0 1117 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1118 struct cg_proto *cg_proto) 1119 { 1120 return NULL; 1121 } 1122 #endif 1123 1124 static inline bool sk_stream_memory_free(const struct sock *sk) 1125 { 1126 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1127 return false; 1128 1129 return sk->sk_prot->stream_memory_free ? 1130 sk->sk_prot->stream_memory_free(sk) : true; 1131 } 1132 1133 static inline bool sk_stream_is_writeable(const struct sock *sk) 1134 { 1135 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1136 sk_stream_memory_free(sk); 1137 } 1138 1139 1140 static inline bool sk_has_memory_pressure(const struct sock *sk) 1141 { 1142 return sk->sk_prot->memory_pressure != NULL; 1143 } 1144 1145 static inline bool sk_under_memory_pressure(const struct sock *sk) 1146 { 1147 if (!sk->sk_prot->memory_pressure) 1148 return false; 1149 1150 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1151 return !!sk->sk_cgrp->memory_pressure; 1152 1153 return !!*sk->sk_prot->memory_pressure; 1154 } 1155 1156 static inline void sk_leave_memory_pressure(struct sock *sk) 1157 { 1158 int *memory_pressure = sk->sk_prot->memory_pressure; 1159 1160 if (!memory_pressure) 1161 return; 1162 1163 if (*memory_pressure) 1164 *memory_pressure = 0; 1165 1166 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1167 struct cg_proto *cg_proto = sk->sk_cgrp; 1168 struct proto *prot = sk->sk_prot; 1169 1170 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1171 cg_proto->memory_pressure = 0; 1172 } 1173 1174 } 1175 1176 static inline void sk_enter_memory_pressure(struct sock *sk) 1177 { 1178 if (!sk->sk_prot->enter_memory_pressure) 1179 return; 1180 1181 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1182 struct cg_proto *cg_proto = sk->sk_cgrp; 1183 struct proto *prot = sk->sk_prot; 1184 1185 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1186 cg_proto->memory_pressure = 1; 1187 } 1188 1189 sk->sk_prot->enter_memory_pressure(sk); 1190 } 1191 1192 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1193 { 1194 long *prot = sk->sk_prot->sysctl_mem; 1195 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1196 prot = sk->sk_cgrp->sysctl_mem; 1197 return prot[index]; 1198 } 1199 1200 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1201 unsigned long amt, 1202 int *parent_status) 1203 { 1204 struct res_counter *fail; 1205 int ret; 1206 1207 ret = res_counter_charge_nofail(&prot->memory_allocated, 1208 amt << PAGE_SHIFT, &fail); 1209 if (ret < 0) 1210 *parent_status = OVER_LIMIT; 1211 } 1212 1213 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1214 unsigned long amt) 1215 { 1216 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT); 1217 } 1218 1219 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1220 { 1221 u64 ret; 1222 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE); 1223 return ret >> PAGE_SHIFT; 1224 } 1225 1226 static inline long 1227 sk_memory_allocated(const struct sock *sk) 1228 { 1229 struct proto *prot = sk->sk_prot; 1230 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1231 return memcg_memory_allocated_read(sk->sk_cgrp); 1232 1233 return atomic_long_read(prot->memory_allocated); 1234 } 1235 1236 static inline long 1237 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1238 { 1239 struct proto *prot = sk->sk_prot; 1240 1241 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1242 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1243 /* update the root cgroup regardless */ 1244 atomic_long_add_return(amt, prot->memory_allocated); 1245 return memcg_memory_allocated_read(sk->sk_cgrp); 1246 } 1247 1248 return atomic_long_add_return(amt, prot->memory_allocated); 1249 } 1250 1251 static inline void 1252 sk_memory_allocated_sub(struct sock *sk, int amt) 1253 { 1254 struct proto *prot = sk->sk_prot; 1255 1256 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1257 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1258 1259 atomic_long_sub(amt, prot->memory_allocated); 1260 } 1261 1262 static inline void sk_sockets_allocated_dec(struct sock *sk) 1263 { 1264 struct proto *prot = sk->sk_prot; 1265 1266 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1267 struct cg_proto *cg_proto = sk->sk_cgrp; 1268 1269 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1270 percpu_counter_dec(&cg_proto->sockets_allocated); 1271 } 1272 1273 percpu_counter_dec(prot->sockets_allocated); 1274 } 1275 1276 static inline void sk_sockets_allocated_inc(struct sock *sk) 1277 { 1278 struct proto *prot = sk->sk_prot; 1279 1280 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1281 struct cg_proto *cg_proto = sk->sk_cgrp; 1282 1283 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1284 percpu_counter_inc(&cg_proto->sockets_allocated); 1285 } 1286 1287 percpu_counter_inc(prot->sockets_allocated); 1288 } 1289 1290 static inline int 1291 sk_sockets_allocated_read_positive(struct sock *sk) 1292 { 1293 struct proto *prot = sk->sk_prot; 1294 1295 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1296 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1297 1298 return percpu_counter_read_positive(prot->sockets_allocated); 1299 } 1300 1301 static inline int 1302 proto_sockets_allocated_sum_positive(struct proto *prot) 1303 { 1304 return percpu_counter_sum_positive(prot->sockets_allocated); 1305 } 1306 1307 static inline long 1308 proto_memory_allocated(struct proto *prot) 1309 { 1310 return atomic_long_read(prot->memory_allocated); 1311 } 1312 1313 static inline bool 1314 proto_memory_pressure(struct proto *prot) 1315 { 1316 if (!prot->memory_pressure) 1317 return false; 1318 return !!*prot->memory_pressure; 1319 } 1320 1321 1322 #ifdef CONFIG_PROC_FS 1323 /* Called with local bh disabled */ 1324 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1325 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1326 #else 1327 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1328 int inc) 1329 { 1330 } 1331 #endif 1332 1333 1334 /* With per-bucket locks this operation is not-atomic, so that 1335 * this version is not worse. 1336 */ 1337 static inline void __sk_prot_rehash(struct sock *sk) 1338 { 1339 sk->sk_prot->unhash(sk); 1340 sk->sk_prot->hash(sk); 1341 } 1342 1343 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1344 1345 /* About 10 seconds */ 1346 #define SOCK_DESTROY_TIME (10*HZ) 1347 1348 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1349 #define PROT_SOCK 1024 1350 1351 #define SHUTDOWN_MASK 3 1352 #define RCV_SHUTDOWN 1 1353 #define SEND_SHUTDOWN 2 1354 1355 #define SOCK_SNDBUF_LOCK 1 1356 #define SOCK_RCVBUF_LOCK 2 1357 #define SOCK_BINDADDR_LOCK 4 1358 #define SOCK_BINDPORT_LOCK 8 1359 1360 /* sock_iocb: used to kick off async processing of socket ios */ 1361 struct sock_iocb { 1362 struct list_head list; 1363 1364 int flags; 1365 int size; 1366 struct socket *sock; 1367 struct sock *sk; 1368 struct scm_cookie *scm; 1369 struct msghdr *msg, async_msg; 1370 struct kiocb *kiocb; 1371 }; 1372 1373 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1374 { 1375 return (struct sock_iocb *)iocb->private; 1376 } 1377 1378 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1379 { 1380 return si->kiocb; 1381 } 1382 1383 struct socket_alloc { 1384 struct socket socket; 1385 struct inode vfs_inode; 1386 }; 1387 1388 static inline struct socket *SOCKET_I(struct inode *inode) 1389 { 1390 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1391 } 1392 1393 static inline struct inode *SOCK_INODE(struct socket *socket) 1394 { 1395 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1396 } 1397 1398 /* 1399 * Functions for memory accounting 1400 */ 1401 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1402 void __sk_mem_reclaim(struct sock *sk); 1403 1404 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1405 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1406 #define SK_MEM_SEND 0 1407 #define SK_MEM_RECV 1 1408 1409 static inline int sk_mem_pages(int amt) 1410 { 1411 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1412 } 1413 1414 static inline bool sk_has_account(struct sock *sk) 1415 { 1416 /* return true if protocol supports memory accounting */ 1417 return !!sk->sk_prot->memory_allocated; 1418 } 1419 1420 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1421 { 1422 if (!sk_has_account(sk)) 1423 return true; 1424 return size <= sk->sk_forward_alloc || 1425 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1426 } 1427 1428 static inline bool 1429 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1430 { 1431 if (!sk_has_account(sk)) 1432 return true; 1433 return size<= sk->sk_forward_alloc || 1434 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1435 skb_pfmemalloc(skb); 1436 } 1437 1438 static inline void sk_mem_reclaim(struct sock *sk) 1439 { 1440 if (!sk_has_account(sk)) 1441 return; 1442 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1443 __sk_mem_reclaim(sk); 1444 } 1445 1446 static inline void sk_mem_reclaim_partial(struct sock *sk) 1447 { 1448 if (!sk_has_account(sk)) 1449 return; 1450 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1451 __sk_mem_reclaim(sk); 1452 } 1453 1454 static inline void sk_mem_charge(struct sock *sk, int size) 1455 { 1456 if (!sk_has_account(sk)) 1457 return; 1458 sk->sk_forward_alloc -= size; 1459 } 1460 1461 static inline void sk_mem_uncharge(struct sock *sk, int size) 1462 { 1463 if (!sk_has_account(sk)) 1464 return; 1465 sk->sk_forward_alloc += size; 1466 } 1467 1468 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1469 { 1470 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1471 sk->sk_wmem_queued -= skb->truesize; 1472 sk_mem_uncharge(sk, skb->truesize); 1473 __kfree_skb(skb); 1474 } 1475 1476 /* Used by processes to "lock" a socket state, so that 1477 * interrupts and bottom half handlers won't change it 1478 * from under us. It essentially blocks any incoming 1479 * packets, so that we won't get any new data or any 1480 * packets that change the state of the socket. 1481 * 1482 * While locked, BH processing will add new packets to 1483 * the backlog queue. This queue is processed by the 1484 * owner of the socket lock right before it is released. 1485 * 1486 * Since ~2.3.5 it is also exclusive sleep lock serializing 1487 * accesses from user process context. 1488 */ 1489 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1490 1491 /* 1492 * Macro so as to not evaluate some arguments when 1493 * lockdep is not enabled. 1494 * 1495 * Mark both the sk_lock and the sk_lock.slock as a 1496 * per-address-family lock class. 1497 */ 1498 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1499 do { \ 1500 sk->sk_lock.owned = 0; \ 1501 init_waitqueue_head(&sk->sk_lock.wq); \ 1502 spin_lock_init(&(sk)->sk_lock.slock); \ 1503 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1504 sizeof((sk)->sk_lock)); \ 1505 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1506 (skey), (sname)); \ 1507 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1508 } while (0) 1509 1510 void lock_sock_nested(struct sock *sk, int subclass); 1511 1512 static inline void lock_sock(struct sock *sk) 1513 { 1514 lock_sock_nested(sk, 0); 1515 } 1516 1517 void release_sock(struct sock *sk); 1518 1519 /* BH context may only use the following locking interface. */ 1520 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1521 #define bh_lock_sock_nested(__sk) \ 1522 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1523 SINGLE_DEPTH_NESTING) 1524 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1525 1526 bool lock_sock_fast(struct sock *sk); 1527 /** 1528 * unlock_sock_fast - complement of lock_sock_fast 1529 * @sk: socket 1530 * @slow: slow mode 1531 * 1532 * fast unlock socket for user context. 1533 * If slow mode is on, we call regular release_sock() 1534 */ 1535 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1536 { 1537 if (slow) 1538 release_sock(sk); 1539 else 1540 spin_unlock_bh(&sk->sk_lock.slock); 1541 } 1542 1543 1544 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1545 struct proto *prot); 1546 void sk_free(struct sock *sk); 1547 void sk_release_kernel(struct sock *sk); 1548 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1549 1550 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1551 gfp_t priority); 1552 void sock_wfree(struct sk_buff *skb); 1553 void skb_orphan_partial(struct sk_buff *skb); 1554 void sock_rfree(struct sk_buff *skb); 1555 void sock_edemux(struct sk_buff *skb); 1556 1557 int sock_setsockopt(struct socket *sock, int level, int op, 1558 char __user *optval, unsigned int optlen); 1559 1560 int sock_getsockopt(struct socket *sock, int level, int op, 1561 char __user *optval, int __user *optlen); 1562 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1563 int noblock, int *errcode); 1564 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1565 unsigned long data_len, int noblock, 1566 int *errcode, int max_page_order); 1567 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1568 void sock_kfree_s(struct sock *sk, void *mem, int size); 1569 void sk_send_sigurg(struct sock *sk); 1570 1571 /* 1572 * Functions to fill in entries in struct proto_ops when a protocol 1573 * does not implement a particular function. 1574 */ 1575 int sock_no_bind(struct socket *, struct sockaddr *, int); 1576 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1577 int sock_no_socketpair(struct socket *, struct socket *); 1578 int sock_no_accept(struct socket *, struct socket *, int); 1579 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1580 unsigned int sock_no_poll(struct file *, struct socket *, 1581 struct poll_table_struct *); 1582 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1583 int sock_no_listen(struct socket *, int); 1584 int sock_no_shutdown(struct socket *, int); 1585 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1586 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1587 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); 1588 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, 1589 int); 1590 int sock_no_mmap(struct file *file, struct socket *sock, 1591 struct vm_area_struct *vma); 1592 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1593 size_t size, int flags); 1594 1595 /* 1596 * Functions to fill in entries in struct proto_ops when a protocol 1597 * uses the inet style. 1598 */ 1599 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1600 char __user *optval, int __user *optlen); 1601 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1602 struct msghdr *msg, size_t size, int flags); 1603 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1604 char __user *optval, unsigned int optlen); 1605 int compat_sock_common_getsockopt(struct socket *sock, int level, 1606 int optname, char __user *optval, int __user *optlen); 1607 int compat_sock_common_setsockopt(struct socket *sock, int level, 1608 int optname, char __user *optval, unsigned int optlen); 1609 1610 void sk_common_release(struct sock *sk); 1611 1612 /* 1613 * Default socket callbacks and setup code 1614 */ 1615 1616 /* Initialise core socket variables */ 1617 void sock_init_data(struct socket *sock, struct sock *sk); 1618 1619 void sk_filter_release_rcu(struct rcu_head *rcu); 1620 1621 /** 1622 * sk_filter_release - release a socket filter 1623 * @fp: filter to remove 1624 * 1625 * Remove a filter from a socket and release its resources. 1626 */ 1627 1628 static inline void sk_filter_release(struct sk_filter *fp) 1629 { 1630 if (atomic_dec_and_test(&fp->refcnt)) 1631 call_rcu(&fp->rcu, sk_filter_release_rcu); 1632 } 1633 1634 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1635 { 1636 atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc); 1637 sk_filter_release(fp); 1638 } 1639 1640 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1641 { 1642 atomic_inc(&fp->refcnt); 1643 atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc); 1644 } 1645 1646 /* 1647 * Socket reference counting postulates. 1648 * 1649 * * Each user of socket SHOULD hold a reference count. 1650 * * Each access point to socket (an hash table bucket, reference from a list, 1651 * running timer, skb in flight MUST hold a reference count. 1652 * * When reference count hits 0, it means it will never increase back. 1653 * * When reference count hits 0, it means that no references from 1654 * outside exist to this socket and current process on current CPU 1655 * is last user and may/should destroy this socket. 1656 * * sk_free is called from any context: process, BH, IRQ. When 1657 * it is called, socket has no references from outside -> sk_free 1658 * may release descendant resources allocated by the socket, but 1659 * to the time when it is called, socket is NOT referenced by any 1660 * hash tables, lists etc. 1661 * * Packets, delivered from outside (from network or from another process) 1662 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1663 * when they sit in queue. Otherwise, packets will leak to hole, when 1664 * socket is looked up by one cpu and unhasing is made by another CPU. 1665 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1666 * (leak to backlog). Packet socket does all the processing inside 1667 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1668 * use separate SMP lock, so that they are prone too. 1669 */ 1670 1671 /* Ungrab socket and destroy it, if it was the last reference. */ 1672 static inline void sock_put(struct sock *sk) 1673 { 1674 if (atomic_dec_and_test(&sk->sk_refcnt)) 1675 sk_free(sk); 1676 } 1677 /* Generic version of sock_put(), dealing with all sockets 1678 * (TCP_TIMEWAIT, ESTABLISHED...) 1679 */ 1680 void sock_gen_put(struct sock *sk); 1681 1682 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1683 1684 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1685 { 1686 sk->sk_tx_queue_mapping = tx_queue; 1687 } 1688 1689 static inline void sk_tx_queue_clear(struct sock *sk) 1690 { 1691 sk->sk_tx_queue_mapping = -1; 1692 } 1693 1694 static inline int sk_tx_queue_get(const struct sock *sk) 1695 { 1696 return sk ? sk->sk_tx_queue_mapping : -1; 1697 } 1698 1699 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1700 { 1701 sk_tx_queue_clear(sk); 1702 sk->sk_socket = sock; 1703 } 1704 1705 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1706 { 1707 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1708 return &rcu_dereference_raw(sk->sk_wq)->wait; 1709 } 1710 /* Detach socket from process context. 1711 * Announce socket dead, detach it from wait queue and inode. 1712 * Note that parent inode held reference count on this struct sock, 1713 * we do not release it in this function, because protocol 1714 * probably wants some additional cleanups or even continuing 1715 * to work with this socket (TCP). 1716 */ 1717 static inline void sock_orphan(struct sock *sk) 1718 { 1719 write_lock_bh(&sk->sk_callback_lock); 1720 sock_set_flag(sk, SOCK_DEAD); 1721 sk_set_socket(sk, NULL); 1722 sk->sk_wq = NULL; 1723 write_unlock_bh(&sk->sk_callback_lock); 1724 } 1725 1726 static inline void sock_graft(struct sock *sk, struct socket *parent) 1727 { 1728 write_lock_bh(&sk->sk_callback_lock); 1729 sk->sk_wq = parent->wq; 1730 parent->sk = sk; 1731 sk_set_socket(sk, parent); 1732 security_sock_graft(sk, parent); 1733 write_unlock_bh(&sk->sk_callback_lock); 1734 } 1735 1736 kuid_t sock_i_uid(struct sock *sk); 1737 unsigned long sock_i_ino(struct sock *sk); 1738 1739 static inline struct dst_entry * 1740 __sk_dst_get(struct sock *sk) 1741 { 1742 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1743 lockdep_is_held(&sk->sk_lock.slock)); 1744 } 1745 1746 static inline struct dst_entry * 1747 sk_dst_get(struct sock *sk) 1748 { 1749 struct dst_entry *dst; 1750 1751 rcu_read_lock(); 1752 dst = rcu_dereference(sk->sk_dst_cache); 1753 if (dst) 1754 dst_hold(dst); 1755 rcu_read_unlock(); 1756 return dst; 1757 } 1758 1759 static inline void dst_negative_advice(struct sock *sk) 1760 { 1761 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1762 1763 if (dst && dst->ops->negative_advice) { 1764 ndst = dst->ops->negative_advice(dst); 1765 1766 if (ndst != dst) { 1767 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1768 sk_tx_queue_clear(sk); 1769 } 1770 } 1771 } 1772 1773 static inline void 1774 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1775 { 1776 struct dst_entry *old_dst; 1777 1778 sk_tx_queue_clear(sk); 1779 /* 1780 * This can be called while sk is owned by the caller only, 1781 * with no state that can be checked in a rcu_dereference_check() cond 1782 */ 1783 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1784 rcu_assign_pointer(sk->sk_dst_cache, dst); 1785 dst_release(old_dst); 1786 } 1787 1788 static inline void 1789 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1790 { 1791 spin_lock(&sk->sk_dst_lock); 1792 __sk_dst_set(sk, dst); 1793 spin_unlock(&sk->sk_dst_lock); 1794 } 1795 1796 static inline void 1797 __sk_dst_reset(struct sock *sk) 1798 { 1799 __sk_dst_set(sk, NULL); 1800 } 1801 1802 static inline void 1803 sk_dst_reset(struct sock *sk) 1804 { 1805 spin_lock(&sk->sk_dst_lock); 1806 __sk_dst_reset(sk); 1807 spin_unlock(&sk->sk_dst_lock); 1808 } 1809 1810 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1811 1812 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1813 1814 static inline bool sk_can_gso(const struct sock *sk) 1815 { 1816 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1817 } 1818 1819 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1820 1821 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1822 { 1823 sk->sk_route_nocaps |= flags; 1824 sk->sk_route_caps &= ~flags; 1825 } 1826 1827 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1828 char __user *from, char *to, 1829 int copy, int offset) 1830 { 1831 if (skb->ip_summed == CHECKSUM_NONE) { 1832 int err = 0; 1833 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1834 if (err) 1835 return err; 1836 skb->csum = csum_block_add(skb->csum, csum, offset); 1837 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1838 if (!access_ok(VERIFY_READ, from, copy) || 1839 __copy_from_user_nocache(to, from, copy)) 1840 return -EFAULT; 1841 } else if (copy_from_user(to, from, copy)) 1842 return -EFAULT; 1843 1844 return 0; 1845 } 1846 1847 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1848 char __user *from, int copy) 1849 { 1850 int err, offset = skb->len; 1851 1852 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1853 copy, offset); 1854 if (err) 1855 __skb_trim(skb, offset); 1856 1857 return err; 1858 } 1859 1860 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1861 struct sk_buff *skb, 1862 struct page *page, 1863 int off, int copy) 1864 { 1865 int err; 1866 1867 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1868 copy, skb->len); 1869 if (err) 1870 return err; 1871 1872 skb->len += copy; 1873 skb->data_len += copy; 1874 skb->truesize += copy; 1875 sk->sk_wmem_queued += copy; 1876 sk_mem_charge(sk, copy); 1877 return 0; 1878 } 1879 1880 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1881 struct sk_buff *skb, struct page *page, 1882 int off, int copy) 1883 { 1884 if (skb->ip_summed == CHECKSUM_NONE) { 1885 int err = 0; 1886 __wsum csum = csum_and_copy_from_user(from, 1887 page_address(page) + off, 1888 copy, 0, &err); 1889 if (err) 1890 return err; 1891 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1892 } else if (copy_from_user(page_address(page) + off, from, copy)) 1893 return -EFAULT; 1894 1895 skb->len += copy; 1896 skb->data_len += copy; 1897 skb->truesize += copy; 1898 sk->sk_wmem_queued += copy; 1899 sk_mem_charge(sk, copy); 1900 return 0; 1901 } 1902 1903 /** 1904 * sk_wmem_alloc_get - returns write allocations 1905 * @sk: socket 1906 * 1907 * Returns sk_wmem_alloc minus initial offset of one 1908 */ 1909 static inline int sk_wmem_alloc_get(const struct sock *sk) 1910 { 1911 return atomic_read(&sk->sk_wmem_alloc) - 1; 1912 } 1913 1914 /** 1915 * sk_rmem_alloc_get - returns read allocations 1916 * @sk: socket 1917 * 1918 * Returns sk_rmem_alloc 1919 */ 1920 static inline int sk_rmem_alloc_get(const struct sock *sk) 1921 { 1922 return atomic_read(&sk->sk_rmem_alloc); 1923 } 1924 1925 /** 1926 * sk_has_allocations - check if allocations are outstanding 1927 * @sk: socket 1928 * 1929 * Returns true if socket has write or read allocations 1930 */ 1931 static inline bool sk_has_allocations(const struct sock *sk) 1932 { 1933 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1934 } 1935 1936 /** 1937 * wq_has_sleeper - check if there are any waiting processes 1938 * @wq: struct socket_wq 1939 * 1940 * Returns true if socket_wq has waiting processes 1941 * 1942 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1943 * barrier call. They were added due to the race found within the tcp code. 1944 * 1945 * Consider following tcp code paths: 1946 * 1947 * CPU1 CPU2 1948 * 1949 * sys_select receive packet 1950 * ... ... 1951 * __add_wait_queue update tp->rcv_nxt 1952 * ... ... 1953 * tp->rcv_nxt check sock_def_readable 1954 * ... { 1955 * schedule rcu_read_lock(); 1956 * wq = rcu_dereference(sk->sk_wq); 1957 * if (wq && waitqueue_active(&wq->wait)) 1958 * wake_up_interruptible(&wq->wait) 1959 * ... 1960 * } 1961 * 1962 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1963 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1964 * could then endup calling schedule and sleep forever if there are no more 1965 * data on the socket. 1966 * 1967 */ 1968 static inline bool wq_has_sleeper(struct socket_wq *wq) 1969 { 1970 /* We need to be sure we are in sync with the 1971 * add_wait_queue modifications to the wait queue. 1972 * 1973 * This memory barrier is paired in the sock_poll_wait. 1974 */ 1975 smp_mb(); 1976 return wq && waitqueue_active(&wq->wait); 1977 } 1978 1979 /** 1980 * sock_poll_wait - place memory barrier behind the poll_wait call. 1981 * @filp: file 1982 * @wait_address: socket wait queue 1983 * @p: poll_table 1984 * 1985 * See the comments in the wq_has_sleeper function. 1986 */ 1987 static inline void sock_poll_wait(struct file *filp, 1988 wait_queue_head_t *wait_address, poll_table *p) 1989 { 1990 if (!poll_does_not_wait(p) && wait_address) { 1991 poll_wait(filp, wait_address, p); 1992 /* We need to be sure we are in sync with the 1993 * socket flags modification. 1994 * 1995 * This memory barrier is paired in the wq_has_sleeper. 1996 */ 1997 smp_mb(); 1998 } 1999 } 2000 2001 /* 2002 * Queue a received datagram if it will fit. Stream and sequenced 2003 * protocols can't normally use this as they need to fit buffers in 2004 * and play with them. 2005 * 2006 * Inlined as it's very short and called for pretty much every 2007 * packet ever received. 2008 */ 2009 2010 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2011 { 2012 skb_orphan(skb); 2013 skb->sk = sk; 2014 skb->destructor = sock_wfree; 2015 /* 2016 * We used to take a refcount on sk, but following operation 2017 * is enough to guarantee sk_free() wont free this sock until 2018 * all in-flight packets are completed 2019 */ 2020 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 2021 } 2022 2023 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2024 { 2025 skb_orphan(skb); 2026 skb->sk = sk; 2027 skb->destructor = sock_rfree; 2028 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2029 sk_mem_charge(sk, skb->truesize); 2030 } 2031 2032 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2033 unsigned long expires); 2034 2035 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2036 2037 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2038 2039 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2040 2041 /* 2042 * Recover an error report and clear atomically 2043 */ 2044 2045 static inline int sock_error(struct sock *sk) 2046 { 2047 int err; 2048 if (likely(!sk->sk_err)) 2049 return 0; 2050 err = xchg(&sk->sk_err, 0); 2051 return -err; 2052 } 2053 2054 static inline unsigned long sock_wspace(struct sock *sk) 2055 { 2056 int amt = 0; 2057 2058 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2059 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2060 if (amt < 0) 2061 amt = 0; 2062 } 2063 return amt; 2064 } 2065 2066 static inline void sk_wake_async(struct sock *sk, int how, int band) 2067 { 2068 if (sock_flag(sk, SOCK_FASYNC)) 2069 sock_wake_async(sk->sk_socket, how, band); 2070 } 2071 2072 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2073 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2074 * Note: for send buffers, TCP works better if we can build two skbs at 2075 * minimum. 2076 */ 2077 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2078 2079 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2080 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2081 2082 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2083 { 2084 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2085 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2086 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2087 } 2088 } 2089 2090 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2091 2092 /** 2093 * sk_page_frag - return an appropriate page_frag 2094 * @sk: socket 2095 * 2096 * If socket allocation mode allows current thread to sleep, it means its 2097 * safe to use the per task page_frag instead of the per socket one. 2098 */ 2099 static inline struct page_frag *sk_page_frag(struct sock *sk) 2100 { 2101 if (sk->sk_allocation & __GFP_WAIT) 2102 return ¤t->task_frag; 2103 2104 return &sk->sk_frag; 2105 } 2106 2107 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2108 2109 /* 2110 * Default write policy as shown to user space via poll/select/SIGIO 2111 */ 2112 static inline bool sock_writeable(const struct sock *sk) 2113 { 2114 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2115 } 2116 2117 static inline gfp_t gfp_any(void) 2118 { 2119 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2120 } 2121 2122 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2123 { 2124 return noblock ? 0 : sk->sk_rcvtimeo; 2125 } 2126 2127 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2128 { 2129 return noblock ? 0 : sk->sk_sndtimeo; 2130 } 2131 2132 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2133 { 2134 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2135 } 2136 2137 /* Alas, with timeout socket operations are not restartable. 2138 * Compare this to poll(). 2139 */ 2140 static inline int sock_intr_errno(long timeo) 2141 { 2142 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2143 } 2144 2145 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2146 struct sk_buff *skb); 2147 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2148 struct sk_buff *skb); 2149 2150 static inline void 2151 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2152 { 2153 ktime_t kt = skb->tstamp; 2154 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2155 2156 /* 2157 * generate control messages if 2158 * - receive time stamping in software requested (SOCK_RCVTSTAMP 2159 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 2160 * - software time stamp available and wanted 2161 * (SOCK_TIMESTAMPING_SOFTWARE) 2162 * - hardware time stamps available and wanted 2163 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 2164 * SOCK_TIMESTAMPING_RAW_HARDWARE) 2165 */ 2166 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2167 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 2168 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 2169 (hwtstamps->hwtstamp.tv64 && 2170 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 2171 (hwtstamps->syststamp.tv64 && 2172 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 2173 __sock_recv_timestamp(msg, sk, skb); 2174 else 2175 sk->sk_stamp = kt; 2176 2177 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2178 __sock_recv_wifi_status(msg, sk, skb); 2179 } 2180 2181 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2182 struct sk_buff *skb); 2183 2184 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2185 struct sk_buff *skb) 2186 { 2187 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2188 (1UL << SOCK_RCVTSTAMP) | \ 2189 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 2190 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 2191 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 2192 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 2193 2194 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 2195 __sock_recv_ts_and_drops(msg, sk, skb); 2196 else 2197 sk->sk_stamp = skb->tstamp; 2198 } 2199 2200 /** 2201 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2202 * @sk: socket sending this packet 2203 * @tx_flags: filled with instructions for time stamping 2204 * 2205 * Currently only depends on SOCK_TIMESTAMPING* flags. 2206 */ 2207 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2208 2209 /** 2210 * sk_eat_skb - Release a skb if it is no longer needed 2211 * @sk: socket to eat this skb from 2212 * @skb: socket buffer to eat 2213 * @copied_early: flag indicating whether DMA operations copied this data early 2214 * 2215 * This routine must be called with interrupts disabled or with the socket 2216 * locked so that the sk_buff queue operation is ok. 2217 */ 2218 #ifdef CONFIG_NET_DMA 2219 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2220 { 2221 __skb_unlink(skb, &sk->sk_receive_queue); 2222 if (!copied_early) 2223 __kfree_skb(skb); 2224 else 2225 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2226 } 2227 #else 2228 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2229 { 2230 __skb_unlink(skb, &sk->sk_receive_queue); 2231 __kfree_skb(skb); 2232 } 2233 #endif 2234 2235 static inline 2236 struct net *sock_net(const struct sock *sk) 2237 { 2238 return read_pnet(&sk->sk_net); 2239 } 2240 2241 static inline 2242 void sock_net_set(struct sock *sk, struct net *net) 2243 { 2244 write_pnet(&sk->sk_net, net); 2245 } 2246 2247 /* 2248 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2249 * They should not hold a reference to a namespace in order to allow 2250 * to stop it. 2251 * Sockets after sk_change_net should be released using sk_release_kernel 2252 */ 2253 static inline void sk_change_net(struct sock *sk, struct net *net) 2254 { 2255 put_net(sock_net(sk)); 2256 sock_net_set(sk, hold_net(net)); 2257 } 2258 2259 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2260 { 2261 if (skb->sk) { 2262 struct sock *sk = skb->sk; 2263 2264 skb->destructor = NULL; 2265 skb->sk = NULL; 2266 return sk; 2267 } 2268 return NULL; 2269 } 2270 2271 void sock_enable_timestamp(struct sock *sk, int flag); 2272 int sock_get_timestamp(struct sock *, struct timeval __user *); 2273 int sock_get_timestampns(struct sock *, struct timespec __user *); 2274 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2275 int type); 2276 2277 /* 2278 * Enable debug/info messages 2279 */ 2280 extern int net_msg_warn; 2281 #define NETDEBUG(fmt, args...) \ 2282 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2283 2284 #define LIMIT_NETDEBUG(fmt, args...) \ 2285 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2286 2287 extern __u32 sysctl_wmem_max; 2288 extern __u32 sysctl_rmem_max; 2289 2290 extern int sysctl_optmem_max; 2291 2292 extern __u32 sysctl_wmem_default; 2293 extern __u32 sysctl_rmem_default; 2294 2295 #endif /* _SOCK_H */ 2296