xref: /openbmc/linux/include/net/sock.h (revision 83d3c4f2)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 	 * address on 64bit arches : cf INET_MATCH()
166 	 */
167 	union {
168 		__addrpair	skc_addrpair;
169 		struct {
170 			__be32	skc_daddr;
171 			__be32	skc_rcv_saddr;
172 		};
173 	};
174 	union  {
175 		unsigned int	skc_hash;
176 		__u16		skc_u16hashes[2];
177 	};
178 	/* skc_dport && skc_num must be grouped as well */
179 	union {
180 		__portpair	skc_portpair;
181 		struct {
182 			__be16	skc_dport;
183 			__u16	skc_num;
184 		};
185 	};
186 
187 	unsigned short		skc_family;
188 	volatile unsigned char	skc_state;
189 	unsigned char		skc_reuse:4;
190 	unsigned char		skc_reuseport:1;
191 	unsigned char		skc_ipv6only:1;
192 	unsigned char		skc_net_refcnt:1;
193 	int			skc_bound_dev_if;
194 	union {
195 		struct hlist_node	skc_bind_node;
196 		struct hlist_node	skc_portaddr_node;
197 	};
198 	struct proto		*skc_prot;
199 	possible_net_t		skc_net;
200 
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct in6_addr		skc_v6_daddr;
203 	struct in6_addr		skc_v6_rcv_saddr;
204 #endif
205 
206 	atomic64_t		skc_cookie;
207 
208 	/* following fields are padding to force
209 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 	 * assuming IPV6 is enabled. We use this padding differently
211 	 * for different kind of 'sockets'
212 	 */
213 	union {
214 		unsigned long	skc_flags;
215 		struct sock	*skc_listener; /* request_sock */
216 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 	};
218 	/*
219 	 * fields between dontcopy_begin/dontcopy_end
220 	 * are not copied in sock_copy()
221 	 */
222 	/* private: */
223 	int			skc_dontcopy_begin[0];
224 	/* public: */
225 	union {
226 		struct hlist_node	skc_node;
227 		struct hlist_nulls_node skc_nulls_node;
228 	};
229 	unsigned short		skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 	unsigned short		skc_rx_queue_mapping;
232 #endif
233 	union {
234 		int		skc_incoming_cpu;
235 		u32		skc_rcv_wnd;
236 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
237 	};
238 
239 	refcount_t		skc_refcnt;
240 	/* private: */
241 	int                     skc_dontcopy_end[0];
242 	union {
243 		u32		skc_rxhash;
244 		u32		skc_window_clamp;
245 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 	};
247 	/* public: */
248 };
249 
250 struct bpf_local_storage;
251 
252 /**
253   *	struct sock - network layer representation of sockets
254   *	@__sk_common: shared layout with inet_timewait_sock
255   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257   *	@sk_lock:	synchronizer
258   *	@sk_kern_sock: True if sock is using kernel lock classes
259   *	@sk_rcvbuf: size of receive buffer in bytes
260   *	@sk_wq: sock wait queue and async head
261   *	@sk_rx_dst: receive input route used by early demux
262   *	@sk_dst_cache: destination cache
263   *	@sk_dst_pending_confirm: need to confirm neighbour
264   *	@sk_policy: flow policy
265   *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
266   *	@sk_receive_queue: incoming packets
267   *	@sk_wmem_alloc: transmit queue bytes committed
268   *	@sk_tsq_flags: TCP Small Queues flags
269   *	@sk_write_queue: Packet sending queue
270   *	@sk_omem_alloc: "o" is "option" or "other"
271   *	@sk_wmem_queued: persistent queue size
272   *	@sk_forward_alloc: space allocated forward
273   *	@sk_napi_id: id of the last napi context to receive data for sk
274   *	@sk_ll_usec: usecs to busypoll when there is no data
275   *	@sk_allocation: allocation mode
276   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
278   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279   *	@sk_sndbuf: size of send buffer in bytes
280   *	@__sk_flags_offset: empty field used to determine location of bitfield
281   *	@sk_padding: unused element for alignment
282   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283   *	@sk_no_check_rx: allow zero checksum in RX packets
284   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
286   *	@sk_route_forced_caps: static, forced route capabilities
287   *		(set in tcp_init_sock())
288   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
289   *	@sk_gso_max_size: Maximum GSO segment size to build
290   *	@sk_gso_max_segs: Maximum number of GSO segments
291   *	@sk_pacing_shift: scaling factor for TCP Small Queues
292   *	@sk_lingertime: %SO_LINGER l_linger setting
293   *	@sk_backlog: always used with the per-socket spinlock held
294   *	@sk_callback_lock: used with the callbacks in the end of this struct
295   *	@sk_error_queue: rarely used
296   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
297   *			  IPV6_ADDRFORM for instance)
298   *	@sk_err: last error
299   *	@sk_err_soft: errors that don't cause failure but are the cause of a
300   *		      persistent failure not just 'timed out'
301   *	@sk_drops: raw/udp drops counter
302   *	@sk_ack_backlog: current listen backlog
303   *	@sk_max_ack_backlog: listen backlog set in listen()
304   *	@sk_uid: user id of owner
305   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
306   *	@sk_busy_poll_budget: napi processing budget when busypolling
307   *	@sk_priority: %SO_PRIORITY setting
308   *	@sk_type: socket type (%SOCK_STREAM, etc)
309   *	@sk_protocol: which protocol this socket belongs in this network family
310   *	@sk_peer_pid: &struct pid for this socket's peer
311   *	@sk_peer_cred: %SO_PEERCRED setting
312   *	@sk_rcvlowat: %SO_RCVLOWAT setting
313   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
314   *	@sk_sndtimeo: %SO_SNDTIMEO setting
315   *	@sk_txhash: computed flow hash for use on transmit
316   *	@sk_filter: socket filtering instructions
317   *	@sk_timer: sock cleanup timer
318   *	@sk_stamp: time stamp of last packet received
319   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320   *	@sk_tsflags: SO_TIMESTAMPING flags
321   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
322   *	              for timestamping
323   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
324   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
325   *	@sk_socket: Identd and reporting IO signals
326   *	@sk_user_data: RPC layer private data
327   *	@sk_frag: cached page frag
328   *	@sk_peek_off: current peek_offset value
329   *	@sk_send_head: front of stuff to transmit
330   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331   *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
332   *	@sk_security: used by security modules
333   *	@sk_mark: generic packet mark
334   *	@sk_cgrp_data: cgroup data for this cgroup
335   *	@sk_memcg: this socket's memory cgroup association
336   *	@sk_write_pending: a write to stream socket waits to start
337   *	@sk_state_change: callback to indicate change in the state of the sock
338   *	@sk_data_ready: callback to indicate there is data to be processed
339   *	@sk_write_space: callback to indicate there is bf sending space available
340   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
341   *	@sk_backlog_rcv: callback to process the backlog
342   *	@sk_validate_xmit_skb: ptr to an optional validate function
343   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
344   *	@sk_reuseport_cb: reuseport group container
345   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
346   *	@sk_rcu: used during RCU grace period
347   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
348   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
349   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
350   *	@sk_txtime_unused: unused txtime flags
351   */
352 struct sock {
353 	/*
354 	 * Now struct inet_timewait_sock also uses sock_common, so please just
355 	 * don't add nothing before this first member (__sk_common) --acme
356 	 */
357 	struct sock_common	__sk_common;
358 #define sk_node			__sk_common.skc_node
359 #define sk_nulls_node		__sk_common.skc_nulls_node
360 #define sk_refcnt		__sk_common.skc_refcnt
361 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
363 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
364 #endif
365 
366 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
367 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
368 #define sk_hash			__sk_common.skc_hash
369 #define sk_portpair		__sk_common.skc_portpair
370 #define sk_num			__sk_common.skc_num
371 #define sk_dport		__sk_common.skc_dport
372 #define sk_addrpair		__sk_common.skc_addrpair
373 #define sk_daddr		__sk_common.skc_daddr
374 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
375 #define sk_family		__sk_common.skc_family
376 #define sk_state		__sk_common.skc_state
377 #define sk_reuse		__sk_common.skc_reuse
378 #define sk_reuseport		__sk_common.skc_reuseport
379 #define sk_ipv6only		__sk_common.skc_ipv6only
380 #define sk_net_refcnt		__sk_common.skc_net_refcnt
381 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
382 #define sk_bind_node		__sk_common.skc_bind_node
383 #define sk_prot			__sk_common.skc_prot
384 #define sk_net			__sk_common.skc_net
385 #define sk_v6_daddr		__sk_common.skc_v6_daddr
386 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
387 #define sk_cookie		__sk_common.skc_cookie
388 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
389 #define sk_flags		__sk_common.skc_flags
390 #define sk_rxhash		__sk_common.skc_rxhash
391 
392 	socket_lock_t		sk_lock;
393 	atomic_t		sk_drops;
394 	int			sk_rcvlowat;
395 	struct sk_buff_head	sk_error_queue;
396 	struct sk_buff		*sk_rx_skb_cache;
397 	struct sk_buff_head	sk_receive_queue;
398 	/*
399 	 * The backlog queue is special, it is always used with
400 	 * the per-socket spinlock held and requires low latency
401 	 * access. Therefore we special case it's implementation.
402 	 * Note : rmem_alloc is in this structure to fill a hole
403 	 * on 64bit arches, not because its logically part of
404 	 * backlog.
405 	 */
406 	struct {
407 		atomic_t	rmem_alloc;
408 		int		len;
409 		struct sk_buff	*head;
410 		struct sk_buff	*tail;
411 	} sk_backlog;
412 #define sk_rmem_alloc sk_backlog.rmem_alloc
413 
414 	int			sk_forward_alloc;
415 #ifdef CONFIG_NET_RX_BUSY_POLL
416 	unsigned int		sk_ll_usec;
417 	/* ===== mostly read cache line ===== */
418 	unsigned int		sk_napi_id;
419 #endif
420 	int			sk_rcvbuf;
421 
422 	struct sk_filter __rcu	*sk_filter;
423 	union {
424 		struct socket_wq __rcu	*sk_wq;
425 		/* private: */
426 		struct socket_wq	*sk_wq_raw;
427 		/* public: */
428 	};
429 #ifdef CONFIG_XFRM
430 	struct xfrm_policy __rcu *sk_policy[2];
431 #endif
432 	struct dst_entry	*sk_rx_dst;
433 	struct dst_entry __rcu	*sk_dst_cache;
434 	atomic_t		sk_omem_alloc;
435 	int			sk_sndbuf;
436 
437 	/* ===== cache line for TX ===== */
438 	int			sk_wmem_queued;
439 	refcount_t		sk_wmem_alloc;
440 	unsigned long		sk_tsq_flags;
441 	union {
442 		struct sk_buff	*sk_send_head;
443 		struct rb_root	tcp_rtx_queue;
444 	};
445 	struct sk_buff		*sk_tx_skb_cache;
446 	struct sk_buff_head	sk_write_queue;
447 	__s32			sk_peek_off;
448 	int			sk_write_pending;
449 	__u32			sk_dst_pending_confirm;
450 	u32			sk_pacing_status; /* see enum sk_pacing */
451 	long			sk_sndtimeo;
452 	struct timer_list	sk_timer;
453 	__u32			sk_priority;
454 	__u32			sk_mark;
455 	unsigned long		sk_pacing_rate; /* bytes per second */
456 	unsigned long		sk_max_pacing_rate;
457 	struct page_frag	sk_frag;
458 	netdev_features_t	sk_route_caps;
459 	netdev_features_t	sk_route_nocaps;
460 	netdev_features_t	sk_route_forced_caps;
461 	int			sk_gso_type;
462 	unsigned int		sk_gso_max_size;
463 	gfp_t			sk_allocation;
464 	__u32			sk_txhash;
465 
466 	/*
467 	 * Because of non atomicity rules, all
468 	 * changes are protected by socket lock.
469 	 */
470 	u8			sk_padding : 1,
471 				sk_kern_sock : 1,
472 				sk_no_check_tx : 1,
473 				sk_no_check_rx : 1,
474 				sk_userlocks : 4;
475 	u8			sk_pacing_shift;
476 	u16			sk_type;
477 	u16			sk_protocol;
478 	u16			sk_gso_max_segs;
479 	unsigned long	        sk_lingertime;
480 	struct proto		*sk_prot_creator;
481 	rwlock_t		sk_callback_lock;
482 	int			sk_err,
483 				sk_err_soft;
484 	u32			sk_ack_backlog;
485 	u32			sk_max_ack_backlog;
486 	kuid_t			sk_uid;
487 #ifdef CONFIG_NET_RX_BUSY_POLL
488 	u8			sk_prefer_busy_poll;
489 	u16			sk_busy_poll_budget;
490 #endif
491 	spinlock_t		sk_peer_lock;
492 	struct pid		*sk_peer_pid;
493 	const struct cred	*sk_peer_cred;
494 
495 	long			sk_rcvtimeo;
496 	ktime_t			sk_stamp;
497 #if BITS_PER_LONG==32
498 	seqlock_t		sk_stamp_seq;
499 #endif
500 	u16			sk_tsflags;
501 	int			sk_bind_phc;
502 	u8			sk_shutdown;
503 	u32			sk_tskey;
504 	atomic_t		sk_zckey;
505 
506 	u8			sk_clockid;
507 	u8			sk_txtime_deadline_mode : 1,
508 				sk_txtime_report_errors : 1,
509 				sk_txtime_unused : 6;
510 
511 	struct socket		*sk_socket;
512 	void			*sk_user_data;
513 #ifdef CONFIG_SECURITY
514 	void			*sk_security;
515 #endif
516 	struct sock_cgroup_data	sk_cgrp_data;
517 	struct mem_cgroup	*sk_memcg;
518 	void			(*sk_state_change)(struct sock *sk);
519 	void			(*sk_data_ready)(struct sock *sk);
520 	void			(*sk_write_space)(struct sock *sk);
521 	void			(*sk_error_report)(struct sock *sk);
522 	int			(*sk_backlog_rcv)(struct sock *sk,
523 						  struct sk_buff *skb);
524 #ifdef CONFIG_SOCK_VALIDATE_XMIT
525 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
526 							struct net_device *dev,
527 							struct sk_buff *skb);
528 #endif
529 	void                    (*sk_destruct)(struct sock *sk);
530 	struct sock_reuseport __rcu	*sk_reuseport_cb;
531 #ifdef CONFIG_BPF_SYSCALL
532 	struct bpf_local_storage __rcu	*sk_bpf_storage;
533 #endif
534 	struct rcu_head		sk_rcu;
535 };
536 
537 enum sk_pacing {
538 	SK_PACING_NONE		= 0,
539 	SK_PACING_NEEDED	= 1,
540 	SK_PACING_FQ		= 2,
541 };
542 
543 /* Pointer stored in sk_user_data might not be suitable for copying
544  * when cloning the socket. For instance, it can point to a reference
545  * counted object. sk_user_data bottom bit is set if pointer must not
546  * be copied.
547  */
548 #define SK_USER_DATA_NOCOPY	1UL
549 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
550 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
551 
552 /**
553  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
554  * @sk: socket
555  */
556 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
557 {
558 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
559 }
560 
561 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
562 
563 #define rcu_dereference_sk_user_data(sk)				\
564 ({									\
565 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
566 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
567 })
568 #define rcu_assign_sk_user_data(sk, ptr)				\
569 ({									\
570 	uintptr_t __tmp = (uintptr_t)(ptr);				\
571 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
572 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
573 })
574 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
575 ({									\
576 	uintptr_t __tmp = (uintptr_t)(ptr);				\
577 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
578 	rcu_assign_pointer(__sk_user_data((sk)),			\
579 			   __tmp | SK_USER_DATA_NOCOPY);		\
580 })
581 
582 /*
583  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
584  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
585  * on a socket means that the socket will reuse everybody else's port
586  * without looking at the other's sk_reuse value.
587  */
588 
589 #define SK_NO_REUSE	0
590 #define SK_CAN_REUSE	1
591 #define SK_FORCE_REUSE	2
592 
593 int sk_set_peek_off(struct sock *sk, int val);
594 
595 static inline int sk_peek_offset(struct sock *sk, int flags)
596 {
597 	if (unlikely(flags & MSG_PEEK)) {
598 		return READ_ONCE(sk->sk_peek_off);
599 	}
600 
601 	return 0;
602 }
603 
604 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
605 {
606 	s32 off = READ_ONCE(sk->sk_peek_off);
607 
608 	if (unlikely(off >= 0)) {
609 		off = max_t(s32, off - val, 0);
610 		WRITE_ONCE(sk->sk_peek_off, off);
611 	}
612 }
613 
614 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
615 {
616 	sk_peek_offset_bwd(sk, -val);
617 }
618 
619 /*
620  * Hashed lists helper routines
621  */
622 static inline struct sock *sk_entry(const struct hlist_node *node)
623 {
624 	return hlist_entry(node, struct sock, sk_node);
625 }
626 
627 static inline struct sock *__sk_head(const struct hlist_head *head)
628 {
629 	return hlist_entry(head->first, struct sock, sk_node);
630 }
631 
632 static inline struct sock *sk_head(const struct hlist_head *head)
633 {
634 	return hlist_empty(head) ? NULL : __sk_head(head);
635 }
636 
637 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
638 {
639 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
640 }
641 
642 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
643 {
644 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
645 }
646 
647 static inline struct sock *sk_next(const struct sock *sk)
648 {
649 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
650 }
651 
652 static inline struct sock *sk_nulls_next(const struct sock *sk)
653 {
654 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
655 		hlist_nulls_entry(sk->sk_nulls_node.next,
656 				  struct sock, sk_nulls_node) :
657 		NULL;
658 }
659 
660 static inline bool sk_unhashed(const struct sock *sk)
661 {
662 	return hlist_unhashed(&sk->sk_node);
663 }
664 
665 static inline bool sk_hashed(const struct sock *sk)
666 {
667 	return !sk_unhashed(sk);
668 }
669 
670 static inline void sk_node_init(struct hlist_node *node)
671 {
672 	node->pprev = NULL;
673 }
674 
675 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
676 {
677 	node->pprev = NULL;
678 }
679 
680 static inline void __sk_del_node(struct sock *sk)
681 {
682 	__hlist_del(&sk->sk_node);
683 }
684 
685 /* NB: equivalent to hlist_del_init_rcu */
686 static inline bool __sk_del_node_init(struct sock *sk)
687 {
688 	if (sk_hashed(sk)) {
689 		__sk_del_node(sk);
690 		sk_node_init(&sk->sk_node);
691 		return true;
692 	}
693 	return false;
694 }
695 
696 /* Grab socket reference count. This operation is valid only
697    when sk is ALREADY grabbed f.e. it is found in hash table
698    or a list and the lookup is made under lock preventing hash table
699    modifications.
700  */
701 
702 static __always_inline void sock_hold(struct sock *sk)
703 {
704 	refcount_inc(&sk->sk_refcnt);
705 }
706 
707 /* Ungrab socket in the context, which assumes that socket refcnt
708    cannot hit zero, f.e. it is true in context of any socketcall.
709  */
710 static __always_inline void __sock_put(struct sock *sk)
711 {
712 	refcount_dec(&sk->sk_refcnt);
713 }
714 
715 static inline bool sk_del_node_init(struct sock *sk)
716 {
717 	bool rc = __sk_del_node_init(sk);
718 
719 	if (rc) {
720 		/* paranoid for a while -acme */
721 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
722 		__sock_put(sk);
723 	}
724 	return rc;
725 }
726 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
727 
728 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
729 {
730 	if (sk_hashed(sk)) {
731 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
732 		return true;
733 	}
734 	return false;
735 }
736 
737 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
738 {
739 	bool rc = __sk_nulls_del_node_init_rcu(sk);
740 
741 	if (rc) {
742 		/* paranoid for a while -acme */
743 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
744 		__sock_put(sk);
745 	}
746 	return rc;
747 }
748 
749 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
750 {
751 	hlist_add_head(&sk->sk_node, list);
752 }
753 
754 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
755 {
756 	sock_hold(sk);
757 	__sk_add_node(sk, list);
758 }
759 
760 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
761 {
762 	sock_hold(sk);
763 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
764 	    sk->sk_family == AF_INET6)
765 		hlist_add_tail_rcu(&sk->sk_node, list);
766 	else
767 		hlist_add_head_rcu(&sk->sk_node, list);
768 }
769 
770 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
771 {
772 	sock_hold(sk);
773 	hlist_add_tail_rcu(&sk->sk_node, list);
774 }
775 
776 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
777 {
778 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
779 }
780 
781 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
782 {
783 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
784 }
785 
786 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
787 {
788 	sock_hold(sk);
789 	__sk_nulls_add_node_rcu(sk, list);
790 }
791 
792 static inline void __sk_del_bind_node(struct sock *sk)
793 {
794 	__hlist_del(&sk->sk_bind_node);
795 }
796 
797 static inline void sk_add_bind_node(struct sock *sk,
798 					struct hlist_head *list)
799 {
800 	hlist_add_head(&sk->sk_bind_node, list);
801 }
802 
803 #define sk_for_each(__sk, list) \
804 	hlist_for_each_entry(__sk, list, sk_node)
805 #define sk_for_each_rcu(__sk, list) \
806 	hlist_for_each_entry_rcu(__sk, list, sk_node)
807 #define sk_nulls_for_each(__sk, node, list) \
808 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
809 #define sk_nulls_for_each_rcu(__sk, node, list) \
810 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
811 #define sk_for_each_from(__sk) \
812 	hlist_for_each_entry_from(__sk, sk_node)
813 #define sk_nulls_for_each_from(__sk, node) \
814 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
815 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
816 #define sk_for_each_safe(__sk, tmp, list) \
817 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
818 #define sk_for_each_bound(__sk, list) \
819 	hlist_for_each_entry(__sk, list, sk_bind_node)
820 
821 /**
822  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
823  * @tpos:	the type * to use as a loop cursor.
824  * @pos:	the &struct hlist_node to use as a loop cursor.
825  * @head:	the head for your list.
826  * @offset:	offset of hlist_node within the struct.
827  *
828  */
829 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
830 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
831 	     pos != NULL &&						       \
832 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
833 	     pos = rcu_dereference(hlist_next_rcu(pos)))
834 
835 static inline struct user_namespace *sk_user_ns(struct sock *sk)
836 {
837 	/* Careful only use this in a context where these parameters
838 	 * can not change and must all be valid, such as recvmsg from
839 	 * userspace.
840 	 */
841 	return sk->sk_socket->file->f_cred->user_ns;
842 }
843 
844 /* Sock flags */
845 enum sock_flags {
846 	SOCK_DEAD,
847 	SOCK_DONE,
848 	SOCK_URGINLINE,
849 	SOCK_KEEPOPEN,
850 	SOCK_LINGER,
851 	SOCK_DESTROY,
852 	SOCK_BROADCAST,
853 	SOCK_TIMESTAMP,
854 	SOCK_ZAPPED,
855 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
856 	SOCK_DBG, /* %SO_DEBUG setting */
857 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
858 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
859 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
860 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
861 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
862 	SOCK_FASYNC, /* fasync() active */
863 	SOCK_RXQ_OVFL,
864 	SOCK_ZEROCOPY, /* buffers from userspace */
865 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
866 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
867 		     * Will use last 4 bytes of packet sent from
868 		     * user-space instead.
869 		     */
870 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
871 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
872 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
873 	SOCK_TXTIME,
874 	SOCK_XDP, /* XDP is attached */
875 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
876 };
877 
878 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
879 
880 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
881 {
882 	nsk->sk_flags = osk->sk_flags;
883 }
884 
885 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
886 {
887 	__set_bit(flag, &sk->sk_flags);
888 }
889 
890 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
891 {
892 	__clear_bit(flag, &sk->sk_flags);
893 }
894 
895 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
896 				     int valbool)
897 {
898 	if (valbool)
899 		sock_set_flag(sk, bit);
900 	else
901 		sock_reset_flag(sk, bit);
902 }
903 
904 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
905 {
906 	return test_bit(flag, &sk->sk_flags);
907 }
908 
909 #ifdef CONFIG_NET
910 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
911 static inline int sk_memalloc_socks(void)
912 {
913 	return static_branch_unlikely(&memalloc_socks_key);
914 }
915 
916 void __receive_sock(struct file *file);
917 #else
918 
919 static inline int sk_memalloc_socks(void)
920 {
921 	return 0;
922 }
923 
924 static inline void __receive_sock(struct file *file)
925 { }
926 #endif
927 
928 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
929 {
930 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
931 }
932 
933 static inline void sk_acceptq_removed(struct sock *sk)
934 {
935 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
936 }
937 
938 static inline void sk_acceptq_added(struct sock *sk)
939 {
940 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
941 }
942 
943 /* Note: If you think the test should be:
944  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
945  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
946  */
947 static inline bool sk_acceptq_is_full(const struct sock *sk)
948 {
949 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
950 }
951 
952 /*
953  * Compute minimal free write space needed to queue new packets.
954  */
955 static inline int sk_stream_min_wspace(const struct sock *sk)
956 {
957 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
958 }
959 
960 static inline int sk_stream_wspace(const struct sock *sk)
961 {
962 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
963 }
964 
965 static inline void sk_wmem_queued_add(struct sock *sk, int val)
966 {
967 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
968 }
969 
970 void sk_stream_write_space(struct sock *sk);
971 
972 /* OOB backlog add */
973 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
974 {
975 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
976 	skb_dst_force(skb);
977 
978 	if (!sk->sk_backlog.tail)
979 		WRITE_ONCE(sk->sk_backlog.head, skb);
980 	else
981 		sk->sk_backlog.tail->next = skb;
982 
983 	WRITE_ONCE(sk->sk_backlog.tail, skb);
984 	skb->next = NULL;
985 }
986 
987 /*
988  * Take into account size of receive queue and backlog queue
989  * Do not take into account this skb truesize,
990  * to allow even a single big packet to come.
991  */
992 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
993 {
994 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
995 
996 	return qsize > limit;
997 }
998 
999 /* The per-socket spinlock must be held here. */
1000 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1001 					      unsigned int limit)
1002 {
1003 	if (sk_rcvqueues_full(sk, limit))
1004 		return -ENOBUFS;
1005 
1006 	/*
1007 	 * If the skb was allocated from pfmemalloc reserves, only
1008 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1009 	 * helping free memory
1010 	 */
1011 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1012 		return -ENOMEM;
1013 
1014 	__sk_add_backlog(sk, skb);
1015 	sk->sk_backlog.len += skb->truesize;
1016 	return 0;
1017 }
1018 
1019 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1020 
1021 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1022 {
1023 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1024 		return __sk_backlog_rcv(sk, skb);
1025 
1026 	return sk->sk_backlog_rcv(sk, skb);
1027 }
1028 
1029 static inline void sk_incoming_cpu_update(struct sock *sk)
1030 {
1031 	int cpu = raw_smp_processor_id();
1032 
1033 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1034 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1035 }
1036 
1037 static inline void sock_rps_record_flow_hash(__u32 hash)
1038 {
1039 #ifdef CONFIG_RPS
1040 	struct rps_sock_flow_table *sock_flow_table;
1041 
1042 	rcu_read_lock();
1043 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1044 	rps_record_sock_flow(sock_flow_table, hash);
1045 	rcu_read_unlock();
1046 #endif
1047 }
1048 
1049 static inline void sock_rps_record_flow(const struct sock *sk)
1050 {
1051 #ifdef CONFIG_RPS
1052 	if (static_branch_unlikely(&rfs_needed)) {
1053 		/* Reading sk->sk_rxhash might incur an expensive cache line
1054 		 * miss.
1055 		 *
1056 		 * TCP_ESTABLISHED does cover almost all states where RFS
1057 		 * might be useful, and is cheaper [1] than testing :
1058 		 *	IPv4: inet_sk(sk)->inet_daddr
1059 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1060 		 * OR	an additional socket flag
1061 		 * [1] : sk_state and sk_prot are in the same cache line.
1062 		 */
1063 		if (sk->sk_state == TCP_ESTABLISHED)
1064 			sock_rps_record_flow_hash(sk->sk_rxhash);
1065 	}
1066 #endif
1067 }
1068 
1069 static inline void sock_rps_save_rxhash(struct sock *sk,
1070 					const struct sk_buff *skb)
1071 {
1072 #ifdef CONFIG_RPS
1073 	if (unlikely(sk->sk_rxhash != skb->hash))
1074 		sk->sk_rxhash = skb->hash;
1075 #endif
1076 }
1077 
1078 static inline void sock_rps_reset_rxhash(struct sock *sk)
1079 {
1080 #ifdef CONFIG_RPS
1081 	sk->sk_rxhash = 0;
1082 #endif
1083 }
1084 
1085 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1086 	({	int __rc;						\
1087 		release_sock(__sk);					\
1088 		__rc = __condition;					\
1089 		if (!__rc) {						\
1090 			*(__timeo) = wait_woken(__wait,			\
1091 						TASK_INTERRUPTIBLE,	\
1092 						*(__timeo));		\
1093 		}							\
1094 		sched_annotate_sleep();					\
1095 		lock_sock(__sk);					\
1096 		__rc = __condition;					\
1097 		__rc;							\
1098 	})
1099 
1100 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1101 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1102 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1103 int sk_stream_error(struct sock *sk, int flags, int err);
1104 void sk_stream_kill_queues(struct sock *sk);
1105 void sk_set_memalloc(struct sock *sk);
1106 void sk_clear_memalloc(struct sock *sk);
1107 
1108 void __sk_flush_backlog(struct sock *sk);
1109 
1110 static inline bool sk_flush_backlog(struct sock *sk)
1111 {
1112 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1113 		__sk_flush_backlog(sk);
1114 		return true;
1115 	}
1116 	return false;
1117 }
1118 
1119 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1120 
1121 struct request_sock_ops;
1122 struct timewait_sock_ops;
1123 struct inet_hashinfo;
1124 struct raw_hashinfo;
1125 struct smc_hashinfo;
1126 struct module;
1127 struct sk_psock;
1128 
1129 /*
1130  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1131  * un-modified. Special care is taken when initializing object to zero.
1132  */
1133 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1134 {
1135 	if (offsetof(struct sock, sk_node.next) != 0)
1136 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1137 	memset(&sk->sk_node.pprev, 0,
1138 	       size - offsetof(struct sock, sk_node.pprev));
1139 }
1140 
1141 /* Networking protocol blocks we attach to sockets.
1142  * socket layer -> transport layer interface
1143  */
1144 struct proto {
1145 	void			(*close)(struct sock *sk,
1146 					long timeout);
1147 	int			(*pre_connect)(struct sock *sk,
1148 					struct sockaddr *uaddr,
1149 					int addr_len);
1150 	int			(*connect)(struct sock *sk,
1151 					struct sockaddr *uaddr,
1152 					int addr_len);
1153 	int			(*disconnect)(struct sock *sk, int flags);
1154 
1155 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1156 					  bool kern);
1157 
1158 	int			(*ioctl)(struct sock *sk, int cmd,
1159 					 unsigned long arg);
1160 	int			(*init)(struct sock *sk);
1161 	void			(*destroy)(struct sock *sk);
1162 	void			(*shutdown)(struct sock *sk, int how);
1163 	int			(*setsockopt)(struct sock *sk, int level,
1164 					int optname, sockptr_t optval,
1165 					unsigned int optlen);
1166 	int			(*getsockopt)(struct sock *sk, int level,
1167 					int optname, char __user *optval,
1168 					int __user *option);
1169 	void			(*keepalive)(struct sock *sk, int valbool);
1170 #ifdef CONFIG_COMPAT
1171 	int			(*compat_ioctl)(struct sock *sk,
1172 					unsigned int cmd, unsigned long arg);
1173 #endif
1174 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1175 					   size_t len);
1176 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1177 					   size_t len, int noblock, int flags,
1178 					   int *addr_len);
1179 	int			(*sendpage)(struct sock *sk, struct page *page,
1180 					int offset, size_t size, int flags);
1181 	int			(*bind)(struct sock *sk,
1182 					struct sockaddr *addr, int addr_len);
1183 	int			(*bind_add)(struct sock *sk,
1184 					struct sockaddr *addr, int addr_len);
1185 
1186 	int			(*backlog_rcv) (struct sock *sk,
1187 						struct sk_buff *skb);
1188 	bool			(*bpf_bypass_getsockopt)(int level,
1189 							 int optname);
1190 
1191 	void		(*release_cb)(struct sock *sk);
1192 
1193 	/* Keeping track of sk's, looking them up, and port selection methods. */
1194 	int			(*hash)(struct sock *sk);
1195 	void			(*unhash)(struct sock *sk);
1196 	void			(*rehash)(struct sock *sk);
1197 	int			(*get_port)(struct sock *sk, unsigned short snum);
1198 #ifdef CONFIG_BPF_SYSCALL
1199 	int			(*psock_update_sk_prot)(struct sock *sk,
1200 							struct sk_psock *psock,
1201 							bool restore);
1202 #endif
1203 
1204 	/* Keeping track of sockets in use */
1205 #ifdef CONFIG_PROC_FS
1206 	unsigned int		inuse_idx;
1207 #endif
1208 
1209 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1210 	bool			(*stream_memory_read)(const struct sock *sk);
1211 	/* Memory pressure */
1212 	void			(*enter_memory_pressure)(struct sock *sk);
1213 	void			(*leave_memory_pressure)(struct sock *sk);
1214 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1215 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1216 	/*
1217 	 * Pressure flag: try to collapse.
1218 	 * Technical note: it is used by multiple contexts non atomically.
1219 	 * All the __sk_mem_schedule() is of this nature: accounting
1220 	 * is strict, actions are advisory and have some latency.
1221 	 */
1222 	unsigned long		*memory_pressure;
1223 	long			*sysctl_mem;
1224 
1225 	int			*sysctl_wmem;
1226 	int			*sysctl_rmem;
1227 	u32			sysctl_wmem_offset;
1228 	u32			sysctl_rmem_offset;
1229 
1230 	int			max_header;
1231 	bool			no_autobind;
1232 
1233 	struct kmem_cache	*slab;
1234 	unsigned int		obj_size;
1235 	slab_flags_t		slab_flags;
1236 	unsigned int		useroffset;	/* Usercopy region offset */
1237 	unsigned int		usersize;	/* Usercopy region size */
1238 
1239 	struct percpu_counter	*orphan_count;
1240 
1241 	struct request_sock_ops	*rsk_prot;
1242 	struct timewait_sock_ops *twsk_prot;
1243 
1244 	union {
1245 		struct inet_hashinfo	*hashinfo;
1246 		struct udp_table	*udp_table;
1247 		struct raw_hashinfo	*raw_hash;
1248 		struct smc_hashinfo	*smc_hash;
1249 	} h;
1250 
1251 	struct module		*owner;
1252 
1253 	char			name[32];
1254 
1255 	struct list_head	node;
1256 #ifdef SOCK_REFCNT_DEBUG
1257 	atomic_t		socks;
1258 #endif
1259 	int			(*diag_destroy)(struct sock *sk, int err);
1260 } __randomize_layout;
1261 
1262 int proto_register(struct proto *prot, int alloc_slab);
1263 void proto_unregister(struct proto *prot);
1264 int sock_load_diag_module(int family, int protocol);
1265 
1266 #ifdef SOCK_REFCNT_DEBUG
1267 static inline void sk_refcnt_debug_inc(struct sock *sk)
1268 {
1269 	atomic_inc(&sk->sk_prot->socks);
1270 }
1271 
1272 static inline void sk_refcnt_debug_dec(struct sock *sk)
1273 {
1274 	atomic_dec(&sk->sk_prot->socks);
1275 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1276 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1277 }
1278 
1279 static inline void sk_refcnt_debug_release(const struct sock *sk)
1280 {
1281 	if (refcount_read(&sk->sk_refcnt) != 1)
1282 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1283 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1284 }
1285 #else /* SOCK_REFCNT_DEBUG */
1286 #define sk_refcnt_debug_inc(sk) do { } while (0)
1287 #define sk_refcnt_debug_dec(sk) do { } while (0)
1288 #define sk_refcnt_debug_release(sk) do { } while (0)
1289 #endif /* SOCK_REFCNT_DEBUG */
1290 
1291 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1292 
1293 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1294 {
1295 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1296 		return false;
1297 
1298 #ifdef CONFIG_INET
1299 	return sk->sk_prot->stream_memory_free ?
1300 		INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1301 			        tcp_stream_memory_free,
1302 				sk, wake) : true;
1303 #else
1304 	return sk->sk_prot->stream_memory_free ?
1305 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1306 #endif
1307 }
1308 
1309 static inline bool sk_stream_memory_free(const struct sock *sk)
1310 {
1311 	return __sk_stream_memory_free(sk, 0);
1312 }
1313 
1314 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1315 {
1316 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1317 	       __sk_stream_memory_free(sk, wake);
1318 }
1319 
1320 static inline bool sk_stream_is_writeable(const struct sock *sk)
1321 {
1322 	return __sk_stream_is_writeable(sk, 0);
1323 }
1324 
1325 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1326 					    struct cgroup *ancestor)
1327 {
1328 #ifdef CONFIG_SOCK_CGROUP_DATA
1329 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1330 				    ancestor);
1331 #else
1332 	return -ENOTSUPP;
1333 #endif
1334 }
1335 
1336 static inline bool sk_has_memory_pressure(const struct sock *sk)
1337 {
1338 	return sk->sk_prot->memory_pressure != NULL;
1339 }
1340 
1341 static inline bool sk_under_memory_pressure(const struct sock *sk)
1342 {
1343 	if (!sk->sk_prot->memory_pressure)
1344 		return false;
1345 
1346 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1347 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1348 		return true;
1349 
1350 	return !!*sk->sk_prot->memory_pressure;
1351 }
1352 
1353 static inline long
1354 sk_memory_allocated(const struct sock *sk)
1355 {
1356 	return atomic_long_read(sk->sk_prot->memory_allocated);
1357 }
1358 
1359 static inline long
1360 sk_memory_allocated_add(struct sock *sk, int amt)
1361 {
1362 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1363 }
1364 
1365 static inline void
1366 sk_memory_allocated_sub(struct sock *sk, int amt)
1367 {
1368 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1369 }
1370 
1371 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1372 
1373 static inline void sk_sockets_allocated_dec(struct sock *sk)
1374 {
1375 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1376 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1377 }
1378 
1379 static inline void sk_sockets_allocated_inc(struct sock *sk)
1380 {
1381 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1382 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1383 }
1384 
1385 static inline u64
1386 sk_sockets_allocated_read_positive(struct sock *sk)
1387 {
1388 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1389 }
1390 
1391 static inline int
1392 proto_sockets_allocated_sum_positive(struct proto *prot)
1393 {
1394 	return percpu_counter_sum_positive(prot->sockets_allocated);
1395 }
1396 
1397 static inline long
1398 proto_memory_allocated(struct proto *prot)
1399 {
1400 	return atomic_long_read(prot->memory_allocated);
1401 }
1402 
1403 static inline bool
1404 proto_memory_pressure(struct proto *prot)
1405 {
1406 	if (!prot->memory_pressure)
1407 		return false;
1408 	return !!*prot->memory_pressure;
1409 }
1410 
1411 
1412 #ifdef CONFIG_PROC_FS
1413 /* Called with local bh disabled */
1414 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1415 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1416 int sock_inuse_get(struct net *net);
1417 #else
1418 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1419 		int inc)
1420 {
1421 }
1422 #endif
1423 
1424 
1425 /* With per-bucket locks this operation is not-atomic, so that
1426  * this version is not worse.
1427  */
1428 static inline int __sk_prot_rehash(struct sock *sk)
1429 {
1430 	sk->sk_prot->unhash(sk);
1431 	return sk->sk_prot->hash(sk);
1432 }
1433 
1434 /* About 10 seconds */
1435 #define SOCK_DESTROY_TIME (10*HZ)
1436 
1437 /* Sockets 0-1023 can't be bound to unless you are superuser */
1438 #define PROT_SOCK	1024
1439 
1440 #define SHUTDOWN_MASK	3
1441 #define RCV_SHUTDOWN	1
1442 #define SEND_SHUTDOWN	2
1443 
1444 #define SOCK_BINDADDR_LOCK	4
1445 #define SOCK_BINDPORT_LOCK	8
1446 
1447 struct socket_alloc {
1448 	struct socket socket;
1449 	struct inode vfs_inode;
1450 };
1451 
1452 static inline struct socket *SOCKET_I(struct inode *inode)
1453 {
1454 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1455 }
1456 
1457 static inline struct inode *SOCK_INODE(struct socket *socket)
1458 {
1459 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1460 }
1461 
1462 /*
1463  * Functions for memory accounting
1464  */
1465 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1466 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1467 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1468 void __sk_mem_reclaim(struct sock *sk, int amount);
1469 
1470 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1471  * do not necessarily have 16x time more memory than 4KB ones.
1472  */
1473 #define SK_MEM_QUANTUM 4096
1474 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1475 #define SK_MEM_SEND	0
1476 #define SK_MEM_RECV	1
1477 
1478 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1479 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1480 {
1481 	long val = sk->sk_prot->sysctl_mem[index];
1482 
1483 #if PAGE_SIZE > SK_MEM_QUANTUM
1484 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1485 #elif PAGE_SIZE < SK_MEM_QUANTUM
1486 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1487 #endif
1488 	return val;
1489 }
1490 
1491 static inline int sk_mem_pages(int amt)
1492 {
1493 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1494 }
1495 
1496 static inline bool sk_has_account(struct sock *sk)
1497 {
1498 	/* return true if protocol supports memory accounting */
1499 	return !!sk->sk_prot->memory_allocated;
1500 }
1501 
1502 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1503 {
1504 	if (!sk_has_account(sk))
1505 		return true;
1506 	return size <= sk->sk_forward_alloc ||
1507 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1508 }
1509 
1510 static inline bool
1511 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1512 {
1513 	if (!sk_has_account(sk))
1514 		return true;
1515 	return size <= sk->sk_forward_alloc ||
1516 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1517 		skb_pfmemalloc(skb);
1518 }
1519 
1520 static inline void sk_mem_reclaim(struct sock *sk)
1521 {
1522 	if (!sk_has_account(sk))
1523 		return;
1524 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1525 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1526 }
1527 
1528 static inline void sk_mem_reclaim_partial(struct sock *sk)
1529 {
1530 	if (!sk_has_account(sk))
1531 		return;
1532 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1533 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1534 }
1535 
1536 static inline void sk_mem_charge(struct sock *sk, int size)
1537 {
1538 	if (!sk_has_account(sk))
1539 		return;
1540 	sk->sk_forward_alloc -= size;
1541 }
1542 
1543 static inline void sk_mem_uncharge(struct sock *sk, int size)
1544 {
1545 	if (!sk_has_account(sk))
1546 		return;
1547 	sk->sk_forward_alloc += size;
1548 
1549 	/* Avoid a possible overflow.
1550 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1551 	 * is not called and more than 2 GBytes are released at once.
1552 	 *
1553 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1554 	 * no need to hold that much forward allocation anyway.
1555 	 */
1556 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1557 		__sk_mem_reclaim(sk, 1 << 20);
1558 }
1559 
1560 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1561 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1562 {
1563 	sk_wmem_queued_add(sk, -skb->truesize);
1564 	sk_mem_uncharge(sk, skb->truesize);
1565 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1566 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1567 		skb_ext_reset(skb);
1568 		skb_zcopy_clear(skb, true);
1569 		sk->sk_tx_skb_cache = skb;
1570 		return;
1571 	}
1572 	__kfree_skb(skb);
1573 }
1574 
1575 static inline void sock_release_ownership(struct sock *sk)
1576 {
1577 	if (sk->sk_lock.owned) {
1578 		sk->sk_lock.owned = 0;
1579 
1580 		/* The sk_lock has mutex_unlock() semantics: */
1581 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1582 	}
1583 }
1584 
1585 /*
1586  * Macro so as to not evaluate some arguments when
1587  * lockdep is not enabled.
1588  *
1589  * Mark both the sk_lock and the sk_lock.slock as a
1590  * per-address-family lock class.
1591  */
1592 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1593 do {									\
1594 	sk->sk_lock.owned = 0;						\
1595 	init_waitqueue_head(&sk->sk_lock.wq);				\
1596 	spin_lock_init(&(sk)->sk_lock.slock);				\
1597 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1598 			sizeof((sk)->sk_lock));				\
1599 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1600 				(skey), (sname));				\
1601 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1602 } while (0)
1603 
1604 static inline bool lockdep_sock_is_held(const struct sock *sk)
1605 {
1606 	return lockdep_is_held(&sk->sk_lock) ||
1607 	       lockdep_is_held(&sk->sk_lock.slock);
1608 }
1609 
1610 void lock_sock_nested(struct sock *sk, int subclass);
1611 
1612 static inline void lock_sock(struct sock *sk)
1613 {
1614 	lock_sock_nested(sk, 0);
1615 }
1616 
1617 void __lock_sock(struct sock *sk);
1618 void __release_sock(struct sock *sk);
1619 void release_sock(struct sock *sk);
1620 
1621 /* BH context may only use the following locking interface. */
1622 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1623 #define bh_lock_sock_nested(__sk) \
1624 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1625 				SINGLE_DEPTH_NESTING)
1626 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1627 
1628 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1629 
1630 /**
1631  * lock_sock_fast - fast version of lock_sock
1632  * @sk: socket
1633  *
1634  * This version should be used for very small section, where process wont block
1635  * return false if fast path is taken:
1636  *
1637  *   sk_lock.slock locked, owned = 0, BH disabled
1638  *
1639  * return true if slow path is taken:
1640  *
1641  *   sk_lock.slock unlocked, owned = 1, BH enabled
1642  */
1643 static inline bool lock_sock_fast(struct sock *sk)
1644 {
1645 	/* The sk_lock has mutex_lock() semantics here. */
1646 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1647 
1648 	return __lock_sock_fast(sk);
1649 }
1650 
1651 /* fast socket lock variant for caller already holding a [different] socket lock */
1652 static inline bool lock_sock_fast_nested(struct sock *sk)
1653 {
1654 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1655 
1656 	return __lock_sock_fast(sk);
1657 }
1658 
1659 /**
1660  * unlock_sock_fast - complement of lock_sock_fast
1661  * @sk: socket
1662  * @slow: slow mode
1663  *
1664  * fast unlock socket for user context.
1665  * If slow mode is on, we call regular release_sock()
1666  */
1667 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1668 	__releases(&sk->sk_lock.slock)
1669 {
1670 	if (slow) {
1671 		release_sock(sk);
1672 		__release(&sk->sk_lock.slock);
1673 	} else {
1674 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1675 		spin_unlock_bh(&sk->sk_lock.slock);
1676 	}
1677 }
1678 
1679 /* Used by processes to "lock" a socket state, so that
1680  * interrupts and bottom half handlers won't change it
1681  * from under us. It essentially blocks any incoming
1682  * packets, so that we won't get any new data or any
1683  * packets that change the state of the socket.
1684  *
1685  * While locked, BH processing will add new packets to
1686  * the backlog queue.  This queue is processed by the
1687  * owner of the socket lock right before it is released.
1688  *
1689  * Since ~2.3.5 it is also exclusive sleep lock serializing
1690  * accesses from user process context.
1691  */
1692 
1693 static inline void sock_owned_by_me(const struct sock *sk)
1694 {
1695 #ifdef CONFIG_LOCKDEP
1696 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1697 #endif
1698 }
1699 
1700 static inline bool sock_owned_by_user(const struct sock *sk)
1701 {
1702 	sock_owned_by_me(sk);
1703 	return sk->sk_lock.owned;
1704 }
1705 
1706 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1707 {
1708 	return sk->sk_lock.owned;
1709 }
1710 
1711 /* no reclassification while locks are held */
1712 static inline bool sock_allow_reclassification(const struct sock *csk)
1713 {
1714 	struct sock *sk = (struct sock *)csk;
1715 
1716 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1717 }
1718 
1719 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1720 		      struct proto *prot, int kern);
1721 void sk_free(struct sock *sk);
1722 void sk_destruct(struct sock *sk);
1723 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1724 void sk_free_unlock_clone(struct sock *sk);
1725 
1726 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1727 			     gfp_t priority);
1728 void __sock_wfree(struct sk_buff *skb);
1729 void sock_wfree(struct sk_buff *skb);
1730 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1731 			     gfp_t priority);
1732 void skb_orphan_partial(struct sk_buff *skb);
1733 void sock_rfree(struct sk_buff *skb);
1734 void sock_efree(struct sk_buff *skb);
1735 #ifdef CONFIG_INET
1736 void sock_edemux(struct sk_buff *skb);
1737 void sock_pfree(struct sk_buff *skb);
1738 #else
1739 #define sock_edemux sock_efree
1740 #endif
1741 
1742 int sock_setsockopt(struct socket *sock, int level, int op,
1743 		    sockptr_t optval, unsigned int optlen);
1744 
1745 int sock_getsockopt(struct socket *sock, int level, int op,
1746 		    char __user *optval, int __user *optlen);
1747 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1748 		   bool timeval, bool time32);
1749 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1750 				    int noblock, int *errcode);
1751 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1752 				     unsigned long data_len, int noblock,
1753 				     int *errcode, int max_page_order);
1754 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1755 void sock_kfree_s(struct sock *sk, void *mem, int size);
1756 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1757 void sk_send_sigurg(struct sock *sk);
1758 
1759 struct sockcm_cookie {
1760 	u64 transmit_time;
1761 	u32 mark;
1762 	u16 tsflags;
1763 };
1764 
1765 static inline void sockcm_init(struct sockcm_cookie *sockc,
1766 			       const struct sock *sk)
1767 {
1768 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1769 }
1770 
1771 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1772 		     struct sockcm_cookie *sockc);
1773 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1774 		   struct sockcm_cookie *sockc);
1775 
1776 /*
1777  * Functions to fill in entries in struct proto_ops when a protocol
1778  * does not implement a particular function.
1779  */
1780 int sock_no_bind(struct socket *, struct sockaddr *, int);
1781 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1782 int sock_no_socketpair(struct socket *, struct socket *);
1783 int sock_no_accept(struct socket *, struct socket *, int, bool);
1784 int sock_no_getname(struct socket *, struct sockaddr *, int);
1785 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1786 int sock_no_listen(struct socket *, int);
1787 int sock_no_shutdown(struct socket *, int);
1788 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1789 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1790 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1791 int sock_no_mmap(struct file *file, struct socket *sock,
1792 		 struct vm_area_struct *vma);
1793 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1794 			 size_t size, int flags);
1795 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1796 				int offset, size_t size, int flags);
1797 
1798 /*
1799  * Functions to fill in entries in struct proto_ops when a protocol
1800  * uses the inet style.
1801  */
1802 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1803 				  char __user *optval, int __user *optlen);
1804 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1805 			int flags);
1806 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1807 			   sockptr_t optval, unsigned int optlen);
1808 
1809 void sk_common_release(struct sock *sk);
1810 
1811 /*
1812  *	Default socket callbacks and setup code
1813  */
1814 
1815 /* Initialise core socket variables */
1816 void sock_init_data(struct socket *sock, struct sock *sk);
1817 
1818 /*
1819  * Socket reference counting postulates.
1820  *
1821  * * Each user of socket SHOULD hold a reference count.
1822  * * Each access point to socket (an hash table bucket, reference from a list,
1823  *   running timer, skb in flight MUST hold a reference count.
1824  * * When reference count hits 0, it means it will never increase back.
1825  * * When reference count hits 0, it means that no references from
1826  *   outside exist to this socket and current process on current CPU
1827  *   is last user and may/should destroy this socket.
1828  * * sk_free is called from any context: process, BH, IRQ. When
1829  *   it is called, socket has no references from outside -> sk_free
1830  *   may release descendant resources allocated by the socket, but
1831  *   to the time when it is called, socket is NOT referenced by any
1832  *   hash tables, lists etc.
1833  * * Packets, delivered from outside (from network or from another process)
1834  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1835  *   when they sit in queue. Otherwise, packets will leak to hole, when
1836  *   socket is looked up by one cpu and unhasing is made by another CPU.
1837  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1838  *   (leak to backlog). Packet socket does all the processing inside
1839  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1840  *   use separate SMP lock, so that they are prone too.
1841  */
1842 
1843 /* Ungrab socket and destroy it, if it was the last reference. */
1844 static inline void sock_put(struct sock *sk)
1845 {
1846 	if (refcount_dec_and_test(&sk->sk_refcnt))
1847 		sk_free(sk);
1848 }
1849 /* Generic version of sock_put(), dealing with all sockets
1850  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1851  */
1852 void sock_gen_put(struct sock *sk);
1853 
1854 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1855 		     unsigned int trim_cap, bool refcounted);
1856 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1857 				 const int nested)
1858 {
1859 	return __sk_receive_skb(sk, skb, nested, 1, true);
1860 }
1861 
1862 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1863 {
1864 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1865 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1866 		return;
1867 	sk->sk_tx_queue_mapping = tx_queue;
1868 }
1869 
1870 #define NO_QUEUE_MAPPING	USHRT_MAX
1871 
1872 static inline void sk_tx_queue_clear(struct sock *sk)
1873 {
1874 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1875 }
1876 
1877 static inline int sk_tx_queue_get(const struct sock *sk)
1878 {
1879 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1880 		return sk->sk_tx_queue_mapping;
1881 
1882 	return -1;
1883 }
1884 
1885 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1886 {
1887 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1888 	if (skb_rx_queue_recorded(skb)) {
1889 		u16 rx_queue = skb_get_rx_queue(skb);
1890 
1891 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1892 			return;
1893 
1894 		sk->sk_rx_queue_mapping = rx_queue;
1895 	}
1896 #endif
1897 }
1898 
1899 static inline void sk_rx_queue_clear(struct sock *sk)
1900 {
1901 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1902 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1903 #endif
1904 }
1905 
1906 static inline int sk_rx_queue_get(const struct sock *sk)
1907 {
1908 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1909 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1910 		return sk->sk_rx_queue_mapping;
1911 #endif
1912 
1913 	return -1;
1914 }
1915 
1916 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1917 {
1918 	sk->sk_socket = sock;
1919 }
1920 
1921 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1922 {
1923 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1924 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1925 }
1926 /* Detach socket from process context.
1927  * Announce socket dead, detach it from wait queue and inode.
1928  * Note that parent inode held reference count on this struct sock,
1929  * we do not release it in this function, because protocol
1930  * probably wants some additional cleanups or even continuing
1931  * to work with this socket (TCP).
1932  */
1933 static inline void sock_orphan(struct sock *sk)
1934 {
1935 	write_lock_bh(&sk->sk_callback_lock);
1936 	sock_set_flag(sk, SOCK_DEAD);
1937 	sk_set_socket(sk, NULL);
1938 	sk->sk_wq  = NULL;
1939 	write_unlock_bh(&sk->sk_callback_lock);
1940 }
1941 
1942 static inline void sock_graft(struct sock *sk, struct socket *parent)
1943 {
1944 	WARN_ON(parent->sk);
1945 	write_lock_bh(&sk->sk_callback_lock);
1946 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1947 	parent->sk = sk;
1948 	sk_set_socket(sk, parent);
1949 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1950 	security_sock_graft(sk, parent);
1951 	write_unlock_bh(&sk->sk_callback_lock);
1952 }
1953 
1954 kuid_t sock_i_uid(struct sock *sk);
1955 unsigned long sock_i_ino(struct sock *sk);
1956 
1957 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1958 {
1959 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1960 }
1961 
1962 static inline u32 net_tx_rndhash(void)
1963 {
1964 	u32 v = prandom_u32();
1965 
1966 	return v ?: 1;
1967 }
1968 
1969 static inline void sk_set_txhash(struct sock *sk)
1970 {
1971 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1972 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1973 }
1974 
1975 static inline bool sk_rethink_txhash(struct sock *sk)
1976 {
1977 	if (sk->sk_txhash) {
1978 		sk_set_txhash(sk);
1979 		return true;
1980 	}
1981 	return false;
1982 }
1983 
1984 static inline struct dst_entry *
1985 __sk_dst_get(struct sock *sk)
1986 {
1987 	return rcu_dereference_check(sk->sk_dst_cache,
1988 				     lockdep_sock_is_held(sk));
1989 }
1990 
1991 static inline struct dst_entry *
1992 sk_dst_get(struct sock *sk)
1993 {
1994 	struct dst_entry *dst;
1995 
1996 	rcu_read_lock();
1997 	dst = rcu_dereference(sk->sk_dst_cache);
1998 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1999 		dst = NULL;
2000 	rcu_read_unlock();
2001 	return dst;
2002 }
2003 
2004 static inline void __dst_negative_advice(struct sock *sk)
2005 {
2006 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2007 
2008 	if (dst && dst->ops->negative_advice) {
2009 		ndst = dst->ops->negative_advice(dst);
2010 
2011 		if (ndst != dst) {
2012 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2013 			sk_tx_queue_clear(sk);
2014 			sk->sk_dst_pending_confirm = 0;
2015 		}
2016 	}
2017 }
2018 
2019 static inline void dst_negative_advice(struct sock *sk)
2020 {
2021 	sk_rethink_txhash(sk);
2022 	__dst_negative_advice(sk);
2023 }
2024 
2025 static inline void
2026 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2027 {
2028 	struct dst_entry *old_dst;
2029 
2030 	sk_tx_queue_clear(sk);
2031 	sk->sk_dst_pending_confirm = 0;
2032 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2033 					    lockdep_sock_is_held(sk));
2034 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2035 	dst_release(old_dst);
2036 }
2037 
2038 static inline void
2039 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2040 {
2041 	struct dst_entry *old_dst;
2042 
2043 	sk_tx_queue_clear(sk);
2044 	sk->sk_dst_pending_confirm = 0;
2045 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2046 	dst_release(old_dst);
2047 }
2048 
2049 static inline void
2050 __sk_dst_reset(struct sock *sk)
2051 {
2052 	__sk_dst_set(sk, NULL);
2053 }
2054 
2055 static inline void
2056 sk_dst_reset(struct sock *sk)
2057 {
2058 	sk_dst_set(sk, NULL);
2059 }
2060 
2061 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2062 
2063 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2064 
2065 static inline void sk_dst_confirm(struct sock *sk)
2066 {
2067 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2068 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2069 }
2070 
2071 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2072 {
2073 	if (skb_get_dst_pending_confirm(skb)) {
2074 		struct sock *sk = skb->sk;
2075 		unsigned long now = jiffies;
2076 
2077 		/* avoid dirtying neighbour */
2078 		if (READ_ONCE(n->confirmed) != now)
2079 			WRITE_ONCE(n->confirmed, now);
2080 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2081 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2082 	}
2083 }
2084 
2085 bool sk_mc_loop(struct sock *sk);
2086 
2087 static inline bool sk_can_gso(const struct sock *sk)
2088 {
2089 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2090 }
2091 
2092 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2093 
2094 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2095 {
2096 	sk->sk_route_nocaps |= flags;
2097 	sk->sk_route_caps &= ~flags;
2098 }
2099 
2100 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2101 					   struct iov_iter *from, char *to,
2102 					   int copy, int offset)
2103 {
2104 	if (skb->ip_summed == CHECKSUM_NONE) {
2105 		__wsum csum = 0;
2106 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2107 			return -EFAULT;
2108 		skb->csum = csum_block_add(skb->csum, csum, offset);
2109 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2110 		if (!copy_from_iter_full_nocache(to, copy, from))
2111 			return -EFAULT;
2112 	} else if (!copy_from_iter_full(to, copy, from))
2113 		return -EFAULT;
2114 
2115 	return 0;
2116 }
2117 
2118 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2119 				       struct iov_iter *from, int copy)
2120 {
2121 	int err, offset = skb->len;
2122 
2123 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2124 				       copy, offset);
2125 	if (err)
2126 		__skb_trim(skb, offset);
2127 
2128 	return err;
2129 }
2130 
2131 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2132 					   struct sk_buff *skb,
2133 					   struct page *page,
2134 					   int off, int copy)
2135 {
2136 	int err;
2137 
2138 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2139 				       copy, skb->len);
2140 	if (err)
2141 		return err;
2142 
2143 	skb->len	     += copy;
2144 	skb->data_len	     += copy;
2145 	skb->truesize	     += copy;
2146 	sk_wmem_queued_add(sk, copy);
2147 	sk_mem_charge(sk, copy);
2148 	return 0;
2149 }
2150 
2151 /**
2152  * sk_wmem_alloc_get - returns write allocations
2153  * @sk: socket
2154  *
2155  * Return: sk_wmem_alloc minus initial offset of one
2156  */
2157 static inline int sk_wmem_alloc_get(const struct sock *sk)
2158 {
2159 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2160 }
2161 
2162 /**
2163  * sk_rmem_alloc_get - returns read allocations
2164  * @sk: socket
2165  *
2166  * Return: sk_rmem_alloc
2167  */
2168 static inline int sk_rmem_alloc_get(const struct sock *sk)
2169 {
2170 	return atomic_read(&sk->sk_rmem_alloc);
2171 }
2172 
2173 /**
2174  * sk_has_allocations - check if allocations are outstanding
2175  * @sk: socket
2176  *
2177  * Return: true if socket has write or read allocations
2178  */
2179 static inline bool sk_has_allocations(const struct sock *sk)
2180 {
2181 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2182 }
2183 
2184 /**
2185  * skwq_has_sleeper - check if there are any waiting processes
2186  * @wq: struct socket_wq
2187  *
2188  * Return: true if socket_wq has waiting processes
2189  *
2190  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2191  * barrier call. They were added due to the race found within the tcp code.
2192  *
2193  * Consider following tcp code paths::
2194  *
2195  *   CPU1                CPU2
2196  *   sys_select          receive packet
2197  *   ...                 ...
2198  *   __add_wait_queue    update tp->rcv_nxt
2199  *   ...                 ...
2200  *   tp->rcv_nxt check   sock_def_readable
2201  *   ...                 {
2202  *   schedule               rcu_read_lock();
2203  *                          wq = rcu_dereference(sk->sk_wq);
2204  *                          if (wq && waitqueue_active(&wq->wait))
2205  *                              wake_up_interruptible(&wq->wait)
2206  *                          ...
2207  *                       }
2208  *
2209  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2210  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2211  * could then endup calling schedule and sleep forever if there are no more
2212  * data on the socket.
2213  *
2214  */
2215 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2216 {
2217 	return wq && wq_has_sleeper(&wq->wait);
2218 }
2219 
2220 /**
2221  * sock_poll_wait - place memory barrier behind the poll_wait call.
2222  * @filp:           file
2223  * @sock:           socket to wait on
2224  * @p:              poll_table
2225  *
2226  * See the comments in the wq_has_sleeper function.
2227  */
2228 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2229 				  poll_table *p)
2230 {
2231 	if (!poll_does_not_wait(p)) {
2232 		poll_wait(filp, &sock->wq.wait, p);
2233 		/* We need to be sure we are in sync with the
2234 		 * socket flags modification.
2235 		 *
2236 		 * This memory barrier is paired in the wq_has_sleeper.
2237 		 */
2238 		smp_mb();
2239 	}
2240 }
2241 
2242 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2243 {
2244 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2245 	u32 txhash = READ_ONCE(sk->sk_txhash);
2246 
2247 	if (txhash) {
2248 		skb->l4_hash = 1;
2249 		skb->hash = txhash;
2250 	}
2251 }
2252 
2253 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2254 
2255 /*
2256  *	Queue a received datagram if it will fit. Stream and sequenced
2257  *	protocols can't normally use this as they need to fit buffers in
2258  *	and play with them.
2259  *
2260  *	Inlined as it's very short and called for pretty much every
2261  *	packet ever received.
2262  */
2263 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2264 {
2265 	skb_orphan(skb);
2266 	skb->sk = sk;
2267 	skb->destructor = sock_rfree;
2268 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2269 	sk_mem_charge(sk, skb->truesize);
2270 }
2271 
2272 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2273 {
2274 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2275 		skb_orphan(skb);
2276 		skb->destructor = sock_efree;
2277 		skb->sk = sk;
2278 		return true;
2279 	}
2280 	return false;
2281 }
2282 
2283 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2284 {
2285 	if (skb->destructor != sock_wfree) {
2286 		skb_orphan(skb);
2287 		return;
2288 	}
2289 	skb->slow_gro = 1;
2290 }
2291 
2292 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2293 		    unsigned long expires);
2294 
2295 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2296 
2297 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2298 
2299 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2300 			struct sk_buff *skb, unsigned int flags,
2301 			void (*destructor)(struct sock *sk,
2302 					   struct sk_buff *skb));
2303 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2304 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2305 
2306 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2307 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2308 
2309 /*
2310  *	Recover an error report and clear atomically
2311  */
2312 
2313 static inline int sock_error(struct sock *sk)
2314 {
2315 	int err;
2316 
2317 	/* Avoid an atomic operation for the common case.
2318 	 * This is racy since another cpu/thread can change sk_err under us.
2319 	 */
2320 	if (likely(data_race(!sk->sk_err)))
2321 		return 0;
2322 
2323 	err = xchg(&sk->sk_err, 0);
2324 	return -err;
2325 }
2326 
2327 void sk_error_report(struct sock *sk);
2328 
2329 static inline unsigned long sock_wspace(struct sock *sk)
2330 {
2331 	int amt = 0;
2332 
2333 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2334 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2335 		if (amt < 0)
2336 			amt = 0;
2337 	}
2338 	return amt;
2339 }
2340 
2341 /* Note:
2342  *  We use sk->sk_wq_raw, from contexts knowing this
2343  *  pointer is not NULL and cannot disappear/change.
2344  */
2345 static inline void sk_set_bit(int nr, struct sock *sk)
2346 {
2347 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2348 	    !sock_flag(sk, SOCK_FASYNC))
2349 		return;
2350 
2351 	set_bit(nr, &sk->sk_wq_raw->flags);
2352 }
2353 
2354 static inline void sk_clear_bit(int nr, struct sock *sk)
2355 {
2356 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2357 	    !sock_flag(sk, SOCK_FASYNC))
2358 		return;
2359 
2360 	clear_bit(nr, &sk->sk_wq_raw->flags);
2361 }
2362 
2363 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2364 {
2365 	if (sock_flag(sk, SOCK_FASYNC)) {
2366 		rcu_read_lock();
2367 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2368 		rcu_read_unlock();
2369 	}
2370 }
2371 
2372 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2373  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2374  * Note: for send buffers, TCP works better if we can build two skbs at
2375  * minimum.
2376  */
2377 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2378 
2379 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2380 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2381 
2382 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2383 {
2384 	u32 val;
2385 
2386 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2387 		return;
2388 
2389 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2390 
2391 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2392 }
2393 
2394 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2395 				    bool force_schedule);
2396 
2397 /**
2398  * sk_page_frag - return an appropriate page_frag
2399  * @sk: socket
2400  *
2401  * Use the per task page_frag instead of the per socket one for
2402  * optimization when we know that we're in the normal context and owns
2403  * everything that's associated with %current.
2404  *
2405  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2406  * inside other socket operations and end up recursing into sk_page_frag()
2407  * while it's already in use.
2408  *
2409  * Return: a per task page_frag if context allows that,
2410  * otherwise a per socket one.
2411  */
2412 static inline struct page_frag *sk_page_frag(struct sock *sk)
2413 {
2414 	if (gfpflags_normal_context(sk->sk_allocation))
2415 		return &current->task_frag;
2416 
2417 	return &sk->sk_frag;
2418 }
2419 
2420 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2421 
2422 /*
2423  *	Default write policy as shown to user space via poll/select/SIGIO
2424  */
2425 static inline bool sock_writeable(const struct sock *sk)
2426 {
2427 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2428 }
2429 
2430 static inline gfp_t gfp_any(void)
2431 {
2432 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2433 }
2434 
2435 static inline gfp_t gfp_memcg_charge(void)
2436 {
2437 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2438 }
2439 
2440 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2441 {
2442 	return noblock ? 0 : sk->sk_rcvtimeo;
2443 }
2444 
2445 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2446 {
2447 	return noblock ? 0 : sk->sk_sndtimeo;
2448 }
2449 
2450 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2451 {
2452 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2453 
2454 	return v ?: 1;
2455 }
2456 
2457 /* Alas, with timeout socket operations are not restartable.
2458  * Compare this to poll().
2459  */
2460 static inline int sock_intr_errno(long timeo)
2461 {
2462 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2463 }
2464 
2465 struct sock_skb_cb {
2466 	u32 dropcount;
2467 };
2468 
2469 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2470  * using skb->cb[] would keep using it directly and utilize its
2471  * alignement guarantee.
2472  */
2473 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2474 			    sizeof(struct sock_skb_cb)))
2475 
2476 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2477 			    SOCK_SKB_CB_OFFSET))
2478 
2479 #define sock_skb_cb_check_size(size) \
2480 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2481 
2482 static inline void
2483 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2484 {
2485 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2486 						atomic_read(&sk->sk_drops) : 0;
2487 }
2488 
2489 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2490 {
2491 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2492 
2493 	atomic_add(segs, &sk->sk_drops);
2494 }
2495 
2496 static inline ktime_t sock_read_timestamp(struct sock *sk)
2497 {
2498 #if BITS_PER_LONG==32
2499 	unsigned int seq;
2500 	ktime_t kt;
2501 
2502 	do {
2503 		seq = read_seqbegin(&sk->sk_stamp_seq);
2504 		kt = sk->sk_stamp;
2505 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2506 
2507 	return kt;
2508 #else
2509 	return READ_ONCE(sk->sk_stamp);
2510 #endif
2511 }
2512 
2513 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2514 {
2515 #if BITS_PER_LONG==32
2516 	write_seqlock(&sk->sk_stamp_seq);
2517 	sk->sk_stamp = kt;
2518 	write_sequnlock(&sk->sk_stamp_seq);
2519 #else
2520 	WRITE_ONCE(sk->sk_stamp, kt);
2521 #endif
2522 }
2523 
2524 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2525 			   struct sk_buff *skb);
2526 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2527 			     struct sk_buff *skb);
2528 
2529 static inline void
2530 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2531 {
2532 	ktime_t kt = skb->tstamp;
2533 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2534 
2535 	/*
2536 	 * generate control messages if
2537 	 * - receive time stamping in software requested
2538 	 * - software time stamp available and wanted
2539 	 * - hardware time stamps available and wanted
2540 	 */
2541 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2542 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2543 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2544 	    (hwtstamps->hwtstamp &&
2545 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2546 		__sock_recv_timestamp(msg, sk, skb);
2547 	else
2548 		sock_write_timestamp(sk, kt);
2549 
2550 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2551 		__sock_recv_wifi_status(msg, sk, skb);
2552 }
2553 
2554 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2555 			      struct sk_buff *skb);
2556 
2557 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2558 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2559 					  struct sk_buff *skb)
2560 {
2561 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2562 			   (1UL << SOCK_RCVTSTAMP))
2563 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2564 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2565 
2566 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2567 		__sock_recv_ts_and_drops(msg, sk, skb);
2568 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2569 		sock_write_timestamp(sk, skb->tstamp);
2570 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2571 		sock_write_timestamp(sk, 0);
2572 }
2573 
2574 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2575 
2576 /**
2577  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2578  * @sk:		socket sending this packet
2579  * @tsflags:	timestamping flags to use
2580  * @tx_flags:	completed with instructions for time stamping
2581  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2582  *
2583  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2584  */
2585 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2586 				      __u8 *tx_flags, __u32 *tskey)
2587 {
2588 	if (unlikely(tsflags)) {
2589 		__sock_tx_timestamp(tsflags, tx_flags);
2590 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2591 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2592 			*tskey = sk->sk_tskey++;
2593 	}
2594 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2595 		*tx_flags |= SKBTX_WIFI_STATUS;
2596 }
2597 
2598 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2599 				     __u8 *tx_flags)
2600 {
2601 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2602 }
2603 
2604 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2605 {
2606 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2607 			   &skb_shinfo(skb)->tskey);
2608 }
2609 
2610 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2611 /**
2612  * sk_eat_skb - Release a skb if it is no longer needed
2613  * @sk: socket to eat this skb from
2614  * @skb: socket buffer to eat
2615  *
2616  * This routine must be called with interrupts disabled or with the socket
2617  * locked so that the sk_buff queue operation is ok.
2618 */
2619 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2620 {
2621 	__skb_unlink(skb, &sk->sk_receive_queue);
2622 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2623 	    !sk->sk_rx_skb_cache) {
2624 		sk->sk_rx_skb_cache = skb;
2625 		skb_orphan(skb);
2626 		return;
2627 	}
2628 	__kfree_skb(skb);
2629 }
2630 
2631 static inline
2632 struct net *sock_net(const struct sock *sk)
2633 {
2634 	return read_pnet(&sk->sk_net);
2635 }
2636 
2637 static inline
2638 void sock_net_set(struct sock *sk, struct net *net)
2639 {
2640 	write_pnet(&sk->sk_net, net);
2641 }
2642 
2643 static inline bool
2644 skb_sk_is_prefetched(struct sk_buff *skb)
2645 {
2646 #ifdef CONFIG_INET
2647 	return skb->destructor == sock_pfree;
2648 #else
2649 	return false;
2650 #endif /* CONFIG_INET */
2651 }
2652 
2653 /* This helper checks if a socket is a full socket,
2654  * ie _not_ a timewait or request socket.
2655  */
2656 static inline bool sk_fullsock(const struct sock *sk)
2657 {
2658 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2659 }
2660 
2661 static inline bool
2662 sk_is_refcounted(struct sock *sk)
2663 {
2664 	/* Only full sockets have sk->sk_flags. */
2665 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2666 }
2667 
2668 /**
2669  * skb_steal_sock - steal a socket from an sk_buff
2670  * @skb: sk_buff to steal the socket from
2671  * @refcounted: is set to true if the socket is reference-counted
2672  */
2673 static inline struct sock *
2674 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2675 {
2676 	if (skb->sk) {
2677 		struct sock *sk = skb->sk;
2678 
2679 		*refcounted = true;
2680 		if (skb_sk_is_prefetched(skb))
2681 			*refcounted = sk_is_refcounted(sk);
2682 		skb->destructor = NULL;
2683 		skb->sk = NULL;
2684 		return sk;
2685 	}
2686 	*refcounted = false;
2687 	return NULL;
2688 }
2689 
2690 /* Checks if this SKB belongs to an HW offloaded socket
2691  * and whether any SW fallbacks are required based on dev.
2692  * Check decrypted mark in case skb_orphan() cleared socket.
2693  */
2694 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2695 						   struct net_device *dev)
2696 {
2697 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2698 	struct sock *sk = skb->sk;
2699 
2700 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2701 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2702 #ifdef CONFIG_TLS_DEVICE
2703 	} else if (unlikely(skb->decrypted)) {
2704 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2705 		kfree_skb(skb);
2706 		skb = NULL;
2707 #endif
2708 	}
2709 #endif
2710 
2711 	return skb;
2712 }
2713 
2714 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2715  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2716  */
2717 static inline bool sk_listener(const struct sock *sk)
2718 {
2719 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2720 }
2721 
2722 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2723 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2724 		       int type);
2725 
2726 bool sk_ns_capable(const struct sock *sk,
2727 		   struct user_namespace *user_ns, int cap);
2728 bool sk_capable(const struct sock *sk, int cap);
2729 bool sk_net_capable(const struct sock *sk, int cap);
2730 
2731 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2732 
2733 /* Take into consideration the size of the struct sk_buff overhead in the
2734  * determination of these values, since that is non-constant across
2735  * platforms.  This makes socket queueing behavior and performance
2736  * not depend upon such differences.
2737  */
2738 #define _SK_MEM_PACKETS		256
2739 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2740 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2741 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2742 
2743 extern __u32 sysctl_wmem_max;
2744 extern __u32 sysctl_rmem_max;
2745 
2746 extern int sysctl_tstamp_allow_data;
2747 extern int sysctl_optmem_max;
2748 
2749 extern __u32 sysctl_wmem_default;
2750 extern __u32 sysctl_rmem_default;
2751 
2752 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2753 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2754 
2755 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2756 {
2757 	/* Does this proto have per netns sysctl_wmem ? */
2758 	if (proto->sysctl_wmem_offset)
2759 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2760 
2761 	return *proto->sysctl_wmem;
2762 }
2763 
2764 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2765 {
2766 	/* Does this proto have per netns sysctl_rmem ? */
2767 	if (proto->sysctl_rmem_offset)
2768 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2769 
2770 	return *proto->sysctl_rmem;
2771 }
2772 
2773 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2774  * Some wifi drivers need to tweak it to get more chunks.
2775  * They can use this helper from their ndo_start_xmit()
2776  */
2777 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2778 {
2779 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2780 		return;
2781 	WRITE_ONCE(sk->sk_pacing_shift, val);
2782 }
2783 
2784 /* if a socket is bound to a device, check that the given device
2785  * index is either the same or that the socket is bound to an L3
2786  * master device and the given device index is also enslaved to
2787  * that L3 master
2788  */
2789 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2790 {
2791 	int mdif;
2792 
2793 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2794 		return true;
2795 
2796 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2797 	if (mdif && mdif == sk->sk_bound_dev_if)
2798 		return true;
2799 
2800 	return false;
2801 }
2802 
2803 void sock_def_readable(struct sock *sk);
2804 
2805 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2806 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2807 int sock_set_timestamping(struct sock *sk, int optname,
2808 			  struct so_timestamping timestamping);
2809 
2810 void sock_enable_timestamps(struct sock *sk);
2811 void sock_no_linger(struct sock *sk);
2812 void sock_set_keepalive(struct sock *sk);
2813 void sock_set_priority(struct sock *sk, u32 priority);
2814 void sock_set_rcvbuf(struct sock *sk, int val);
2815 void sock_set_mark(struct sock *sk, u32 val);
2816 void sock_set_reuseaddr(struct sock *sk);
2817 void sock_set_reuseport(struct sock *sk);
2818 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2819 
2820 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2821 
2822 #endif	/* _SOCK_H */
2823