xref: /openbmc/linux/include/net/sock.h (revision 861e10be)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 	return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88  * This structure really needs to be cleaned up.
89  * Most of it is for TCP, and not used by any of
90  * the other protocols.
91  */
92 
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 					printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105 
106 /* This is the per-socket lock.  The spinlock provides a synchronization
107  * between user contexts and software interrupt processing, whereas the
108  * mini-semaphore synchronizes multiple users amongst themselves.
109  */
110 typedef struct {
111 	spinlock_t		slock;
112 	int			owned;
113 	wait_queue_head_t	wq;
114 	/*
115 	 * We express the mutex-alike socket_lock semantics
116 	 * to the lock validator by explicitly managing
117 	 * the slock as a lock variant (in addition to
118 	 * the slock itself):
119 	 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 	struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124 
125 struct sock;
126 struct proto;
127 struct net;
128 
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131 
132 /**
133  *	struct sock_common - minimal network layer representation of sockets
134  *	@skc_daddr: Foreign IPv4 addr
135  *	@skc_rcv_saddr: Bound local IPv4 addr
136  *	@skc_hash: hash value used with various protocol lookup tables
137  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
138  *	@skc_dport: placeholder for inet_dport/tw_dport
139  *	@skc_num: placeholder for inet_num/tw_num
140  *	@skc_family: network address family
141  *	@skc_state: Connection state
142  *	@skc_reuse: %SO_REUSEADDR setting
143  *	@skc_bound_dev_if: bound device index if != 0
144  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
145  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
146  *	@skc_prot: protocol handlers inside a network family
147  *	@skc_net: reference to the network namespace of this socket
148  *	@skc_node: main hash linkage for various protocol lookup tables
149  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
150  *	@skc_tx_queue_mapping: tx queue number for this connection
151  *	@skc_refcnt: reference count
152  *
153  *	This is the minimal network layer representation of sockets, the header
154  *	for struct sock and struct inet_timewait_sock.
155  */
156 struct sock_common {
157 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
158 	 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
159 	 */
160 	union {
161 		__addrpair	skc_addrpair;
162 		struct {
163 			__be32	skc_daddr;
164 			__be32	skc_rcv_saddr;
165 		};
166 	};
167 	union  {
168 		unsigned int	skc_hash;
169 		__u16		skc_u16hashes[2];
170 	};
171 	/* skc_dport && skc_num must be grouped as well */
172 	union {
173 		__portpair	skc_portpair;
174 		struct {
175 			__be16	skc_dport;
176 			__u16	skc_num;
177 		};
178 	};
179 
180 	unsigned short		skc_family;
181 	volatile unsigned char	skc_state;
182 	unsigned char		skc_reuse;
183 	int			skc_bound_dev_if;
184 	union {
185 		struct hlist_node	skc_bind_node;
186 		struct hlist_nulls_node skc_portaddr_node;
187 	};
188 	struct proto		*skc_prot;
189 #ifdef CONFIG_NET_NS
190 	struct net	 	*skc_net;
191 #endif
192 	/*
193 	 * fields between dontcopy_begin/dontcopy_end
194 	 * are not copied in sock_copy()
195 	 */
196 	/* private: */
197 	int			skc_dontcopy_begin[0];
198 	/* public: */
199 	union {
200 		struct hlist_node	skc_node;
201 		struct hlist_nulls_node skc_nulls_node;
202 	};
203 	int			skc_tx_queue_mapping;
204 	atomic_t		skc_refcnt;
205 	/* private: */
206 	int                     skc_dontcopy_end[0];
207 	/* public: */
208 };
209 
210 struct cg_proto;
211 /**
212   *	struct sock - network layer representation of sockets
213   *	@__sk_common: shared layout with inet_timewait_sock
214   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
215   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
216   *	@sk_lock:	synchronizer
217   *	@sk_rcvbuf: size of receive buffer in bytes
218   *	@sk_wq: sock wait queue and async head
219   *	@sk_rx_dst: receive input route used by early tcp demux
220   *	@sk_dst_cache: destination cache
221   *	@sk_dst_lock: destination cache lock
222   *	@sk_policy: flow policy
223   *	@sk_receive_queue: incoming packets
224   *	@sk_wmem_alloc: transmit queue bytes committed
225   *	@sk_write_queue: Packet sending queue
226   *	@sk_async_wait_queue: DMA copied packets
227   *	@sk_omem_alloc: "o" is "option" or "other"
228   *	@sk_wmem_queued: persistent queue size
229   *	@sk_forward_alloc: space allocated forward
230   *	@sk_allocation: allocation mode
231   *	@sk_sndbuf: size of send buffer in bytes
232   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
233   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
234   *	@sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
235   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
236   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
237   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
238   *	@sk_gso_max_size: Maximum GSO segment size to build
239   *	@sk_gso_max_segs: Maximum number of GSO segments
240   *	@sk_lingertime: %SO_LINGER l_linger setting
241   *	@sk_backlog: always used with the per-socket spinlock held
242   *	@sk_callback_lock: used with the callbacks in the end of this struct
243   *	@sk_error_queue: rarely used
244   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
245   *			  IPV6_ADDRFORM for instance)
246   *	@sk_err: last error
247   *	@sk_err_soft: errors that don't cause failure but are the cause of a
248   *		      persistent failure not just 'timed out'
249   *	@sk_drops: raw/udp drops counter
250   *	@sk_ack_backlog: current listen backlog
251   *	@sk_max_ack_backlog: listen backlog set in listen()
252   *	@sk_priority: %SO_PRIORITY setting
253   *	@sk_cgrp_prioidx: socket group's priority map index
254   *	@sk_type: socket type (%SOCK_STREAM, etc)
255   *	@sk_protocol: which protocol this socket belongs in this network family
256   *	@sk_peer_pid: &struct pid for this socket's peer
257   *	@sk_peer_cred: %SO_PEERCRED setting
258   *	@sk_rcvlowat: %SO_RCVLOWAT setting
259   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
260   *	@sk_sndtimeo: %SO_SNDTIMEO setting
261   *	@sk_rxhash: flow hash received from netif layer
262   *	@sk_filter: socket filtering instructions
263   *	@sk_protinfo: private area, net family specific, when not using slab
264   *	@sk_timer: sock cleanup timer
265   *	@sk_stamp: time stamp of last packet received
266   *	@sk_socket: Identd and reporting IO signals
267   *	@sk_user_data: RPC layer private data
268   *	@sk_frag: cached page frag
269   *	@sk_peek_off: current peek_offset value
270   *	@sk_send_head: front of stuff to transmit
271   *	@sk_security: used by security modules
272   *	@sk_mark: generic packet mark
273   *	@sk_classid: this socket's cgroup classid
274   *	@sk_cgrp: this socket's cgroup-specific proto data
275   *	@sk_write_pending: a write to stream socket waits to start
276   *	@sk_state_change: callback to indicate change in the state of the sock
277   *	@sk_data_ready: callback to indicate there is data to be processed
278   *	@sk_write_space: callback to indicate there is bf sending space available
279   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
280   *	@sk_backlog_rcv: callback to process the backlog
281   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
282  */
283 struct sock {
284 	/*
285 	 * Now struct inet_timewait_sock also uses sock_common, so please just
286 	 * don't add nothing before this first member (__sk_common) --acme
287 	 */
288 	struct sock_common	__sk_common;
289 #define sk_node			__sk_common.skc_node
290 #define sk_nulls_node		__sk_common.skc_nulls_node
291 #define sk_refcnt		__sk_common.skc_refcnt
292 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
293 
294 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
295 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
296 #define sk_hash			__sk_common.skc_hash
297 #define sk_family		__sk_common.skc_family
298 #define sk_state		__sk_common.skc_state
299 #define sk_reuse		__sk_common.skc_reuse
300 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
301 #define sk_bind_node		__sk_common.skc_bind_node
302 #define sk_prot			__sk_common.skc_prot
303 #define sk_net			__sk_common.skc_net
304 	socket_lock_t		sk_lock;
305 	struct sk_buff_head	sk_receive_queue;
306 	/*
307 	 * The backlog queue is special, it is always used with
308 	 * the per-socket spinlock held and requires low latency
309 	 * access. Therefore we special case it's implementation.
310 	 * Note : rmem_alloc is in this structure to fill a hole
311 	 * on 64bit arches, not because its logically part of
312 	 * backlog.
313 	 */
314 	struct {
315 		atomic_t	rmem_alloc;
316 		int		len;
317 		struct sk_buff	*head;
318 		struct sk_buff	*tail;
319 	} sk_backlog;
320 #define sk_rmem_alloc sk_backlog.rmem_alloc
321 	int			sk_forward_alloc;
322 #ifdef CONFIG_RPS
323 	__u32			sk_rxhash;
324 #endif
325 	atomic_t		sk_drops;
326 	int			sk_rcvbuf;
327 
328 	struct sk_filter __rcu	*sk_filter;
329 	struct socket_wq __rcu	*sk_wq;
330 
331 #ifdef CONFIG_NET_DMA
332 	struct sk_buff_head	sk_async_wait_queue;
333 #endif
334 
335 #ifdef CONFIG_XFRM
336 	struct xfrm_policy	*sk_policy[2];
337 #endif
338 	unsigned long 		sk_flags;
339 	struct dst_entry	*sk_rx_dst;
340 	struct dst_entry	*sk_dst_cache;
341 	spinlock_t		sk_dst_lock;
342 	atomic_t		sk_wmem_alloc;
343 	atomic_t		sk_omem_alloc;
344 	int			sk_sndbuf;
345 	struct sk_buff_head	sk_write_queue;
346 	kmemcheck_bitfield_begin(flags);
347 	unsigned int		sk_shutdown  : 2,
348 				sk_no_check  : 2,
349 				sk_userlocks : 4,
350 				sk_protocol  : 8,
351 				sk_type      : 16;
352 	kmemcheck_bitfield_end(flags);
353 	int			sk_wmem_queued;
354 	gfp_t			sk_allocation;
355 	netdev_features_t	sk_route_caps;
356 	netdev_features_t	sk_route_nocaps;
357 	int			sk_gso_type;
358 	unsigned int		sk_gso_max_size;
359 	u16			sk_gso_max_segs;
360 	int			sk_rcvlowat;
361 	unsigned long	        sk_lingertime;
362 	struct sk_buff_head	sk_error_queue;
363 	struct proto		*sk_prot_creator;
364 	rwlock_t		sk_callback_lock;
365 	int			sk_err,
366 				sk_err_soft;
367 	unsigned short		sk_ack_backlog;
368 	unsigned short		sk_max_ack_backlog;
369 	__u32			sk_priority;
370 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
371 	__u32			sk_cgrp_prioidx;
372 #endif
373 	struct pid		*sk_peer_pid;
374 	const struct cred	*sk_peer_cred;
375 	long			sk_rcvtimeo;
376 	long			sk_sndtimeo;
377 	void			*sk_protinfo;
378 	struct timer_list	sk_timer;
379 	ktime_t			sk_stamp;
380 	struct socket		*sk_socket;
381 	void			*sk_user_data;
382 	struct page_frag	sk_frag;
383 	struct sk_buff		*sk_send_head;
384 	__s32			sk_peek_off;
385 	int			sk_write_pending;
386 #ifdef CONFIG_SECURITY
387 	void			*sk_security;
388 #endif
389 	__u32			sk_mark;
390 	u32			sk_classid;
391 	struct cg_proto		*sk_cgrp;
392 	void			(*sk_state_change)(struct sock *sk);
393 	void			(*sk_data_ready)(struct sock *sk, int bytes);
394 	void			(*sk_write_space)(struct sock *sk);
395 	void			(*sk_error_report)(struct sock *sk);
396 	int			(*sk_backlog_rcv)(struct sock *sk,
397 						  struct sk_buff *skb);
398 	void                    (*sk_destruct)(struct sock *sk);
399 };
400 
401 /*
402  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
403  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
404  * on a socket means that the socket will reuse everybody else's port
405  * without looking at the other's sk_reuse value.
406  */
407 
408 #define SK_NO_REUSE	0
409 #define SK_CAN_REUSE	1
410 #define SK_FORCE_REUSE	2
411 
412 static inline int sk_peek_offset(struct sock *sk, int flags)
413 {
414 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
415 		return sk->sk_peek_off;
416 	else
417 		return 0;
418 }
419 
420 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
421 {
422 	if (sk->sk_peek_off >= 0) {
423 		if (sk->sk_peek_off >= val)
424 			sk->sk_peek_off -= val;
425 		else
426 			sk->sk_peek_off = 0;
427 	}
428 }
429 
430 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
431 {
432 	if (sk->sk_peek_off >= 0)
433 		sk->sk_peek_off += val;
434 }
435 
436 /*
437  * Hashed lists helper routines
438  */
439 static inline struct sock *sk_entry(const struct hlist_node *node)
440 {
441 	return hlist_entry(node, struct sock, sk_node);
442 }
443 
444 static inline struct sock *__sk_head(const struct hlist_head *head)
445 {
446 	return hlist_entry(head->first, struct sock, sk_node);
447 }
448 
449 static inline struct sock *sk_head(const struct hlist_head *head)
450 {
451 	return hlist_empty(head) ? NULL : __sk_head(head);
452 }
453 
454 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
455 {
456 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
457 }
458 
459 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
460 {
461 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
462 }
463 
464 static inline struct sock *sk_next(const struct sock *sk)
465 {
466 	return sk->sk_node.next ?
467 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
468 }
469 
470 static inline struct sock *sk_nulls_next(const struct sock *sk)
471 {
472 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
473 		hlist_nulls_entry(sk->sk_nulls_node.next,
474 				  struct sock, sk_nulls_node) :
475 		NULL;
476 }
477 
478 static inline bool sk_unhashed(const struct sock *sk)
479 {
480 	return hlist_unhashed(&sk->sk_node);
481 }
482 
483 static inline bool sk_hashed(const struct sock *sk)
484 {
485 	return !sk_unhashed(sk);
486 }
487 
488 static inline void sk_node_init(struct hlist_node *node)
489 {
490 	node->pprev = NULL;
491 }
492 
493 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
494 {
495 	node->pprev = NULL;
496 }
497 
498 static inline void __sk_del_node(struct sock *sk)
499 {
500 	__hlist_del(&sk->sk_node);
501 }
502 
503 /* NB: equivalent to hlist_del_init_rcu */
504 static inline bool __sk_del_node_init(struct sock *sk)
505 {
506 	if (sk_hashed(sk)) {
507 		__sk_del_node(sk);
508 		sk_node_init(&sk->sk_node);
509 		return true;
510 	}
511 	return false;
512 }
513 
514 /* Grab socket reference count. This operation is valid only
515    when sk is ALREADY grabbed f.e. it is found in hash table
516    or a list and the lookup is made under lock preventing hash table
517    modifications.
518  */
519 
520 static inline void sock_hold(struct sock *sk)
521 {
522 	atomic_inc(&sk->sk_refcnt);
523 }
524 
525 /* Ungrab socket in the context, which assumes that socket refcnt
526    cannot hit zero, f.e. it is true in context of any socketcall.
527  */
528 static inline void __sock_put(struct sock *sk)
529 {
530 	atomic_dec(&sk->sk_refcnt);
531 }
532 
533 static inline bool sk_del_node_init(struct sock *sk)
534 {
535 	bool rc = __sk_del_node_init(sk);
536 
537 	if (rc) {
538 		/* paranoid for a while -acme */
539 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
540 		__sock_put(sk);
541 	}
542 	return rc;
543 }
544 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
545 
546 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
547 {
548 	if (sk_hashed(sk)) {
549 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
550 		return true;
551 	}
552 	return false;
553 }
554 
555 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
556 {
557 	bool rc = __sk_nulls_del_node_init_rcu(sk);
558 
559 	if (rc) {
560 		/* paranoid for a while -acme */
561 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
562 		__sock_put(sk);
563 	}
564 	return rc;
565 }
566 
567 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
568 {
569 	hlist_add_head(&sk->sk_node, list);
570 }
571 
572 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
573 {
574 	sock_hold(sk);
575 	__sk_add_node(sk, list);
576 }
577 
578 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
579 {
580 	sock_hold(sk);
581 	hlist_add_head_rcu(&sk->sk_node, list);
582 }
583 
584 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
585 {
586 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
587 }
588 
589 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
590 {
591 	sock_hold(sk);
592 	__sk_nulls_add_node_rcu(sk, list);
593 }
594 
595 static inline void __sk_del_bind_node(struct sock *sk)
596 {
597 	__hlist_del(&sk->sk_bind_node);
598 }
599 
600 static inline void sk_add_bind_node(struct sock *sk,
601 					struct hlist_head *list)
602 {
603 	hlist_add_head(&sk->sk_bind_node, list);
604 }
605 
606 #define sk_for_each(__sk, node, list) \
607 	hlist_for_each_entry(__sk, node, list, sk_node)
608 #define sk_for_each_rcu(__sk, node, list) \
609 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
610 #define sk_nulls_for_each(__sk, node, list) \
611 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
612 #define sk_nulls_for_each_rcu(__sk, node, list) \
613 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
614 #define sk_for_each_from(__sk, node) \
615 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
616 		hlist_for_each_entry_from(__sk, node, sk_node)
617 #define sk_nulls_for_each_from(__sk, node) \
618 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
619 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
620 #define sk_for_each_safe(__sk, node, tmp, list) \
621 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
622 #define sk_for_each_bound(__sk, node, list) \
623 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
624 
625 static inline struct user_namespace *sk_user_ns(struct sock *sk)
626 {
627 	/* Careful only use this in a context where these parameters
628 	 * can not change and must all be valid, such as recvmsg from
629 	 * userspace.
630 	 */
631 	return sk->sk_socket->file->f_cred->user_ns;
632 }
633 
634 /* Sock flags */
635 enum sock_flags {
636 	SOCK_DEAD,
637 	SOCK_DONE,
638 	SOCK_URGINLINE,
639 	SOCK_KEEPOPEN,
640 	SOCK_LINGER,
641 	SOCK_DESTROY,
642 	SOCK_BROADCAST,
643 	SOCK_TIMESTAMP,
644 	SOCK_ZAPPED,
645 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
646 	SOCK_DBG, /* %SO_DEBUG setting */
647 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
648 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
649 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
650 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
651 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
652 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
653 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
654 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
655 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
656 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
657 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
658 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
659 	SOCK_FASYNC, /* fasync() active */
660 	SOCK_RXQ_OVFL,
661 	SOCK_ZEROCOPY, /* buffers from userspace */
662 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
663 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
664 		     * Will use last 4 bytes of packet sent from
665 		     * user-space instead.
666 		     */
667 };
668 
669 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
670 {
671 	nsk->sk_flags = osk->sk_flags;
672 }
673 
674 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
675 {
676 	__set_bit(flag, &sk->sk_flags);
677 }
678 
679 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
680 {
681 	__clear_bit(flag, &sk->sk_flags);
682 }
683 
684 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
685 {
686 	return test_bit(flag, &sk->sk_flags);
687 }
688 
689 #ifdef CONFIG_NET
690 extern struct static_key memalloc_socks;
691 static inline int sk_memalloc_socks(void)
692 {
693 	return static_key_false(&memalloc_socks);
694 }
695 #else
696 
697 static inline int sk_memalloc_socks(void)
698 {
699 	return 0;
700 }
701 
702 #endif
703 
704 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
705 {
706 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
707 }
708 
709 static inline void sk_acceptq_removed(struct sock *sk)
710 {
711 	sk->sk_ack_backlog--;
712 }
713 
714 static inline void sk_acceptq_added(struct sock *sk)
715 {
716 	sk->sk_ack_backlog++;
717 }
718 
719 static inline bool sk_acceptq_is_full(const struct sock *sk)
720 {
721 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
722 }
723 
724 /*
725  * Compute minimal free write space needed to queue new packets.
726  */
727 static inline int sk_stream_min_wspace(const struct sock *sk)
728 {
729 	return sk->sk_wmem_queued >> 1;
730 }
731 
732 static inline int sk_stream_wspace(const struct sock *sk)
733 {
734 	return sk->sk_sndbuf - sk->sk_wmem_queued;
735 }
736 
737 extern void sk_stream_write_space(struct sock *sk);
738 
739 static inline bool sk_stream_memory_free(const struct sock *sk)
740 {
741 	return sk->sk_wmem_queued < sk->sk_sndbuf;
742 }
743 
744 /* OOB backlog add */
745 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
746 {
747 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
748 	skb_dst_force(skb);
749 
750 	if (!sk->sk_backlog.tail)
751 		sk->sk_backlog.head = skb;
752 	else
753 		sk->sk_backlog.tail->next = skb;
754 
755 	sk->sk_backlog.tail = skb;
756 	skb->next = NULL;
757 }
758 
759 /*
760  * Take into account size of receive queue and backlog queue
761  * Do not take into account this skb truesize,
762  * to allow even a single big packet to come.
763  */
764 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
765 				     unsigned int limit)
766 {
767 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
768 
769 	return qsize > limit;
770 }
771 
772 /* The per-socket spinlock must be held here. */
773 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
774 					      unsigned int limit)
775 {
776 	if (sk_rcvqueues_full(sk, skb, limit))
777 		return -ENOBUFS;
778 
779 	__sk_add_backlog(sk, skb);
780 	sk->sk_backlog.len += skb->truesize;
781 	return 0;
782 }
783 
784 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
785 
786 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
787 {
788 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
789 		return __sk_backlog_rcv(sk, skb);
790 
791 	return sk->sk_backlog_rcv(sk, skb);
792 }
793 
794 static inline void sock_rps_record_flow(const struct sock *sk)
795 {
796 #ifdef CONFIG_RPS
797 	struct rps_sock_flow_table *sock_flow_table;
798 
799 	rcu_read_lock();
800 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
801 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
802 	rcu_read_unlock();
803 #endif
804 }
805 
806 static inline void sock_rps_reset_flow(const struct sock *sk)
807 {
808 #ifdef CONFIG_RPS
809 	struct rps_sock_flow_table *sock_flow_table;
810 
811 	rcu_read_lock();
812 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
813 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
814 	rcu_read_unlock();
815 #endif
816 }
817 
818 static inline void sock_rps_save_rxhash(struct sock *sk,
819 					const struct sk_buff *skb)
820 {
821 #ifdef CONFIG_RPS
822 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
823 		sock_rps_reset_flow(sk);
824 		sk->sk_rxhash = skb->rxhash;
825 	}
826 #endif
827 }
828 
829 static inline void sock_rps_reset_rxhash(struct sock *sk)
830 {
831 #ifdef CONFIG_RPS
832 	sock_rps_reset_flow(sk);
833 	sk->sk_rxhash = 0;
834 #endif
835 }
836 
837 #define sk_wait_event(__sk, __timeo, __condition)			\
838 	({	int __rc;						\
839 		release_sock(__sk);					\
840 		__rc = __condition;					\
841 		if (!__rc) {						\
842 			*(__timeo) = schedule_timeout(*(__timeo));	\
843 		}							\
844 		lock_sock(__sk);					\
845 		__rc = __condition;					\
846 		__rc;							\
847 	})
848 
849 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
850 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
851 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
852 extern int sk_stream_error(struct sock *sk, int flags, int err);
853 extern void sk_stream_kill_queues(struct sock *sk);
854 extern void sk_set_memalloc(struct sock *sk);
855 extern void sk_clear_memalloc(struct sock *sk);
856 
857 extern int sk_wait_data(struct sock *sk, long *timeo);
858 
859 struct request_sock_ops;
860 struct timewait_sock_ops;
861 struct inet_hashinfo;
862 struct raw_hashinfo;
863 struct module;
864 
865 /* Networking protocol blocks we attach to sockets.
866  * socket layer -> transport layer interface
867  * transport -> network interface is defined by struct inet_proto
868  */
869 struct proto {
870 	void			(*close)(struct sock *sk,
871 					long timeout);
872 	int			(*connect)(struct sock *sk,
873 					struct sockaddr *uaddr,
874 					int addr_len);
875 	int			(*disconnect)(struct sock *sk, int flags);
876 
877 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
878 
879 	int			(*ioctl)(struct sock *sk, int cmd,
880 					 unsigned long arg);
881 	int			(*init)(struct sock *sk);
882 	void			(*destroy)(struct sock *sk);
883 	void			(*shutdown)(struct sock *sk, int how);
884 	int			(*setsockopt)(struct sock *sk, int level,
885 					int optname, char __user *optval,
886 					unsigned int optlen);
887 	int			(*getsockopt)(struct sock *sk, int level,
888 					int optname, char __user *optval,
889 					int __user *option);
890 #ifdef CONFIG_COMPAT
891 	int			(*compat_setsockopt)(struct sock *sk,
892 					int level,
893 					int optname, char __user *optval,
894 					unsigned int optlen);
895 	int			(*compat_getsockopt)(struct sock *sk,
896 					int level,
897 					int optname, char __user *optval,
898 					int __user *option);
899 	int			(*compat_ioctl)(struct sock *sk,
900 					unsigned int cmd, unsigned long arg);
901 #endif
902 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
903 					   struct msghdr *msg, size_t len);
904 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
905 					   struct msghdr *msg,
906 					   size_t len, int noblock, int flags,
907 					   int *addr_len);
908 	int			(*sendpage)(struct sock *sk, struct page *page,
909 					int offset, size_t size, int flags);
910 	int			(*bind)(struct sock *sk,
911 					struct sockaddr *uaddr, int addr_len);
912 
913 	int			(*backlog_rcv) (struct sock *sk,
914 						struct sk_buff *skb);
915 
916 	void		(*release_cb)(struct sock *sk);
917 	void		(*mtu_reduced)(struct sock *sk);
918 
919 	/* Keeping track of sk's, looking them up, and port selection methods. */
920 	void			(*hash)(struct sock *sk);
921 	void			(*unhash)(struct sock *sk);
922 	void			(*rehash)(struct sock *sk);
923 	int			(*get_port)(struct sock *sk, unsigned short snum);
924 	void			(*clear_sk)(struct sock *sk, int size);
925 
926 	/* Keeping track of sockets in use */
927 #ifdef CONFIG_PROC_FS
928 	unsigned int		inuse_idx;
929 #endif
930 
931 	/* Memory pressure */
932 	void			(*enter_memory_pressure)(struct sock *sk);
933 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
934 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
935 	/*
936 	 * Pressure flag: try to collapse.
937 	 * Technical note: it is used by multiple contexts non atomically.
938 	 * All the __sk_mem_schedule() is of this nature: accounting
939 	 * is strict, actions are advisory and have some latency.
940 	 */
941 	int			*memory_pressure;
942 	long			*sysctl_mem;
943 	int			*sysctl_wmem;
944 	int			*sysctl_rmem;
945 	int			max_header;
946 	bool			no_autobind;
947 
948 	struct kmem_cache	*slab;
949 	unsigned int		obj_size;
950 	int			slab_flags;
951 
952 	struct percpu_counter	*orphan_count;
953 
954 	struct request_sock_ops	*rsk_prot;
955 	struct timewait_sock_ops *twsk_prot;
956 
957 	union {
958 		struct inet_hashinfo	*hashinfo;
959 		struct udp_table	*udp_table;
960 		struct raw_hashinfo	*raw_hash;
961 	} h;
962 
963 	struct module		*owner;
964 
965 	char			name[32];
966 
967 	struct list_head	node;
968 #ifdef SOCK_REFCNT_DEBUG
969 	atomic_t		socks;
970 #endif
971 #ifdef CONFIG_MEMCG_KMEM
972 	/*
973 	 * cgroup specific init/deinit functions. Called once for all
974 	 * protocols that implement it, from cgroups populate function.
975 	 * This function has to setup any files the protocol want to
976 	 * appear in the kmem cgroup filesystem.
977 	 */
978 	int			(*init_cgroup)(struct mem_cgroup *memcg,
979 					       struct cgroup_subsys *ss);
980 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
981 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
982 #endif
983 };
984 
985 /*
986  * Bits in struct cg_proto.flags
987  */
988 enum cg_proto_flags {
989 	/* Currently active and new sockets should be assigned to cgroups */
990 	MEMCG_SOCK_ACTIVE,
991 	/* It was ever activated; we must disarm static keys on destruction */
992 	MEMCG_SOCK_ACTIVATED,
993 };
994 
995 struct cg_proto {
996 	void			(*enter_memory_pressure)(struct sock *sk);
997 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
998 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
999 	int			*memory_pressure;
1000 	long			*sysctl_mem;
1001 	unsigned long		flags;
1002 	/*
1003 	 * memcg field is used to find which memcg we belong directly
1004 	 * Each memcg struct can hold more than one cg_proto, so container_of
1005 	 * won't really cut.
1006 	 *
1007 	 * The elegant solution would be having an inverse function to
1008 	 * proto_cgroup in struct proto, but that means polluting the structure
1009 	 * for everybody, instead of just for memcg users.
1010 	 */
1011 	struct mem_cgroup	*memcg;
1012 };
1013 
1014 extern int proto_register(struct proto *prot, int alloc_slab);
1015 extern void proto_unregister(struct proto *prot);
1016 
1017 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1018 {
1019 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1020 }
1021 
1022 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1023 {
1024 	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1025 }
1026 
1027 #ifdef SOCK_REFCNT_DEBUG
1028 static inline void sk_refcnt_debug_inc(struct sock *sk)
1029 {
1030 	atomic_inc(&sk->sk_prot->socks);
1031 }
1032 
1033 static inline void sk_refcnt_debug_dec(struct sock *sk)
1034 {
1035 	atomic_dec(&sk->sk_prot->socks);
1036 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1037 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1038 }
1039 
1040 inline void sk_refcnt_debug_release(const struct sock *sk)
1041 {
1042 	if (atomic_read(&sk->sk_refcnt) != 1)
1043 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1044 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1045 }
1046 #else /* SOCK_REFCNT_DEBUG */
1047 #define sk_refcnt_debug_inc(sk) do { } while (0)
1048 #define sk_refcnt_debug_dec(sk) do { } while (0)
1049 #define sk_refcnt_debug_release(sk) do { } while (0)
1050 #endif /* SOCK_REFCNT_DEBUG */
1051 
1052 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1053 extern struct static_key memcg_socket_limit_enabled;
1054 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1055 					       struct cg_proto *cg_proto)
1056 {
1057 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1058 }
1059 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1060 #else
1061 #define mem_cgroup_sockets_enabled 0
1062 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1063 					       struct cg_proto *cg_proto)
1064 {
1065 	return NULL;
1066 }
1067 #endif
1068 
1069 
1070 static inline bool sk_has_memory_pressure(const struct sock *sk)
1071 {
1072 	return sk->sk_prot->memory_pressure != NULL;
1073 }
1074 
1075 static inline bool sk_under_memory_pressure(const struct sock *sk)
1076 {
1077 	if (!sk->sk_prot->memory_pressure)
1078 		return false;
1079 
1080 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1081 		return !!*sk->sk_cgrp->memory_pressure;
1082 
1083 	return !!*sk->sk_prot->memory_pressure;
1084 }
1085 
1086 static inline void sk_leave_memory_pressure(struct sock *sk)
1087 {
1088 	int *memory_pressure = sk->sk_prot->memory_pressure;
1089 
1090 	if (!memory_pressure)
1091 		return;
1092 
1093 	if (*memory_pressure)
1094 		*memory_pressure = 0;
1095 
1096 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1097 		struct cg_proto *cg_proto = sk->sk_cgrp;
1098 		struct proto *prot = sk->sk_prot;
1099 
1100 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1101 			if (*cg_proto->memory_pressure)
1102 				*cg_proto->memory_pressure = 0;
1103 	}
1104 
1105 }
1106 
1107 static inline void sk_enter_memory_pressure(struct sock *sk)
1108 {
1109 	if (!sk->sk_prot->enter_memory_pressure)
1110 		return;
1111 
1112 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1113 		struct cg_proto *cg_proto = sk->sk_cgrp;
1114 		struct proto *prot = sk->sk_prot;
1115 
1116 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1117 			cg_proto->enter_memory_pressure(sk);
1118 	}
1119 
1120 	sk->sk_prot->enter_memory_pressure(sk);
1121 }
1122 
1123 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1124 {
1125 	long *prot = sk->sk_prot->sysctl_mem;
1126 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1127 		prot = sk->sk_cgrp->sysctl_mem;
1128 	return prot[index];
1129 }
1130 
1131 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1132 					      unsigned long amt,
1133 					      int *parent_status)
1134 {
1135 	struct res_counter *fail;
1136 	int ret;
1137 
1138 	ret = res_counter_charge_nofail(prot->memory_allocated,
1139 					amt << PAGE_SHIFT, &fail);
1140 	if (ret < 0)
1141 		*parent_status = OVER_LIMIT;
1142 }
1143 
1144 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1145 					      unsigned long amt)
1146 {
1147 	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1148 }
1149 
1150 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1151 {
1152 	u64 ret;
1153 	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1154 	return ret >> PAGE_SHIFT;
1155 }
1156 
1157 static inline long
1158 sk_memory_allocated(const struct sock *sk)
1159 {
1160 	struct proto *prot = sk->sk_prot;
1161 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1162 		return memcg_memory_allocated_read(sk->sk_cgrp);
1163 
1164 	return atomic_long_read(prot->memory_allocated);
1165 }
1166 
1167 static inline long
1168 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1169 {
1170 	struct proto *prot = sk->sk_prot;
1171 
1172 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1173 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1174 		/* update the root cgroup regardless */
1175 		atomic_long_add_return(amt, prot->memory_allocated);
1176 		return memcg_memory_allocated_read(sk->sk_cgrp);
1177 	}
1178 
1179 	return atomic_long_add_return(amt, prot->memory_allocated);
1180 }
1181 
1182 static inline void
1183 sk_memory_allocated_sub(struct sock *sk, int amt)
1184 {
1185 	struct proto *prot = sk->sk_prot;
1186 
1187 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1188 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1189 
1190 	atomic_long_sub(amt, prot->memory_allocated);
1191 }
1192 
1193 static inline void sk_sockets_allocated_dec(struct sock *sk)
1194 {
1195 	struct proto *prot = sk->sk_prot;
1196 
1197 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1198 		struct cg_proto *cg_proto = sk->sk_cgrp;
1199 
1200 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1201 			percpu_counter_dec(cg_proto->sockets_allocated);
1202 	}
1203 
1204 	percpu_counter_dec(prot->sockets_allocated);
1205 }
1206 
1207 static inline void sk_sockets_allocated_inc(struct sock *sk)
1208 {
1209 	struct proto *prot = sk->sk_prot;
1210 
1211 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1212 		struct cg_proto *cg_proto = sk->sk_cgrp;
1213 
1214 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1215 			percpu_counter_inc(cg_proto->sockets_allocated);
1216 	}
1217 
1218 	percpu_counter_inc(prot->sockets_allocated);
1219 }
1220 
1221 static inline int
1222 sk_sockets_allocated_read_positive(struct sock *sk)
1223 {
1224 	struct proto *prot = sk->sk_prot;
1225 
1226 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1227 		return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1228 
1229 	return percpu_counter_read_positive(prot->sockets_allocated);
1230 }
1231 
1232 static inline int
1233 proto_sockets_allocated_sum_positive(struct proto *prot)
1234 {
1235 	return percpu_counter_sum_positive(prot->sockets_allocated);
1236 }
1237 
1238 static inline long
1239 proto_memory_allocated(struct proto *prot)
1240 {
1241 	return atomic_long_read(prot->memory_allocated);
1242 }
1243 
1244 static inline bool
1245 proto_memory_pressure(struct proto *prot)
1246 {
1247 	if (!prot->memory_pressure)
1248 		return false;
1249 	return !!*prot->memory_pressure;
1250 }
1251 
1252 
1253 #ifdef CONFIG_PROC_FS
1254 /* Called with local bh disabled */
1255 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1256 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1257 #else
1258 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1259 		int inc)
1260 {
1261 }
1262 #endif
1263 
1264 
1265 /* With per-bucket locks this operation is not-atomic, so that
1266  * this version is not worse.
1267  */
1268 static inline void __sk_prot_rehash(struct sock *sk)
1269 {
1270 	sk->sk_prot->unhash(sk);
1271 	sk->sk_prot->hash(sk);
1272 }
1273 
1274 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1275 
1276 /* About 10 seconds */
1277 #define SOCK_DESTROY_TIME (10*HZ)
1278 
1279 /* Sockets 0-1023 can't be bound to unless you are superuser */
1280 #define PROT_SOCK	1024
1281 
1282 #define SHUTDOWN_MASK	3
1283 #define RCV_SHUTDOWN	1
1284 #define SEND_SHUTDOWN	2
1285 
1286 #define SOCK_SNDBUF_LOCK	1
1287 #define SOCK_RCVBUF_LOCK	2
1288 #define SOCK_BINDADDR_LOCK	4
1289 #define SOCK_BINDPORT_LOCK	8
1290 
1291 /* sock_iocb: used to kick off async processing of socket ios */
1292 struct sock_iocb {
1293 	struct list_head	list;
1294 
1295 	int			flags;
1296 	int			size;
1297 	struct socket		*sock;
1298 	struct sock		*sk;
1299 	struct scm_cookie	*scm;
1300 	struct msghdr		*msg, async_msg;
1301 	struct kiocb		*kiocb;
1302 };
1303 
1304 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1305 {
1306 	return (struct sock_iocb *)iocb->private;
1307 }
1308 
1309 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1310 {
1311 	return si->kiocb;
1312 }
1313 
1314 struct socket_alloc {
1315 	struct socket socket;
1316 	struct inode vfs_inode;
1317 };
1318 
1319 static inline struct socket *SOCKET_I(struct inode *inode)
1320 {
1321 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1322 }
1323 
1324 static inline struct inode *SOCK_INODE(struct socket *socket)
1325 {
1326 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1327 }
1328 
1329 /*
1330  * Functions for memory accounting
1331  */
1332 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1333 extern void __sk_mem_reclaim(struct sock *sk);
1334 
1335 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1336 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1337 #define SK_MEM_SEND	0
1338 #define SK_MEM_RECV	1
1339 
1340 static inline int sk_mem_pages(int amt)
1341 {
1342 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1343 }
1344 
1345 static inline bool sk_has_account(struct sock *sk)
1346 {
1347 	/* return true if protocol supports memory accounting */
1348 	return !!sk->sk_prot->memory_allocated;
1349 }
1350 
1351 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1352 {
1353 	if (!sk_has_account(sk))
1354 		return true;
1355 	return size <= sk->sk_forward_alloc ||
1356 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1357 }
1358 
1359 static inline bool
1360 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1361 {
1362 	if (!sk_has_account(sk))
1363 		return true;
1364 	return size<= sk->sk_forward_alloc ||
1365 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1366 		skb_pfmemalloc(skb);
1367 }
1368 
1369 static inline void sk_mem_reclaim(struct sock *sk)
1370 {
1371 	if (!sk_has_account(sk))
1372 		return;
1373 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1374 		__sk_mem_reclaim(sk);
1375 }
1376 
1377 static inline void sk_mem_reclaim_partial(struct sock *sk)
1378 {
1379 	if (!sk_has_account(sk))
1380 		return;
1381 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1382 		__sk_mem_reclaim(sk);
1383 }
1384 
1385 static inline void sk_mem_charge(struct sock *sk, int size)
1386 {
1387 	if (!sk_has_account(sk))
1388 		return;
1389 	sk->sk_forward_alloc -= size;
1390 }
1391 
1392 static inline void sk_mem_uncharge(struct sock *sk, int size)
1393 {
1394 	if (!sk_has_account(sk))
1395 		return;
1396 	sk->sk_forward_alloc += size;
1397 }
1398 
1399 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1400 {
1401 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1402 	sk->sk_wmem_queued -= skb->truesize;
1403 	sk_mem_uncharge(sk, skb->truesize);
1404 	__kfree_skb(skb);
1405 }
1406 
1407 /* Used by processes to "lock" a socket state, so that
1408  * interrupts and bottom half handlers won't change it
1409  * from under us. It essentially blocks any incoming
1410  * packets, so that we won't get any new data or any
1411  * packets that change the state of the socket.
1412  *
1413  * While locked, BH processing will add new packets to
1414  * the backlog queue.  This queue is processed by the
1415  * owner of the socket lock right before it is released.
1416  *
1417  * Since ~2.3.5 it is also exclusive sleep lock serializing
1418  * accesses from user process context.
1419  */
1420 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1421 
1422 /*
1423  * Macro so as to not evaluate some arguments when
1424  * lockdep is not enabled.
1425  *
1426  * Mark both the sk_lock and the sk_lock.slock as a
1427  * per-address-family lock class.
1428  */
1429 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1430 do {									\
1431 	sk->sk_lock.owned = 0;						\
1432 	init_waitqueue_head(&sk->sk_lock.wq);				\
1433 	spin_lock_init(&(sk)->sk_lock.slock);				\
1434 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1435 			sizeof((sk)->sk_lock));				\
1436 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1437 				(skey), (sname));				\
1438 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1439 } while (0)
1440 
1441 extern void lock_sock_nested(struct sock *sk, int subclass);
1442 
1443 static inline void lock_sock(struct sock *sk)
1444 {
1445 	lock_sock_nested(sk, 0);
1446 }
1447 
1448 extern void release_sock(struct sock *sk);
1449 
1450 /* BH context may only use the following locking interface. */
1451 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1452 #define bh_lock_sock_nested(__sk) \
1453 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1454 				SINGLE_DEPTH_NESTING)
1455 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1456 
1457 extern bool lock_sock_fast(struct sock *sk);
1458 /**
1459  * unlock_sock_fast - complement of lock_sock_fast
1460  * @sk: socket
1461  * @slow: slow mode
1462  *
1463  * fast unlock socket for user context.
1464  * If slow mode is on, we call regular release_sock()
1465  */
1466 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1467 {
1468 	if (slow)
1469 		release_sock(sk);
1470 	else
1471 		spin_unlock_bh(&sk->sk_lock.slock);
1472 }
1473 
1474 
1475 extern struct sock		*sk_alloc(struct net *net, int family,
1476 					  gfp_t priority,
1477 					  struct proto *prot);
1478 extern void			sk_free(struct sock *sk);
1479 extern void			sk_release_kernel(struct sock *sk);
1480 extern struct sock		*sk_clone_lock(const struct sock *sk,
1481 					       const gfp_t priority);
1482 
1483 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1484 					      unsigned long size, int force,
1485 					      gfp_t priority);
1486 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1487 					      unsigned long size, int force,
1488 					      gfp_t priority);
1489 extern void			sock_wfree(struct sk_buff *skb);
1490 extern void			sock_rfree(struct sk_buff *skb);
1491 extern void			sock_edemux(struct sk_buff *skb);
1492 
1493 extern int			sock_setsockopt(struct socket *sock, int level,
1494 						int op, char __user *optval,
1495 						unsigned int optlen);
1496 
1497 extern int			sock_getsockopt(struct socket *sock, int level,
1498 						int op, char __user *optval,
1499 						int __user *optlen);
1500 extern struct sk_buff		*sock_alloc_send_skb(struct sock *sk,
1501 						     unsigned long size,
1502 						     int noblock,
1503 						     int *errcode);
1504 extern struct sk_buff		*sock_alloc_send_pskb(struct sock *sk,
1505 						      unsigned long header_len,
1506 						      unsigned long data_len,
1507 						      int noblock,
1508 						      int *errcode);
1509 extern void *sock_kmalloc(struct sock *sk, int size,
1510 			  gfp_t priority);
1511 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1512 extern void sk_send_sigurg(struct sock *sk);
1513 
1514 /*
1515  * Functions to fill in entries in struct proto_ops when a protocol
1516  * does not implement a particular function.
1517  */
1518 extern int                      sock_no_bind(struct socket *,
1519 					     struct sockaddr *, int);
1520 extern int                      sock_no_connect(struct socket *,
1521 						struct sockaddr *, int, int);
1522 extern int                      sock_no_socketpair(struct socket *,
1523 						   struct socket *);
1524 extern int                      sock_no_accept(struct socket *,
1525 					       struct socket *, int);
1526 extern int                      sock_no_getname(struct socket *,
1527 						struct sockaddr *, int *, int);
1528 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1529 					     struct poll_table_struct *);
1530 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1531 					      unsigned long);
1532 extern int			sock_no_listen(struct socket *, int);
1533 extern int                      sock_no_shutdown(struct socket *, int);
1534 extern int			sock_no_getsockopt(struct socket *, int , int,
1535 						   char __user *, int __user *);
1536 extern int			sock_no_setsockopt(struct socket *, int, int,
1537 						   char __user *, unsigned int);
1538 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1539 						struct msghdr *, size_t);
1540 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1541 						struct msghdr *, size_t, int);
1542 extern int			sock_no_mmap(struct file *file,
1543 					     struct socket *sock,
1544 					     struct vm_area_struct *vma);
1545 extern ssize_t			sock_no_sendpage(struct socket *sock,
1546 						struct page *page,
1547 						int offset, size_t size,
1548 						int flags);
1549 
1550 /*
1551  * Functions to fill in entries in struct proto_ops when a protocol
1552  * uses the inet style.
1553  */
1554 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1555 				  char __user *optval, int __user *optlen);
1556 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1557 			       struct msghdr *msg, size_t size, int flags);
1558 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1559 				  char __user *optval, unsigned int optlen);
1560 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1561 		int optname, char __user *optval, int __user *optlen);
1562 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1563 		int optname, char __user *optval, unsigned int optlen);
1564 
1565 extern void sk_common_release(struct sock *sk);
1566 
1567 /*
1568  *	Default socket callbacks and setup code
1569  */
1570 
1571 /* Initialise core socket variables */
1572 extern void sock_init_data(struct socket *sock, struct sock *sk);
1573 
1574 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1575 
1576 /**
1577  *	sk_filter_release - release a socket filter
1578  *	@fp: filter to remove
1579  *
1580  *	Remove a filter from a socket and release its resources.
1581  */
1582 
1583 static inline void sk_filter_release(struct sk_filter *fp)
1584 {
1585 	if (atomic_dec_and_test(&fp->refcnt))
1586 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1587 }
1588 
1589 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1590 {
1591 	unsigned int size = sk_filter_len(fp);
1592 
1593 	atomic_sub(size, &sk->sk_omem_alloc);
1594 	sk_filter_release(fp);
1595 }
1596 
1597 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1598 {
1599 	atomic_inc(&fp->refcnt);
1600 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1601 }
1602 
1603 /*
1604  * Socket reference counting postulates.
1605  *
1606  * * Each user of socket SHOULD hold a reference count.
1607  * * Each access point to socket (an hash table bucket, reference from a list,
1608  *   running timer, skb in flight MUST hold a reference count.
1609  * * When reference count hits 0, it means it will never increase back.
1610  * * When reference count hits 0, it means that no references from
1611  *   outside exist to this socket and current process on current CPU
1612  *   is last user and may/should destroy this socket.
1613  * * sk_free is called from any context: process, BH, IRQ. When
1614  *   it is called, socket has no references from outside -> sk_free
1615  *   may release descendant resources allocated by the socket, but
1616  *   to the time when it is called, socket is NOT referenced by any
1617  *   hash tables, lists etc.
1618  * * Packets, delivered from outside (from network or from another process)
1619  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1620  *   when they sit in queue. Otherwise, packets will leak to hole, when
1621  *   socket is looked up by one cpu and unhasing is made by another CPU.
1622  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1623  *   (leak to backlog). Packet socket does all the processing inside
1624  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1625  *   use separate SMP lock, so that they are prone too.
1626  */
1627 
1628 /* Ungrab socket and destroy it, if it was the last reference. */
1629 static inline void sock_put(struct sock *sk)
1630 {
1631 	if (atomic_dec_and_test(&sk->sk_refcnt))
1632 		sk_free(sk);
1633 }
1634 
1635 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1636 			  const int nested);
1637 
1638 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1639 {
1640 	sk->sk_tx_queue_mapping = tx_queue;
1641 }
1642 
1643 static inline void sk_tx_queue_clear(struct sock *sk)
1644 {
1645 	sk->sk_tx_queue_mapping = -1;
1646 }
1647 
1648 static inline int sk_tx_queue_get(const struct sock *sk)
1649 {
1650 	return sk ? sk->sk_tx_queue_mapping : -1;
1651 }
1652 
1653 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1654 {
1655 	sk_tx_queue_clear(sk);
1656 	sk->sk_socket = sock;
1657 }
1658 
1659 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1660 {
1661 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1662 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1663 }
1664 /* Detach socket from process context.
1665  * Announce socket dead, detach it from wait queue and inode.
1666  * Note that parent inode held reference count on this struct sock,
1667  * we do not release it in this function, because protocol
1668  * probably wants some additional cleanups or even continuing
1669  * to work with this socket (TCP).
1670  */
1671 static inline void sock_orphan(struct sock *sk)
1672 {
1673 	write_lock_bh(&sk->sk_callback_lock);
1674 	sock_set_flag(sk, SOCK_DEAD);
1675 	sk_set_socket(sk, NULL);
1676 	sk->sk_wq  = NULL;
1677 	write_unlock_bh(&sk->sk_callback_lock);
1678 }
1679 
1680 static inline void sock_graft(struct sock *sk, struct socket *parent)
1681 {
1682 	write_lock_bh(&sk->sk_callback_lock);
1683 	sk->sk_wq = parent->wq;
1684 	parent->sk = sk;
1685 	sk_set_socket(sk, parent);
1686 	security_sock_graft(sk, parent);
1687 	write_unlock_bh(&sk->sk_callback_lock);
1688 }
1689 
1690 extern kuid_t sock_i_uid(struct sock *sk);
1691 extern unsigned long sock_i_ino(struct sock *sk);
1692 
1693 static inline struct dst_entry *
1694 __sk_dst_get(struct sock *sk)
1695 {
1696 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1697 						       lockdep_is_held(&sk->sk_lock.slock));
1698 }
1699 
1700 static inline struct dst_entry *
1701 sk_dst_get(struct sock *sk)
1702 {
1703 	struct dst_entry *dst;
1704 
1705 	rcu_read_lock();
1706 	dst = rcu_dereference(sk->sk_dst_cache);
1707 	if (dst)
1708 		dst_hold(dst);
1709 	rcu_read_unlock();
1710 	return dst;
1711 }
1712 
1713 extern void sk_reset_txq(struct sock *sk);
1714 
1715 static inline void dst_negative_advice(struct sock *sk)
1716 {
1717 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1718 
1719 	if (dst && dst->ops->negative_advice) {
1720 		ndst = dst->ops->negative_advice(dst);
1721 
1722 		if (ndst != dst) {
1723 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1724 			sk_reset_txq(sk);
1725 		}
1726 	}
1727 }
1728 
1729 static inline void
1730 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1731 {
1732 	struct dst_entry *old_dst;
1733 
1734 	sk_tx_queue_clear(sk);
1735 	/*
1736 	 * This can be called while sk is owned by the caller only,
1737 	 * with no state that can be checked in a rcu_dereference_check() cond
1738 	 */
1739 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1740 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1741 	dst_release(old_dst);
1742 }
1743 
1744 static inline void
1745 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1746 {
1747 	spin_lock(&sk->sk_dst_lock);
1748 	__sk_dst_set(sk, dst);
1749 	spin_unlock(&sk->sk_dst_lock);
1750 }
1751 
1752 static inline void
1753 __sk_dst_reset(struct sock *sk)
1754 {
1755 	__sk_dst_set(sk, NULL);
1756 }
1757 
1758 static inline void
1759 sk_dst_reset(struct sock *sk)
1760 {
1761 	spin_lock(&sk->sk_dst_lock);
1762 	__sk_dst_reset(sk);
1763 	spin_unlock(&sk->sk_dst_lock);
1764 }
1765 
1766 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1767 
1768 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1769 
1770 static inline bool sk_can_gso(const struct sock *sk)
1771 {
1772 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1773 }
1774 
1775 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1776 
1777 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1778 {
1779 	sk->sk_route_nocaps |= flags;
1780 	sk->sk_route_caps &= ~flags;
1781 }
1782 
1783 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1784 					   char __user *from, char *to,
1785 					   int copy, int offset)
1786 {
1787 	if (skb->ip_summed == CHECKSUM_NONE) {
1788 		int err = 0;
1789 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1790 		if (err)
1791 			return err;
1792 		skb->csum = csum_block_add(skb->csum, csum, offset);
1793 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1794 		if (!access_ok(VERIFY_READ, from, copy) ||
1795 		    __copy_from_user_nocache(to, from, copy))
1796 			return -EFAULT;
1797 	} else if (copy_from_user(to, from, copy))
1798 		return -EFAULT;
1799 
1800 	return 0;
1801 }
1802 
1803 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1804 				       char __user *from, int copy)
1805 {
1806 	int err, offset = skb->len;
1807 
1808 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1809 				       copy, offset);
1810 	if (err)
1811 		__skb_trim(skb, offset);
1812 
1813 	return err;
1814 }
1815 
1816 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1817 					   struct sk_buff *skb,
1818 					   struct page *page,
1819 					   int off, int copy)
1820 {
1821 	int err;
1822 
1823 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1824 				       copy, skb->len);
1825 	if (err)
1826 		return err;
1827 
1828 	skb->len	     += copy;
1829 	skb->data_len	     += copy;
1830 	skb->truesize	     += copy;
1831 	sk->sk_wmem_queued   += copy;
1832 	sk_mem_charge(sk, copy);
1833 	return 0;
1834 }
1835 
1836 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1837 				   struct sk_buff *skb, struct page *page,
1838 				   int off, int copy)
1839 {
1840 	if (skb->ip_summed == CHECKSUM_NONE) {
1841 		int err = 0;
1842 		__wsum csum = csum_and_copy_from_user(from,
1843 						     page_address(page) + off,
1844 							    copy, 0, &err);
1845 		if (err)
1846 			return err;
1847 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1848 	} else if (copy_from_user(page_address(page) + off, from, copy))
1849 		return -EFAULT;
1850 
1851 	skb->len	     += copy;
1852 	skb->data_len	     += copy;
1853 	skb->truesize	     += copy;
1854 	sk->sk_wmem_queued   += copy;
1855 	sk_mem_charge(sk, copy);
1856 	return 0;
1857 }
1858 
1859 /**
1860  * sk_wmem_alloc_get - returns write allocations
1861  * @sk: socket
1862  *
1863  * Returns sk_wmem_alloc minus initial offset of one
1864  */
1865 static inline int sk_wmem_alloc_get(const struct sock *sk)
1866 {
1867 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1868 }
1869 
1870 /**
1871  * sk_rmem_alloc_get - returns read allocations
1872  * @sk: socket
1873  *
1874  * Returns sk_rmem_alloc
1875  */
1876 static inline int sk_rmem_alloc_get(const struct sock *sk)
1877 {
1878 	return atomic_read(&sk->sk_rmem_alloc);
1879 }
1880 
1881 /**
1882  * sk_has_allocations - check if allocations are outstanding
1883  * @sk: socket
1884  *
1885  * Returns true if socket has write or read allocations
1886  */
1887 static inline bool sk_has_allocations(const struct sock *sk)
1888 {
1889 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1890 }
1891 
1892 /**
1893  * wq_has_sleeper - check if there are any waiting processes
1894  * @wq: struct socket_wq
1895  *
1896  * Returns true if socket_wq has waiting processes
1897  *
1898  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1899  * barrier call. They were added due to the race found within the tcp code.
1900  *
1901  * Consider following tcp code paths:
1902  *
1903  * CPU1                  CPU2
1904  *
1905  * sys_select            receive packet
1906  *   ...                 ...
1907  *   __add_wait_queue    update tp->rcv_nxt
1908  *   ...                 ...
1909  *   tp->rcv_nxt check   sock_def_readable
1910  *   ...                 {
1911  *   schedule               rcu_read_lock();
1912  *                          wq = rcu_dereference(sk->sk_wq);
1913  *                          if (wq && waitqueue_active(&wq->wait))
1914  *                              wake_up_interruptible(&wq->wait)
1915  *                          ...
1916  *                       }
1917  *
1918  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1919  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1920  * could then endup calling schedule and sleep forever if there are no more
1921  * data on the socket.
1922  *
1923  */
1924 static inline bool wq_has_sleeper(struct socket_wq *wq)
1925 {
1926 	/* We need to be sure we are in sync with the
1927 	 * add_wait_queue modifications to the wait queue.
1928 	 *
1929 	 * This memory barrier is paired in the sock_poll_wait.
1930 	 */
1931 	smp_mb();
1932 	return wq && waitqueue_active(&wq->wait);
1933 }
1934 
1935 /**
1936  * sock_poll_wait - place memory barrier behind the poll_wait call.
1937  * @filp:           file
1938  * @wait_address:   socket wait queue
1939  * @p:              poll_table
1940  *
1941  * See the comments in the wq_has_sleeper function.
1942  */
1943 static inline void sock_poll_wait(struct file *filp,
1944 		wait_queue_head_t *wait_address, poll_table *p)
1945 {
1946 	if (!poll_does_not_wait(p) && wait_address) {
1947 		poll_wait(filp, wait_address, p);
1948 		/* We need to be sure we are in sync with the
1949 		 * socket flags modification.
1950 		 *
1951 		 * This memory barrier is paired in the wq_has_sleeper.
1952 		 */
1953 		smp_mb();
1954 	}
1955 }
1956 
1957 /*
1958  *	Queue a received datagram if it will fit. Stream and sequenced
1959  *	protocols can't normally use this as they need to fit buffers in
1960  *	and play with them.
1961  *
1962  *	Inlined as it's very short and called for pretty much every
1963  *	packet ever received.
1964  */
1965 
1966 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1967 {
1968 	skb_orphan(skb);
1969 	skb->sk = sk;
1970 	skb->destructor = sock_wfree;
1971 	/*
1972 	 * We used to take a refcount on sk, but following operation
1973 	 * is enough to guarantee sk_free() wont free this sock until
1974 	 * all in-flight packets are completed
1975 	 */
1976 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1977 }
1978 
1979 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1980 {
1981 	skb_orphan(skb);
1982 	skb->sk = sk;
1983 	skb->destructor = sock_rfree;
1984 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1985 	sk_mem_charge(sk, skb->truesize);
1986 }
1987 
1988 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1989 			   unsigned long expires);
1990 
1991 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1992 
1993 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1994 
1995 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1996 
1997 /*
1998  *	Recover an error report and clear atomically
1999  */
2000 
2001 static inline int sock_error(struct sock *sk)
2002 {
2003 	int err;
2004 	if (likely(!sk->sk_err))
2005 		return 0;
2006 	err = xchg(&sk->sk_err, 0);
2007 	return -err;
2008 }
2009 
2010 static inline unsigned long sock_wspace(struct sock *sk)
2011 {
2012 	int amt = 0;
2013 
2014 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2015 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2016 		if (amt < 0)
2017 			amt = 0;
2018 	}
2019 	return amt;
2020 }
2021 
2022 static inline void sk_wake_async(struct sock *sk, int how, int band)
2023 {
2024 	if (sock_flag(sk, SOCK_FASYNC))
2025 		sock_wake_async(sk->sk_socket, how, band);
2026 }
2027 
2028 #define SOCK_MIN_SNDBUF 2048
2029 /*
2030  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2031  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2032  */
2033 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2034 
2035 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2036 {
2037 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2038 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2039 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2040 	}
2041 }
2042 
2043 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2044 
2045 /**
2046  * sk_page_frag - return an appropriate page_frag
2047  * @sk: socket
2048  *
2049  * If socket allocation mode allows current thread to sleep, it means its
2050  * safe to use the per task page_frag instead of the per socket one.
2051  */
2052 static inline struct page_frag *sk_page_frag(struct sock *sk)
2053 {
2054 	if (sk->sk_allocation & __GFP_WAIT)
2055 		return &current->task_frag;
2056 
2057 	return &sk->sk_frag;
2058 }
2059 
2060 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2061 
2062 /*
2063  *	Default write policy as shown to user space via poll/select/SIGIO
2064  */
2065 static inline bool sock_writeable(const struct sock *sk)
2066 {
2067 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2068 }
2069 
2070 static inline gfp_t gfp_any(void)
2071 {
2072 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2073 }
2074 
2075 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2076 {
2077 	return noblock ? 0 : sk->sk_rcvtimeo;
2078 }
2079 
2080 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2081 {
2082 	return noblock ? 0 : sk->sk_sndtimeo;
2083 }
2084 
2085 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2086 {
2087 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2088 }
2089 
2090 /* Alas, with timeout socket operations are not restartable.
2091  * Compare this to poll().
2092  */
2093 static inline int sock_intr_errno(long timeo)
2094 {
2095 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2096 }
2097 
2098 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2099 	struct sk_buff *skb);
2100 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2101 	struct sk_buff *skb);
2102 
2103 static inline void
2104 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2105 {
2106 	ktime_t kt = skb->tstamp;
2107 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2108 
2109 	/*
2110 	 * generate control messages if
2111 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2112 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2113 	 * - software time stamp available and wanted
2114 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2115 	 * - hardware time stamps available and wanted
2116 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2117 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2118 	 */
2119 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2120 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2121 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2122 	    (hwtstamps->hwtstamp.tv64 &&
2123 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2124 	    (hwtstamps->syststamp.tv64 &&
2125 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2126 		__sock_recv_timestamp(msg, sk, skb);
2127 	else
2128 		sk->sk_stamp = kt;
2129 
2130 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2131 		__sock_recv_wifi_status(msg, sk, skb);
2132 }
2133 
2134 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2135 				     struct sk_buff *skb);
2136 
2137 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2138 					  struct sk_buff *skb)
2139 {
2140 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2141 			   (1UL << SOCK_RCVTSTAMP)			| \
2142 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2143 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2144 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)	| \
2145 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2146 
2147 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2148 		__sock_recv_ts_and_drops(msg, sk, skb);
2149 	else
2150 		sk->sk_stamp = skb->tstamp;
2151 }
2152 
2153 /**
2154  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2155  * @sk:		socket sending this packet
2156  * @tx_flags:	filled with instructions for time stamping
2157  *
2158  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2159  * parameters are invalid.
2160  */
2161 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2162 
2163 /**
2164  * sk_eat_skb - Release a skb if it is no longer needed
2165  * @sk: socket to eat this skb from
2166  * @skb: socket buffer to eat
2167  * @copied_early: flag indicating whether DMA operations copied this data early
2168  *
2169  * This routine must be called with interrupts disabled or with the socket
2170  * locked so that the sk_buff queue operation is ok.
2171 */
2172 #ifdef CONFIG_NET_DMA
2173 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2174 {
2175 	__skb_unlink(skb, &sk->sk_receive_queue);
2176 	if (!copied_early)
2177 		__kfree_skb(skb);
2178 	else
2179 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2180 }
2181 #else
2182 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2183 {
2184 	__skb_unlink(skb, &sk->sk_receive_queue);
2185 	__kfree_skb(skb);
2186 }
2187 #endif
2188 
2189 static inline
2190 struct net *sock_net(const struct sock *sk)
2191 {
2192 	return read_pnet(&sk->sk_net);
2193 }
2194 
2195 static inline
2196 void sock_net_set(struct sock *sk, struct net *net)
2197 {
2198 	write_pnet(&sk->sk_net, net);
2199 }
2200 
2201 /*
2202  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2203  * They should not hold a reference to a namespace in order to allow
2204  * to stop it.
2205  * Sockets after sk_change_net should be released using sk_release_kernel
2206  */
2207 static inline void sk_change_net(struct sock *sk, struct net *net)
2208 {
2209 	put_net(sock_net(sk));
2210 	sock_net_set(sk, hold_net(net));
2211 }
2212 
2213 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2214 {
2215 	if (skb->sk) {
2216 		struct sock *sk = skb->sk;
2217 
2218 		skb->destructor = NULL;
2219 		skb->sk = NULL;
2220 		return sk;
2221 	}
2222 	return NULL;
2223 }
2224 
2225 extern void sock_enable_timestamp(struct sock *sk, int flag);
2226 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2227 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2228 
2229 /*
2230  *	Enable debug/info messages
2231  */
2232 extern int net_msg_warn;
2233 #define NETDEBUG(fmt, args...) \
2234 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2235 
2236 #define LIMIT_NETDEBUG(fmt, args...) \
2237 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2238 
2239 extern __u32 sysctl_wmem_max;
2240 extern __u32 sysctl_rmem_max;
2241 
2242 extern int sysctl_optmem_max;
2243 
2244 extern __u32 sysctl_wmem_default;
2245 extern __u32 sysctl_rmem_default;
2246 
2247 #endif	/* _SOCK_H */
2248