xref: /openbmc/linux/include/net/sock.h (revision 8730046c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 
74 /*
75  * This structure really needs to be cleaned up.
76  * Most of it is for TCP, and not used by any of
77  * the other protocols.
78  */
79 
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 					printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92 
93 /* This is the per-socket lock.  The spinlock provides a synchronization
94  * between user contexts and software interrupt processing, whereas the
95  * mini-semaphore synchronizes multiple users amongst themselves.
96  */
97 typedef struct {
98 	spinlock_t		slock;
99 	int			owned;
100 	wait_queue_head_t	wq;
101 	/*
102 	 * We express the mutex-alike socket_lock semantics
103 	 * to the lock validator by explicitly managing
104 	 * the slock as a lock variant (in addition to
105 	 * the slock itself):
106 	 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111 
112 struct sock;
113 struct proto;
114 struct net;
115 
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118 
119 /**
120  *	struct sock_common - minimal network layer representation of sockets
121  *	@skc_daddr: Foreign IPv4 addr
122  *	@skc_rcv_saddr: Bound local IPv4 addr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_family: network address family
128  *	@skc_state: Connection state
129  *	@skc_reuse: %SO_REUSEADDR setting
130  *	@skc_reuseport: %SO_REUSEPORT setting
131  *	@skc_bound_dev_if: bound device index if != 0
132  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
133  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134  *	@skc_prot: protocol handlers inside a network family
135  *	@skc_net: reference to the network namespace of this socket
136  *	@skc_node: main hash linkage for various protocol lookup tables
137  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138  *	@skc_tx_queue_mapping: tx queue number for this connection
139  *	@skc_flags: place holder for sk_flags
140  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142  *	@skc_incoming_cpu: record/match cpu processing incoming packets
143  *	@skc_refcnt: reference count
144  *
145  *	This is the minimal network layer representation of sockets, the header
146  *	for struct sock and struct inet_timewait_sock.
147  */
148 struct sock_common {
149 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 	 * address on 64bit arches : cf INET_MATCH()
151 	 */
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	int			skc_bound_dev_if;
179 	union {
180 		struct hlist_node	skc_bind_node;
181 		struct hlist_node	skc_portaddr_node;
182 	};
183 	struct proto		*skc_prot;
184 	possible_net_t		skc_net;
185 
186 #if IS_ENABLED(CONFIG_IPV6)
187 	struct in6_addr		skc_v6_daddr;
188 	struct in6_addr		skc_v6_rcv_saddr;
189 #endif
190 
191 	atomic64_t		skc_cookie;
192 
193 	/* following fields are padding to force
194 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 	 * assuming IPV6 is enabled. We use this padding differently
196 	 * for different kind of 'sockets'
197 	 */
198 	union {
199 		unsigned long	skc_flags;
200 		struct sock	*skc_listener; /* request_sock */
201 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 	};
203 	/*
204 	 * fields between dontcopy_begin/dontcopy_end
205 	 * are not copied in sock_copy()
206 	 */
207 	/* private: */
208 	int			skc_dontcopy_begin[0];
209 	/* public: */
210 	union {
211 		struct hlist_node	skc_node;
212 		struct hlist_nulls_node skc_nulls_node;
213 	};
214 	int			skc_tx_queue_mapping;
215 	union {
216 		int		skc_incoming_cpu;
217 		u32		skc_rcv_wnd;
218 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
219 	};
220 
221 	atomic_t		skc_refcnt;
222 	/* private: */
223 	int                     skc_dontcopy_end[0];
224 	union {
225 		u32		skc_rxhash;
226 		u32		skc_window_clamp;
227 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 	};
229 	/* public: */
230 };
231 
232 /**
233   *	struct sock - network layer representation of sockets
234   *	@__sk_common: shared layout with inet_timewait_sock
235   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237   *	@sk_lock:	synchronizer
238   *	@sk_rcvbuf: size of receive buffer in bytes
239   *	@sk_wq: sock wait queue and async head
240   *	@sk_rx_dst: receive input route used by early demux
241   *	@sk_dst_cache: destination cache
242   *	@sk_policy: flow policy
243   *	@sk_receive_queue: incoming packets
244   *	@sk_wmem_alloc: transmit queue bytes committed
245   *	@sk_write_queue: Packet sending queue
246   *	@sk_omem_alloc: "o" is "option" or "other"
247   *	@sk_wmem_queued: persistent queue size
248   *	@sk_forward_alloc: space allocated forward
249   *	@sk_napi_id: id of the last napi context to receive data for sk
250   *	@sk_ll_usec: usecs to busypoll when there is no data
251   *	@sk_allocation: allocation mode
252   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254   *	@sk_sndbuf: size of send buffer in bytes
255   *	@sk_padding: unused element for alignment
256   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
257   *	@sk_no_check_rx: allow zero checksum in RX packets
258   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
259   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
260   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
261   *	@sk_gso_max_size: Maximum GSO segment size to build
262   *	@sk_gso_max_segs: Maximum number of GSO segments
263   *	@sk_lingertime: %SO_LINGER l_linger setting
264   *	@sk_backlog: always used with the per-socket spinlock held
265   *	@sk_callback_lock: used with the callbacks in the end of this struct
266   *	@sk_error_queue: rarely used
267   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
268   *			  IPV6_ADDRFORM for instance)
269   *	@sk_err: last error
270   *	@sk_err_soft: errors that don't cause failure but are the cause of a
271   *		      persistent failure not just 'timed out'
272   *	@sk_drops: raw/udp drops counter
273   *	@sk_ack_backlog: current listen backlog
274   *	@sk_max_ack_backlog: listen backlog set in listen()
275   *	@sk_priority: %SO_PRIORITY setting
276   *	@sk_type: socket type (%SOCK_STREAM, etc)
277   *	@sk_protocol: which protocol this socket belongs in this network family
278   *	@sk_peer_pid: &struct pid for this socket's peer
279   *	@sk_peer_cred: %SO_PEERCRED setting
280   *	@sk_rcvlowat: %SO_RCVLOWAT setting
281   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
282   *	@sk_sndtimeo: %SO_SNDTIMEO setting
283   *	@sk_txhash: computed flow hash for use on transmit
284   *	@sk_filter: socket filtering instructions
285   *	@sk_timer: sock cleanup timer
286   *	@sk_stamp: time stamp of last packet received
287   *	@sk_tsflags: SO_TIMESTAMPING socket options
288   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
289   *	@sk_socket: Identd and reporting IO signals
290   *	@sk_user_data: RPC layer private data
291   *	@sk_frag: cached page frag
292   *	@sk_peek_off: current peek_offset value
293   *	@sk_send_head: front of stuff to transmit
294   *	@sk_security: used by security modules
295   *	@sk_mark: generic packet mark
296   *	@sk_cgrp_data: cgroup data for this cgroup
297   *	@sk_memcg: this socket's memory cgroup association
298   *	@sk_write_pending: a write to stream socket waits to start
299   *	@sk_state_change: callback to indicate change in the state of the sock
300   *	@sk_data_ready: callback to indicate there is data to be processed
301   *	@sk_write_space: callback to indicate there is bf sending space available
302   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
303   *	@sk_backlog_rcv: callback to process the backlog
304   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
305   *	@sk_reuseport_cb: reuseport group container
306   *	@sk_rcu: used during RCU grace period
307   */
308 struct sock {
309 	/*
310 	 * Now struct inet_timewait_sock also uses sock_common, so please just
311 	 * don't add nothing before this first member (__sk_common) --acme
312 	 */
313 	struct sock_common	__sk_common;
314 #define sk_node			__sk_common.skc_node
315 #define sk_nulls_node		__sk_common.skc_nulls_node
316 #define sk_refcnt		__sk_common.skc_refcnt
317 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
318 
319 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
320 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
321 #define sk_hash			__sk_common.skc_hash
322 #define sk_portpair		__sk_common.skc_portpair
323 #define sk_num			__sk_common.skc_num
324 #define sk_dport		__sk_common.skc_dport
325 #define sk_addrpair		__sk_common.skc_addrpair
326 #define sk_daddr		__sk_common.skc_daddr
327 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
328 #define sk_family		__sk_common.skc_family
329 #define sk_state		__sk_common.skc_state
330 #define sk_reuse		__sk_common.skc_reuse
331 #define sk_reuseport		__sk_common.skc_reuseport
332 #define sk_ipv6only		__sk_common.skc_ipv6only
333 #define sk_net_refcnt		__sk_common.skc_net_refcnt
334 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
335 #define sk_bind_node		__sk_common.skc_bind_node
336 #define sk_prot			__sk_common.skc_prot
337 #define sk_net			__sk_common.skc_net
338 #define sk_v6_daddr		__sk_common.skc_v6_daddr
339 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
340 #define sk_cookie		__sk_common.skc_cookie
341 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
342 #define sk_flags		__sk_common.skc_flags
343 #define sk_rxhash		__sk_common.skc_rxhash
344 
345 	socket_lock_t		sk_lock;
346 	atomic_t		sk_drops;
347 	int			sk_rcvlowat;
348 	struct sk_buff_head	sk_error_queue;
349 	struct sk_buff_head	sk_receive_queue;
350 	/*
351 	 * The backlog queue is special, it is always used with
352 	 * the per-socket spinlock held and requires low latency
353 	 * access. Therefore we special case it's implementation.
354 	 * Note : rmem_alloc is in this structure to fill a hole
355 	 * on 64bit arches, not because its logically part of
356 	 * backlog.
357 	 */
358 	struct {
359 		atomic_t	rmem_alloc;
360 		int		len;
361 		struct sk_buff	*head;
362 		struct sk_buff	*tail;
363 	} sk_backlog;
364 #define sk_rmem_alloc sk_backlog.rmem_alloc
365 
366 	int			sk_forward_alloc;
367 #ifdef CONFIG_NET_RX_BUSY_POLL
368 	unsigned int		sk_ll_usec;
369 	/* ===== mostly read cache line ===== */
370 	unsigned int		sk_napi_id;
371 #endif
372 	int			sk_rcvbuf;
373 
374 	struct sk_filter __rcu	*sk_filter;
375 	union {
376 		struct socket_wq __rcu	*sk_wq;
377 		struct socket_wq	*sk_wq_raw;
378 	};
379 #ifdef CONFIG_XFRM
380 	struct xfrm_policy __rcu *sk_policy[2];
381 #endif
382 	struct dst_entry	*sk_rx_dst;
383 	struct dst_entry __rcu	*sk_dst_cache;
384 	atomic_t		sk_omem_alloc;
385 	int			sk_sndbuf;
386 
387 	/* ===== cache line for TX ===== */
388 	int			sk_wmem_queued;
389 	atomic_t		sk_wmem_alloc;
390 	unsigned long		sk_tsq_flags;
391 	struct sk_buff		*sk_send_head;
392 	struct sk_buff_head	sk_write_queue;
393 	__s32			sk_peek_off;
394 	int			sk_write_pending;
395 	long			sk_sndtimeo;
396 	struct timer_list	sk_timer;
397 	__u32			sk_priority;
398 	__u32			sk_mark;
399 	u32			sk_pacing_rate; /* bytes per second */
400 	u32			sk_max_pacing_rate;
401 	struct page_frag	sk_frag;
402 	netdev_features_t	sk_route_caps;
403 	netdev_features_t	sk_route_nocaps;
404 	int			sk_gso_type;
405 	unsigned int		sk_gso_max_size;
406 	gfp_t			sk_allocation;
407 	__u32			sk_txhash;
408 
409 	/*
410 	 * Because of non atomicity rules, all
411 	 * changes are protected by socket lock.
412 	 */
413 	unsigned int		__sk_flags_offset[0];
414 #ifdef __BIG_ENDIAN_BITFIELD
415 #define SK_FL_PROTO_SHIFT  16
416 #define SK_FL_PROTO_MASK   0x00ff0000
417 
418 #define SK_FL_TYPE_SHIFT   0
419 #define SK_FL_TYPE_MASK    0x0000ffff
420 #else
421 #define SK_FL_PROTO_SHIFT  8
422 #define SK_FL_PROTO_MASK   0x0000ff00
423 
424 #define SK_FL_TYPE_SHIFT   16
425 #define SK_FL_TYPE_MASK    0xffff0000
426 #endif
427 
428 	kmemcheck_bitfield_begin(flags);
429 	unsigned int		sk_padding : 2,
430 				sk_no_check_tx : 1,
431 				sk_no_check_rx : 1,
432 				sk_userlocks : 4,
433 				sk_protocol  : 8,
434 				sk_type      : 16;
435 #define SK_PROTOCOL_MAX U8_MAX
436 	kmemcheck_bitfield_end(flags);
437 
438 	u16			sk_gso_max_segs;
439 	unsigned long	        sk_lingertime;
440 	struct proto		*sk_prot_creator;
441 	rwlock_t		sk_callback_lock;
442 	int			sk_err,
443 				sk_err_soft;
444 	u32			sk_ack_backlog;
445 	u32			sk_max_ack_backlog;
446 	kuid_t			sk_uid;
447 	struct pid		*sk_peer_pid;
448 	const struct cred	*sk_peer_cred;
449 	long			sk_rcvtimeo;
450 	ktime_t			sk_stamp;
451 	u16			sk_tsflags;
452 	u8			sk_shutdown;
453 	u32			sk_tskey;
454 	struct socket		*sk_socket;
455 	void			*sk_user_data;
456 #ifdef CONFIG_SECURITY
457 	void			*sk_security;
458 #endif
459 	struct sock_cgroup_data	sk_cgrp_data;
460 	struct mem_cgroup	*sk_memcg;
461 	void			(*sk_state_change)(struct sock *sk);
462 	void			(*sk_data_ready)(struct sock *sk);
463 	void			(*sk_write_space)(struct sock *sk);
464 	void			(*sk_error_report)(struct sock *sk);
465 	int			(*sk_backlog_rcv)(struct sock *sk,
466 						  struct sk_buff *skb);
467 	void                    (*sk_destruct)(struct sock *sk);
468 	struct sock_reuseport __rcu	*sk_reuseport_cb;
469 	struct rcu_head		sk_rcu;
470 };
471 
472 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
473 
474 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
475 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
476 
477 /*
478  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
479  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
480  * on a socket means that the socket will reuse everybody else's port
481  * without looking at the other's sk_reuse value.
482  */
483 
484 #define SK_NO_REUSE	0
485 #define SK_CAN_REUSE	1
486 #define SK_FORCE_REUSE	2
487 
488 int sk_set_peek_off(struct sock *sk, int val);
489 
490 static inline int sk_peek_offset(struct sock *sk, int flags)
491 {
492 	if (unlikely(flags & MSG_PEEK)) {
493 		s32 off = READ_ONCE(sk->sk_peek_off);
494 		if (off >= 0)
495 			return off;
496 	}
497 
498 	return 0;
499 }
500 
501 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
502 {
503 	s32 off = READ_ONCE(sk->sk_peek_off);
504 
505 	if (unlikely(off >= 0)) {
506 		off = max_t(s32, off - val, 0);
507 		WRITE_ONCE(sk->sk_peek_off, off);
508 	}
509 }
510 
511 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
512 {
513 	sk_peek_offset_bwd(sk, -val);
514 }
515 
516 /*
517  * Hashed lists helper routines
518  */
519 static inline struct sock *sk_entry(const struct hlist_node *node)
520 {
521 	return hlist_entry(node, struct sock, sk_node);
522 }
523 
524 static inline struct sock *__sk_head(const struct hlist_head *head)
525 {
526 	return hlist_entry(head->first, struct sock, sk_node);
527 }
528 
529 static inline struct sock *sk_head(const struct hlist_head *head)
530 {
531 	return hlist_empty(head) ? NULL : __sk_head(head);
532 }
533 
534 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
535 {
536 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
537 }
538 
539 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
540 {
541 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
542 }
543 
544 static inline struct sock *sk_next(const struct sock *sk)
545 {
546 	return sk->sk_node.next ?
547 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
548 }
549 
550 static inline struct sock *sk_nulls_next(const struct sock *sk)
551 {
552 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
553 		hlist_nulls_entry(sk->sk_nulls_node.next,
554 				  struct sock, sk_nulls_node) :
555 		NULL;
556 }
557 
558 static inline bool sk_unhashed(const struct sock *sk)
559 {
560 	return hlist_unhashed(&sk->sk_node);
561 }
562 
563 static inline bool sk_hashed(const struct sock *sk)
564 {
565 	return !sk_unhashed(sk);
566 }
567 
568 static inline void sk_node_init(struct hlist_node *node)
569 {
570 	node->pprev = NULL;
571 }
572 
573 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
574 {
575 	node->pprev = NULL;
576 }
577 
578 static inline void __sk_del_node(struct sock *sk)
579 {
580 	__hlist_del(&sk->sk_node);
581 }
582 
583 /* NB: equivalent to hlist_del_init_rcu */
584 static inline bool __sk_del_node_init(struct sock *sk)
585 {
586 	if (sk_hashed(sk)) {
587 		__sk_del_node(sk);
588 		sk_node_init(&sk->sk_node);
589 		return true;
590 	}
591 	return false;
592 }
593 
594 /* Grab socket reference count. This operation is valid only
595    when sk is ALREADY grabbed f.e. it is found in hash table
596    or a list and the lookup is made under lock preventing hash table
597    modifications.
598  */
599 
600 static __always_inline void sock_hold(struct sock *sk)
601 {
602 	atomic_inc(&sk->sk_refcnt);
603 }
604 
605 /* Ungrab socket in the context, which assumes that socket refcnt
606    cannot hit zero, f.e. it is true in context of any socketcall.
607  */
608 static __always_inline void __sock_put(struct sock *sk)
609 {
610 	atomic_dec(&sk->sk_refcnt);
611 }
612 
613 static inline bool sk_del_node_init(struct sock *sk)
614 {
615 	bool rc = __sk_del_node_init(sk);
616 
617 	if (rc) {
618 		/* paranoid for a while -acme */
619 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
620 		__sock_put(sk);
621 	}
622 	return rc;
623 }
624 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
625 
626 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
627 {
628 	if (sk_hashed(sk)) {
629 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
630 		return true;
631 	}
632 	return false;
633 }
634 
635 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
636 {
637 	bool rc = __sk_nulls_del_node_init_rcu(sk);
638 
639 	if (rc) {
640 		/* paranoid for a while -acme */
641 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
642 		__sock_put(sk);
643 	}
644 	return rc;
645 }
646 
647 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
648 {
649 	hlist_add_head(&sk->sk_node, list);
650 }
651 
652 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
653 {
654 	sock_hold(sk);
655 	__sk_add_node(sk, list);
656 }
657 
658 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
659 {
660 	sock_hold(sk);
661 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
662 	    sk->sk_family == AF_INET6)
663 		hlist_add_tail_rcu(&sk->sk_node, list);
664 	else
665 		hlist_add_head_rcu(&sk->sk_node, list);
666 }
667 
668 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
669 {
670 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
671 	    sk->sk_family == AF_INET6)
672 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
673 	else
674 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
675 }
676 
677 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
678 {
679 	sock_hold(sk);
680 	__sk_nulls_add_node_rcu(sk, list);
681 }
682 
683 static inline void __sk_del_bind_node(struct sock *sk)
684 {
685 	__hlist_del(&sk->sk_bind_node);
686 }
687 
688 static inline void sk_add_bind_node(struct sock *sk,
689 					struct hlist_head *list)
690 {
691 	hlist_add_head(&sk->sk_bind_node, list);
692 }
693 
694 #define sk_for_each(__sk, list) \
695 	hlist_for_each_entry(__sk, list, sk_node)
696 #define sk_for_each_rcu(__sk, list) \
697 	hlist_for_each_entry_rcu(__sk, list, sk_node)
698 #define sk_nulls_for_each(__sk, node, list) \
699 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
700 #define sk_nulls_for_each_rcu(__sk, node, list) \
701 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
702 #define sk_for_each_from(__sk) \
703 	hlist_for_each_entry_from(__sk, sk_node)
704 #define sk_nulls_for_each_from(__sk, node) \
705 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
706 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
707 #define sk_for_each_safe(__sk, tmp, list) \
708 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
709 #define sk_for_each_bound(__sk, list) \
710 	hlist_for_each_entry(__sk, list, sk_bind_node)
711 
712 /**
713  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
714  * @tpos:	the type * to use as a loop cursor.
715  * @pos:	the &struct hlist_node to use as a loop cursor.
716  * @head:	the head for your list.
717  * @offset:	offset of hlist_node within the struct.
718  *
719  */
720 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
721 	for (pos = rcu_dereference((head)->first);			       \
722 	     pos != NULL &&						       \
723 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
724 	     pos = rcu_dereference(pos->next))
725 
726 static inline struct user_namespace *sk_user_ns(struct sock *sk)
727 {
728 	/* Careful only use this in a context where these parameters
729 	 * can not change and must all be valid, such as recvmsg from
730 	 * userspace.
731 	 */
732 	return sk->sk_socket->file->f_cred->user_ns;
733 }
734 
735 /* Sock flags */
736 enum sock_flags {
737 	SOCK_DEAD,
738 	SOCK_DONE,
739 	SOCK_URGINLINE,
740 	SOCK_KEEPOPEN,
741 	SOCK_LINGER,
742 	SOCK_DESTROY,
743 	SOCK_BROADCAST,
744 	SOCK_TIMESTAMP,
745 	SOCK_ZAPPED,
746 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
747 	SOCK_DBG, /* %SO_DEBUG setting */
748 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
749 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
750 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
751 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
752 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
753 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
754 	SOCK_FASYNC, /* fasync() active */
755 	SOCK_RXQ_OVFL,
756 	SOCK_ZEROCOPY, /* buffers from userspace */
757 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
758 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
759 		     * Will use last 4 bytes of packet sent from
760 		     * user-space instead.
761 		     */
762 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
763 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
764 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
765 };
766 
767 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
768 
769 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
770 {
771 	nsk->sk_flags = osk->sk_flags;
772 }
773 
774 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
775 {
776 	__set_bit(flag, &sk->sk_flags);
777 }
778 
779 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
780 {
781 	__clear_bit(flag, &sk->sk_flags);
782 }
783 
784 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
785 {
786 	return test_bit(flag, &sk->sk_flags);
787 }
788 
789 #ifdef CONFIG_NET
790 extern struct static_key memalloc_socks;
791 static inline int sk_memalloc_socks(void)
792 {
793 	return static_key_false(&memalloc_socks);
794 }
795 #else
796 
797 static inline int sk_memalloc_socks(void)
798 {
799 	return 0;
800 }
801 
802 #endif
803 
804 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
805 {
806 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
807 }
808 
809 static inline void sk_acceptq_removed(struct sock *sk)
810 {
811 	sk->sk_ack_backlog--;
812 }
813 
814 static inline void sk_acceptq_added(struct sock *sk)
815 {
816 	sk->sk_ack_backlog++;
817 }
818 
819 static inline bool sk_acceptq_is_full(const struct sock *sk)
820 {
821 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
822 }
823 
824 /*
825  * Compute minimal free write space needed to queue new packets.
826  */
827 static inline int sk_stream_min_wspace(const struct sock *sk)
828 {
829 	return sk->sk_wmem_queued >> 1;
830 }
831 
832 static inline int sk_stream_wspace(const struct sock *sk)
833 {
834 	return sk->sk_sndbuf - sk->sk_wmem_queued;
835 }
836 
837 void sk_stream_write_space(struct sock *sk);
838 
839 /* OOB backlog add */
840 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
841 {
842 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
843 	skb_dst_force_safe(skb);
844 
845 	if (!sk->sk_backlog.tail)
846 		sk->sk_backlog.head = skb;
847 	else
848 		sk->sk_backlog.tail->next = skb;
849 
850 	sk->sk_backlog.tail = skb;
851 	skb->next = NULL;
852 }
853 
854 /*
855  * Take into account size of receive queue and backlog queue
856  * Do not take into account this skb truesize,
857  * to allow even a single big packet to come.
858  */
859 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
860 {
861 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
862 
863 	return qsize > limit;
864 }
865 
866 /* The per-socket spinlock must be held here. */
867 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
868 					      unsigned int limit)
869 {
870 	if (sk_rcvqueues_full(sk, limit))
871 		return -ENOBUFS;
872 
873 	/*
874 	 * If the skb was allocated from pfmemalloc reserves, only
875 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
876 	 * helping free memory
877 	 */
878 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
879 		return -ENOMEM;
880 
881 	__sk_add_backlog(sk, skb);
882 	sk->sk_backlog.len += skb->truesize;
883 	return 0;
884 }
885 
886 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
887 
888 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
889 {
890 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
891 		return __sk_backlog_rcv(sk, skb);
892 
893 	return sk->sk_backlog_rcv(sk, skb);
894 }
895 
896 static inline void sk_incoming_cpu_update(struct sock *sk)
897 {
898 	sk->sk_incoming_cpu = raw_smp_processor_id();
899 }
900 
901 static inline void sock_rps_record_flow_hash(__u32 hash)
902 {
903 #ifdef CONFIG_RPS
904 	struct rps_sock_flow_table *sock_flow_table;
905 
906 	rcu_read_lock();
907 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
908 	rps_record_sock_flow(sock_flow_table, hash);
909 	rcu_read_unlock();
910 #endif
911 }
912 
913 static inline void sock_rps_record_flow(const struct sock *sk)
914 {
915 #ifdef CONFIG_RPS
916 	if (static_key_false(&rfs_needed)) {
917 		/* Reading sk->sk_rxhash might incur an expensive cache line
918 		 * miss.
919 		 *
920 		 * TCP_ESTABLISHED does cover almost all states where RFS
921 		 * might be useful, and is cheaper [1] than testing :
922 		 *	IPv4: inet_sk(sk)->inet_daddr
923 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
924 		 * OR	an additional socket flag
925 		 * [1] : sk_state and sk_prot are in the same cache line.
926 		 */
927 		if (sk->sk_state == TCP_ESTABLISHED)
928 			sock_rps_record_flow_hash(sk->sk_rxhash);
929 	}
930 #endif
931 }
932 
933 static inline void sock_rps_save_rxhash(struct sock *sk,
934 					const struct sk_buff *skb)
935 {
936 #ifdef CONFIG_RPS
937 	if (unlikely(sk->sk_rxhash != skb->hash))
938 		sk->sk_rxhash = skb->hash;
939 #endif
940 }
941 
942 static inline void sock_rps_reset_rxhash(struct sock *sk)
943 {
944 #ifdef CONFIG_RPS
945 	sk->sk_rxhash = 0;
946 #endif
947 }
948 
949 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
950 	({	int __rc;						\
951 		release_sock(__sk);					\
952 		__rc = __condition;					\
953 		if (!__rc) {						\
954 			*(__timeo) = wait_woken(__wait,			\
955 						TASK_INTERRUPTIBLE,	\
956 						*(__timeo));		\
957 		}							\
958 		sched_annotate_sleep();					\
959 		lock_sock(__sk);					\
960 		__rc = __condition;					\
961 		__rc;							\
962 	})
963 
964 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
965 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
966 void sk_stream_wait_close(struct sock *sk, long timeo_p);
967 int sk_stream_error(struct sock *sk, int flags, int err);
968 void sk_stream_kill_queues(struct sock *sk);
969 void sk_set_memalloc(struct sock *sk);
970 void sk_clear_memalloc(struct sock *sk);
971 
972 void __sk_flush_backlog(struct sock *sk);
973 
974 static inline bool sk_flush_backlog(struct sock *sk)
975 {
976 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
977 		__sk_flush_backlog(sk);
978 		return true;
979 	}
980 	return false;
981 }
982 
983 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
984 
985 struct request_sock_ops;
986 struct timewait_sock_ops;
987 struct inet_hashinfo;
988 struct raw_hashinfo;
989 struct module;
990 
991 /*
992  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
993  * un-modified. Special care is taken when initializing object to zero.
994  */
995 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
996 {
997 	if (offsetof(struct sock, sk_node.next) != 0)
998 		memset(sk, 0, offsetof(struct sock, sk_node.next));
999 	memset(&sk->sk_node.pprev, 0,
1000 	       size - offsetof(struct sock, sk_node.pprev));
1001 }
1002 
1003 /* Networking protocol blocks we attach to sockets.
1004  * socket layer -> transport layer interface
1005  */
1006 struct proto {
1007 	void			(*close)(struct sock *sk,
1008 					long timeout);
1009 	int			(*connect)(struct sock *sk,
1010 					struct sockaddr *uaddr,
1011 					int addr_len);
1012 	int			(*disconnect)(struct sock *sk, int flags);
1013 
1014 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
1015 
1016 	int			(*ioctl)(struct sock *sk, int cmd,
1017 					 unsigned long arg);
1018 	int			(*init)(struct sock *sk);
1019 	void			(*destroy)(struct sock *sk);
1020 	void			(*shutdown)(struct sock *sk, int how);
1021 	int			(*setsockopt)(struct sock *sk, int level,
1022 					int optname, char __user *optval,
1023 					unsigned int optlen);
1024 	int			(*getsockopt)(struct sock *sk, int level,
1025 					int optname, char __user *optval,
1026 					int __user *option);
1027 #ifdef CONFIG_COMPAT
1028 	int			(*compat_setsockopt)(struct sock *sk,
1029 					int level,
1030 					int optname, char __user *optval,
1031 					unsigned int optlen);
1032 	int			(*compat_getsockopt)(struct sock *sk,
1033 					int level,
1034 					int optname, char __user *optval,
1035 					int __user *option);
1036 	int			(*compat_ioctl)(struct sock *sk,
1037 					unsigned int cmd, unsigned long arg);
1038 #endif
1039 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1040 					   size_t len);
1041 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1042 					   size_t len, int noblock, int flags,
1043 					   int *addr_len);
1044 	int			(*sendpage)(struct sock *sk, struct page *page,
1045 					int offset, size_t size, int flags);
1046 	int			(*bind)(struct sock *sk,
1047 					struct sockaddr *uaddr, int addr_len);
1048 
1049 	int			(*backlog_rcv) (struct sock *sk,
1050 						struct sk_buff *skb);
1051 
1052 	void		(*release_cb)(struct sock *sk);
1053 
1054 	/* Keeping track of sk's, looking them up, and port selection methods. */
1055 	int			(*hash)(struct sock *sk);
1056 	void			(*unhash)(struct sock *sk);
1057 	void			(*rehash)(struct sock *sk);
1058 	int			(*get_port)(struct sock *sk, unsigned short snum);
1059 
1060 	/* Keeping track of sockets in use */
1061 #ifdef CONFIG_PROC_FS
1062 	unsigned int		inuse_idx;
1063 #endif
1064 
1065 	bool			(*stream_memory_free)(const struct sock *sk);
1066 	/* Memory pressure */
1067 	void			(*enter_memory_pressure)(struct sock *sk);
1068 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1069 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1070 	/*
1071 	 * Pressure flag: try to collapse.
1072 	 * Technical note: it is used by multiple contexts non atomically.
1073 	 * All the __sk_mem_schedule() is of this nature: accounting
1074 	 * is strict, actions are advisory and have some latency.
1075 	 */
1076 	int			*memory_pressure;
1077 	long			*sysctl_mem;
1078 	int			*sysctl_wmem;
1079 	int			*sysctl_rmem;
1080 	int			max_header;
1081 	bool			no_autobind;
1082 
1083 	struct kmem_cache	*slab;
1084 	unsigned int		obj_size;
1085 	int			slab_flags;
1086 
1087 	struct percpu_counter	*orphan_count;
1088 
1089 	struct request_sock_ops	*rsk_prot;
1090 	struct timewait_sock_ops *twsk_prot;
1091 
1092 	union {
1093 		struct inet_hashinfo	*hashinfo;
1094 		struct udp_table	*udp_table;
1095 		struct raw_hashinfo	*raw_hash;
1096 	} h;
1097 
1098 	struct module		*owner;
1099 
1100 	char			name[32];
1101 
1102 	struct list_head	node;
1103 #ifdef SOCK_REFCNT_DEBUG
1104 	atomic_t		socks;
1105 #endif
1106 	int			(*diag_destroy)(struct sock *sk, int err);
1107 };
1108 
1109 int proto_register(struct proto *prot, int alloc_slab);
1110 void proto_unregister(struct proto *prot);
1111 
1112 #ifdef SOCK_REFCNT_DEBUG
1113 static inline void sk_refcnt_debug_inc(struct sock *sk)
1114 {
1115 	atomic_inc(&sk->sk_prot->socks);
1116 }
1117 
1118 static inline void sk_refcnt_debug_dec(struct sock *sk)
1119 {
1120 	atomic_dec(&sk->sk_prot->socks);
1121 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1122 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1123 }
1124 
1125 static inline void sk_refcnt_debug_release(const struct sock *sk)
1126 {
1127 	if (atomic_read(&sk->sk_refcnt) != 1)
1128 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1129 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1130 }
1131 #else /* SOCK_REFCNT_DEBUG */
1132 #define sk_refcnt_debug_inc(sk) do { } while (0)
1133 #define sk_refcnt_debug_dec(sk) do { } while (0)
1134 #define sk_refcnt_debug_release(sk) do { } while (0)
1135 #endif /* SOCK_REFCNT_DEBUG */
1136 
1137 static inline bool sk_stream_memory_free(const struct sock *sk)
1138 {
1139 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1140 		return false;
1141 
1142 	return sk->sk_prot->stream_memory_free ?
1143 		sk->sk_prot->stream_memory_free(sk) : true;
1144 }
1145 
1146 static inline bool sk_stream_is_writeable(const struct sock *sk)
1147 {
1148 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1149 	       sk_stream_memory_free(sk);
1150 }
1151 
1152 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1153 					    struct cgroup *ancestor)
1154 {
1155 #ifdef CONFIG_SOCK_CGROUP_DATA
1156 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1157 				    ancestor);
1158 #else
1159 	return -ENOTSUPP;
1160 #endif
1161 }
1162 
1163 static inline bool sk_has_memory_pressure(const struct sock *sk)
1164 {
1165 	return sk->sk_prot->memory_pressure != NULL;
1166 }
1167 
1168 static inline bool sk_under_memory_pressure(const struct sock *sk)
1169 {
1170 	if (!sk->sk_prot->memory_pressure)
1171 		return false;
1172 
1173 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1174 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1175 		return true;
1176 
1177 	return !!*sk->sk_prot->memory_pressure;
1178 }
1179 
1180 static inline void sk_leave_memory_pressure(struct sock *sk)
1181 {
1182 	int *memory_pressure = sk->sk_prot->memory_pressure;
1183 
1184 	if (!memory_pressure)
1185 		return;
1186 
1187 	if (*memory_pressure)
1188 		*memory_pressure = 0;
1189 }
1190 
1191 static inline void sk_enter_memory_pressure(struct sock *sk)
1192 {
1193 	if (!sk->sk_prot->enter_memory_pressure)
1194 		return;
1195 
1196 	sk->sk_prot->enter_memory_pressure(sk);
1197 }
1198 
1199 static inline long
1200 sk_memory_allocated(const struct sock *sk)
1201 {
1202 	return atomic_long_read(sk->sk_prot->memory_allocated);
1203 }
1204 
1205 static inline long
1206 sk_memory_allocated_add(struct sock *sk, int amt)
1207 {
1208 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1209 }
1210 
1211 static inline void
1212 sk_memory_allocated_sub(struct sock *sk, int amt)
1213 {
1214 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1215 }
1216 
1217 static inline void sk_sockets_allocated_dec(struct sock *sk)
1218 {
1219 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1220 }
1221 
1222 static inline void sk_sockets_allocated_inc(struct sock *sk)
1223 {
1224 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1225 }
1226 
1227 static inline int
1228 sk_sockets_allocated_read_positive(struct sock *sk)
1229 {
1230 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1231 }
1232 
1233 static inline int
1234 proto_sockets_allocated_sum_positive(struct proto *prot)
1235 {
1236 	return percpu_counter_sum_positive(prot->sockets_allocated);
1237 }
1238 
1239 static inline long
1240 proto_memory_allocated(struct proto *prot)
1241 {
1242 	return atomic_long_read(prot->memory_allocated);
1243 }
1244 
1245 static inline bool
1246 proto_memory_pressure(struct proto *prot)
1247 {
1248 	if (!prot->memory_pressure)
1249 		return false;
1250 	return !!*prot->memory_pressure;
1251 }
1252 
1253 
1254 #ifdef CONFIG_PROC_FS
1255 /* Called with local bh disabled */
1256 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1257 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1258 #else
1259 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1260 		int inc)
1261 {
1262 }
1263 #endif
1264 
1265 
1266 /* With per-bucket locks this operation is not-atomic, so that
1267  * this version is not worse.
1268  */
1269 static inline int __sk_prot_rehash(struct sock *sk)
1270 {
1271 	sk->sk_prot->unhash(sk);
1272 	return sk->sk_prot->hash(sk);
1273 }
1274 
1275 /* About 10 seconds */
1276 #define SOCK_DESTROY_TIME (10*HZ)
1277 
1278 /* Sockets 0-1023 can't be bound to unless you are superuser */
1279 #define PROT_SOCK	1024
1280 
1281 #define SHUTDOWN_MASK	3
1282 #define RCV_SHUTDOWN	1
1283 #define SEND_SHUTDOWN	2
1284 
1285 #define SOCK_SNDBUF_LOCK	1
1286 #define SOCK_RCVBUF_LOCK	2
1287 #define SOCK_BINDADDR_LOCK	4
1288 #define SOCK_BINDPORT_LOCK	8
1289 
1290 struct socket_alloc {
1291 	struct socket socket;
1292 	struct inode vfs_inode;
1293 };
1294 
1295 static inline struct socket *SOCKET_I(struct inode *inode)
1296 {
1297 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1298 }
1299 
1300 static inline struct inode *SOCK_INODE(struct socket *socket)
1301 {
1302 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1303 }
1304 
1305 /*
1306  * Functions for memory accounting
1307  */
1308 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1309 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1310 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1311 void __sk_mem_reclaim(struct sock *sk, int amount);
1312 
1313 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1314  * do not necessarily have 16x time more memory than 4KB ones.
1315  */
1316 #define SK_MEM_QUANTUM 4096
1317 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1318 #define SK_MEM_SEND	0
1319 #define SK_MEM_RECV	1
1320 
1321 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1322 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1323 {
1324 	long val = sk->sk_prot->sysctl_mem[index];
1325 
1326 #if PAGE_SIZE > SK_MEM_QUANTUM
1327 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1328 #elif PAGE_SIZE < SK_MEM_QUANTUM
1329 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1330 #endif
1331 	return val;
1332 }
1333 
1334 static inline int sk_mem_pages(int amt)
1335 {
1336 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1337 }
1338 
1339 static inline bool sk_has_account(struct sock *sk)
1340 {
1341 	/* return true if protocol supports memory accounting */
1342 	return !!sk->sk_prot->memory_allocated;
1343 }
1344 
1345 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1346 {
1347 	if (!sk_has_account(sk))
1348 		return true;
1349 	return size <= sk->sk_forward_alloc ||
1350 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1351 }
1352 
1353 static inline bool
1354 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1355 {
1356 	if (!sk_has_account(sk))
1357 		return true;
1358 	return size<= sk->sk_forward_alloc ||
1359 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1360 		skb_pfmemalloc(skb);
1361 }
1362 
1363 static inline void sk_mem_reclaim(struct sock *sk)
1364 {
1365 	if (!sk_has_account(sk))
1366 		return;
1367 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1368 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1369 }
1370 
1371 static inline void sk_mem_reclaim_partial(struct sock *sk)
1372 {
1373 	if (!sk_has_account(sk))
1374 		return;
1375 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1376 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1377 }
1378 
1379 static inline void sk_mem_charge(struct sock *sk, int size)
1380 {
1381 	if (!sk_has_account(sk))
1382 		return;
1383 	sk->sk_forward_alloc -= size;
1384 }
1385 
1386 static inline void sk_mem_uncharge(struct sock *sk, int size)
1387 {
1388 	if (!sk_has_account(sk))
1389 		return;
1390 	sk->sk_forward_alloc += size;
1391 
1392 	/* Avoid a possible overflow.
1393 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1394 	 * is not called and more than 2 GBytes are released at once.
1395 	 *
1396 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1397 	 * no need to hold that much forward allocation anyway.
1398 	 */
1399 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1400 		__sk_mem_reclaim(sk, 1 << 20);
1401 }
1402 
1403 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1404 {
1405 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1406 	sk->sk_wmem_queued -= skb->truesize;
1407 	sk_mem_uncharge(sk, skb->truesize);
1408 	__kfree_skb(skb);
1409 }
1410 
1411 static inline void sock_release_ownership(struct sock *sk)
1412 {
1413 	if (sk->sk_lock.owned) {
1414 		sk->sk_lock.owned = 0;
1415 
1416 		/* The sk_lock has mutex_unlock() semantics: */
1417 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1418 	}
1419 }
1420 
1421 /*
1422  * Macro so as to not evaluate some arguments when
1423  * lockdep is not enabled.
1424  *
1425  * Mark both the sk_lock and the sk_lock.slock as a
1426  * per-address-family lock class.
1427  */
1428 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1429 do {									\
1430 	sk->sk_lock.owned = 0;						\
1431 	init_waitqueue_head(&sk->sk_lock.wq);				\
1432 	spin_lock_init(&(sk)->sk_lock.slock);				\
1433 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1434 			sizeof((sk)->sk_lock));				\
1435 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1436 				(skey), (sname));				\
1437 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1438 } while (0)
1439 
1440 #ifdef CONFIG_LOCKDEP
1441 static inline bool lockdep_sock_is_held(const struct sock *csk)
1442 {
1443 	struct sock *sk = (struct sock *)csk;
1444 
1445 	return lockdep_is_held(&sk->sk_lock) ||
1446 	       lockdep_is_held(&sk->sk_lock.slock);
1447 }
1448 #endif
1449 
1450 void lock_sock_nested(struct sock *sk, int subclass);
1451 
1452 static inline void lock_sock(struct sock *sk)
1453 {
1454 	lock_sock_nested(sk, 0);
1455 }
1456 
1457 void release_sock(struct sock *sk);
1458 
1459 /* BH context may only use the following locking interface. */
1460 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1461 #define bh_lock_sock_nested(__sk) \
1462 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1463 				SINGLE_DEPTH_NESTING)
1464 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1465 
1466 bool lock_sock_fast(struct sock *sk);
1467 /**
1468  * unlock_sock_fast - complement of lock_sock_fast
1469  * @sk: socket
1470  * @slow: slow mode
1471  *
1472  * fast unlock socket for user context.
1473  * If slow mode is on, we call regular release_sock()
1474  */
1475 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1476 {
1477 	if (slow)
1478 		release_sock(sk);
1479 	else
1480 		spin_unlock_bh(&sk->sk_lock.slock);
1481 }
1482 
1483 /* Used by processes to "lock" a socket state, so that
1484  * interrupts and bottom half handlers won't change it
1485  * from under us. It essentially blocks any incoming
1486  * packets, so that we won't get any new data or any
1487  * packets that change the state of the socket.
1488  *
1489  * While locked, BH processing will add new packets to
1490  * the backlog queue.  This queue is processed by the
1491  * owner of the socket lock right before it is released.
1492  *
1493  * Since ~2.3.5 it is also exclusive sleep lock serializing
1494  * accesses from user process context.
1495  */
1496 
1497 static inline void sock_owned_by_me(const struct sock *sk)
1498 {
1499 #ifdef CONFIG_LOCKDEP
1500 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1501 #endif
1502 }
1503 
1504 static inline bool sock_owned_by_user(const struct sock *sk)
1505 {
1506 	sock_owned_by_me(sk);
1507 	return sk->sk_lock.owned;
1508 }
1509 
1510 /* no reclassification while locks are held */
1511 static inline bool sock_allow_reclassification(const struct sock *csk)
1512 {
1513 	struct sock *sk = (struct sock *)csk;
1514 
1515 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1516 }
1517 
1518 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1519 		      struct proto *prot, int kern);
1520 void sk_free(struct sock *sk);
1521 void sk_destruct(struct sock *sk);
1522 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1523 
1524 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1525 			     gfp_t priority);
1526 void __sock_wfree(struct sk_buff *skb);
1527 void sock_wfree(struct sk_buff *skb);
1528 void skb_orphan_partial(struct sk_buff *skb);
1529 void sock_rfree(struct sk_buff *skb);
1530 void sock_efree(struct sk_buff *skb);
1531 #ifdef CONFIG_INET
1532 void sock_edemux(struct sk_buff *skb);
1533 #else
1534 #define sock_edemux(skb) sock_efree(skb)
1535 #endif
1536 
1537 int sock_setsockopt(struct socket *sock, int level, int op,
1538 		    char __user *optval, unsigned int optlen);
1539 
1540 int sock_getsockopt(struct socket *sock, int level, int op,
1541 		    char __user *optval, int __user *optlen);
1542 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1543 				    int noblock, int *errcode);
1544 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1545 				     unsigned long data_len, int noblock,
1546 				     int *errcode, int max_page_order);
1547 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1548 void sock_kfree_s(struct sock *sk, void *mem, int size);
1549 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1550 void sk_send_sigurg(struct sock *sk);
1551 
1552 struct sockcm_cookie {
1553 	u32 mark;
1554 	u16 tsflags;
1555 };
1556 
1557 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1558 		     struct sockcm_cookie *sockc);
1559 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1560 		   struct sockcm_cookie *sockc);
1561 
1562 /*
1563  * Functions to fill in entries in struct proto_ops when a protocol
1564  * does not implement a particular function.
1565  */
1566 int sock_no_bind(struct socket *, struct sockaddr *, int);
1567 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1568 int sock_no_socketpair(struct socket *, struct socket *);
1569 int sock_no_accept(struct socket *, struct socket *, int);
1570 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1571 unsigned int sock_no_poll(struct file *, struct socket *,
1572 			  struct poll_table_struct *);
1573 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1574 int sock_no_listen(struct socket *, int);
1575 int sock_no_shutdown(struct socket *, int);
1576 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1577 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1578 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1579 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1580 int sock_no_mmap(struct file *file, struct socket *sock,
1581 		 struct vm_area_struct *vma);
1582 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1583 			 size_t size, int flags);
1584 
1585 /*
1586  * Functions to fill in entries in struct proto_ops when a protocol
1587  * uses the inet style.
1588  */
1589 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1590 				  char __user *optval, int __user *optlen);
1591 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1592 			int flags);
1593 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1594 				  char __user *optval, unsigned int optlen);
1595 int compat_sock_common_getsockopt(struct socket *sock, int level,
1596 		int optname, char __user *optval, int __user *optlen);
1597 int compat_sock_common_setsockopt(struct socket *sock, int level,
1598 		int optname, char __user *optval, unsigned int optlen);
1599 
1600 void sk_common_release(struct sock *sk);
1601 
1602 /*
1603  *	Default socket callbacks and setup code
1604  */
1605 
1606 /* Initialise core socket variables */
1607 void sock_init_data(struct socket *sock, struct sock *sk);
1608 
1609 /*
1610  * Socket reference counting postulates.
1611  *
1612  * * Each user of socket SHOULD hold a reference count.
1613  * * Each access point to socket (an hash table bucket, reference from a list,
1614  *   running timer, skb in flight MUST hold a reference count.
1615  * * When reference count hits 0, it means it will never increase back.
1616  * * When reference count hits 0, it means that no references from
1617  *   outside exist to this socket and current process on current CPU
1618  *   is last user and may/should destroy this socket.
1619  * * sk_free is called from any context: process, BH, IRQ. When
1620  *   it is called, socket has no references from outside -> sk_free
1621  *   may release descendant resources allocated by the socket, but
1622  *   to the time when it is called, socket is NOT referenced by any
1623  *   hash tables, lists etc.
1624  * * Packets, delivered from outside (from network or from another process)
1625  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1626  *   when they sit in queue. Otherwise, packets will leak to hole, when
1627  *   socket is looked up by one cpu and unhasing is made by another CPU.
1628  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1629  *   (leak to backlog). Packet socket does all the processing inside
1630  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1631  *   use separate SMP lock, so that they are prone too.
1632  */
1633 
1634 /* Ungrab socket and destroy it, if it was the last reference. */
1635 static inline void sock_put(struct sock *sk)
1636 {
1637 	if (atomic_dec_and_test(&sk->sk_refcnt))
1638 		sk_free(sk);
1639 }
1640 /* Generic version of sock_put(), dealing with all sockets
1641  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1642  */
1643 void sock_gen_put(struct sock *sk);
1644 
1645 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1646 		     unsigned int trim_cap, bool refcounted);
1647 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1648 				 const int nested)
1649 {
1650 	return __sk_receive_skb(sk, skb, nested, 1, true);
1651 }
1652 
1653 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1654 {
1655 	sk->sk_tx_queue_mapping = tx_queue;
1656 }
1657 
1658 static inline void sk_tx_queue_clear(struct sock *sk)
1659 {
1660 	sk->sk_tx_queue_mapping = -1;
1661 }
1662 
1663 static inline int sk_tx_queue_get(const struct sock *sk)
1664 {
1665 	return sk ? sk->sk_tx_queue_mapping : -1;
1666 }
1667 
1668 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1669 {
1670 	sk_tx_queue_clear(sk);
1671 	sk->sk_socket = sock;
1672 }
1673 
1674 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1675 {
1676 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1677 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1678 }
1679 /* Detach socket from process context.
1680  * Announce socket dead, detach it from wait queue and inode.
1681  * Note that parent inode held reference count on this struct sock,
1682  * we do not release it in this function, because protocol
1683  * probably wants some additional cleanups or even continuing
1684  * to work with this socket (TCP).
1685  */
1686 static inline void sock_orphan(struct sock *sk)
1687 {
1688 	write_lock_bh(&sk->sk_callback_lock);
1689 	sock_set_flag(sk, SOCK_DEAD);
1690 	sk_set_socket(sk, NULL);
1691 	sk->sk_wq  = NULL;
1692 	write_unlock_bh(&sk->sk_callback_lock);
1693 }
1694 
1695 static inline void sock_graft(struct sock *sk, struct socket *parent)
1696 {
1697 	write_lock_bh(&sk->sk_callback_lock);
1698 	sk->sk_wq = parent->wq;
1699 	parent->sk = sk;
1700 	sk_set_socket(sk, parent);
1701 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1702 	security_sock_graft(sk, parent);
1703 	write_unlock_bh(&sk->sk_callback_lock);
1704 }
1705 
1706 kuid_t sock_i_uid(struct sock *sk);
1707 unsigned long sock_i_ino(struct sock *sk);
1708 
1709 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1710 {
1711 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1712 }
1713 
1714 static inline u32 net_tx_rndhash(void)
1715 {
1716 	u32 v = prandom_u32();
1717 
1718 	return v ?: 1;
1719 }
1720 
1721 static inline void sk_set_txhash(struct sock *sk)
1722 {
1723 	sk->sk_txhash = net_tx_rndhash();
1724 }
1725 
1726 static inline void sk_rethink_txhash(struct sock *sk)
1727 {
1728 	if (sk->sk_txhash)
1729 		sk_set_txhash(sk);
1730 }
1731 
1732 static inline struct dst_entry *
1733 __sk_dst_get(struct sock *sk)
1734 {
1735 	return rcu_dereference_check(sk->sk_dst_cache,
1736 				     lockdep_sock_is_held(sk));
1737 }
1738 
1739 static inline struct dst_entry *
1740 sk_dst_get(struct sock *sk)
1741 {
1742 	struct dst_entry *dst;
1743 
1744 	rcu_read_lock();
1745 	dst = rcu_dereference(sk->sk_dst_cache);
1746 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1747 		dst = NULL;
1748 	rcu_read_unlock();
1749 	return dst;
1750 }
1751 
1752 static inline void dst_negative_advice(struct sock *sk)
1753 {
1754 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1755 
1756 	sk_rethink_txhash(sk);
1757 
1758 	if (dst && dst->ops->negative_advice) {
1759 		ndst = dst->ops->negative_advice(dst);
1760 
1761 		if (ndst != dst) {
1762 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1763 			sk_tx_queue_clear(sk);
1764 		}
1765 	}
1766 }
1767 
1768 static inline void
1769 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1770 {
1771 	struct dst_entry *old_dst;
1772 
1773 	sk_tx_queue_clear(sk);
1774 	/*
1775 	 * This can be called while sk is owned by the caller only,
1776 	 * with no state that can be checked in a rcu_dereference_check() cond
1777 	 */
1778 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1779 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1780 	dst_release(old_dst);
1781 }
1782 
1783 static inline void
1784 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1785 {
1786 	struct dst_entry *old_dst;
1787 
1788 	sk_tx_queue_clear(sk);
1789 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1790 	dst_release(old_dst);
1791 }
1792 
1793 static inline void
1794 __sk_dst_reset(struct sock *sk)
1795 {
1796 	__sk_dst_set(sk, NULL);
1797 }
1798 
1799 static inline void
1800 sk_dst_reset(struct sock *sk)
1801 {
1802 	sk_dst_set(sk, NULL);
1803 }
1804 
1805 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1806 
1807 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1808 
1809 bool sk_mc_loop(struct sock *sk);
1810 
1811 static inline bool sk_can_gso(const struct sock *sk)
1812 {
1813 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1814 }
1815 
1816 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1817 
1818 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1819 {
1820 	sk->sk_route_nocaps |= flags;
1821 	sk->sk_route_caps &= ~flags;
1822 }
1823 
1824 static inline bool sk_check_csum_caps(struct sock *sk)
1825 {
1826 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1827 	       (sk->sk_family == PF_INET &&
1828 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1829 	       (sk->sk_family == PF_INET6 &&
1830 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1831 }
1832 
1833 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1834 					   struct iov_iter *from, char *to,
1835 					   int copy, int offset)
1836 {
1837 	if (skb->ip_summed == CHECKSUM_NONE) {
1838 		__wsum csum = 0;
1839 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1840 			return -EFAULT;
1841 		skb->csum = csum_block_add(skb->csum, csum, offset);
1842 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1843 		if (!copy_from_iter_full_nocache(to, copy, from))
1844 			return -EFAULT;
1845 	} else if (!copy_from_iter_full(to, copy, from))
1846 		return -EFAULT;
1847 
1848 	return 0;
1849 }
1850 
1851 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1852 				       struct iov_iter *from, int copy)
1853 {
1854 	int err, offset = skb->len;
1855 
1856 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1857 				       copy, offset);
1858 	if (err)
1859 		__skb_trim(skb, offset);
1860 
1861 	return err;
1862 }
1863 
1864 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1865 					   struct sk_buff *skb,
1866 					   struct page *page,
1867 					   int off, int copy)
1868 {
1869 	int err;
1870 
1871 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1872 				       copy, skb->len);
1873 	if (err)
1874 		return err;
1875 
1876 	skb->len	     += copy;
1877 	skb->data_len	     += copy;
1878 	skb->truesize	     += copy;
1879 	sk->sk_wmem_queued   += copy;
1880 	sk_mem_charge(sk, copy);
1881 	return 0;
1882 }
1883 
1884 /**
1885  * sk_wmem_alloc_get - returns write allocations
1886  * @sk: socket
1887  *
1888  * Returns sk_wmem_alloc minus initial offset of one
1889  */
1890 static inline int sk_wmem_alloc_get(const struct sock *sk)
1891 {
1892 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1893 }
1894 
1895 /**
1896  * sk_rmem_alloc_get - returns read allocations
1897  * @sk: socket
1898  *
1899  * Returns sk_rmem_alloc
1900  */
1901 static inline int sk_rmem_alloc_get(const struct sock *sk)
1902 {
1903 	return atomic_read(&sk->sk_rmem_alloc);
1904 }
1905 
1906 /**
1907  * sk_has_allocations - check if allocations are outstanding
1908  * @sk: socket
1909  *
1910  * Returns true if socket has write or read allocations
1911  */
1912 static inline bool sk_has_allocations(const struct sock *sk)
1913 {
1914 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1915 }
1916 
1917 /**
1918  * skwq_has_sleeper - check if there are any waiting processes
1919  * @wq: struct socket_wq
1920  *
1921  * Returns true if socket_wq has waiting processes
1922  *
1923  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1924  * barrier call. They were added due to the race found within the tcp code.
1925  *
1926  * Consider following tcp code paths:
1927  *
1928  * CPU1                  CPU2
1929  *
1930  * sys_select            receive packet
1931  *   ...                 ...
1932  *   __add_wait_queue    update tp->rcv_nxt
1933  *   ...                 ...
1934  *   tp->rcv_nxt check   sock_def_readable
1935  *   ...                 {
1936  *   schedule               rcu_read_lock();
1937  *                          wq = rcu_dereference(sk->sk_wq);
1938  *                          if (wq && waitqueue_active(&wq->wait))
1939  *                              wake_up_interruptible(&wq->wait)
1940  *                          ...
1941  *                       }
1942  *
1943  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1944  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1945  * could then endup calling schedule and sleep forever if there are no more
1946  * data on the socket.
1947  *
1948  */
1949 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1950 {
1951 	return wq && wq_has_sleeper(&wq->wait);
1952 }
1953 
1954 /**
1955  * sock_poll_wait - place memory barrier behind the poll_wait call.
1956  * @filp:           file
1957  * @wait_address:   socket wait queue
1958  * @p:              poll_table
1959  *
1960  * See the comments in the wq_has_sleeper function.
1961  */
1962 static inline void sock_poll_wait(struct file *filp,
1963 		wait_queue_head_t *wait_address, poll_table *p)
1964 {
1965 	if (!poll_does_not_wait(p) && wait_address) {
1966 		poll_wait(filp, wait_address, p);
1967 		/* We need to be sure we are in sync with the
1968 		 * socket flags modification.
1969 		 *
1970 		 * This memory barrier is paired in the wq_has_sleeper.
1971 		 */
1972 		smp_mb();
1973 	}
1974 }
1975 
1976 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1977 {
1978 	if (sk->sk_txhash) {
1979 		skb->l4_hash = 1;
1980 		skb->hash = sk->sk_txhash;
1981 	}
1982 }
1983 
1984 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1985 
1986 /*
1987  *	Queue a received datagram if it will fit. Stream and sequenced
1988  *	protocols can't normally use this as they need to fit buffers in
1989  *	and play with them.
1990  *
1991  *	Inlined as it's very short and called for pretty much every
1992  *	packet ever received.
1993  */
1994 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1995 {
1996 	skb_orphan(skb);
1997 	skb->sk = sk;
1998 	skb->destructor = sock_rfree;
1999 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2000 	sk_mem_charge(sk, skb->truesize);
2001 }
2002 
2003 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2004 		    unsigned long expires);
2005 
2006 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2007 
2008 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
2009 			unsigned int flags);
2010 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2011 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2012 
2013 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2014 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2015 
2016 /*
2017  *	Recover an error report and clear atomically
2018  */
2019 
2020 static inline int sock_error(struct sock *sk)
2021 {
2022 	int err;
2023 	if (likely(!sk->sk_err))
2024 		return 0;
2025 	err = xchg(&sk->sk_err, 0);
2026 	return -err;
2027 }
2028 
2029 static inline unsigned long sock_wspace(struct sock *sk)
2030 {
2031 	int amt = 0;
2032 
2033 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2034 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2035 		if (amt < 0)
2036 			amt = 0;
2037 	}
2038 	return amt;
2039 }
2040 
2041 /* Note:
2042  *  We use sk->sk_wq_raw, from contexts knowing this
2043  *  pointer is not NULL and cannot disappear/change.
2044  */
2045 static inline void sk_set_bit(int nr, struct sock *sk)
2046 {
2047 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2048 	    !sock_flag(sk, SOCK_FASYNC))
2049 		return;
2050 
2051 	set_bit(nr, &sk->sk_wq_raw->flags);
2052 }
2053 
2054 static inline void sk_clear_bit(int nr, struct sock *sk)
2055 {
2056 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2057 	    !sock_flag(sk, SOCK_FASYNC))
2058 		return;
2059 
2060 	clear_bit(nr, &sk->sk_wq_raw->flags);
2061 }
2062 
2063 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2064 {
2065 	if (sock_flag(sk, SOCK_FASYNC)) {
2066 		rcu_read_lock();
2067 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2068 		rcu_read_unlock();
2069 	}
2070 }
2071 
2072 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2073  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2074  * Note: for send buffers, TCP works better if we can build two skbs at
2075  * minimum.
2076  */
2077 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2078 
2079 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2080 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2081 
2082 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2083 {
2084 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2085 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2086 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2087 	}
2088 }
2089 
2090 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2091 				    bool force_schedule);
2092 
2093 /**
2094  * sk_page_frag - return an appropriate page_frag
2095  * @sk: socket
2096  *
2097  * If socket allocation mode allows current thread to sleep, it means its
2098  * safe to use the per task page_frag instead of the per socket one.
2099  */
2100 static inline struct page_frag *sk_page_frag(struct sock *sk)
2101 {
2102 	if (gfpflags_allow_blocking(sk->sk_allocation))
2103 		return &current->task_frag;
2104 
2105 	return &sk->sk_frag;
2106 }
2107 
2108 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2109 
2110 /*
2111  *	Default write policy as shown to user space via poll/select/SIGIO
2112  */
2113 static inline bool sock_writeable(const struct sock *sk)
2114 {
2115 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2116 }
2117 
2118 static inline gfp_t gfp_any(void)
2119 {
2120 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2121 }
2122 
2123 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2124 {
2125 	return noblock ? 0 : sk->sk_rcvtimeo;
2126 }
2127 
2128 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2129 {
2130 	return noblock ? 0 : sk->sk_sndtimeo;
2131 }
2132 
2133 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2134 {
2135 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2136 }
2137 
2138 /* Alas, with timeout socket operations are not restartable.
2139  * Compare this to poll().
2140  */
2141 static inline int sock_intr_errno(long timeo)
2142 {
2143 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2144 }
2145 
2146 struct sock_skb_cb {
2147 	u32 dropcount;
2148 };
2149 
2150 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2151  * using skb->cb[] would keep using it directly and utilize its
2152  * alignement guarantee.
2153  */
2154 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2155 			    sizeof(struct sock_skb_cb)))
2156 
2157 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2158 			    SOCK_SKB_CB_OFFSET))
2159 
2160 #define sock_skb_cb_check_size(size) \
2161 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2162 
2163 static inline void
2164 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2165 {
2166 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2167 						atomic_read(&sk->sk_drops) : 0;
2168 }
2169 
2170 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2171 {
2172 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2173 
2174 	atomic_add(segs, &sk->sk_drops);
2175 }
2176 
2177 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2178 			   struct sk_buff *skb);
2179 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2180 			     struct sk_buff *skb);
2181 
2182 static inline void
2183 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2184 {
2185 	ktime_t kt = skb->tstamp;
2186 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2187 
2188 	/*
2189 	 * generate control messages if
2190 	 * - receive time stamping in software requested
2191 	 * - software time stamp available and wanted
2192 	 * - hardware time stamps available and wanted
2193 	 */
2194 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2195 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2196 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2197 	    (hwtstamps->hwtstamp &&
2198 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2199 		__sock_recv_timestamp(msg, sk, skb);
2200 	else
2201 		sk->sk_stamp = kt;
2202 
2203 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2204 		__sock_recv_wifi_status(msg, sk, skb);
2205 }
2206 
2207 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2208 			      struct sk_buff *skb);
2209 
2210 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2211 					  struct sk_buff *skb)
2212 {
2213 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2214 			   (1UL << SOCK_RCVTSTAMP))
2215 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2216 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2217 
2218 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2219 		__sock_recv_ts_and_drops(msg, sk, skb);
2220 	else
2221 		sk->sk_stamp = skb->tstamp;
2222 }
2223 
2224 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2225 
2226 /**
2227  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2228  * @sk:		socket sending this packet
2229  * @tsflags:	timestamping flags to use
2230  * @tx_flags:	completed with instructions for time stamping
2231  *
2232  * Note : callers should take care of initial *tx_flags value (usually 0)
2233  */
2234 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2235 				     __u8 *tx_flags)
2236 {
2237 	if (unlikely(tsflags))
2238 		__sock_tx_timestamp(tsflags, tx_flags);
2239 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2240 		*tx_flags |= SKBTX_WIFI_STATUS;
2241 }
2242 
2243 /**
2244  * sk_eat_skb - Release a skb if it is no longer needed
2245  * @sk: socket to eat this skb from
2246  * @skb: socket buffer to eat
2247  *
2248  * This routine must be called with interrupts disabled or with the socket
2249  * locked so that the sk_buff queue operation is ok.
2250 */
2251 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2252 {
2253 	__skb_unlink(skb, &sk->sk_receive_queue);
2254 	__kfree_skb(skb);
2255 }
2256 
2257 static inline
2258 struct net *sock_net(const struct sock *sk)
2259 {
2260 	return read_pnet(&sk->sk_net);
2261 }
2262 
2263 static inline
2264 void sock_net_set(struct sock *sk, struct net *net)
2265 {
2266 	write_pnet(&sk->sk_net, net);
2267 }
2268 
2269 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2270 {
2271 	if (skb->sk) {
2272 		struct sock *sk = skb->sk;
2273 
2274 		skb->destructor = NULL;
2275 		skb->sk = NULL;
2276 		return sk;
2277 	}
2278 	return NULL;
2279 }
2280 
2281 /* This helper checks if a socket is a full socket,
2282  * ie _not_ a timewait or request socket.
2283  */
2284 static inline bool sk_fullsock(const struct sock *sk)
2285 {
2286 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2287 }
2288 
2289 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2290  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2291  */
2292 static inline bool sk_listener(const struct sock *sk)
2293 {
2294 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2295 }
2296 
2297 /**
2298  * sk_state_load - read sk->sk_state for lockless contexts
2299  * @sk: socket pointer
2300  *
2301  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2302  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2303  */
2304 static inline int sk_state_load(const struct sock *sk)
2305 {
2306 	return smp_load_acquire(&sk->sk_state);
2307 }
2308 
2309 /**
2310  * sk_state_store - update sk->sk_state
2311  * @sk: socket pointer
2312  * @newstate: new state
2313  *
2314  * Paired with sk_state_load(). Should be used in contexts where
2315  * state change might impact lockless readers.
2316  */
2317 static inline void sk_state_store(struct sock *sk, int newstate)
2318 {
2319 	smp_store_release(&sk->sk_state, newstate);
2320 }
2321 
2322 void sock_enable_timestamp(struct sock *sk, int flag);
2323 int sock_get_timestamp(struct sock *, struct timeval __user *);
2324 int sock_get_timestampns(struct sock *, struct timespec __user *);
2325 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2326 		       int type);
2327 
2328 bool sk_ns_capable(const struct sock *sk,
2329 		   struct user_namespace *user_ns, int cap);
2330 bool sk_capable(const struct sock *sk, int cap);
2331 bool sk_net_capable(const struct sock *sk, int cap);
2332 
2333 extern __u32 sysctl_wmem_max;
2334 extern __u32 sysctl_rmem_max;
2335 
2336 extern int sysctl_tstamp_allow_data;
2337 extern int sysctl_optmem_max;
2338 
2339 extern __u32 sysctl_wmem_default;
2340 extern __u32 sysctl_rmem_default;
2341 
2342 #endif	/* _SOCK_H */
2343