1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/config.h> 44 #include <linux/list.h> 45 #include <linux/timer.h> 46 #include <linux/cache.h> 47 #include <linux/module.h> 48 #include <linux/netdevice.h> 49 #include <linux/skbuff.h> /* struct sk_buff */ 50 #include <linux/security.h> 51 52 #include <linux/filter.h> 53 54 #include <asm/atomic.h> 55 #include <net/dst.h> 56 #include <net/checksum.h> 57 58 /* 59 * This structure really needs to be cleaned up. 60 * Most of it is for TCP, and not used by any of 61 * the other protocols. 62 */ 63 64 /* Define this to get the SOCK_DBG debugging facility. */ 65 #define SOCK_DEBUGGING 66 #ifdef SOCK_DEBUGGING 67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 68 printk(KERN_DEBUG msg); } while (0) 69 #else 70 #define SOCK_DEBUG(sk, msg...) do { } while (0) 71 #endif 72 73 /* This is the per-socket lock. The spinlock provides a synchronization 74 * between user contexts and software interrupt processing, whereas the 75 * mini-semaphore synchronizes multiple users amongst themselves. 76 */ 77 struct sock_iocb; 78 typedef struct { 79 spinlock_t slock; 80 struct sock_iocb *owner; 81 wait_queue_head_t wq; 82 } socket_lock_t; 83 84 #define sock_lock_init(__sk) \ 85 do { spin_lock_init(&((__sk)->sk_lock.slock)); \ 86 (__sk)->sk_lock.owner = NULL; \ 87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \ 88 } while(0) 89 90 struct sock; 91 struct proto; 92 93 /** 94 * struct sock_common - minimal network layer representation of sockets 95 * @skc_family: network address family 96 * @skc_state: Connection state 97 * @skc_reuse: %SO_REUSEADDR setting 98 * @skc_bound_dev_if: bound device index if != 0 99 * @skc_node: main hash linkage for various protocol lookup tables 100 * @skc_bind_node: bind hash linkage for various protocol lookup tables 101 * @skc_refcnt: reference count 102 * @skc_hash: hash value used with various protocol lookup tables 103 * @skc_prot: protocol handlers inside a network family 104 * 105 * This is the minimal network layer representation of sockets, the header 106 * for struct sock and struct inet_timewait_sock. 107 */ 108 struct sock_common { 109 unsigned short skc_family; 110 volatile unsigned char skc_state; 111 unsigned char skc_reuse; 112 int skc_bound_dev_if; 113 struct hlist_node skc_node; 114 struct hlist_node skc_bind_node; 115 atomic_t skc_refcnt; 116 unsigned int skc_hash; 117 struct proto *skc_prot; 118 }; 119 120 /** 121 * struct sock - network layer representation of sockets 122 * @__sk_common: shared layout with inet_timewait_sock 123 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 124 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 125 * @sk_lock: synchronizer 126 * @sk_rcvbuf: size of receive buffer in bytes 127 * @sk_sleep: sock wait queue 128 * @sk_dst_cache: destination cache 129 * @sk_dst_lock: destination cache lock 130 * @sk_policy: flow policy 131 * @sk_rmem_alloc: receive queue bytes committed 132 * @sk_receive_queue: incoming packets 133 * @sk_wmem_alloc: transmit queue bytes committed 134 * @sk_write_queue: Packet sending queue 135 * @sk_omem_alloc: "o" is "option" or "other" 136 * @sk_wmem_queued: persistent queue size 137 * @sk_forward_alloc: space allocated forward 138 * @sk_allocation: allocation mode 139 * @sk_sndbuf: size of send buffer in bytes 140 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings 141 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 142 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 143 * @sk_lingertime: %SO_LINGER l_linger setting 144 * @sk_backlog: always used with the per-socket spinlock held 145 * @sk_callback_lock: used with the callbacks in the end of this struct 146 * @sk_error_queue: rarely used 147 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance) 148 * @sk_err: last error 149 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out' 150 * @sk_ack_backlog: current listen backlog 151 * @sk_max_ack_backlog: listen backlog set in listen() 152 * @sk_priority: %SO_PRIORITY setting 153 * @sk_type: socket type (%SOCK_STREAM, etc) 154 * @sk_protocol: which protocol this socket belongs in this network family 155 * @sk_peercred: %SO_PEERCRED setting 156 * @sk_rcvlowat: %SO_RCVLOWAT setting 157 * @sk_rcvtimeo: %SO_RCVTIMEO setting 158 * @sk_sndtimeo: %SO_SNDTIMEO setting 159 * @sk_filter: socket filtering instructions 160 * @sk_protinfo: private area, net family specific, when not using slab 161 * @sk_timer: sock cleanup timer 162 * @sk_stamp: time stamp of last packet received 163 * @sk_socket: Identd and reporting IO signals 164 * @sk_user_data: RPC layer private data 165 * @sk_sndmsg_page: cached page for sendmsg 166 * @sk_sndmsg_off: cached offset for sendmsg 167 * @sk_send_head: front of stuff to transmit 168 * @sk_security: used by security modules 169 * @sk_write_pending: a write to stream socket waits to start 170 * @sk_state_change: callback to indicate change in the state of the sock 171 * @sk_data_ready: callback to indicate there is data to be processed 172 * @sk_write_space: callback to indicate there is bf sending space available 173 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 174 * @sk_backlog_rcv: callback to process the backlog 175 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 176 */ 177 struct sock { 178 /* 179 * Now struct inet_timewait_sock also uses sock_common, so please just 180 * don't add nothing before this first member (__sk_common) --acme 181 */ 182 struct sock_common __sk_common; 183 #define sk_family __sk_common.skc_family 184 #define sk_state __sk_common.skc_state 185 #define sk_reuse __sk_common.skc_reuse 186 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 187 #define sk_node __sk_common.skc_node 188 #define sk_bind_node __sk_common.skc_bind_node 189 #define sk_refcnt __sk_common.skc_refcnt 190 #define sk_hash __sk_common.skc_hash 191 #define sk_prot __sk_common.skc_prot 192 unsigned char sk_shutdown : 2, 193 sk_no_check : 2, 194 sk_userlocks : 4; 195 unsigned char sk_protocol; 196 unsigned short sk_type; 197 int sk_rcvbuf; 198 socket_lock_t sk_lock; 199 wait_queue_head_t *sk_sleep; 200 struct dst_entry *sk_dst_cache; 201 struct xfrm_policy *sk_policy[2]; 202 rwlock_t sk_dst_lock; 203 atomic_t sk_rmem_alloc; 204 atomic_t sk_wmem_alloc; 205 atomic_t sk_omem_alloc; 206 struct sk_buff_head sk_receive_queue; 207 struct sk_buff_head sk_write_queue; 208 int sk_wmem_queued; 209 int sk_forward_alloc; 210 gfp_t sk_allocation; 211 int sk_sndbuf; 212 int sk_route_caps; 213 unsigned long sk_flags; 214 unsigned long sk_lingertime; 215 /* 216 * The backlog queue is special, it is always used with 217 * the per-socket spinlock held and requires low latency 218 * access. Therefore we special case it's implementation. 219 */ 220 struct { 221 struct sk_buff *head; 222 struct sk_buff *tail; 223 } sk_backlog; 224 struct sk_buff_head sk_error_queue; 225 struct proto *sk_prot_creator; 226 rwlock_t sk_callback_lock; 227 int sk_err, 228 sk_err_soft; 229 unsigned short sk_ack_backlog; 230 unsigned short sk_max_ack_backlog; 231 __u32 sk_priority; 232 struct ucred sk_peercred; 233 int sk_rcvlowat; 234 long sk_rcvtimeo; 235 long sk_sndtimeo; 236 struct sk_filter *sk_filter; 237 void *sk_protinfo; 238 struct timer_list sk_timer; 239 struct timeval sk_stamp; 240 struct socket *sk_socket; 241 void *sk_user_data; 242 struct page *sk_sndmsg_page; 243 struct sk_buff *sk_send_head; 244 __u32 sk_sndmsg_off; 245 int sk_write_pending; 246 void *sk_security; 247 void (*sk_state_change)(struct sock *sk); 248 void (*sk_data_ready)(struct sock *sk, int bytes); 249 void (*sk_write_space)(struct sock *sk); 250 void (*sk_error_report)(struct sock *sk); 251 int (*sk_backlog_rcv)(struct sock *sk, 252 struct sk_buff *skb); 253 void (*sk_destruct)(struct sock *sk); 254 }; 255 256 /* 257 * Hashed lists helper routines 258 */ 259 static inline struct sock *__sk_head(const struct hlist_head *head) 260 { 261 return hlist_entry(head->first, struct sock, sk_node); 262 } 263 264 static inline struct sock *sk_head(const struct hlist_head *head) 265 { 266 return hlist_empty(head) ? NULL : __sk_head(head); 267 } 268 269 static inline struct sock *sk_next(const struct sock *sk) 270 { 271 return sk->sk_node.next ? 272 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 273 } 274 275 static inline int sk_unhashed(const struct sock *sk) 276 { 277 return hlist_unhashed(&sk->sk_node); 278 } 279 280 static inline int sk_hashed(const struct sock *sk) 281 { 282 return sk->sk_node.pprev != NULL; 283 } 284 285 static __inline__ void sk_node_init(struct hlist_node *node) 286 { 287 node->pprev = NULL; 288 } 289 290 static __inline__ void __sk_del_node(struct sock *sk) 291 { 292 __hlist_del(&sk->sk_node); 293 } 294 295 static __inline__ int __sk_del_node_init(struct sock *sk) 296 { 297 if (sk_hashed(sk)) { 298 __sk_del_node(sk); 299 sk_node_init(&sk->sk_node); 300 return 1; 301 } 302 return 0; 303 } 304 305 /* Grab socket reference count. This operation is valid only 306 when sk is ALREADY grabbed f.e. it is found in hash table 307 or a list and the lookup is made under lock preventing hash table 308 modifications. 309 */ 310 311 static inline void sock_hold(struct sock *sk) 312 { 313 atomic_inc(&sk->sk_refcnt); 314 } 315 316 /* Ungrab socket in the context, which assumes that socket refcnt 317 cannot hit zero, f.e. it is true in context of any socketcall. 318 */ 319 static inline void __sock_put(struct sock *sk) 320 { 321 atomic_dec(&sk->sk_refcnt); 322 } 323 324 static __inline__ int sk_del_node_init(struct sock *sk) 325 { 326 int rc = __sk_del_node_init(sk); 327 328 if (rc) { 329 /* paranoid for a while -acme */ 330 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 331 __sock_put(sk); 332 } 333 return rc; 334 } 335 336 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 337 { 338 hlist_add_head(&sk->sk_node, list); 339 } 340 341 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 342 { 343 sock_hold(sk); 344 __sk_add_node(sk, list); 345 } 346 347 static __inline__ void __sk_del_bind_node(struct sock *sk) 348 { 349 __hlist_del(&sk->sk_bind_node); 350 } 351 352 static __inline__ void sk_add_bind_node(struct sock *sk, 353 struct hlist_head *list) 354 { 355 hlist_add_head(&sk->sk_bind_node, list); 356 } 357 358 #define sk_for_each(__sk, node, list) \ 359 hlist_for_each_entry(__sk, node, list, sk_node) 360 #define sk_for_each_from(__sk, node) \ 361 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 362 hlist_for_each_entry_from(__sk, node, sk_node) 363 #define sk_for_each_continue(__sk, node) \ 364 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 365 hlist_for_each_entry_continue(__sk, node, sk_node) 366 #define sk_for_each_safe(__sk, node, tmp, list) \ 367 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 368 #define sk_for_each_bound(__sk, node, list) \ 369 hlist_for_each_entry(__sk, node, list, sk_bind_node) 370 371 /* Sock flags */ 372 enum sock_flags { 373 SOCK_DEAD, 374 SOCK_DONE, 375 SOCK_URGINLINE, 376 SOCK_KEEPOPEN, 377 SOCK_LINGER, 378 SOCK_DESTROY, 379 SOCK_BROADCAST, 380 SOCK_TIMESTAMP, 381 SOCK_ZAPPED, 382 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 383 SOCK_DBG, /* %SO_DEBUG setting */ 384 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 385 SOCK_NO_LARGESEND, /* whether to sent large segments or not */ 386 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 387 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 388 }; 389 390 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 391 { 392 nsk->sk_flags = osk->sk_flags; 393 } 394 395 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 396 { 397 __set_bit(flag, &sk->sk_flags); 398 } 399 400 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 401 { 402 __clear_bit(flag, &sk->sk_flags); 403 } 404 405 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 406 { 407 return test_bit(flag, &sk->sk_flags); 408 } 409 410 static inline void sk_acceptq_removed(struct sock *sk) 411 { 412 sk->sk_ack_backlog--; 413 } 414 415 static inline void sk_acceptq_added(struct sock *sk) 416 { 417 sk->sk_ack_backlog++; 418 } 419 420 static inline int sk_acceptq_is_full(struct sock *sk) 421 { 422 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 423 } 424 425 /* 426 * Compute minimal free write space needed to queue new packets. 427 */ 428 static inline int sk_stream_min_wspace(struct sock *sk) 429 { 430 return sk->sk_wmem_queued / 2; 431 } 432 433 static inline int sk_stream_wspace(struct sock *sk) 434 { 435 return sk->sk_sndbuf - sk->sk_wmem_queued; 436 } 437 438 extern void sk_stream_write_space(struct sock *sk); 439 440 static inline int sk_stream_memory_free(struct sock *sk) 441 { 442 return sk->sk_wmem_queued < sk->sk_sndbuf; 443 } 444 445 extern void sk_stream_rfree(struct sk_buff *skb); 446 447 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk) 448 { 449 skb->sk = sk; 450 skb->destructor = sk_stream_rfree; 451 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 452 sk->sk_forward_alloc -= skb->truesize; 453 } 454 455 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb) 456 { 457 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 458 sk->sk_wmem_queued -= skb->truesize; 459 sk->sk_forward_alloc += skb->truesize; 460 __kfree_skb(skb); 461 } 462 463 /* The per-socket spinlock must be held here. */ 464 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 465 { 466 if (!sk->sk_backlog.tail) { 467 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 468 } else { 469 sk->sk_backlog.tail->next = skb; 470 sk->sk_backlog.tail = skb; 471 } 472 skb->next = NULL; 473 } 474 475 #define sk_wait_event(__sk, __timeo, __condition) \ 476 ({ int rc; \ 477 release_sock(__sk); \ 478 rc = __condition; \ 479 if (!rc) { \ 480 *(__timeo) = schedule_timeout(*(__timeo)); \ 481 rc = __condition; \ 482 } \ 483 lock_sock(__sk); \ 484 rc; \ 485 }) 486 487 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 488 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 489 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 490 extern int sk_stream_error(struct sock *sk, int flags, int err); 491 extern void sk_stream_kill_queues(struct sock *sk); 492 493 extern int sk_wait_data(struct sock *sk, long *timeo); 494 495 struct request_sock_ops; 496 struct timewait_sock_ops; 497 498 /* Networking protocol blocks we attach to sockets. 499 * socket layer -> transport layer interface 500 * transport -> network interface is defined by struct inet_proto 501 */ 502 struct proto { 503 void (*close)(struct sock *sk, 504 long timeout); 505 int (*connect)(struct sock *sk, 506 struct sockaddr *uaddr, 507 int addr_len); 508 int (*disconnect)(struct sock *sk, int flags); 509 510 struct sock * (*accept) (struct sock *sk, int flags, int *err); 511 512 int (*ioctl)(struct sock *sk, int cmd, 513 unsigned long arg); 514 int (*init)(struct sock *sk); 515 int (*destroy)(struct sock *sk); 516 void (*shutdown)(struct sock *sk, int how); 517 int (*setsockopt)(struct sock *sk, int level, 518 int optname, char __user *optval, 519 int optlen); 520 int (*getsockopt)(struct sock *sk, int level, 521 int optname, char __user *optval, 522 int __user *option); 523 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 524 struct msghdr *msg, size_t len); 525 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 526 struct msghdr *msg, 527 size_t len, int noblock, int flags, 528 int *addr_len); 529 int (*sendpage)(struct sock *sk, struct page *page, 530 int offset, size_t size, int flags); 531 int (*bind)(struct sock *sk, 532 struct sockaddr *uaddr, int addr_len); 533 534 int (*backlog_rcv) (struct sock *sk, 535 struct sk_buff *skb); 536 537 /* Keeping track of sk's, looking them up, and port selection methods. */ 538 void (*hash)(struct sock *sk); 539 void (*unhash)(struct sock *sk); 540 int (*get_port)(struct sock *sk, unsigned short snum); 541 542 /* Memory pressure */ 543 void (*enter_memory_pressure)(void); 544 atomic_t *memory_allocated; /* Current allocated memory. */ 545 atomic_t *sockets_allocated; /* Current number of sockets. */ 546 /* 547 * Pressure flag: try to collapse. 548 * Technical note: it is used by multiple contexts non atomically. 549 * All the sk_stream_mem_schedule() is of this nature: accounting 550 * is strict, actions are advisory and have some latency. 551 */ 552 int *memory_pressure; 553 int *sysctl_mem; 554 int *sysctl_wmem; 555 int *sysctl_rmem; 556 int max_header; 557 558 kmem_cache_t *slab; 559 unsigned int obj_size; 560 561 atomic_t *orphan_count; 562 563 struct request_sock_ops *rsk_prot; 564 struct timewait_sock_ops *twsk_prot; 565 566 struct module *owner; 567 568 char name[32]; 569 570 struct list_head node; 571 #ifdef SOCK_REFCNT_DEBUG 572 atomic_t socks; 573 #endif 574 struct { 575 int inuse; 576 u8 __pad[SMP_CACHE_BYTES - sizeof(int)]; 577 } stats[NR_CPUS]; 578 }; 579 580 extern int proto_register(struct proto *prot, int alloc_slab); 581 extern void proto_unregister(struct proto *prot); 582 583 #ifdef SOCK_REFCNT_DEBUG 584 static inline void sk_refcnt_debug_inc(struct sock *sk) 585 { 586 atomic_inc(&sk->sk_prot->socks); 587 } 588 589 static inline void sk_refcnt_debug_dec(struct sock *sk) 590 { 591 atomic_dec(&sk->sk_prot->socks); 592 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 593 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 594 } 595 596 static inline void sk_refcnt_debug_release(const struct sock *sk) 597 { 598 if (atomic_read(&sk->sk_refcnt) != 1) 599 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 600 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 601 } 602 #else /* SOCK_REFCNT_DEBUG */ 603 #define sk_refcnt_debug_inc(sk) do { } while (0) 604 #define sk_refcnt_debug_dec(sk) do { } while (0) 605 #define sk_refcnt_debug_release(sk) do { } while (0) 606 #endif /* SOCK_REFCNT_DEBUG */ 607 608 /* Called with local bh disabled */ 609 static __inline__ void sock_prot_inc_use(struct proto *prot) 610 { 611 prot->stats[smp_processor_id()].inuse++; 612 } 613 614 static __inline__ void sock_prot_dec_use(struct proto *prot) 615 { 616 prot->stats[smp_processor_id()].inuse--; 617 } 618 619 /* With per-bucket locks this operation is not-atomic, so that 620 * this version is not worse. 621 */ 622 static inline void __sk_prot_rehash(struct sock *sk) 623 { 624 sk->sk_prot->unhash(sk); 625 sk->sk_prot->hash(sk); 626 } 627 628 /* About 10 seconds */ 629 #define SOCK_DESTROY_TIME (10*HZ) 630 631 /* Sockets 0-1023 can't be bound to unless you are superuser */ 632 #define PROT_SOCK 1024 633 634 #define SHUTDOWN_MASK 3 635 #define RCV_SHUTDOWN 1 636 #define SEND_SHUTDOWN 2 637 638 #define SOCK_SNDBUF_LOCK 1 639 #define SOCK_RCVBUF_LOCK 2 640 #define SOCK_BINDADDR_LOCK 4 641 #define SOCK_BINDPORT_LOCK 8 642 643 /* sock_iocb: used to kick off async processing of socket ios */ 644 struct sock_iocb { 645 struct list_head list; 646 647 int flags; 648 int size; 649 struct socket *sock; 650 struct sock *sk; 651 struct scm_cookie *scm; 652 struct msghdr *msg, async_msg; 653 struct iovec async_iov; 654 struct kiocb *kiocb; 655 }; 656 657 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 658 { 659 return (struct sock_iocb *)iocb->private; 660 } 661 662 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 663 { 664 return si->kiocb; 665 } 666 667 struct socket_alloc { 668 struct socket socket; 669 struct inode vfs_inode; 670 }; 671 672 static inline struct socket *SOCKET_I(struct inode *inode) 673 { 674 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 675 } 676 677 static inline struct inode *SOCK_INODE(struct socket *socket) 678 { 679 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 680 } 681 682 extern void __sk_stream_mem_reclaim(struct sock *sk); 683 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind); 684 685 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE) 686 687 static inline int sk_stream_pages(int amt) 688 { 689 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM; 690 } 691 692 static inline void sk_stream_mem_reclaim(struct sock *sk) 693 { 694 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM) 695 __sk_stream_mem_reclaim(sk); 696 } 697 698 static inline void sk_stream_writequeue_purge(struct sock *sk) 699 { 700 struct sk_buff *skb; 701 702 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) 703 sk_stream_free_skb(sk, skb); 704 sk_stream_mem_reclaim(sk); 705 } 706 707 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb) 708 { 709 return (int)skb->truesize <= sk->sk_forward_alloc || 710 sk_stream_mem_schedule(sk, skb->truesize, 1); 711 } 712 713 static inline int sk_stream_wmem_schedule(struct sock *sk, int size) 714 { 715 return size <= sk->sk_forward_alloc || 716 sk_stream_mem_schedule(sk, size, 0); 717 } 718 719 /* Used by processes to "lock" a socket state, so that 720 * interrupts and bottom half handlers won't change it 721 * from under us. It essentially blocks any incoming 722 * packets, so that we won't get any new data or any 723 * packets that change the state of the socket. 724 * 725 * While locked, BH processing will add new packets to 726 * the backlog queue. This queue is processed by the 727 * owner of the socket lock right before it is released. 728 * 729 * Since ~2.3.5 it is also exclusive sleep lock serializing 730 * accesses from user process context. 731 */ 732 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner) 733 734 extern void FASTCALL(lock_sock(struct sock *sk)); 735 extern void FASTCALL(release_sock(struct sock *sk)); 736 737 /* BH context may only use the following locking interface. */ 738 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 739 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 740 741 extern struct sock *sk_alloc(int family, 742 gfp_t priority, 743 struct proto *prot, int zero_it); 744 extern void sk_free(struct sock *sk); 745 extern struct sock *sk_clone(const struct sock *sk, 746 const gfp_t priority); 747 748 extern struct sk_buff *sock_wmalloc(struct sock *sk, 749 unsigned long size, int force, 750 gfp_t priority); 751 extern struct sk_buff *sock_rmalloc(struct sock *sk, 752 unsigned long size, int force, 753 gfp_t priority); 754 extern void sock_wfree(struct sk_buff *skb); 755 extern void sock_rfree(struct sk_buff *skb); 756 757 extern int sock_setsockopt(struct socket *sock, int level, 758 int op, char __user *optval, 759 int optlen); 760 761 extern int sock_getsockopt(struct socket *sock, int level, 762 int op, char __user *optval, 763 int __user *optlen); 764 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 765 unsigned long size, 766 int noblock, 767 int *errcode); 768 extern void *sock_kmalloc(struct sock *sk, int size, 769 gfp_t priority); 770 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 771 extern void sk_send_sigurg(struct sock *sk); 772 773 /* 774 * Functions to fill in entries in struct proto_ops when a protocol 775 * does not implement a particular function. 776 */ 777 extern int sock_no_bind(struct socket *, 778 struct sockaddr *, int); 779 extern int sock_no_connect(struct socket *, 780 struct sockaddr *, int, int); 781 extern int sock_no_socketpair(struct socket *, 782 struct socket *); 783 extern int sock_no_accept(struct socket *, 784 struct socket *, int); 785 extern int sock_no_getname(struct socket *, 786 struct sockaddr *, int *, int); 787 extern unsigned int sock_no_poll(struct file *, struct socket *, 788 struct poll_table_struct *); 789 extern int sock_no_ioctl(struct socket *, unsigned int, 790 unsigned long); 791 extern int sock_no_listen(struct socket *, int); 792 extern int sock_no_shutdown(struct socket *, int); 793 extern int sock_no_getsockopt(struct socket *, int , int, 794 char __user *, int __user *); 795 extern int sock_no_setsockopt(struct socket *, int, int, 796 char __user *, int); 797 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 798 struct msghdr *, size_t); 799 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 800 struct msghdr *, size_t, int); 801 extern int sock_no_mmap(struct file *file, 802 struct socket *sock, 803 struct vm_area_struct *vma); 804 extern ssize_t sock_no_sendpage(struct socket *sock, 805 struct page *page, 806 int offset, size_t size, 807 int flags); 808 809 /* 810 * Functions to fill in entries in struct proto_ops when a protocol 811 * uses the inet style. 812 */ 813 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 814 char __user *optval, int __user *optlen); 815 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 816 struct msghdr *msg, size_t size, int flags); 817 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 818 char __user *optval, int optlen); 819 820 extern void sk_common_release(struct sock *sk); 821 822 /* 823 * Default socket callbacks and setup code 824 */ 825 826 /* Initialise core socket variables */ 827 extern void sock_init_data(struct socket *sock, struct sock *sk); 828 829 /** 830 * sk_filter - run a packet through a socket filter 831 * @sk: sock associated with &sk_buff 832 * @skb: buffer to filter 833 * @needlock: set to 1 if the sock is not locked by caller. 834 * 835 * Run the filter code and then cut skb->data to correct size returned by 836 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 837 * than pkt_len we keep whole skb->data. This is the socket level 838 * wrapper to sk_run_filter. It returns 0 if the packet should 839 * be accepted or -EPERM if the packet should be tossed. 840 * 841 */ 842 843 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock) 844 { 845 int err; 846 847 err = security_sock_rcv_skb(sk, skb); 848 if (err) 849 return err; 850 851 if (sk->sk_filter) { 852 struct sk_filter *filter; 853 854 if (needlock) 855 bh_lock_sock(sk); 856 857 filter = sk->sk_filter; 858 if (filter) { 859 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 860 filter->len); 861 if (!pkt_len) 862 err = -EPERM; 863 else 864 skb_trim(skb, pkt_len); 865 } 866 867 if (needlock) 868 bh_unlock_sock(sk); 869 } 870 return err; 871 } 872 873 /** 874 * sk_filter_release: Release a socket filter 875 * @sk: socket 876 * @fp: filter to remove 877 * 878 * Remove a filter from a socket and release its resources. 879 */ 880 881 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp) 882 { 883 unsigned int size = sk_filter_len(fp); 884 885 atomic_sub(size, &sk->sk_omem_alloc); 886 887 if (atomic_dec_and_test(&fp->refcnt)) 888 kfree(fp); 889 } 890 891 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 892 { 893 atomic_inc(&fp->refcnt); 894 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 895 } 896 897 /* 898 * Socket reference counting postulates. 899 * 900 * * Each user of socket SHOULD hold a reference count. 901 * * Each access point to socket (an hash table bucket, reference from a list, 902 * running timer, skb in flight MUST hold a reference count. 903 * * When reference count hits 0, it means it will never increase back. 904 * * When reference count hits 0, it means that no references from 905 * outside exist to this socket and current process on current CPU 906 * is last user and may/should destroy this socket. 907 * * sk_free is called from any context: process, BH, IRQ. When 908 * it is called, socket has no references from outside -> sk_free 909 * may release descendant resources allocated by the socket, but 910 * to the time when it is called, socket is NOT referenced by any 911 * hash tables, lists etc. 912 * * Packets, delivered from outside (from network or from another process) 913 * and enqueued on receive/error queues SHOULD NOT grab reference count, 914 * when they sit in queue. Otherwise, packets will leak to hole, when 915 * socket is looked up by one cpu and unhasing is made by another CPU. 916 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 917 * (leak to backlog). Packet socket does all the processing inside 918 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 919 * use separate SMP lock, so that they are prone too. 920 */ 921 922 /* Ungrab socket and destroy it, if it was the last reference. */ 923 static inline void sock_put(struct sock *sk) 924 { 925 if (atomic_dec_and_test(&sk->sk_refcnt)) 926 sk_free(sk); 927 } 928 929 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb) 930 { 931 int rc = NET_RX_SUCCESS; 932 933 if (sk_filter(sk, skb, 0)) 934 goto discard_and_relse; 935 936 skb->dev = NULL; 937 938 bh_lock_sock(sk); 939 if (!sock_owned_by_user(sk)) 940 rc = sk->sk_backlog_rcv(sk, skb); 941 else 942 sk_add_backlog(sk, skb); 943 bh_unlock_sock(sk); 944 out: 945 sock_put(sk); 946 return rc; 947 discard_and_relse: 948 kfree_skb(skb); 949 goto out; 950 } 951 952 /* Detach socket from process context. 953 * Announce socket dead, detach it from wait queue and inode. 954 * Note that parent inode held reference count on this struct sock, 955 * we do not release it in this function, because protocol 956 * probably wants some additional cleanups or even continuing 957 * to work with this socket (TCP). 958 */ 959 static inline void sock_orphan(struct sock *sk) 960 { 961 write_lock_bh(&sk->sk_callback_lock); 962 sock_set_flag(sk, SOCK_DEAD); 963 sk->sk_socket = NULL; 964 sk->sk_sleep = NULL; 965 write_unlock_bh(&sk->sk_callback_lock); 966 } 967 968 static inline void sock_graft(struct sock *sk, struct socket *parent) 969 { 970 write_lock_bh(&sk->sk_callback_lock); 971 sk->sk_sleep = &parent->wait; 972 parent->sk = sk; 973 sk->sk_socket = parent; 974 write_unlock_bh(&sk->sk_callback_lock); 975 } 976 977 extern int sock_i_uid(struct sock *sk); 978 extern unsigned long sock_i_ino(struct sock *sk); 979 980 static inline struct dst_entry * 981 __sk_dst_get(struct sock *sk) 982 { 983 return sk->sk_dst_cache; 984 } 985 986 static inline struct dst_entry * 987 sk_dst_get(struct sock *sk) 988 { 989 struct dst_entry *dst; 990 991 read_lock(&sk->sk_dst_lock); 992 dst = sk->sk_dst_cache; 993 if (dst) 994 dst_hold(dst); 995 read_unlock(&sk->sk_dst_lock); 996 return dst; 997 } 998 999 static inline void 1000 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1001 { 1002 struct dst_entry *old_dst; 1003 1004 old_dst = sk->sk_dst_cache; 1005 sk->sk_dst_cache = dst; 1006 dst_release(old_dst); 1007 } 1008 1009 static inline void 1010 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1011 { 1012 write_lock(&sk->sk_dst_lock); 1013 __sk_dst_set(sk, dst); 1014 write_unlock(&sk->sk_dst_lock); 1015 } 1016 1017 static inline void 1018 __sk_dst_reset(struct sock *sk) 1019 { 1020 struct dst_entry *old_dst; 1021 1022 old_dst = sk->sk_dst_cache; 1023 sk->sk_dst_cache = NULL; 1024 dst_release(old_dst); 1025 } 1026 1027 static inline void 1028 sk_dst_reset(struct sock *sk) 1029 { 1030 write_lock(&sk->sk_dst_lock); 1031 __sk_dst_reset(sk); 1032 write_unlock(&sk->sk_dst_lock); 1033 } 1034 1035 static inline struct dst_entry * 1036 __sk_dst_check(struct sock *sk, u32 cookie) 1037 { 1038 struct dst_entry *dst = sk->sk_dst_cache; 1039 1040 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 1041 sk->sk_dst_cache = NULL; 1042 dst_release(dst); 1043 return NULL; 1044 } 1045 1046 return dst; 1047 } 1048 1049 static inline struct dst_entry * 1050 sk_dst_check(struct sock *sk, u32 cookie) 1051 { 1052 struct dst_entry *dst = sk_dst_get(sk); 1053 1054 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 1055 sk_dst_reset(sk); 1056 dst_release(dst); 1057 return NULL; 1058 } 1059 1060 return dst; 1061 } 1062 1063 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1064 { 1065 __sk_dst_set(sk, dst); 1066 sk->sk_route_caps = dst->dev->features; 1067 if (sk->sk_route_caps & NETIF_F_TSO) { 1068 if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len) 1069 sk->sk_route_caps &= ~NETIF_F_TSO; 1070 } 1071 } 1072 1073 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb) 1074 { 1075 sk->sk_wmem_queued += skb->truesize; 1076 sk->sk_forward_alloc -= skb->truesize; 1077 } 1078 1079 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1080 struct sk_buff *skb, struct page *page, 1081 int off, int copy) 1082 { 1083 if (skb->ip_summed == CHECKSUM_NONE) { 1084 int err = 0; 1085 unsigned int csum = csum_and_copy_from_user(from, 1086 page_address(page) + off, 1087 copy, 0, &err); 1088 if (err) 1089 return err; 1090 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1091 } else if (copy_from_user(page_address(page) + off, from, copy)) 1092 return -EFAULT; 1093 1094 skb->len += copy; 1095 skb->data_len += copy; 1096 skb->truesize += copy; 1097 sk->sk_wmem_queued += copy; 1098 sk->sk_forward_alloc -= copy; 1099 return 0; 1100 } 1101 1102 /* 1103 * Queue a received datagram if it will fit. Stream and sequenced 1104 * protocols can't normally use this as they need to fit buffers in 1105 * and play with them. 1106 * 1107 * Inlined as it's very short and called for pretty much every 1108 * packet ever received. 1109 */ 1110 1111 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1112 { 1113 sock_hold(sk); 1114 skb->sk = sk; 1115 skb->destructor = sock_wfree; 1116 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1117 } 1118 1119 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1120 { 1121 skb->sk = sk; 1122 skb->destructor = sock_rfree; 1123 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1124 } 1125 1126 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1127 unsigned long expires); 1128 1129 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1130 1131 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1132 { 1133 int err = 0; 1134 int skb_len; 1135 1136 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1137 number of warnings when compiling with -W --ANK 1138 */ 1139 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1140 (unsigned)sk->sk_rcvbuf) { 1141 err = -ENOMEM; 1142 goto out; 1143 } 1144 1145 /* It would be deadlock, if sock_queue_rcv_skb is used 1146 with socket lock! We assume that users of this 1147 function are lock free. 1148 */ 1149 err = sk_filter(sk, skb, 1); 1150 if (err) 1151 goto out; 1152 1153 skb->dev = NULL; 1154 skb_set_owner_r(skb, sk); 1155 1156 /* Cache the SKB length before we tack it onto the receive 1157 * queue. Once it is added it no longer belongs to us and 1158 * may be freed by other threads of control pulling packets 1159 * from the queue. 1160 */ 1161 skb_len = skb->len; 1162 1163 skb_queue_tail(&sk->sk_receive_queue, skb); 1164 1165 if (!sock_flag(sk, SOCK_DEAD)) 1166 sk->sk_data_ready(sk, skb_len); 1167 out: 1168 return err; 1169 } 1170 1171 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1172 { 1173 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1174 number of warnings when compiling with -W --ANK 1175 */ 1176 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1177 (unsigned)sk->sk_rcvbuf) 1178 return -ENOMEM; 1179 skb_set_owner_r(skb, sk); 1180 skb_queue_tail(&sk->sk_error_queue, skb); 1181 if (!sock_flag(sk, SOCK_DEAD)) 1182 sk->sk_data_ready(sk, skb->len); 1183 return 0; 1184 } 1185 1186 /* 1187 * Recover an error report and clear atomically 1188 */ 1189 1190 static inline int sock_error(struct sock *sk) 1191 { 1192 int err; 1193 if (likely(!sk->sk_err)) 1194 return 0; 1195 err = xchg(&sk->sk_err, 0); 1196 return -err; 1197 } 1198 1199 static inline unsigned long sock_wspace(struct sock *sk) 1200 { 1201 int amt = 0; 1202 1203 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1204 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1205 if (amt < 0) 1206 amt = 0; 1207 } 1208 return amt; 1209 } 1210 1211 static inline void sk_wake_async(struct sock *sk, int how, int band) 1212 { 1213 if (sk->sk_socket && sk->sk_socket->fasync_list) 1214 sock_wake_async(sk->sk_socket, how, band); 1215 } 1216 1217 #define SOCK_MIN_SNDBUF 2048 1218 #define SOCK_MIN_RCVBUF 256 1219 1220 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1221 { 1222 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1223 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2); 1224 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1225 } 1226 } 1227 1228 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk, 1229 int size, int mem, 1230 gfp_t gfp) 1231 { 1232 struct sk_buff *skb; 1233 int hdr_len; 1234 1235 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header); 1236 skb = alloc_skb_fclone(size + hdr_len, gfp); 1237 if (skb) { 1238 skb->truesize += mem; 1239 if (sk_stream_wmem_schedule(sk, skb->truesize)) { 1240 skb_reserve(skb, hdr_len); 1241 return skb; 1242 } 1243 __kfree_skb(skb); 1244 } else { 1245 sk->sk_prot->enter_memory_pressure(); 1246 sk_stream_moderate_sndbuf(sk); 1247 } 1248 return NULL; 1249 } 1250 1251 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk, 1252 int size, 1253 gfp_t gfp) 1254 { 1255 return sk_stream_alloc_pskb(sk, size, 0, gfp); 1256 } 1257 1258 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1259 { 1260 struct page *page = NULL; 1261 1262 page = alloc_pages(sk->sk_allocation, 0); 1263 if (!page) { 1264 sk->sk_prot->enter_memory_pressure(); 1265 sk_stream_moderate_sndbuf(sk); 1266 } 1267 return page; 1268 } 1269 1270 #define sk_stream_for_retrans_queue(skb, sk) \ 1271 for (skb = (sk)->sk_write_queue.next; \ 1272 (skb != (sk)->sk_send_head) && \ 1273 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1274 skb = skb->next) 1275 1276 /*from STCP for fast SACK Process*/ 1277 #define sk_stream_for_retrans_queue_from(skb, sk) \ 1278 for (; (skb != (sk)->sk_send_head) && \ 1279 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \ 1280 skb = skb->next) 1281 1282 /* 1283 * Default write policy as shown to user space via poll/select/SIGIO 1284 */ 1285 static inline int sock_writeable(const struct sock *sk) 1286 { 1287 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2); 1288 } 1289 1290 static inline gfp_t gfp_any(void) 1291 { 1292 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1293 } 1294 1295 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1296 { 1297 return noblock ? 0 : sk->sk_rcvtimeo; 1298 } 1299 1300 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1301 { 1302 return noblock ? 0 : sk->sk_sndtimeo; 1303 } 1304 1305 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1306 { 1307 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1308 } 1309 1310 /* Alas, with timeout socket operations are not restartable. 1311 * Compare this to poll(). 1312 */ 1313 static inline int sock_intr_errno(long timeo) 1314 { 1315 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1316 } 1317 1318 static __inline__ void 1319 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1320 { 1321 struct timeval stamp; 1322 1323 skb_get_timestamp(skb, &stamp); 1324 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1325 /* Race occurred between timestamp enabling and packet 1326 receiving. Fill in the current time for now. */ 1327 if (stamp.tv_sec == 0) 1328 do_gettimeofday(&stamp); 1329 skb_set_timestamp(skb, &stamp); 1330 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval), 1331 &stamp); 1332 } else 1333 sk->sk_stamp = stamp; 1334 } 1335 1336 /** 1337 * sk_eat_skb - Release a skb if it is no longer needed 1338 * @sk: socket to eat this skb from 1339 * @skb: socket buffer to eat 1340 * 1341 * This routine must be called with interrupts disabled or with the socket 1342 * locked so that the sk_buff queue operation is ok. 1343 */ 1344 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 1345 { 1346 __skb_unlink(skb, &sk->sk_receive_queue); 1347 __kfree_skb(skb); 1348 } 1349 1350 extern void sock_enable_timestamp(struct sock *sk); 1351 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1352 1353 /* 1354 * Enable debug/info messages 1355 */ 1356 1357 #if 0 1358 #define NETDEBUG(fmt, args...) do { } while (0) 1359 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0) 1360 #else 1361 #define NETDEBUG(fmt, args...) printk(fmt,##args) 1362 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0) 1363 #endif 1364 1365 /* 1366 * Macros for sleeping on a socket. Use them like this: 1367 * 1368 * SOCK_SLEEP_PRE(sk) 1369 * if (condition) 1370 * schedule(); 1371 * SOCK_SLEEP_POST(sk) 1372 * 1373 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1374 * and when the last use of them in DECnet has gone, I'm intending to 1375 * remove them. 1376 */ 1377 1378 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1379 DECLARE_WAITQUEUE(wait, tsk); \ 1380 tsk->state = TASK_INTERRUPTIBLE; \ 1381 add_wait_queue((sk)->sk_sleep, &wait); \ 1382 release_sock(sk); 1383 1384 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1385 remove_wait_queue((sk)->sk_sleep, &wait); \ 1386 lock_sock(sk); \ 1387 } 1388 1389 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 1390 { 1391 if (valbool) 1392 sock_set_flag(sk, bit); 1393 else 1394 sock_reset_flag(sk, bit); 1395 } 1396 1397 extern __u32 sysctl_wmem_max; 1398 extern __u32 sysctl_rmem_max; 1399 1400 #ifdef CONFIG_NET 1401 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg); 1402 #else 1403 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg) 1404 { 1405 return -ENODEV; 1406 } 1407 #endif 1408 1409 extern void sk_init(void); 1410 1411 #ifdef CONFIG_SYSCTL 1412 extern struct ctl_table core_table[]; 1413 #endif 1414 1415 extern int sysctl_optmem_max; 1416 1417 extern __u32 sysctl_wmem_default; 1418 extern __u32 sysctl_rmem_default; 1419 1420 #endif /* _SOCK_H */ 1421