1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 #include <linux/sockptr.h> 63 #include <linux/indirect_call_wrapper.h> 64 #include <linux/atomic.h> 65 #include <linux/refcount.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* Define this to get the SOCK_DBG debugging facility. */ 80 #define SOCK_DEBUGGING 81 #ifdef SOCK_DEBUGGING 82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 83 printk(KERN_DEBUG msg); } while (0) 84 #else 85 /* Validate arguments and do nothing */ 86 static inline __printf(2, 3) 87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 88 { 89 } 90 #endif 91 92 /* This is the per-socket lock. The spinlock provides a synchronization 93 * between user contexts and software interrupt processing, whereas the 94 * mini-semaphore synchronizes multiple users amongst themselves. 95 */ 96 typedef struct { 97 spinlock_t slock; 98 int owned; 99 wait_queue_head_t wq; 100 /* 101 * We express the mutex-alike socket_lock semantics 102 * to the lock validator by explicitly managing 103 * the slock as a lock variant (in addition to 104 * the slock itself): 105 */ 106 #ifdef CONFIG_DEBUG_LOCK_ALLOC 107 struct lockdep_map dep_map; 108 #endif 109 } socket_lock_t; 110 111 struct sock; 112 struct proto; 113 struct net; 114 115 typedef __u32 __bitwise __portpair; 116 typedef __u64 __bitwise __addrpair; 117 118 /** 119 * struct sock_common - minimal network layer representation of sockets 120 * @skc_daddr: Foreign IPv4 addr 121 * @skc_rcv_saddr: Bound local IPv4 addr 122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 123 * @skc_hash: hash value used with various protocol lookup tables 124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 125 * @skc_dport: placeholder for inet_dport/tw_dport 126 * @skc_num: placeholder for inet_num/tw_num 127 * @skc_portpair: __u32 union of @skc_dport & @skc_num 128 * @skc_family: network address family 129 * @skc_state: Connection state 130 * @skc_reuse: %SO_REUSEADDR setting 131 * @skc_reuseport: %SO_REUSEPORT setting 132 * @skc_ipv6only: socket is IPV6 only 133 * @skc_net_refcnt: socket is using net ref counting 134 * @skc_bound_dev_if: bound device index if != 0 135 * @skc_bind_node: bind hash linkage for various protocol lookup tables 136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 137 * @skc_prot: protocol handlers inside a network family 138 * @skc_net: reference to the network namespace of this socket 139 * @skc_v6_daddr: IPV6 destination address 140 * @skc_v6_rcv_saddr: IPV6 source address 141 * @skc_cookie: socket's cookie value 142 * @skc_node: main hash linkage for various protocol lookup tables 143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 144 * @skc_tx_queue_mapping: tx queue number for this connection 145 * @skc_rx_queue_mapping: rx queue number for this connection 146 * @skc_flags: place holder for sk_flags 147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 149 * @skc_listener: connection request listener socket (aka rsk_listener) 150 * [union with @skc_flags] 151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 152 * [union with @skc_flags] 153 * @skc_incoming_cpu: record/match cpu processing incoming packets 154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 155 * [union with @skc_incoming_cpu] 156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 157 * [union with @skc_incoming_cpu] 158 * @skc_refcnt: reference count 159 * 160 * This is the minimal network layer representation of sockets, the header 161 * for struct sock and struct inet_timewait_sock. 162 */ 163 struct sock_common { 164 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 165 * address on 64bit arches : cf INET_MATCH() 166 */ 167 union { 168 __addrpair skc_addrpair; 169 struct { 170 __be32 skc_daddr; 171 __be32 skc_rcv_saddr; 172 }; 173 }; 174 union { 175 unsigned int skc_hash; 176 __u16 skc_u16hashes[2]; 177 }; 178 /* skc_dport && skc_num must be grouped as well */ 179 union { 180 __portpair skc_portpair; 181 struct { 182 __be16 skc_dport; 183 __u16 skc_num; 184 }; 185 }; 186 187 unsigned short skc_family; 188 volatile unsigned char skc_state; 189 unsigned char skc_reuse:4; 190 unsigned char skc_reuseport:1; 191 unsigned char skc_ipv6only:1; 192 unsigned char skc_net_refcnt:1; 193 int skc_bound_dev_if; 194 union { 195 struct hlist_node skc_bind_node; 196 struct hlist_node skc_portaddr_node; 197 }; 198 struct proto *skc_prot; 199 possible_net_t skc_net; 200 201 #if IS_ENABLED(CONFIG_IPV6) 202 struct in6_addr skc_v6_daddr; 203 struct in6_addr skc_v6_rcv_saddr; 204 #endif 205 206 atomic64_t skc_cookie; 207 208 /* following fields are padding to force 209 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 210 * assuming IPV6 is enabled. We use this padding differently 211 * for different kind of 'sockets' 212 */ 213 union { 214 unsigned long skc_flags; 215 struct sock *skc_listener; /* request_sock */ 216 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 217 }; 218 /* 219 * fields between dontcopy_begin/dontcopy_end 220 * are not copied in sock_copy() 221 */ 222 /* private: */ 223 int skc_dontcopy_begin[0]; 224 /* public: */ 225 union { 226 struct hlist_node skc_node; 227 struct hlist_nulls_node skc_nulls_node; 228 }; 229 unsigned short skc_tx_queue_mapping; 230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 231 unsigned short skc_rx_queue_mapping; 232 #endif 233 union { 234 int skc_incoming_cpu; 235 u32 skc_rcv_wnd; 236 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 237 }; 238 239 refcount_t skc_refcnt; 240 /* private: */ 241 int skc_dontcopy_end[0]; 242 union { 243 u32 skc_rxhash; 244 u32 skc_window_clamp; 245 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 246 }; 247 /* public: */ 248 }; 249 250 struct bpf_local_storage; 251 252 /** 253 * struct sock - network layer representation of sockets 254 * @__sk_common: shared layout with inet_timewait_sock 255 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 256 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 257 * @sk_lock: synchronizer 258 * @sk_kern_sock: True if sock is using kernel lock classes 259 * @sk_rcvbuf: size of receive buffer in bytes 260 * @sk_wq: sock wait queue and async head 261 * @sk_rx_dst: receive input route used by early demux 262 * @sk_dst_cache: destination cache 263 * @sk_dst_pending_confirm: need to confirm neighbour 264 * @sk_policy: flow policy 265 * @sk_rx_skb_cache: cache copy of recently accessed RX skb 266 * @sk_receive_queue: incoming packets 267 * @sk_wmem_alloc: transmit queue bytes committed 268 * @sk_tsq_flags: TCP Small Queues flags 269 * @sk_write_queue: Packet sending queue 270 * @sk_omem_alloc: "o" is "option" or "other" 271 * @sk_wmem_queued: persistent queue size 272 * @sk_forward_alloc: space allocated forward 273 * @sk_napi_id: id of the last napi context to receive data for sk 274 * @sk_ll_usec: usecs to busypoll when there is no data 275 * @sk_allocation: allocation mode 276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 279 * @sk_sndbuf: size of send buffer in bytes 280 * @__sk_flags_offset: empty field used to determine location of bitfield 281 * @sk_padding: unused element for alignment 282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 283 * @sk_no_check_rx: allow zero checksum in RX packets 284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 285 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 286 * @sk_route_forced_caps: static, forced route capabilities 287 * (set in tcp_init_sock()) 288 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 289 * @sk_gso_max_size: Maximum GSO segment size to build 290 * @sk_gso_max_segs: Maximum number of GSO segments 291 * @sk_pacing_shift: scaling factor for TCP Small Queues 292 * @sk_lingertime: %SO_LINGER l_linger setting 293 * @sk_backlog: always used with the per-socket spinlock held 294 * @sk_callback_lock: used with the callbacks in the end of this struct 295 * @sk_error_queue: rarely used 296 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 297 * IPV6_ADDRFORM for instance) 298 * @sk_err: last error 299 * @sk_err_soft: errors that don't cause failure but are the cause of a 300 * persistent failure not just 'timed out' 301 * @sk_drops: raw/udp drops counter 302 * @sk_ack_backlog: current listen backlog 303 * @sk_max_ack_backlog: listen backlog set in listen() 304 * @sk_uid: user id of owner 305 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 306 * @sk_busy_poll_budget: napi processing budget when busypolling 307 * @sk_priority: %SO_PRIORITY setting 308 * @sk_type: socket type (%SOCK_STREAM, etc) 309 * @sk_protocol: which protocol this socket belongs in this network family 310 * @sk_peer_pid: &struct pid for this socket's peer 311 * @sk_peer_cred: %SO_PEERCRED setting 312 * @sk_rcvlowat: %SO_RCVLOWAT setting 313 * @sk_rcvtimeo: %SO_RCVTIMEO setting 314 * @sk_sndtimeo: %SO_SNDTIMEO setting 315 * @sk_txhash: computed flow hash for use on transmit 316 * @sk_filter: socket filtering instructions 317 * @sk_timer: sock cleanup timer 318 * @sk_stamp: time stamp of last packet received 319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 320 * @sk_tsflags: SO_TIMESTAMPING flags 321 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 322 * for timestamping 323 * @sk_tskey: counter to disambiguate concurrent tstamp requests 324 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 325 * @sk_socket: Identd and reporting IO signals 326 * @sk_user_data: RPC layer private data 327 * @sk_frag: cached page frag 328 * @sk_peek_off: current peek_offset value 329 * @sk_send_head: front of stuff to transmit 330 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 331 * @sk_tx_skb_cache: cache copy of recently accessed TX skb 332 * @sk_security: used by security modules 333 * @sk_mark: generic packet mark 334 * @sk_cgrp_data: cgroup data for this cgroup 335 * @sk_memcg: this socket's memory cgroup association 336 * @sk_write_pending: a write to stream socket waits to start 337 * @sk_state_change: callback to indicate change in the state of the sock 338 * @sk_data_ready: callback to indicate there is data to be processed 339 * @sk_write_space: callback to indicate there is bf sending space available 340 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 341 * @sk_backlog_rcv: callback to process the backlog 342 * @sk_validate_xmit_skb: ptr to an optional validate function 343 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 344 * @sk_reuseport_cb: reuseport group container 345 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 346 * @sk_rcu: used during RCU grace period 347 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 348 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 349 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 350 * @sk_txtime_unused: unused txtime flags 351 */ 352 struct sock { 353 /* 354 * Now struct inet_timewait_sock also uses sock_common, so please just 355 * don't add nothing before this first member (__sk_common) --acme 356 */ 357 struct sock_common __sk_common; 358 #define sk_node __sk_common.skc_node 359 #define sk_nulls_node __sk_common.skc_nulls_node 360 #define sk_refcnt __sk_common.skc_refcnt 361 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 363 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 364 #endif 365 366 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 367 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 368 #define sk_hash __sk_common.skc_hash 369 #define sk_portpair __sk_common.skc_portpair 370 #define sk_num __sk_common.skc_num 371 #define sk_dport __sk_common.skc_dport 372 #define sk_addrpair __sk_common.skc_addrpair 373 #define sk_daddr __sk_common.skc_daddr 374 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 375 #define sk_family __sk_common.skc_family 376 #define sk_state __sk_common.skc_state 377 #define sk_reuse __sk_common.skc_reuse 378 #define sk_reuseport __sk_common.skc_reuseport 379 #define sk_ipv6only __sk_common.skc_ipv6only 380 #define sk_net_refcnt __sk_common.skc_net_refcnt 381 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 382 #define sk_bind_node __sk_common.skc_bind_node 383 #define sk_prot __sk_common.skc_prot 384 #define sk_net __sk_common.skc_net 385 #define sk_v6_daddr __sk_common.skc_v6_daddr 386 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 387 #define sk_cookie __sk_common.skc_cookie 388 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 389 #define sk_flags __sk_common.skc_flags 390 #define sk_rxhash __sk_common.skc_rxhash 391 392 socket_lock_t sk_lock; 393 atomic_t sk_drops; 394 int sk_rcvlowat; 395 struct sk_buff_head sk_error_queue; 396 struct sk_buff *sk_rx_skb_cache; 397 struct sk_buff_head sk_receive_queue; 398 /* 399 * The backlog queue is special, it is always used with 400 * the per-socket spinlock held and requires low latency 401 * access. Therefore we special case it's implementation. 402 * Note : rmem_alloc is in this structure to fill a hole 403 * on 64bit arches, not because its logically part of 404 * backlog. 405 */ 406 struct { 407 atomic_t rmem_alloc; 408 int len; 409 struct sk_buff *head; 410 struct sk_buff *tail; 411 } sk_backlog; 412 #define sk_rmem_alloc sk_backlog.rmem_alloc 413 414 int sk_forward_alloc; 415 #ifdef CONFIG_NET_RX_BUSY_POLL 416 unsigned int sk_ll_usec; 417 /* ===== mostly read cache line ===== */ 418 unsigned int sk_napi_id; 419 #endif 420 int sk_rcvbuf; 421 422 struct sk_filter __rcu *sk_filter; 423 union { 424 struct socket_wq __rcu *sk_wq; 425 /* private: */ 426 struct socket_wq *sk_wq_raw; 427 /* public: */ 428 }; 429 #ifdef CONFIG_XFRM 430 struct xfrm_policy __rcu *sk_policy[2]; 431 #endif 432 struct dst_entry *sk_rx_dst; 433 struct dst_entry __rcu *sk_dst_cache; 434 atomic_t sk_omem_alloc; 435 int sk_sndbuf; 436 437 /* ===== cache line for TX ===== */ 438 int sk_wmem_queued; 439 refcount_t sk_wmem_alloc; 440 unsigned long sk_tsq_flags; 441 union { 442 struct sk_buff *sk_send_head; 443 struct rb_root tcp_rtx_queue; 444 }; 445 struct sk_buff *sk_tx_skb_cache; 446 struct sk_buff_head sk_write_queue; 447 __s32 sk_peek_off; 448 int sk_write_pending; 449 __u32 sk_dst_pending_confirm; 450 u32 sk_pacing_status; /* see enum sk_pacing */ 451 long sk_sndtimeo; 452 struct timer_list sk_timer; 453 __u32 sk_priority; 454 __u32 sk_mark; 455 unsigned long sk_pacing_rate; /* bytes per second */ 456 unsigned long sk_max_pacing_rate; 457 struct page_frag sk_frag; 458 netdev_features_t sk_route_caps; 459 netdev_features_t sk_route_nocaps; 460 netdev_features_t sk_route_forced_caps; 461 int sk_gso_type; 462 unsigned int sk_gso_max_size; 463 gfp_t sk_allocation; 464 __u32 sk_txhash; 465 466 /* 467 * Because of non atomicity rules, all 468 * changes are protected by socket lock. 469 */ 470 u8 sk_padding : 1, 471 sk_kern_sock : 1, 472 sk_no_check_tx : 1, 473 sk_no_check_rx : 1, 474 sk_userlocks : 4; 475 u8 sk_pacing_shift; 476 u16 sk_type; 477 u16 sk_protocol; 478 u16 sk_gso_max_segs; 479 unsigned long sk_lingertime; 480 struct proto *sk_prot_creator; 481 rwlock_t sk_callback_lock; 482 int sk_err, 483 sk_err_soft; 484 u32 sk_ack_backlog; 485 u32 sk_max_ack_backlog; 486 kuid_t sk_uid; 487 #ifdef CONFIG_NET_RX_BUSY_POLL 488 u8 sk_prefer_busy_poll; 489 u16 sk_busy_poll_budget; 490 #endif 491 spinlock_t sk_peer_lock; 492 struct pid *sk_peer_pid; 493 const struct cred *sk_peer_cred; 494 495 long sk_rcvtimeo; 496 ktime_t sk_stamp; 497 #if BITS_PER_LONG==32 498 seqlock_t sk_stamp_seq; 499 #endif 500 u16 sk_tsflags; 501 int sk_bind_phc; 502 u8 sk_shutdown; 503 u32 sk_tskey; 504 atomic_t sk_zckey; 505 506 u8 sk_clockid; 507 u8 sk_txtime_deadline_mode : 1, 508 sk_txtime_report_errors : 1, 509 sk_txtime_unused : 6; 510 511 struct socket *sk_socket; 512 void *sk_user_data; 513 #ifdef CONFIG_SECURITY 514 void *sk_security; 515 #endif 516 struct sock_cgroup_data sk_cgrp_data; 517 struct mem_cgroup *sk_memcg; 518 void (*sk_state_change)(struct sock *sk); 519 void (*sk_data_ready)(struct sock *sk); 520 void (*sk_write_space)(struct sock *sk); 521 void (*sk_error_report)(struct sock *sk); 522 int (*sk_backlog_rcv)(struct sock *sk, 523 struct sk_buff *skb); 524 #ifdef CONFIG_SOCK_VALIDATE_XMIT 525 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 526 struct net_device *dev, 527 struct sk_buff *skb); 528 #endif 529 void (*sk_destruct)(struct sock *sk); 530 struct sock_reuseport __rcu *sk_reuseport_cb; 531 #ifdef CONFIG_BPF_SYSCALL 532 struct bpf_local_storage __rcu *sk_bpf_storage; 533 #endif 534 struct rcu_head sk_rcu; 535 }; 536 537 enum sk_pacing { 538 SK_PACING_NONE = 0, 539 SK_PACING_NEEDED = 1, 540 SK_PACING_FQ = 2, 541 }; 542 543 /* Pointer stored in sk_user_data might not be suitable for copying 544 * when cloning the socket. For instance, it can point to a reference 545 * counted object. sk_user_data bottom bit is set if pointer must not 546 * be copied. 547 */ 548 #define SK_USER_DATA_NOCOPY 1UL 549 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ 550 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) 551 552 /** 553 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 554 * @sk: socket 555 */ 556 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 557 { 558 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 559 } 560 561 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 562 563 #define rcu_dereference_sk_user_data(sk) \ 564 ({ \ 565 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 566 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 567 }) 568 #define rcu_assign_sk_user_data(sk, ptr) \ 569 ({ \ 570 uintptr_t __tmp = (uintptr_t)(ptr); \ 571 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 572 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 573 }) 574 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 575 ({ \ 576 uintptr_t __tmp = (uintptr_t)(ptr); \ 577 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 578 rcu_assign_pointer(__sk_user_data((sk)), \ 579 __tmp | SK_USER_DATA_NOCOPY); \ 580 }) 581 582 /* 583 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 584 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 585 * on a socket means that the socket will reuse everybody else's port 586 * without looking at the other's sk_reuse value. 587 */ 588 589 #define SK_NO_REUSE 0 590 #define SK_CAN_REUSE 1 591 #define SK_FORCE_REUSE 2 592 593 int sk_set_peek_off(struct sock *sk, int val); 594 595 static inline int sk_peek_offset(struct sock *sk, int flags) 596 { 597 if (unlikely(flags & MSG_PEEK)) { 598 return READ_ONCE(sk->sk_peek_off); 599 } 600 601 return 0; 602 } 603 604 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 605 { 606 s32 off = READ_ONCE(sk->sk_peek_off); 607 608 if (unlikely(off >= 0)) { 609 off = max_t(s32, off - val, 0); 610 WRITE_ONCE(sk->sk_peek_off, off); 611 } 612 } 613 614 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 615 { 616 sk_peek_offset_bwd(sk, -val); 617 } 618 619 /* 620 * Hashed lists helper routines 621 */ 622 static inline struct sock *sk_entry(const struct hlist_node *node) 623 { 624 return hlist_entry(node, struct sock, sk_node); 625 } 626 627 static inline struct sock *__sk_head(const struct hlist_head *head) 628 { 629 return hlist_entry(head->first, struct sock, sk_node); 630 } 631 632 static inline struct sock *sk_head(const struct hlist_head *head) 633 { 634 return hlist_empty(head) ? NULL : __sk_head(head); 635 } 636 637 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 638 { 639 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 640 } 641 642 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 643 { 644 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 645 } 646 647 static inline struct sock *sk_next(const struct sock *sk) 648 { 649 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 650 } 651 652 static inline struct sock *sk_nulls_next(const struct sock *sk) 653 { 654 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 655 hlist_nulls_entry(sk->sk_nulls_node.next, 656 struct sock, sk_nulls_node) : 657 NULL; 658 } 659 660 static inline bool sk_unhashed(const struct sock *sk) 661 { 662 return hlist_unhashed(&sk->sk_node); 663 } 664 665 static inline bool sk_hashed(const struct sock *sk) 666 { 667 return !sk_unhashed(sk); 668 } 669 670 static inline void sk_node_init(struct hlist_node *node) 671 { 672 node->pprev = NULL; 673 } 674 675 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 676 { 677 node->pprev = NULL; 678 } 679 680 static inline void __sk_del_node(struct sock *sk) 681 { 682 __hlist_del(&sk->sk_node); 683 } 684 685 /* NB: equivalent to hlist_del_init_rcu */ 686 static inline bool __sk_del_node_init(struct sock *sk) 687 { 688 if (sk_hashed(sk)) { 689 __sk_del_node(sk); 690 sk_node_init(&sk->sk_node); 691 return true; 692 } 693 return false; 694 } 695 696 /* Grab socket reference count. This operation is valid only 697 when sk is ALREADY grabbed f.e. it is found in hash table 698 or a list and the lookup is made under lock preventing hash table 699 modifications. 700 */ 701 702 static __always_inline void sock_hold(struct sock *sk) 703 { 704 refcount_inc(&sk->sk_refcnt); 705 } 706 707 /* Ungrab socket in the context, which assumes that socket refcnt 708 cannot hit zero, f.e. it is true in context of any socketcall. 709 */ 710 static __always_inline void __sock_put(struct sock *sk) 711 { 712 refcount_dec(&sk->sk_refcnt); 713 } 714 715 static inline bool sk_del_node_init(struct sock *sk) 716 { 717 bool rc = __sk_del_node_init(sk); 718 719 if (rc) { 720 /* paranoid for a while -acme */ 721 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 722 __sock_put(sk); 723 } 724 return rc; 725 } 726 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 727 728 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 729 { 730 if (sk_hashed(sk)) { 731 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 732 return true; 733 } 734 return false; 735 } 736 737 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 738 { 739 bool rc = __sk_nulls_del_node_init_rcu(sk); 740 741 if (rc) { 742 /* paranoid for a while -acme */ 743 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 744 __sock_put(sk); 745 } 746 return rc; 747 } 748 749 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 750 { 751 hlist_add_head(&sk->sk_node, list); 752 } 753 754 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 755 { 756 sock_hold(sk); 757 __sk_add_node(sk, list); 758 } 759 760 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 761 { 762 sock_hold(sk); 763 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 764 sk->sk_family == AF_INET6) 765 hlist_add_tail_rcu(&sk->sk_node, list); 766 else 767 hlist_add_head_rcu(&sk->sk_node, list); 768 } 769 770 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 771 { 772 sock_hold(sk); 773 hlist_add_tail_rcu(&sk->sk_node, list); 774 } 775 776 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 777 { 778 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 779 } 780 781 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 782 { 783 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 784 } 785 786 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 787 { 788 sock_hold(sk); 789 __sk_nulls_add_node_rcu(sk, list); 790 } 791 792 static inline void __sk_del_bind_node(struct sock *sk) 793 { 794 __hlist_del(&sk->sk_bind_node); 795 } 796 797 static inline void sk_add_bind_node(struct sock *sk, 798 struct hlist_head *list) 799 { 800 hlist_add_head(&sk->sk_bind_node, list); 801 } 802 803 #define sk_for_each(__sk, list) \ 804 hlist_for_each_entry(__sk, list, sk_node) 805 #define sk_for_each_rcu(__sk, list) \ 806 hlist_for_each_entry_rcu(__sk, list, sk_node) 807 #define sk_nulls_for_each(__sk, node, list) \ 808 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 809 #define sk_nulls_for_each_rcu(__sk, node, list) \ 810 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 811 #define sk_for_each_from(__sk) \ 812 hlist_for_each_entry_from(__sk, sk_node) 813 #define sk_nulls_for_each_from(__sk, node) \ 814 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 815 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 816 #define sk_for_each_safe(__sk, tmp, list) \ 817 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 818 #define sk_for_each_bound(__sk, list) \ 819 hlist_for_each_entry(__sk, list, sk_bind_node) 820 821 /** 822 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 823 * @tpos: the type * to use as a loop cursor. 824 * @pos: the &struct hlist_node to use as a loop cursor. 825 * @head: the head for your list. 826 * @offset: offset of hlist_node within the struct. 827 * 828 */ 829 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 830 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 831 pos != NULL && \ 832 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 833 pos = rcu_dereference(hlist_next_rcu(pos))) 834 835 static inline struct user_namespace *sk_user_ns(struct sock *sk) 836 { 837 /* Careful only use this in a context where these parameters 838 * can not change and must all be valid, such as recvmsg from 839 * userspace. 840 */ 841 return sk->sk_socket->file->f_cred->user_ns; 842 } 843 844 /* Sock flags */ 845 enum sock_flags { 846 SOCK_DEAD, 847 SOCK_DONE, 848 SOCK_URGINLINE, 849 SOCK_KEEPOPEN, 850 SOCK_LINGER, 851 SOCK_DESTROY, 852 SOCK_BROADCAST, 853 SOCK_TIMESTAMP, 854 SOCK_ZAPPED, 855 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 856 SOCK_DBG, /* %SO_DEBUG setting */ 857 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 858 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 859 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 860 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 861 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 862 SOCK_FASYNC, /* fasync() active */ 863 SOCK_RXQ_OVFL, 864 SOCK_ZEROCOPY, /* buffers from userspace */ 865 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 866 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 867 * Will use last 4 bytes of packet sent from 868 * user-space instead. 869 */ 870 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 871 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 872 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 873 SOCK_TXTIME, 874 SOCK_XDP, /* XDP is attached */ 875 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 876 }; 877 878 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 879 880 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 881 { 882 nsk->sk_flags = osk->sk_flags; 883 } 884 885 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 886 { 887 __set_bit(flag, &sk->sk_flags); 888 } 889 890 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 891 { 892 __clear_bit(flag, &sk->sk_flags); 893 } 894 895 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 896 int valbool) 897 { 898 if (valbool) 899 sock_set_flag(sk, bit); 900 else 901 sock_reset_flag(sk, bit); 902 } 903 904 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 905 { 906 return test_bit(flag, &sk->sk_flags); 907 } 908 909 #ifdef CONFIG_NET 910 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 911 static inline int sk_memalloc_socks(void) 912 { 913 return static_branch_unlikely(&memalloc_socks_key); 914 } 915 916 void __receive_sock(struct file *file); 917 #else 918 919 static inline int sk_memalloc_socks(void) 920 { 921 return 0; 922 } 923 924 static inline void __receive_sock(struct file *file) 925 { } 926 #endif 927 928 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 929 { 930 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 931 } 932 933 static inline void sk_acceptq_removed(struct sock *sk) 934 { 935 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 936 } 937 938 static inline void sk_acceptq_added(struct sock *sk) 939 { 940 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 941 } 942 943 /* Note: If you think the test should be: 944 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 945 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 946 */ 947 static inline bool sk_acceptq_is_full(const struct sock *sk) 948 { 949 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 950 } 951 952 /* 953 * Compute minimal free write space needed to queue new packets. 954 */ 955 static inline int sk_stream_min_wspace(const struct sock *sk) 956 { 957 return READ_ONCE(sk->sk_wmem_queued) >> 1; 958 } 959 960 static inline int sk_stream_wspace(const struct sock *sk) 961 { 962 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 963 } 964 965 static inline void sk_wmem_queued_add(struct sock *sk, int val) 966 { 967 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 968 } 969 970 void sk_stream_write_space(struct sock *sk); 971 972 /* OOB backlog add */ 973 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 974 { 975 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 976 skb_dst_force(skb); 977 978 if (!sk->sk_backlog.tail) 979 WRITE_ONCE(sk->sk_backlog.head, skb); 980 else 981 sk->sk_backlog.tail->next = skb; 982 983 WRITE_ONCE(sk->sk_backlog.tail, skb); 984 skb->next = NULL; 985 } 986 987 /* 988 * Take into account size of receive queue and backlog queue 989 * Do not take into account this skb truesize, 990 * to allow even a single big packet to come. 991 */ 992 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 993 { 994 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 995 996 return qsize > limit; 997 } 998 999 /* The per-socket spinlock must be held here. */ 1000 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 1001 unsigned int limit) 1002 { 1003 if (sk_rcvqueues_full(sk, limit)) 1004 return -ENOBUFS; 1005 1006 /* 1007 * If the skb was allocated from pfmemalloc reserves, only 1008 * allow SOCK_MEMALLOC sockets to use it as this socket is 1009 * helping free memory 1010 */ 1011 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1012 return -ENOMEM; 1013 1014 __sk_add_backlog(sk, skb); 1015 sk->sk_backlog.len += skb->truesize; 1016 return 0; 1017 } 1018 1019 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1020 1021 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1022 { 1023 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1024 return __sk_backlog_rcv(sk, skb); 1025 1026 return sk->sk_backlog_rcv(sk, skb); 1027 } 1028 1029 static inline void sk_incoming_cpu_update(struct sock *sk) 1030 { 1031 int cpu = raw_smp_processor_id(); 1032 1033 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1034 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1035 } 1036 1037 static inline void sock_rps_record_flow_hash(__u32 hash) 1038 { 1039 #ifdef CONFIG_RPS 1040 struct rps_sock_flow_table *sock_flow_table; 1041 1042 rcu_read_lock(); 1043 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1044 rps_record_sock_flow(sock_flow_table, hash); 1045 rcu_read_unlock(); 1046 #endif 1047 } 1048 1049 static inline void sock_rps_record_flow(const struct sock *sk) 1050 { 1051 #ifdef CONFIG_RPS 1052 if (static_branch_unlikely(&rfs_needed)) { 1053 /* Reading sk->sk_rxhash might incur an expensive cache line 1054 * miss. 1055 * 1056 * TCP_ESTABLISHED does cover almost all states where RFS 1057 * might be useful, and is cheaper [1] than testing : 1058 * IPv4: inet_sk(sk)->inet_daddr 1059 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1060 * OR an additional socket flag 1061 * [1] : sk_state and sk_prot are in the same cache line. 1062 */ 1063 if (sk->sk_state == TCP_ESTABLISHED) 1064 sock_rps_record_flow_hash(sk->sk_rxhash); 1065 } 1066 #endif 1067 } 1068 1069 static inline void sock_rps_save_rxhash(struct sock *sk, 1070 const struct sk_buff *skb) 1071 { 1072 #ifdef CONFIG_RPS 1073 if (unlikely(sk->sk_rxhash != skb->hash)) 1074 sk->sk_rxhash = skb->hash; 1075 #endif 1076 } 1077 1078 static inline void sock_rps_reset_rxhash(struct sock *sk) 1079 { 1080 #ifdef CONFIG_RPS 1081 sk->sk_rxhash = 0; 1082 #endif 1083 } 1084 1085 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1086 ({ int __rc; \ 1087 release_sock(__sk); \ 1088 __rc = __condition; \ 1089 if (!__rc) { \ 1090 *(__timeo) = wait_woken(__wait, \ 1091 TASK_INTERRUPTIBLE, \ 1092 *(__timeo)); \ 1093 } \ 1094 sched_annotate_sleep(); \ 1095 lock_sock(__sk); \ 1096 __rc = __condition; \ 1097 __rc; \ 1098 }) 1099 1100 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1101 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1102 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1103 int sk_stream_error(struct sock *sk, int flags, int err); 1104 void sk_stream_kill_queues(struct sock *sk); 1105 void sk_set_memalloc(struct sock *sk); 1106 void sk_clear_memalloc(struct sock *sk); 1107 1108 void __sk_flush_backlog(struct sock *sk); 1109 1110 static inline bool sk_flush_backlog(struct sock *sk) 1111 { 1112 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1113 __sk_flush_backlog(sk); 1114 return true; 1115 } 1116 return false; 1117 } 1118 1119 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1120 1121 struct request_sock_ops; 1122 struct timewait_sock_ops; 1123 struct inet_hashinfo; 1124 struct raw_hashinfo; 1125 struct smc_hashinfo; 1126 struct module; 1127 struct sk_psock; 1128 1129 /* 1130 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1131 * un-modified. Special care is taken when initializing object to zero. 1132 */ 1133 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1134 { 1135 if (offsetof(struct sock, sk_node.next) != 0) 1136 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1137 memset(&sk->sk_node.pprev, 0, 1138 size - offsetof(struct sock, sk_node.pprev)); 1139 } 1140 1141 /* Networking protocol blocks we attach to sockets. 1142 * socket layer -> transport layer interface 1143 */ 1144 struct proto { 1145 void (*close)(struct sock *sk, 1146 long timeout); 1147 int (*pre_connect)(struct sock *sk, 1148 struct sockaddr *uaddr, 1149 int addr_len); 1150 int (*connect)(struct sock *sk, 1151 struct sockaddr *uaddr, 1152 int addr_len); 1153 int (*disconnect)(struct sock *sk, int flags); 1154 1155 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1156 bool kern); 1157 1158 int (*ioctl)(struct sock *sk, int cmd, 1159 unsigned long arg); 1160 int (*init)(struct sock *sk); 1161 void (*destroy)(struct sock *sk); 1162 void (*shutdown)(struct sock *sk, int how); 1163 int (*setsockopt)(struct sock *sk, int level, 1164 int optname, sockptr_t optval, 1165 unsigned int optlen); 1166 int (*getsockopt)(struct sock *sk, int level, 1167 int optname, char __user *optval, 1168 int __user *option); 1169 void (*keepalive)(struct sock *sk, int valbool); 1170 #ifdef CONFIG_COMPAT 1171 int (*compat_ioctl)(struct sock *sk, 1172 unsigned int cmd, unsigned long arg); 1173 #endif 1174 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1175 size_t len); 1176 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1177 size_t len, int noblock, int flags, 1178 int *addr_len); 1179 int (*sendpage)(struct sock *sk, struct page *page, 1180 int offset, size_t size, int flags); 1181 int (*bind)(struct sock *sk, 1182 struct sockaddr *addr, int addr_len); 1183 int (*bind_add)(struct sock *sk, 1184 struct sockaddr *addr, int addr_len); 1185 1186 int (*backlog_rcv) (struct sock *sk, 1187 struct sk_buff *skb); 1188 bool (*bpf_bypass_getsockopt)(int level, 1189 int optname); 1190 1191 void (*release_cb)(struct sock *sk); 1192 1193 /* Keeping track of sk's, looking them up, and port selection methods. */ 1194 int (*hash)(struct sock *sk); 1195 void (*unhash)(struct sock *sk); 1196 void (*rehash)(struct sock *sk); 1197 int (*get_port)(struct sock *sk, unsigned short snum); 1198 #ifdef CONFIG_BPF_SYSCALL 1199 int (*psock_update_sk_prot)(struct sock *sk, 1200 struct sk_psock *psock, 1201 bool restore); 1202 #endif 1203 1204 /* Keeping track of sockets in use */ 1205 #ifdef CONFIG_PROC_FS 1206 unsigned int inuse_idx; 1207 #endif 1208 1209 bool (*stream_memory_free)(const struct sock *sk, int wake); 1210 bool (*stream_memory_read)(const struct sock *sk); 1211 /* Memory pressure */ 1212 void (*enter_memory_pressure)(struct sock *sk); 1213 void (*leave_memory_pressure)(struct sock *sk); 1214 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1215 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1216 /* 1217 * Pressure flag: try to collapse. 1218 * Technical note: it is used by multiple contexts non atomically. 1219 * All the __sk_mem_schedule() is of this nature: accounting 1220 * is strict, actions are advisory and have some latency. 1221 */ 1222 unsigned long *memory_pressure; 1223 long *sysctl_mem; 1224 1225 int *sysctl_wmem; 1226 int *sysctl_rmem; 1227 u32 sysctl_wmem_offset; 1228 u32 sysctl_rmem_offset; 1229 1230 int max_header; 1231 bool no_autobind; 1232 1233 struct kmem_cache *slab; 1234 unsigned int obj_size; 1235 slab_flags_t slab_flags; 1236 unsigned int useroffset; /* Usercopy region offset */ 1237 unsigned int usersize; /* Usercopy region size */ 1238 1239 struct percpu_counter *orphan_count; 1240 1241 struct request_sock_ops *rsk_prot; 1242 struct timewait_sock_ops *twsk_prot; 1243 1244 union { 1245 struct inet_hashinfo *hashinfo; 1246 struct udp_table *udp_table; 1247 struct raw_hashinfo *raw_hash; 1248 struct smc_hashinfo *smc_hash; 1249 } h; 1250 1251 struct module *owner; 1252 1253 char name[32]; 1254 1255 struct list_head node; 1256 #ifdef SOCK_REFCNT_DEBUG 1257 atomic_t socks; 1258 #endif 1259 int (*diag_destroy)(struct sock *sk, int err); 1260 } __randomize_layout; 1261 1262 int proto_register(struct proto *prot, int alloc_slab); 1263 void proto_unregister(struct proto *prot); 1264 int sock_load_diag_module(int family, int protocol); 1265 1266 #ifdef SOCK_REFCNT_DEBUG 1267 static inline void sk_refcnt_debug_inc(struct sock *sk) 1268 { 1269 atomic_inc(&sk->sk_prot->socks); 1270 } 1271 1272 static inline void sk_refcnt_debug_dec(struct sock *sk) 1273 { 1274 atomic_dec(&sk->sk_prot->socks); 1275 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1276 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1277 } 1278 1279 static inline void sk_refcnt_debug_release(const struct sock *sk) 1280 { 1281 if (refcount_read(&sk->sk_refcnt) != 1) 1282 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1283 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1284 } 1285 #else /* SOCK_REFCNT_DEBUG */ 1286 #define sk_refcnt_debug_inc(sk) do { } while (0) 1287 #define sk_refcnt_debug_dec(sk) do { } while (0) 1288 #define sk_refcnt_debug_release(sk) do { } while (0) 1289 #endif /* SOCK_REFCNT_DEBUG */ 1290 1291 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1292 1293 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1294 { 1295 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1296 return false; 1297 1298 #ifdef CONFIG_INET 1299 return sk->sk_prot->stream_memory_free ? 1300 INDIRECT_CALL_1(sk->sk_prot->stream_memory_free, 1301 tcp_stream_memory_free, 1302 sk, wake) : true; 1303 #else 1304 return sk->sk_prot->stream_memory_free ? 1305 sk->sk_prot->stream_memory_free(sk, wake) : true; 1306 #endif 1307 } 1308 1309 static inline bool sk_stream_memory_free(const struct sock *sk) 1310 { 1311 return __sk_stream_memory_free(sk, 0); 1312 } 1313 1314 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1315 { 1316 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1317 __sk_stream_memory_free(sk, wake); 1318 } 1319 1320 static inline bool sk_stream_is_writeable(const struct sock *sk) 1321 { 1322 return __sk_stream_is_writeable(sk, 0); 1323 } 1324 1325 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1326 struct cgroup *ancestor) 1327 { 1328 #ifdef CONFIG_SOCK_CGROUP_DATA 1329 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1330 ancestor); 1331 #else 1332 return -ENOTSUPP; 1333 #endif 1334 } 1335 1336 static inline bool sk_has_memory_pressure(const struct sock *sk) 1337 { 1338 return sk->sk_prot->memory_pressure != NULL; 1339 } 1340 1341 static inline bool sk_under_memory_pressure(const struct sock *sk) 1342 { 1343 if (!sk->sk_prot->memory_pressure) 1344 return false; 1345 1346 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1347 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1348 return true; 1349 1350 return !!*sk->sk_prot->memory_pressure; 1351 } 1352 1353 static inline long 1354 sk_memory_allocated(const struct sock *sk) 1355 { 1356 return atomic_long_read(sk->sk_prot->memory_allocated); 1357 } 1358 1359 static inline long 1360 sk_memory_allocated_add(struct sock *sk, int amt) 1361 { 1362 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1363 } 1364 1365 static inline void 1366 sk_memory_allocated_sub(struct sock *sk, int amt) 1367 { 1368 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1369 } 1370 1371 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1372 1373 static inline void sk_sockets_allocated_dec(struct sock *sk) 1374 { 1375 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1376 SK_ALLOC_PERCPU_COUNTER_BATCH); 1377 } 1378 1379 static inline void sk_sockets_allocated_inc(struct sock *sk) 1380 { 1381 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1382 SK_ALLOC_PERCPU_COUNTER_BATCH); 1383 } 1384 1385 static inline u64 1386 sk_sockets_allocated_read_positive(struct sock *sk) 1387 { 1388 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1389 } 1390 1391 static inline int 1392 proto_sockets_allocated_sum_positive(struct proto *prot) 1393 { 1394 return percpu_counter_sum_positive(prot->sockets_allocated); 1395 } 1396 1397 static inline long 1398 proto_memory_allocated(struct proto *prot) 1399 { 1400 return atomic_long_read(prot->memory_allocated); 1401 } 1402 1403 static inline bool 1404 proto_memory_pressure(struct proto *prot) 1405 { 1406 if (!prot->memory_pressure) 1407 return false; 1408 return !!*prot->memory_pressure; 1409 } 1410 1411 1412 #ifdef CONFIG_PROC_FS 1413 /* Called with local bh disabled */ 1414 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1415 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1416 int sock_inuse_get(struct net *net); 1417 #else 1418 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1419 int inc) 1420 { 1421 } 1422 #endif 1423 1424 1425 /* With per-bucket locks this operation is not-atomic, so that 1426 * this version is not worse. 1427 */ 1428 static inline int __sk_prot_rehash(struct sock *sk) 1429 { 1430 sk->sk_prot->unhash(sk); 1431 return sk->sk_prot->hash(sk); 1432 } 1433 1434 /* About 10 seconds */ 1435 #define SOCK_DESTROY_TIME (10*HZ) 1436 1437 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1438 #define PROT_SOCK 1024 1439 1440 #define SHUTDOWN_MASK 3 1441 #define RCV_SHUTDOWN 1 1442 #define SEND_SHUTDOWN 2 1443 1444 #define SOCK_BINDADDR_LOCK 4 1445 #define SOCK_BINDPORT_LOCK 8 1446 1447 struct socket_alloc { 1448 struct socket socket; 1449 struct inode vfs_inode; 1450 }; 1451 1452 static inline struct socket *SOCKET_I(struct inode *inode) 1453 { 1454 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1455 } 1456 1457 static inline struct inode *SOCK_INODE(struct socket *socket) 1458 { 1459 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1460 } 1461 1462 /* 1463 * Functions for memory accounting 1464 */ 1465 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1466 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1467 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1468 void __sk_mem_reclaim(struct sock *sk, int amount); 1469 1470 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1471 * do not necessarily have 16x time more memory than 4KB ones. 1472 */ 1473 #define SK_MEM_QUANTUM 4096 1474 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1475 #define SK_MEM_SEND 0 1476 #define SK_MEM_RECV 1 1477 1478 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1479 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1480 { 1481 long val = sk->sk_prot->sysctl_mem[index]; 1482 1483 #if PAGE_SIZE > SK_MEM_QUANTUM 1484 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1485 #elif PAGE_SIZE < SK_MEM_QUANTUM 1486 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1487 #endif 1488 return val; 1489 } 1490 1491 static inline int sk_mem_pages(int amt) 1492 { 1493 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1494 } 1495 1496 static inline bool sk_has_account(struct sock *sk) 1497 { 1498 /* return true if protocol supports memory accounting */ 1499 return !!sk->sk_prot->memory_allocated; 1500 } 1501 1502 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1503 { 1504 if (!sk_has_account(sk)) 1505 return true; 1506 return size <= sk->sk_forward_alloc || 1507 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1508 } 1509 1510 static inline bool 1511 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1512 { 1513 if (!sk_has_account(sk)) 1514 return true; 1515 return size <= sk->sk_forward_alloc || 1516 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1517 skb_pfmemalloc(skb); 1518 } 1519 1520 static inline void sk_mem_reclaim(struct sock *sk) 1521 { 1522 if (!sk_has_account(sk)) 1523 return; 1524 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1525 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1526 } 1527 1528 static inline void sk_mem_reclaim_partial(struct sock *sk) 1529 { 1530 if (!sk_has_account(sk)) 1531 return; 1532 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1533 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1534 } 1535 1536 static inline void sk_mem_charge(struct sock *sk, int size) 1537 { 1538 if (!sk_has_account(sk)) 1539 return; 1540 sk->sk_forward_alloc -= size; 1541 } 1542 1543 static inline void sk_mem_uncharge(struct sock *sk, int size) 1544 { 1545 if (!sk_has_account(sk)) 1546 return; 1547 sk->sk_forward_alloc += size; 1548 1549 /* Avoid a possible overflow. 1550 * TCP send queues can make this happen, if sk_mem_reclaim() 1551 * is not called and more than 2 GBytes are released at once. 1552 * 1553 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1554 * no need to hold that much forward allocation anyway. 1555 */ 1556 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1557 __sk_mem_reclaim(sk, 1 << 20); 1558 } 1559 1560 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 1561 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1562 { 1563 sk_wmem_queued_add(sk, -skb->truesize); 1564 sk_mem_uncharge(sk, skb->truesize); 1565 if (static_branch_unlikely(&tcp_tx_skb_cache_key) && 1566 !sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1567 skb_ext_reset(skb); 1568 skb_zcopy_clear(skb, true); 1569 sk->sk_tx_skb_cache = skb; 1570 return; 1571 } 1572 __kfree_skb(skb); 1573 } 1574 1575 static inline void sock_release_ownership(struct sock *sk) 1576 { 1577 if (sk->sk_lock.owned) { 1578 sk->sk_lock.owned = 0; 1579 1580 /* The sk_lock has mutex_unlock() semantics: */ 1581 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1582 } 1583 } 1584 1585 /* 1586 * Macro so as to not evaluate some arguments when 1587 * lockdep is not enabled. 1588 * 1589 * Mark both the sk_lock and the sk_lock.slock as a 1590 * per-address-family lock class. 1591 */ 1592 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1593 do { \ 1594 sk->sk_lock.owned = 0; \ 1595 init_waitqueue_head(&sk->sk_lock.wq); \ 1596 spin_lock_init(&(sk)->sk_lock.slock); \ 1597 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1598 sizeof((sk)->sk_lock)); \ 1599 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1600 (skey), (sname)); \ 1601 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1602 } while (0) 1603 1604 static inline bool lockdep_sock_is_held(const struct sock *sk) 1605 { 1606 return lockdep_is_held(&sk->sk_lock) || 1607 lockdep_is_held(&sk->sk_lock.slock); 1608 } 1609 1610 void lock_sock_nested(struct sock *sk, int subclass); 1611 1612 static inline void lock_sock(struct sock *sk) 1613 { 1614 lock_sock_nested(sk, 0); 1615 } 1616 1617 void __lock_sock(struct sock *sk); 1618 void __release_sock(struct sock *sk); 1619 void release_sock(struct sock *sk); 1620 1621 /* BH context may only use the following locking interface. */ 1622 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1623 #define bh_lock_sock_nested(__sk) \ 1624 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1625 SINGLE_DEPTH_NESTING) 1626 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1627 1628 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1629 1630 /** 1631 * lock_sock_fast - fast version of lock_sock 1632 * @sk: socket 1633 * 1634 * This version should be used for very small section, where process wont block 1635 * return false if fast path is taken: 1636 * 1637 * sk_lock.slock locked, owned = 0, BH disabled 1638 * 1639 * return true if slow path is taken: 1640 * 1641 * sk_lock.slock unlocked, owned = 1, BH enabled 1642 */ 1643 static inline bool lock_sock_fast(struct sock *sk) 1644 { 1645 /* The sk_lock has mutex_lock() semantics here. */ 1646 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1647 1648 return __lock_sock_fast(sk); 1649 } 1650 1651 /* fast socket lock variant for caller already holding a [different] socket lock */ 1652 static inline bool lock_sock_fast_nested(struct sock *sk) 1653 { 1654 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1655 1656 return __lock_sock_fast(sk); 1657 } 1658 1659 /** 1660 * unlock_sock_fast - complement of lock_sock_fast 1661 * @sk: socket 1662 * @slow: slow mode 1663 * 1664 * fast unlock socket for user context. 1665 * If slow mode is on, we call regular release_sock() 1666 */ 1667 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1668 __releases(&sk->sk_lock.slock) 1669 { 1670 if (slow) { 1671 release_sock(sk); 1672 __release(&sk->sk_lock.slock); 1673 } else { 1674 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1675 spin_unlock_bh(&sk->sk_lock.slock); 1676 } 1677 } 1678 1679 /* Used by processes to "lock" a socket state, so that 1680 * interrupts and bottom half handlers won't change it 1681 * from under us. It essentially blocks any incoming 1682 * packets, so that we won't get any new data or any 1683 * packets that change the state of the socket. 1684 * 1685 * While locked, BH processing will add new packets to 1686 * the backlog queue. This queue is processed by the 1687 * owner of the socket lock right before it is released. 1688 * 1689 * Since ~2.3.5 it is also exclusive sleep lock serializing 1690 * accesses from user process context. 1691 */ 1692 1693 static inline void sock_owned_by_me(const struct sock *sk) 1694 { 1695 #ifdef CONFIG_LOCKDEP 1696 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1697 #endif 1698 } 1699 1700 static inline bool sock_owned_by_user(const struct sock *sk) 1701 { 1702 sock_owned_by_me(sk); 1703 return sk->sk_lock.owned; 1704 } 1705 1706 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1707 { 1708 return sk->sk_lock.owned; 1709 } 1710 1711 /* no reclassification while locks are held */ 1712 static inline bool sock_allow_reclassification(const struct sock *csk) 1713 { 1714 struct sock *sk = (struct sock *)csk; 1715 1716 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1717 } 1718 1719 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1720 struct proto *prot, int kern); 1721 void sk_free(struct sock *sk); 1722 void sk_destruct(struct sock *sk); 1723 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1724 void sk_free_unlock_clone(struct sock *sk); 1725 1726 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1727 gfp_t priority); 1728 void __sock_wfree(struct sk_buff *skb); 1729 void sock_wfree(struct sk_buff *skb); 1730 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1731 gfp_t priority); 1732 void skb_orphan_partial(struct sk_buff *skb); 1733 void sock_rfree(struct sk_buff *skb); 1734 void sock_efree(struct sk_buff *skb); 1735 #ifdef CONFIG_INET 1736 void sock_edemux(struct sk_buff *skb); 1737 void sock_pfree(struct sk_buff *skb); 1738 #else 1739 #define sock_edemux sock_efree 1740 #endif 1741 1742 int sock_setsockopt(struct socket *sock, int level, int op, 1743 sockptr_t optval, unsigned int optlen); 1744 1745 int sock_getsockopt(struct socket *sock, int level, int op, 1746 char __user *optval, int __user *optlen); 1747 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1748 bool timeval, bool time32); 1749 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1750 int noblock, int *errcode); 1751 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1752 unsigned long data_len, int noblock, 1753 int *errcode, int max_page_order); 1754 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1755 void sock_kfree_s(struct sock *sk, void *mem, int size); 1756 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1757 void sk_send_sigurg(struct sock *sk); 1758 1759 struct sockcm_cookie { 1760 u64 transmit_time; 1761 u32 mark; 1762 u16 tsflags; 1763 }; 1764 1765 static inline void sockcm_init(struct sockcm_cookie *sockc, 1766 const struct sock *sk) 1767 { 1768 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1769 } 1770 1771 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1772 struct sockcm_cookie *sockc); 1773 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1774 struct sockcm_cookie *sockc); 1775 1776 /* 1777 * Functions to fill in entries in struct proto_ops when a protocol 1778 * does not implement a particular function. 1779 */ 1780 int sock_no_bind(struct socket *, struct sockaddr *, int); 1781 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1782 int sock_no_socketpair(struct socket *, struct socket *); 1783 int sock_no_accept(struct socket *, struct socket *, int, bool); 1784 int sock_no_getname(struct socket *, struct sockaddr *, int); 1785 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1786 int sock_no_listen(struct socket *, int); 1787 int sock_no_shutdown(struct socket *, int); 1788 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1789 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1790 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1791 int sock_no_mmap(struct file *file, struct socket *sock, 1792 struct vm_area_struct *vma); 1793 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1794 size_t size, int flags); 1795 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1796 int offset, size_t size, int flags); 1797 1798 /* 1799 * Functions to fill in entries in struct proto_ops when a protocol 1800 * uses the inet style. 1801 */ 1802 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1803 char __user *optval, int __user *optlen); 1804 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1805 int flags); 1806 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1807 sockptr_t optval, unsigned int optlen); 1808 1809 void sk_common_release(struct sock *sk); 1810 1811 /* 1812 * Default socket callbacks and setup code 1813 */ 1814 1815 /* Initialise core socket variables */ 1816 void sock_init_data(struct socket *sock, struct sock *sk); 1817 1818 /* 1819 * Socket reference counting postulates. 1820 * 1821 * * Each user of socket SHOULD hold a reference count. 1822 * * Each access point to socket (an hash table bucket, reference from a list, 1823 * running timer, skb in flight MUST hold a reference count. 1824 * * When reference count hits 0, it means it will never increase back. 1825 * * When reference count hits 0, it means that no references from 1826 * outside exist to this socket and current process on current CPU 1827 * is last user and may/should destroy this socket. 1828 * * sk_free is called from any context: process, BH, IRQ. When 1829 * it is called, socket has no references from outside -> sk_free 1830 * may release descendant resources allocated by the socket, but 1831 * to the time when it is called, socket is NOT referenced by any 1832 * hash tables, lists etc. 1833 * * Packets, delivered from outside (from network or from another process) 1834 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1835 * when they sit in queue. Otherwise, packets will leak to hole, when 1836 * socket is looked up by one cpu and unhasing is made by another CPU. 1837 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1838 * (leak to backlog). Packet socket does all the processing inside 1839 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1840 * use separate SMP lock, so that they are prone too. 1841 */ 1842 1843 /* Ungrab socket and destroy it, if it was the last reference. */ 1844 static inline void sock_put(struct sock *sk) 1845 { 1846 if (refcount_dec_and_test(&sk->sk_refcnt)) 1847 sk_free(sk); 1848 } 1849 /* Generic version of sock_put(), dealing with all sockets 1850 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1851 */ 1852 void sock_gen_put(struct sock *sk); 1853 1854 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1855 unsigned int trim_cap, bool refcounted); 1856 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1857 const int nested) 1858 { 1859 return __sk_receive_skb(sk, skb, nested, 1, true); 1860 } 1861 1862 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1863 { 1864 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1865 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1866 return; 1867 sk->sk_tx_queue_mapping = tx_queue; 1868 } 1869 1870 #define NO_QUEUE_MAPPING USHRT_MAX 1871 1872 static inline void sk_tx_queue_clear(struct sock *sk) 1873 { 1874 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1875 } 1876 1877 static inline int sk_tx_queue_get(const struct sock *sk) 1878 { 1879 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1880 return sk->sk_tx_queue_mapping; 1881 1882 return -1; 1883 } 1884 1885 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1886 { 1887 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1888 if (skb_rx_queue_recorded(skb)) { 1889 u16 rx_queue = skb_get_rx_queue(skb); 1890 1891 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1892 return; 1893 1894 sk->sk_rx_queue_mapping = rx_queue; 1895 } 1896 #endif 1897 } 1898 1899 static inline void sk_rx_queue_clear(struct sock *sk) 1900 { 1901 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1902 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1903 #endif 1904 } 1905 1906 static inline int sk_rx_queue_get(const struct sock *sk) 1907 { 1908 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1909 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1910 return sk->sk_rx_queue_mapping; 1911 #endif 1912 1913 return -1; 1914 } 1915 1916 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1917 { 1918 sk->sk_socket = sock; 1919 } 1920 1921 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1922 { 1923 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1924 return &rcu_dereference_raw(sk->sk_wq)->wait; 1925 } 1926 /* Detach socket from process context. 1927 * Announce socket dead, detach it from wait queue and inode. 1928 * Note that parent inode held reference count on this struct sock, 1929 * we do not release it in this function, because protocol 1930 * probably wants some additional cleanups or even continuing 1931 * to work with this socket (TCP). 1932 */ 1933 static inline void sock_orphan(struct sock *sk) 1934 { 1935 write_lock_bh(&sk->sk_callback_lock); 1936 sock_set_flag(sk, SOCK_DEAD); 1937 sk_set_socket(sk, NULL); 1938 sk->sk_wq = NULL; 1939 write_unlock_bh(&sk->sk_callback_lock); 1940 } 1941 1942 static inline void sock_graft(struct sock *sk, struct socket *parent) 1943 { 1944 WARN_ON(parent->sk); 1945 write_lock_bh(&sk->sk_callback_lock); 1946 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1947 parent->sk = sk; 1948 sk_set_socket(sk, parent); 1949 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1950 security_sock_graft(sk, parent); 1951 write_unlock_bh(&sk->sk_callback_lock); 1952 } 1953 1954 kuid_t sock_i_uid(struct sock *sk); 1955 unsigned long sock_i_ino(struct sock *sk); 1956 1957 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1958 { 1959 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1960 } 1961 1962 static inline u32 net_tx_rndhash(void) 1963 { 1964 u32 v = prandom_u32(); 1965 1966 return v ?: 1; 1967 } 1968 1969 static inline void sk_set_txhash(struct sock *sk) 1970 { 1971 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 1972 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 1973 } 1974 1975 static inline bool sk_rethink_txhash(struct sock *sk) 1976 { 1977 if (sk->sk_txhash) { 1978 sk_set_txhash(sk); 1979 return true; 1980 } 1981 return false; 1982 } 1983 1984 static inline struct dst_entry * 1985 __sk_dst_get(struct sock *sk) 1986 { 1987 return rcu_dereference_check(sk->sk_dst_cache, 1988 lockdep_sock_is_held(sk)); 1989 } 1990 1991 static inline struct dst_entry * 1992 sk_dst_get(struct sock *sk) 1993 { 1994 struct dst_entry *dst; 1995 1996 rcu_read_lock(); 1997 dst = rcu_dereference(sk->sk_dst_cache); 1998 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1999 dst = NULL; 2000 rcu_read_unlock(); 2001 return dst; 2002 } 2003 2004 static inline void __dst_negative_advice(struct sock *sk) 2005 { 2006 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 2007 2008 if (dst && dst->ops->negative_advice) { 2009 ndst = dst->ops->negative_advice(dst); 2010 2011 if (ndst != dst) { 2012 rcu_assign_pointer(sk->sk_dst_cache, ndst); 2013 sk_tx_queue_clear(sk); 2014 sk->sk_dst_pending_confirm = 0; 2015 } 2016 } 2017 } 2018 2019 static inline void dst_negative_advice(struct sock *sk) 2020 { 2021 sk_rethink_txhash(sk); 2022 __dst_negative_advice(sk); 2023 } 2024 2025 static inline void 2026 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2027 { 2028 struct dst_entry *old_dst; 2029 2030 sk_tx_queue_clear(sk); 2031 sk->sk_dst_pending_confirm = 0; 2032 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2033 lockdep_sock_is_held(sk)); 2034 rcu_assign_pointer(sk->sk_dst_cache, dst); 2035 dst_release(old_dst); 2036 } 2037 2038 static inline void 2039 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2040 { 2041 struct dst_entry *old_dst; 2042 2043 sk_tx_queue_clear(sk); 2044 sk->sk_dst_pending_confirm = 0; 2045 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 2046 dst_release(old_dst); 2047 } 2048 2049 static inline void 2050 __sk_dst_reset(struct sock *sk) 2051 { 2052 __sk_dst_set(sk, NULL); 2053 } 2054 2055 static inline void 2056 sk_dst_reset(struct sock *sk) 2057 { 2058 sk_dst_set(sk, NULL); 2059 } 2060 2061 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2062 2063 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2064 2065 static inline void sk_dst_confirm(struct sock *sk) 2066 { 2067 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2068 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2069 } 2070 2071 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2072 { 2073 if (skb_get_dst_pending_confirm(skb)) { 2074 struct sock *sk = skb->sk; 2075 unsigned long now = jiffies; 2076 2077 /* avoid dirtying neighbour */ 2078 if (READ_ONCE(n->confirmed) != now) 2079 WRITE_ONCE(n->confirmed, now); 2080 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2081 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2082 } 2083 } 2084 2085 bool sk_mc_loop(struct sock *sk); 2086 2087 static inline bool sk_can_gso(const struct sock *sk) 2088 { 2089 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2090 } 2091 2092 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2093 2094 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 2095 { 2096 sk->sk_route_nocaps |= flags; 2097 sk->sk_route_caps &= ~flags; 2098 } 2099 2100 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2101 struct iov_iter *from, char *to, 2102 int copy, int offset) 2103 { 2104 if (skb->ip_summed == CHECKSUM_NONE) { 2105 __wsum csum = 0; 2106 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2107 return -EFAULT; 2108 skb->csum = csum_block_add(skb->csum, csum, offset); 2109 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2110 if (!copy_from_iter_full_nocache(to, copy, from)) 2111 return -EFAULT; 2112 } else if (!copy_from_iter_full(to, copy, from)) 2113 return -EFAULT; 2114 2115 return 0; 2116 } 2117 2118 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2119 struct iov_iter *from, int copy) 2120 { 2121 int err, offset = skb->len; 2122 2123 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2124 copy, offset); 2125 if (err) 2126 __skb_trim(skb, offset); 2127 2128 return err; 2129 } 2130 2131 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2132 struct sk_buff *skb, 2133 struct page *page, 2134 int off, int copy) 2135 { 2136 int err; 2137 2138 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2139 copy, skb->len); 2140 if (err) 2141 return err; 2142 2143 skb->len += copy; 2144 skb->data_len += copy; 2145 skb->truesize += copy; 2146 sk_wmem_queued_add(sk, copy); 2147 sk_mem_charge(sk, copy); 2148 return 0; 2149 } 2150 2151 /** 2152 * sk_wmem_alloc_get - returns write allocations 2153 * @sk: socket 2154 * 2155 * Return: sk_wmem_alloc minus initial offset of one 2156 */ 2157 static inline int sk_wmem_alloc_get(const struct sock *sk) 2158 { 2159 return refcount_read(&sk->sk_wmem_alloc) - 1; 2160 } 2161 2162 /** 2163 * sk_rmem_alloc_get - returns read allocations 2164 * @sk: socket 2165 * 2166 * Return: sk_rmem_alloc 2167 */ 2168 static inline int sk_rmem_alloc_get(const struct sock *sk) 2169 { 2170 return atomic_read(&sk->sk_rmem_alloc); 2171 } 2172 2173 /** 2174 * sk_has_allocations - check if allocations are outstanding 2175 * @sk: socket 2176 * 2177 * Return: true if socket has write or read allocations 2178 */ 2179 static inline bool sk_has_allocations(const struct sock *sk) 2180 { 2181 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2182 } 2183 2184 /** 2185 * skwq_has_sleeper - check if there are any waiting processes 2186 * @wq: struct socket_wq 2187 * 2188 * Return: true if socket_wq has waiting processes 2189 * 2190 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2191 * barrier call. They were added due to the race found within the tcp code. 2192 * 2193 * Consider following tcp code paths:: 2194 * 2195 * CPU1 CPU2 2196 * sys_select receive packet 2197 * ... ... 2198 * __add_wait_queue update tp->rcv_nxt 2199 * ... ... 2200 * tp->rcv_nxt check sock_def_readable 2201 * ... { 2202 * schedule rcu_read_lock(); 2203 * wq = rcu_dereference(sk->sk_wq); 2204 * if (wq && waitqueue_active(&wq->wait)) 2205 * wake_up_interruptible(&wq->wait) 2206 * ... 2207 * } 2208 * 2209 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2210 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2211 * could then endup calling schedule and sleep forever if there are no more 2212 * data on the socket. 2213 * 2214 */ 2215 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2216 { 2217 return wq && wq_has_sleeper(&wq->wait); 2218 } 2219 2220 /** 2221 * sock_poll_wait - place memory barrier behind the poll_wait call. 2222 * @filp: file 2223 * @sock: socket to wait on 2224 * @p: poll_table 2225 * 2226 * See the comments in the wq_has_sleeper function. 2227 */ 2228 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2229 poll_table *p) 2230 { 2231 if (!poll_does_not_wait(p)) { 2232 poll_wait(filp, &sock->wq.wait, p); 2233 /* We need to be sure we are in sync with the 2234 * socket flags modification. 2235 * 2236 * This memory barrier is paired in the wq_has_sleeper. 2237 */ 2238 smp_mb(); 2239 } 2240 } 2241 2242 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2243 { 2244 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2245 u32 txhash = READ_ONCE(sk->sk_txhash); 2246 2247 if (txhash) { 2248 skb->l4_hash = 1; 2249 skb->hash = txhash; 2250 } 2251 } 2252 2253 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2254 2255 /* 2256 * Queue a received datagram if it will fit. Stream and sequenced 2257 * protocols can't normally use this as they need to fit buffers in 2258 * and play with them. 2259 * 2260 * Inlined as it's very short and called for pretty much every 2261 * packet ever received. 2262 */ 2263 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2264 { 2265 skb_orphan(skb); 2266 skb->sk = sk; 2267 skb->destructor = sock_rfree; 2268 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2269 sk_mem_charge(sk, skb->truesize); 2270 } 2271 2272 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2273 { 2274 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2275 skb_orphan(skb); 2276 skb->destructor = sock_efree; 2277 skb->sk = sk; 2278 return true; 2279 } 2280 return false; 2281 } 2282 2283 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2284 { 2285 if (skb->destructor != sock_wfree) { 2286 skb_orphan(skb); 2287 return; 2288 } 2289 skb->slow_gro = 1; 2290 } 2291 2292 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2293 unsigned long expires); 2294 2295 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2296 2297 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2298 2299 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2300 struct sk_buff *skb, unsigned int flags, 2301 void (*destructor)(struct sock *sk, 2302 struct sk_buff *skb)); 2303 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2304 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2305 2306 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2307 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2308 2309 /* 2310 * Recover an error report and clear atomically 2311 */ 2312 2313 static inline int sock_error(struct sock *sk) 2314 { 2315 int err; 2316 2317 /* Avoid an atomic operation for the common case. 2318 * This is racy since another cpu/thread can change sk_err under us. 2319 */ 2320 if (likely(data_race(!sk->sk_err))) 2321 return 0; 2322 2323 err = xchg(&sk->sk_err, 0); 2324 return -err; 2325 } 2326 2327 void sk_error_report(struct sock *sk); 2328 2329 static inline unsigned long sock_wspace(struct sock *sk) 2330 { 2331 int amt = 0; 2332 2333 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2334 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2335 if (amt < 0) 2336 amt = 0; 2337 } 2338 return amt; 2339 } 2340 2341 /* Note: 2342 * We use sk->sk_wq_raw, from contexts knowing this 2343 * pointer is not NULL and cannot disappear/change. 2344 */ 2345 static inline void sk_set_bit(int nr, struct sock *sk) 2346 { 2347 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2348 !sock_flag(sk, SOCK_FASYNC)) 2349 return; 2350 2351 set_bit(nr, &sk->sk_wq_raw->flags); 2352 } 2353 2354 static inline void sk_clear_bit(int nr, struct sock *sk) 2355 { 2356 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2357 !sock_flag(sk, SOCK_FASYNC)) 2358 return; 2359 2360 clear_bit(nr, &sk->sk_wq_raw->flags); 2361 } 2362 2363 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2364 { 2365 if (sock_flag(sk, SOCK_FASYNC)) { 2366 rcu_read_lock(); 2367 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2368 rcu_read_unlock(); 2369 } 2370 } 2371 2372 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2373 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2374 * Note: for send buffers, TCP works better if we can build two skbs at 2375 * minimum. 2376 */ 2377 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2378 2379 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2380 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2381 2382 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2383 { 2384 u32 val; 2385 2386 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2387 return; 2388 2389 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2390 2391 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2392 } 2393 2394 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2395 bool force_schedule); 2396 2397 /** 2398 * sk_page_frag - return an appropriate page_frag 2399 * @sk: socket 2400 * 2401 * Use the per task page_frag instead of the per socket one for 2402 * optimization when we know that we're in the normal context and owns 2403 * everything that's associated with %current. 2404 * 2405 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2406 * inside other socket operations and end up recursing into sk_page_frag() 2407 * while it's already in use. 2408 * 2409 * Return: a per task page_frag if context allows that, 2410 * otherwise a per socket one. 2411 */ 2412 static inline struct page_frag *sk_page_frag(struct sock *sk) 2413 { 2414 if (gfpflags_normal_context(sk->sk_allocation)) 2415 return ¤t->task_frag; 2416 2417 return &sk->sk_frag; 2418 } 2419 2420 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2421 2422 /* 2423 * Default write policy as shown to user space via poll/select/SIGIO 2424 */ 2425 static inline bool sock_writeable(const struct sock *sk) 2426 { 2427 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2428 } 2429 2430 static inline gfp_t gfp_any(void) 2431 { 2432 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2433 } 2434 2435 static inline gfp_t gfp_memcg_charge(void) 2436 { 2437 return in_softirq() ? GFP_NOWAIT : GFP_KERNEL; 2438 } 2439 2440 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2441 { 2442 return noblock ? 0 : sk->sk_rcvtimeo; 2443 } 2444 2445 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2446 { 2447 return noblock ? 0 : sk->sk_sndtimeo; 2448 } 2449 2450 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2451 { 2452 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2453 2454 return v ?: 1; 2455 } 2456 2457 /* Alas, with timeout socket operations are not restartable. 2458 * Compare this to poll(). 2459 */ 2460 static inline int sock_intr_errno(long timeo) 2461 { 2462 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2463 } 2464 2465 struct sock_skb_cb { 2466 u32 dropcount; 2467 }; 2468 2469 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2470 * using skb->cb[] would keep using it directly and utilize its 2471 * alignement guarantee. 2472 */ 2473 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2474 sizeof(struct sock_skb_cb))) 2475 2476 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2477 SOCK_SKB_CB_OFFSET)) 2478 2479 #define sock_skb_cb_check_size(size) \ 2480 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2481 2482 static inline void 2483 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2484 { 2485 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2486 atomic_read(&sk->sk_drops) : 0; 2487 } 2488 2489 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2490 { 2491 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2492 2493 atomic_add(segs, &sk->sk_drops); 2494 } 2495 2496 static inline ktime_t sock_read_timestamp(struct sock *sk) 2497 { 2498 #if BITS_PER_LONG==32 2499 unsigned int seq; 2500 ktime_t kt; 2501 2502 do { 2503 seq = read_seqbegin(&sk->sk_stamp_seq); 2504 kt = sk->sk_stamp; 2505 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2506 2507 return kt; 2508 #else 2509 return READ_ONCE(sk->sk_stamp); 2510 #endif 2511 } 2512 2513 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2514 { 2515 #if BITS_PER_LONG==32 2516 write_seqlock(&sk->sk_stamp_seq); 2517 sk->sk_stamp = kt; 2518 write_sequnlock(&sk->sk_stamp_seq); 2519 #else 2520 WRITE_ONCE(sk->sk_stamp, kt); 2521 #endif 2522 } 2523 2524 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2525 struct sk_buff *skb); 2526 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2527 struct sk_buff *skb); 2528 2529 static inline void 2530 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2531 { 2532 ktime_t kt = skb->tstamp; 2533 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2534 2535 /* 2536 * generate control messages if 2537 * - receive time stamping in software requested 2538 * - software time stamp available and wanted 2539 * - hardware time stamps available and wanted 2540 */ 2541 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2542 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2543 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2544 (hwtstamps->hwtstamp && 2545 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2546 __sock_recv_timestamp(msg, sk, skb); 2547 else 2548 sock_write_timestamp(sk, kt); 2549 2550 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2551 __sock_recv_wifi_status(msg, sk, skb); 2552 } 2553 2554 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2555 struct sk_buff *skb); 2556 2557 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2558 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2559 struct sk_buff *skb) 2560 { 2561 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2562 (1UL << SOCK_RCVTSTAMP)) 2563 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2564 SOF_TIMESTAMPING_RAW_HARDWARE) 2565 2566 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2567 __sock_recv_ts_and_drops(msg, sk, skb); 2568 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2569 sock_write_timestamp(sk, skb->tstamp); 2570 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2571 sock_write_timestamp(sk, 0); 2572 } 2573 2574 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2575 2576 /** 2577 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2578 * @sk: socket sending this packet 2579 * @tsflags: timestamping flags to use 2580 * @tx_flags: completed with instructions for time stamping 2581 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2582 * 2583 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2584 */ 2585 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2586 __u8 *tx_flags, __u32 *tskey) 2587 { 2588 if (unlikely(tsflags)) { 2589 __sock_tx_timestamp(tsflags, tx_flags); 2590 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2591 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2592 *tskey = sk->sk_tskey++; 2593 } 2594 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2595 *tx_flags |= SKBTX_WIFI_STATUS; 2596 } 2597 2598 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2599 __u8 *tx_flags) 2600 { 2601 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2602 } 2603 2604 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2605 { 2606 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2607 &skb_shinfo(skb)->tskey); 2608 } 2609 2610 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 2611 /** 2612 * sk_eat_skb - Release a skb if it is no longer needed 2613 * @sk: socket to eat this skb from 2614 * @skb: socket buffer to eat 2615 * 2616 * This routine must be called with interrupts disabled or with the socket 2617 * locked so that the sk_buff queue operation is ok. 2618 */ 2619 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2620 { 2621 __skb_unlink(skb, &sk->sk_receive_queue); 2622 if (static_branch_unlikely(&tcp_rx_skb_cache_key) && 2623 !sk->sk_rx_skb_cache) { 2624 sk->sk_rx_skb_cache = skb; 2625 skb_orphan(skb); 2626 return; 2627 } 2628 __kfree_skb(skb); 2629 } 2630 2631 static inline 2632 struct net *sock_net(const struct sock *sk) 2633 { 2634 return read_pnet(&sk->sk_net); 2635 } 2636 2637 static inline 2638 void sock_net_set(struct sock *sk, struct net *net) 2639 { 2640 write_pnet(&sk->sk_net, net); 2641 } 2642 2643 static inline bool 2644 skb_sk_is_prefetched(struct sk_buff *skb) 2645 { 2646 #ifdef CONFIG_INET 2647 return skb->destructor == sock_pfree; 2648 #else 2649 return false; 2650 #endif /* CONFIG_INET */ 2651 } 2652 2653 /* This helper checks if a socket is a full socket, 2654 * ie _not_ a timewait or request socket. 2655 */ 2656 static inline bool sk_fullsock(const struct sock *sk) 2657 { 2658 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2659 } 2660 2661 static inline bool 2662 sk_is_refcounted(struct sock *sk) 2663 { 2664 /* Only full sockets have sk->sk_flags. */ 2665 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2666 } 2667 2668 /** 2669 * skb_steal_sock - steal a socket from an sk_buff 2670 * @skb: sk_buff to steal the socket from 2671 * @refcounted: is set to true if the socket is reference-counted 2672 */ 2673 static inline struct sock * 2674 skb_steal_sock(struct sk_buff *skb, bool *refcounted) 2675 { 2676 if (skb->sk) { 2677 struct sock *sk = skb->sk; 2678 2679 *refcounted = true; 2680 if (skb_sk_is_prefetched(skb)) 2681 *refcounted = sk_is_refcounted(sk); 2682 skb->destructor = NULL; 2683 skb->sk = NULL; 2684 return sk; 2685 } 2686 *refcounted = false; 2687 return NULL; 2688 } 2689 2690 /* Checks if this SKB belongs to an HW offloaded socket 2691 * and whether any SW fallbacks are required based on dev. 2692 * Check decrypted mark in case skb_orphan() cleared socket. 2693 */ 2694 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2695 struct net_device *dev) 2696 { 2697 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2698 struct sock *sk = skb->sk; 2699 2700 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2701 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2702 #ifdef CONFIG_TLS_DEVICE 2703 } else if (unlikely(skb->decrypted)) { 2704 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2705 kfree_skb(skb); 2706 skb = NULL; 2707 #endif 2708 } 2709 #endif 2710 2711 return skb; 2712 } 2713 2714 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2715 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2716 */ 2717 static inline bool sk_listener(const struct sock *sk) 2718 { 2719 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2720 } 2721 2722 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2723 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2724 int type); 2725 2726 bool sk_ns_capable(const struct sock *sk, 2727 struct user_namespace *user_ns, int cap); 2728 bool sk_capable(const struct sock *sk, int cap); 2729 bool sk_net_capable(const struct sock *sk, int cap); 2730 2731 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2732 2733 /* Take into consideration the size of the struct sk_buff overhead in the 2734 * determination of these values, since that is non-constant across 2735 * platforms. This makes socket queueing behavior and performance 2736 * not depend upon such differences. 2737 */ 2738 #define _SK_MEM_PACKETS 256 2739 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2740 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2741 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2742 2743 extern __u32 sysctl_wmem_max; 2744 extern __u32 sysctl_rmem_max; 2745 2746 extern int sysctl_tstamp_allow_data; 2747 extern int sysctl_optmem_max; 2748 2749 extern __u32 sysctl_wmem_default; 2750 extern __u32 sysctl_rmem_default; 2751 2752 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2753 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2754 2755 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2756 { 2757 /* Does this proto have per netns sysctl_wmem ? */ 2758 if (proto->sysctl_wmem_offset) 2759 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2760 2761 return *proto->sysctl_wmem; 2762 } 2763 2764 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2765 { 2766 /* Does this proto have per netns sysctl_rmem ? */ 2767 if (proto->sysctl_rmem_offset) 2768 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2769 2770 return *proto->sysctl_rmem; 2771 } 2772 2773 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2774 * Some wifi drivers need to tweak it to get more chunks. 2775 * They can use this helper from their ndo_start_xmit() 2776 */ 2777 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2778 { 2779 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2780 return; 2781 WRITE_ONCE(sk->sk_pacing_shift, val); 2782 } 2783 2784 /* if a socket is bound to a device, check that the given device 2785 * index is either the same or that the socket is bound to an L3 2786 * master device and the given device index is also enslaved to 2787 * that L3 master 2788 */ 2789 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2790 { 2791 int mdif; 2792 2793 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2794 return true; 2795 2796 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2797 if (mdif && mdif == sk->sk_bound_dev_if) 2798 return true; 2799 2800 return false; 2801 } 2802 2803 void sock_def_readable(struct sock *sk); 2804 2805 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2806 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 2807 int sock_set_timestamping(struct sock *sk, int optname, 2808 struct so_timestamping timestamping); 2809 2810 void sock_enable_timestamps(struct sock *sk); 2811 void sock_no_linger(struct sock *sk); 2812 void sock_set_keepalive(struct sock *sk); 2813 void sock_set_priority(struct sock *sk, u32 priority); 2814 void sock_set_rcvbuf(struct sock *sk, int val); 2815 void sock_set_mark(struct sock *sk, u32 val); 2816 void sock_set_reuseaddr(struct sock *sk); 2817 void sock_set_reuseport(struct sock *sk); 2818 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2819 2820 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2821 2822 #endif /* _SOCK_H */ 2823