1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 #include <linux/wait.h> 62 #include <linux/cgroup-defs.h> 63 64 #include <linux/filter.h> 65 #include <linux/rculist_nulls.h> 66 #include <linux/poll.h> 67 68 #include <linux/atomic.h> 69 #include <net/dst.h> 70 #include <net/checksum.h> 71 #include <net/tcp_states.h> 72 #include <linux/net_tstamp.h> 73 74 /* 75 * This structure really needs to be cleaned up. 76 * Most of it is for TCP, and not used by any of 77 * the other protocols. 78 */ 79 80 /* Define this to get the SOCK_DBG debugging facility. */ 81 #define SOCK_DEBUGGING 82 #ifdef SOCK_DEBUGGING 83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 84 printk(KERN_DEBUG msg); } while (0) 85 #else 86 /* Validate arguments and do nothing */ 87 static inline __printf(2, 3) 88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 89 { 90 } 91 #endif 92 93 /* This is the per-socket lock. The spinlock provides a synchronization 94 * between user contexts and software interrupt processing, whereas the 95 * mini-semaphore synchronizes multiple users amongst themselves. 96 */ 97 typedef struct { 98 spinlock_t slock; 99 int owned; 100 wait_queue_head_t wq; 101 /* 102 * We express the mutex-alike socket_lock semantics 103 * to the lock validator by explicitly managing 104 * the slock as a lock variant (in addition to 105 * the slock itself): 106 */ 107 #ifdef CONFIG_DEBUG_LOCK_ALLOC 108 struct lockdep_map dep_map; 109 #endif 110 } socket_lock_t; 111 112 struct sock; 113 struct proto; 114 struct net; 115 116 typedef __u32 __bitwise __portpair; 117 typedef __u64 __bitwise __addrpair; 118 119 /** 120 * struct sock_common - minimal network layer representation of sockets 121 * @skc_daddr: Foreign IPv4 addr 122 * @skc_rcv_saddr: Bound local IPv4 addr 123 * @skc_hash: hash value used with various protocol lookup tables 124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 125 * @skc_dport: placeholder for inet_dport/tw_dport 126 * @skc_num: placeholder for inet_num/tw_num 127 * @skc_family: network address family 128 * @skc_state: Connection state 129 * @skc_reuse: %SO_REUSEADDR setting 130 * @skc_reuseport: %SO_REUSEPORT setting 131 * @skc_bound_dev_if: bound device index if != 0 132 * @skc_bind_node: bind hash linkage for various protocol lookup tables 133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 134 * @skc_prot: protocol handlers inside a network family 135 * @skc_net: reference to the network namespace of this socket 136 * @skc_node: main hash linkage for various protocol lookup tables 137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 138 * @skc_tx_queue_mapping: tx queue number for this connection 139 * @skc_flags: place holder for sk_flags 140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 142 * @skc_incoming_cpu: record/match cpu processing incoming packets 143 * @skc_refcnt: reference count 144 * 145 * This is the minimal network layer representation of sockets, the header 146 * for struct sock and struct inet_timewait_sock. 147 */ 148 struct sock_common { 149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 150 * address on 64bit arches : cf INET_MATCH() 151 */ 152 union { 153 __addrpair skc_addrpair; 154 struct { 155 __be32 skc_daddr; 156 __be32 skc_rcv_saddr; 157 }; 158 }; 159 union { 160 unsigned int skc_hash; 161 __u16 skc_u16hashes[2]; 162 }; 163 /* skc_dport && skc_num must be grouped as well */ 164 union { 165 __portpair skc_portpair; 166 struct { 167 __be16 skc_dport; 168 __u16 skc_num; 169 }; 170 }; 171 172 unsigned short skc_family; 173 volatile unsigned char skc_state; 174 unsigned char skc_reuse:4; 175 unsigned char skc_reuseport:1; 176 unsigned char skc_ipv6only:1; 177 unsigned char skc_net_refcnt:1; 178 int skc_bound_dev_if; 179 union { 180 struct hlist_node skc_bind_node; 181 struct hlist_node skc_portaddr_node; 182 }; 183 struct proto *skc_prot; 184 possible_net_t skc_net; 185 186 #if IS_ENABLED(CONFIG_IPV6) 187 struct in6_addr skc_v6_daddr; 188 struct in6_addr skc_v6_rcv_saddr; 189 #endif 190 191 atomic64_t skc_cookie; 192 193 /* following fields are padding to force 194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 195 * assuming IPV6 is enabled. We use this padding differently 196 * for different kind of 'sockets' 197 */ 198 union { 199 unsigned long skc_flags; 200 struct sock *skc_listener; /* request_sock */ 201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 202 }; 203 /* 204 * fields between dontcopy_begin/dontcopy_end 205 * are not copied in sock_copy() 206 */ 207 /* private: */ 208 int skc_dontcopy_begin[0]; 209 /* public: */ 210 union { 211 struct hlist_node skc_node; 212 struct hlist_nulls_node skc_nulls_node; 213 }; 214 int skc_tx_queue_mapping; 215 union { 216 int skc_incoming_cpu; 217 u32 skc_rcv_wnd; 218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 219 }; 220 221 atomic_t skc_refcnt; 222 /* private: */ 223 int skc_dontcopy_end[0]; 224 union { 225 u32 skc_rxhash; 226 u32 skc_window_clamp; 227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 228 }; 229 /* public: */ 230 }; 231 232 /** 233 * struct sock - network layer representation of sockets 234 * @__sk_common: shared layout with inet_timewait_sock 235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 237 * @sk_lock: synchronizer 238 * @sk_rcvbuf: size of receive buffer in bytes 239 * @sk_wq: sock wait queue and async head 240 * @sk_rx_dst: receive input route used by early demux 241 * @sk_dst_cache: destination cache 242 * @sk_policy: flow policy 243 * @sk_receive_queue: incoming packets 244 * @sk_wmem_alloc: transmit queue bytes committed 245 * @sk_write_queue: Packet sending queue 246 * @sk_omem_alloc: "o" is "option" or "other" 247 * @sk_wmem_queued: persistent queue size 248 * @sk_forward_alloc: space allocated forward 249 * @sk_napi_id: id of the last napi context to receive data for sk 250 * @sk_ll_usec: usecs to busypoll when there is no data 251 * @sk_allocation: allocation mode 252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 254 * @sk_sndbuf: size of send buffer in bytes 255 * @sk_padding: unused element for alignment 256 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 257 * @sk_no_check_rx: allow zero checksum in RX packets 258 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 259 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 260 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 261 * @sk_gso_max_size: Maximum GSO segment size to build 262 * @sk_gso_max_segs: Maximum number of GSO segments 263 * @sk_lingertime: %SO_LINGER l_linger setting 264 * @sk_backlog: always used with the per-socket spinlock held 265 * @sk_callback_lock: used with the callbacks in the end of this struct 266 * @sk_error_queue: rarely used 267 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 268 * IPV6_ADDRFORM for instance) 269 * @sk_err: last error 270 * @sk_err_soft: errors that don't cause failure but are the cause of a 271 * persistent failure not just 'timed out' 272 * @sk_drops: raw/udp drops counter 273 * @sk_ack_backlog: current listen backlog 274 * @sk_max_ack_backlog: listen backlog set in listen() 275 * @sk_priority: %SO_PRIORITY setting 276 * @sk_type: socket type (%SOCK_STREAM, etc) 277 * @sk_protocol: which protocol this socket belongs in this network family 278 * @sk_peer_pid: &struct pid for this socket's peer 279 * @sk_peer_cred: %SO_PEERCRED setting 280 * @sk_rcvlowat: %SO_RCVLOWAT setting 281 * @sk_rcvtimeo: %SO_RCVTIMEO setting 282 * @sk_sndtimeo: %SO_SNDTIMEO setting 283 * @sk_txhash: computed flow hash for use on transmit 284 * @sk_filter: socket filtering instructions 285 * @sk_timer: sock cleanup timer 286 * @sk_stamp: time stamp of last packet received 287 * @sk_tsflags: SO_TIMESTAMPING socket options 288 * @sk_tskey: counter to disambiguate concurrent tstamp requests 289 * @sk_socket: Identd and reporting IO signals 290 * @sk_user_data: RPC layer private data 291 * @sk_frag: cached page frag 292 * @sk_peek_off: current peek_offset value 293 * @sk_send_head: front of stuff to transmit 294 * @sk_security: used by security modules 295 * @sk_mark: generic packet mark 296 * @sk_cgrp_data: cgroup data for this cgroup 297 * @sk_memcg: this socket's memory cgroup association 298 * @sk_write_pending: a write to stream socket waits to start 299 * @sk_state_change: callback to indicate change in the state of the sock 300 * @sk_data_ready: callback to indicate there is data to be processed 301 * @sk_write_space: callback to indicate there is bf sending space available 302 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 303 * @sk_backlog_rcv: callback to process the backlog 304 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 305 * @sk_reuseport_cb: reuseport group container 306 * @sk_rcu: used during RCU grace period 307 */ 308 struct sock { 309 /* 310 * Now struct inet_timewait_sock also uses sock_common, so please just 311 * don't add nothing before this first member (__sk_common) --acme 312 */ 313 struct sock_common __sk_common; 314 #define sk_node __sk_common.skc_node 315 #define sk_nulls_node __sk_common.skc_nulls_node 316 #define sk_refcnt __sk_common.skc_refcnt 317 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 318 319 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 320 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 321 #define sk_hash __sk_common.skc_hash 322 #define sk_portpair __sk_common.skc_portpair 323 #define sk_num __sk_common.skc_num 324 #define sk_dport __sk_common.skc_dport 325 #define sk_addrpair __sk_common.skc_addrpair 326 #define sk_daddr __sk_common.skc_daddr 327 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 328 #define sk_family __sk_common.skc_family 329 #define sk_state __sk_common.skc_state 330 #define sk_reuse __sk_common.skc_reuse 331 #define sk_reuseport __sk_common.skc_reuseport 332 #define sk_ipv6only __sk_common.skc_ipv6only 333 #define sk_net_refcnt __sk_common.skc_net_refcnt 334 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 335 #define sk_bind_node __sk_common.skc_bind_node 336 #define sk_prot __sk_common.skc_prot 337 #define sk_net __sk_common.skc_net 338 #define sk_v6_daddr __sk_common.skc_v6_daddr 339 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 340 #define sk_cookie __sk_common.skc_cookie 341 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 342 #define sk_flags __sk_common.skc_flags 343 #define sk_rxhash __sk_common.skc_rxhash 344 345 socket_lock_t sk_lock; 346 struct sk_buff_head sk_receive_queue; 347 /* 348 * The backlog queue is special, it is always used with 349 * the per-socket spinlock held and requires low latency 350 * access. Therefore we special case it's implementation. 351 * Note : rmem_alloc is in this structure to fill a hole 352 * on 64bit arches, not because its logically part of 353 * backlog. 354 */ 355 struct { 356 atomic_t rmem_alloc; 357 int len; 358 struct sk_buff *head; 359 struct sk_buff *tail; 360 } sk_backlog; 361 #define sk_rmem_alloc sk_backlog.rmem_alloc 362 int sk_forward_alloc; 363 364 __u32 sk_txhash; 365 #ifdef CONFIG_NET_RX_BUSY_POLL 366 unsigned int sk_napi_id; 367 unsigned int sk_ll_usec; 368 #endif 369 atomic_t sk_drops; 370 int sk_rcvbuf; 371 372 struct sk_filter __rcu *sk_filter; 373 union { 374 struct socket_wq __rcu *sk_wq; 375 struct socket_wq *sk_wq_raw; 376 }; 377 #ifdef CONFIG_XFRM 378 struct xfrm_policy __rcu *sk_policy[2]; 379 #endif 380 struct dst_entry *sk_rx_dst; 381 struct dst_entry __rcu *sk_dst_cache; 382 /* Note: 32bit hole on 64bit arches */ 383 atomic_t sk_wmem_alloc; 384 atomic_t sk_omem_alloc; 385 int sk_sndbuf; 386 struct sk_buff_head sk_write_queue; 387 388 /* 389 * Because of non atomicity rules, all 390 * changes are protected by socket lock. 391 */ 392 kmemcheck_bitfield_begin(flags); 393 unsigned int sk_padding : 2, 394 sk_no_check_tx : 1, 395 sk_no_check_rx : 1, 396 sk_userlocks : 4, 397 sk_protocol : 8, 398 sk_type : 16; 399 #define SK_PROTOCOL_MAX U8_MAX 400 kmemcheck_bitfield_end(flags); 401 402 int sk_wmem_queued; 403 gfp_t sk_allocation; 404 u32 sk_pacing_rate; /* bytes per second */ 405 u32 sk_max_pacing_rate; 406 netdev_features_t sk_route_caps; 407 netdev_features_t sk_route_nocaps; 408 int sk_gso_type; 409 unsigned int sk_gso_max_size; 410 u16 sk_gso_max_segs; 411 int sk_rcvlowat; 412 unsigned long sk_lingertime; 413 struct sk_buff_head sk_error_queue; 414 struct proto *sk_prot_creator; 415 rwlock_t sk_callback_lock; 416 int sk_err, 417 sk_err_soft; 418 u32 sk_ack_backlog; 419 u32 sk_max_ack_backlog; 420 __u32 sk_priority; 421 __u32 sk_mark; 422 struct pid *sk_peer_pid; 423 const struct cred *sk_peer_cred; 424 long sk_rcvtimeo; 425 long sk_sndtimeo; 426 struct timer_list sk_timer; 427 ktime_t sk_stamp; 428 u16 sk_tsflags; 429 u8 sk_shutdown; 430 u32 sk_tskey; 431 struct socket *sk_socket; 432 void *sk_user_data; 433 struct page_frag sk_frag; 434 struct sk_buff *sk_send_head; 435 __s32 sk_peek_off; 436 int sk_write_pending; 437 #ifdef CONFIG_SECURITY 438 void *sk_security; 439 #endif 440 struct sock_cgroup_data sk_cgrp_data; 441 struct mem_cgroup *sk_memcg; 442 void (*sk_state_change)(struct sock *sk); 443 void (*sk_data_ready)(struct sock *sk); 444 void (*sk_write_space)(struct sock *sk); 445 void (*sk_error_report)(struct sock *sk); 446 int (*sk_backlog_rcv)(struct sock *sk, 447 struct sk_buff *skb); 448 void (*sk_destruct)(struct sock *sk); 449 struct sock_reuseport __rcu *sk_reuseport_cb; 450 struct rcu_head sk_rcu; 451 }; 452 453 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 454 455 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 456 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 457 458 /* 459 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 460 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 461 * on a socket means that the socket will reuse everybody else's port 462 * without looking at the other's sk_reuse value. 463 */ 464 465 #define SK_NO_REUSE 0 466 #define SK_CAN_REUSE 1 467 #define SK_FORCE_REUSE 2 468 469 int sk_set_peek_off(struct sock *sk, int val); 470 471 static inline int sk_peek_offset(struct sock *sk, int flags) 472 { 473 if (unlikely(flags & MSG_PEEK)) { 474 s32 off = READ_ONCE(sk->sk_peek_off); 475 if (off >= 0) 476 return off; 477 } 478 479 return 0; 480 } 481 482 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 483 { 484 s32 off = READ_ONCE(sk->sk_peek_off); 485 486 if (unlikely(off >= 0)) { 487 off = max_t(s32, off - val, 0); 488 WRITE_ONCE(sk->sk_peek_off, off); 489 } 490 } 491 492 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 493 { 494 sk_peek_offset_bwd(sk, -val); 495 } 496 497 /* 498 * Hashed lists helper routines 499 */ 500 static inline struct sock *sk_entry(const struct hlist_node *node) 501 { 502 return hlist_entry(node, struct sock, sk_node); 503 } 504 505 static inline struct sock *__sk_head(const struct hlist_head *head) 506 { 507 return hlist_entry(head->first, struct sock, sk_node); 508 } 509 510 static inline struct sock *sk_head(const struct hlist_head *head) 511 { 512 return hlist_empty(head) ? NULL : __sk_head(head); 513 } 514 515 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 516 { 517 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 518 } 519 520 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 521 { 522 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 523 } 524 525 static inline struct sock *sk_next(const struct sock *sk) 526 { 527 return sk->sk_node.next ? 528 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 529 } 530 531 static inline struct sock *sk_nulls_next(const struct sock *sk) 532 { 533 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 534 hlist_nulls_entry(sk->sk_nulls_node.next, 535 struct sock, sk_nulls_node) : 536 NULL; 537 } 538 539 static inline bool sk_unhashed(const struct sock *sk) 540 { 541 return hlist_unhashed(&sk->sk_node); 542 } 543 544 static inline bool sk_hashed(const struct sock *sk) 545 { 546 return !sk_unhashed(sk); 547 } 548 549 static inline void sk_node_init(struct hlist_node *node) 550 { 551 node->pprev = NULL; 552 } 553 554 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 555 { 556 node->pprev = NULL; 557 } 558 559 static inline void __sk_del_node(struct sock *sk) 560 { 561 __hlist_del(&sk->sk_node); 562 } 563 564 /* NB: equivalent to hlist_del_init_rcu */ 565 static inline bool __sk_del_node_init(struct sock *sk) 566 { 567 if (sk_hashed(sk)) { 568 __sk_del_node(sk); 569 sk_node_init(&sk->sk_node); 570 return true; 571 } 572 return false; 573 } 574 575 /* Grab socket reference count. This operation is valid only 576 when sk is ALREADY grabbed f.e. it is found in hash table 577 or a list and the lookup is made under lock preventing hash table 578 modifications. 579 */ 580 581 static __always_inline void sock_hold(struct sock *sk) 582 { 583 atomic_inc(&sk->sk_refcnt); 584 } 585 586 /* Ungrab socket in the context, which assumes that socket refcnt 587 cannot hit zero, f.e. it is true in context of any socketcall. 588 */ 589 static __always_inline void __sock_put(struct sock *sk) 590 { 591 atomic_dec(&sk->sk_refcnt); 592 } 593 594 static inline bool sk_del_node_init(struct sock *sk) 595 { 596 bool rc = __sk_del_node_init(sk); 597 598 if (rc) { 599 /* paranoid for a while -acme */ 600 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 601 __sock_put(sk); 602 } 603 return rc; 604 } 605 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 606 607 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 608 { 609 if (sk_hashed(sk)) { 610 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 611 return true; 612 } 613 return false; 614 } 615 616 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 617 { 618 bool rc = __sk_nulls_del_node_init_rcu(sk); 619 620 if (rc) { 621 /* paranoid for a while -acme */ 622 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 623 __sock_put(sk); 624 } 625 return rc; 626 } 627 628 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 629 { 630 hlist_add_head(&sk->sk_node, list); 631 } 632 633 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 634 { 635 sock_hold(sk); 636 __sk_add_node(sk, list); 637 } 638 639 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 640 { 641 sock_hold(sk); 642 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 643 sk->sk_family == AF_INET6) 644 hlist_add_tail_rcu(&sk->sk_node, list); 645 else 646 hlist_add_head_rcu(&sk->sk_node, list); 647 } 648 649 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 650 { 651 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 652 sk->sk_family == AF_INET6) 653 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 654 else 655 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 656 } 657 658 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 659 { 660 sock_hold(sk); 661 __sk_nulls_add_node_rcu(sk, list); 662 } 663 664 static inline void __sk_del_bind_node(struct sock *sk) 665 { 666 __hlist_del(&sk->sk_bind_node); 667 } 668 669 static inline void sk_add_bind_node(struct sock *sk, 670 struct hlist_head *list) 671 { 672 hlist_add_head(&sk->sk_bind_node, list); 673 } 674 675 #define sk_for_each(__sk, list) \ 676 hlist_for_each_entry(__sk, list, sk_node) 677 #define sk_for_each_rcu(__sk, list) \ 678 hlist_for_each_entry_rcu(__sk, list, sk_node) 679 #define sk_nulls_for_each(__sk, node, list) \ 680 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 681 #define sk_nulls_for_each_rcu(__sk, node, list) \ 682 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 683 #define sk_for_each_from(__sk) \ 684 hlist_for_each_entry_from(__sk, sk_node) 685 #define sk_nulls_for_each_from(__sk, node) \ 686 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 687 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 688 #define sk_for_each_safe(__sk, tmp, list) \ 689 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 690 #define sk_for_each_bound(__sk, list) \ 691 hlist_for_each_entry(__sk, list, sk_bind_node) 692 693 /** 694 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 695 * @tpos: the type * to use as a loop cursor. 696 * @pos: the &struct hlist_node to use as a loop cursor. 697 * @head: the head for your list. 698 * @offset: offset of hlist_node within the struct. 699 * 700 */ 701 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 702 for (pos = rcu_dereference((head)->first); \ 703 pos != NULL && \ 704 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 705 pos = rcu_dereference(pos->next)) 706 707 static inline struct user_namespace *sk_user_ns(struct sock *sk) 708 { 709 /* Careful only use this in a context where these parameters 710 * can not change and must all be valid, such as recvmsg from 711 * userspace. 712 */ 713 return sk->sk_socket->file->f_cred->user_ns; 714 } 715 716 /* Sock flags */ 717 enum sock_flags { 718 SOCK_DEAD, 719 SOCK_DONE, 720 SOCK_URGINLINE, 721 SOCK_KEEPOPEN, 722 SOCK_LINGER, 723 SOCK_DESTROY, 724 SOCK_BROADCAST, 725 SOCK_TIMESTAMP, 726 SOCK_ZAPPED, 727 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 728 SOCK_DBG, /* %SO_DEBUG setting */ 729 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 730 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 731 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 732 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 733 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 734 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 735 SOCK_FASYNC, /* fasync() active */ 736 SOCK_RXQ_OVFL, 737 SOCK_ZEROCOPY, /* buffers from userspace */ 738 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 739 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 740 * Will use last 4 bytes of packet sent from 741 * user-space instead. 742 */ 743 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 744 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 745 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 746 }; 747 748 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 749 750 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 751 { 752 nsk->sk_flags = osk->sk_flags; 753 } 754 755 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 756 { 757 __set_bit(flag, &sk->sk_flags); 758 } 759 760 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 761 { 762 __clear_bit(flag, &sk->sk_flags); 763 } 764 765 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 766 { 767 return test_bit(flag, &sk->sk_flags); 768 } 769 770 #ifdef CONFIG_NET 771 extern struct static_key memalloc_socks; 772 static inline int sk_memalloc_socks(void) 773 { 774 return static_key_false(&memalloc_socks); 775 } 776 #else 777 778 static inline int sk_memalloc_socks(void) 779 { 780 return 0; 781 } 782 783 #endif 784 785 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 786 { 787 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 788 } 789 790 static inline void sk_acceptq_removed(struct sock *sk) 791 { 792 sk->sk_ack_backlog--; 793 } 794 795 static inline void sk_acceptq_added(struct sock *sk) 796 { 797 sk->sk_ack_backlog++; 798 } 799 800 static inline bool sk_acceptq_is_full(const struct sock *sk) 801 { 802 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 803 } 804 805 /* 806 * Compute minimal free write space needed to queue new packets. 807 */ 808 static inline int sk_stream_min_wspace(const struct sock *sk) 809 { 810 return sk->sk_wmem_queued >> 1; 811 } 812 813 static inline int sk_stream_wspace(const struct sock *sk) 814 { 815 return sk->sk_sndbuf - sk->sk_wmem_queued; 816 } 817 818 void sk_stream_write_space(struct sock *sk); 819 820 /* OOB backlog add */ 821 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 822 { 823 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 824 skb_dst_force_safe(skb); 825 826 if (!sk->sk_backlog.tail) 827 sk->sk_backlog.head = skb; 828 else 829 sk->sk_backlog.tail->next = skb; 830 831 sk->sk_backlog.tail = skb; 832 skb->next = NULL; 833 } 834 835 /* 836 * Take into account size of receive queue and backlog queue 837 * Do not take into account this skb truesize, 838 * to allow even a single big packet to come. 839 */ 840 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 841 { 842 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 843 844 return qsize > limit; 845 } 846 847 /* The per-socket spinlock must be held here. */ 848 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 849 unsigned int limit) 850 { 851 if (sk_rcvqueues_full(sk, limit)) 852 return -ENOBUFS; 853 854 /* 855 * If the skb was allocated from pfmemalloc reserves, only 856 * allow SOCK_MEMALLOC sockets to use it as this socket is 857 * helping free memory 858 */ 859 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 860 return -ENOMEM; 861 862 __sk_add_backlog(sk, skb); 863 sk->sk_backlog.len += skb->truesize; 864 return 0; 865 } 866 867 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 868 869 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 870 { 871 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 872 return __sk_backlog_rcv(sk, skb); 873 874 return sk->sk_backlog_rcv(sk, skb); 875 } 876 877 static inline void sk_incoming_cpu_update(struct sock *sk) 878 { 879 sk->sk_incoming_cpu = raw_smp_processor_id(); 880 } 881 882 static inline void sock_rps_record_flow_hash(__u32 hash) 883 { 884 #ifdef CONFIG_RPS 885 struct rps_sock_flow_table *sock_flow_table; 886 887 rcu_read_lock(); 888 sock_flow_table = rcu_dereference(rps_sock_flow_table); 889 rps_record_sock_flow(sock_flow_table, hash); 890 rcu_read_unlock(); 891 #endif 892 } 893 894 static inline void sock_rps_record_flow(const struct sock *sk) 895 { 896 #ifdef CONFIG_RPS 897 sock_rps_record_flow_hash(sk->sk_rxhash); 898 #endif 899 } 900 901 static inline void sock_rps_save_rxhash(struct sock *sk, 902 const struct sk_buff *skb) 903 { 904 #ifdef CONFIG_RPS 905 if (unlikely(sk->sk_rxhash != skb->hash)) 906 sk->sk_rxhash = skb->hash; 907 #endif 908 } 909 910 static inline void sock_rps_reset_rxhash(struct sock *sk) 911 { 912 #ifdef CONFIG_RPS 913 sk->sk_rxhash = 0; 914 #endif 915 } 916 917 #define sk_wait_event(__sk, __timeo, __condition) \ 918 ({ int __rc; \ 919 release_sock(__sk); \ 920 __rc = __condition; \ 921 if (!__rc) { \ 922 *(__timeo) = schedule_timeout(*(__timeo)); \ 923 } \ 924 sched_annotate_sleep(); \ 925 lock_sock(__sk); \ 926 __rc = __condition; \ 927 __rc; \ 928 }) 929 930 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 931 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 932 void sk_stream_wait_close(struct sock *sk, long timeo_p); 933 int sk_stream_error(struct sock *sk, int flags, int err); 934 void sk_stream_kill_queues(struct sock *sk); 935 void sk_set_memalloc(struct sock *sk); 936 void sk_clear_memalloc(struct sock *sk); 937 938 void __sk_flush_backlog(struct sock *sk); 939 940 static inline bool sk_flush_backlog(struct sock *sk) 941 { 942 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 943 __sk_flush_backlog(sk); 944 return true; 945 } 946 return false; 947 } 948 949 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 950 951 struct request_sock_ops; 952 struct timewait_sock_ops; 953 struct inet_hashinfo; 954 struct raw_hashinfo; 955 struct module; 956 957 /* 958 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 959 * un-modified. Special care is taken when initializing object to zero. 960 */ 961 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 962 { 963 if (offsetof(struct sock, sk_node.next) != 0) 964 memset(sk, 0, offsetof(struct sock, sk_node.next)); 965 memset(&sk->sk_node.pprev, 0, 966 size - offsetof(struct sock, sk_node.pprev)); 967 } 968 969 /* Networking protocol blocks we attach to sockets. 970 * socket layer -> transport layer interface 971 */ 972 struct proto { 973 void (*close)(struct sock *sk, 974 long timeout); 975 int (*connect)(struct sock *sk, 976 struct sockaddr *uaddr, 977 int addr_len); 978 int (*disconnect)(struct sock *sk, int flags); 979 980 struct sock * (*accept)(struct sock *sk, int flags, int *err); 981 982 int (*ioctl)(struct sock *sk, int cmd, 983 unsigned long arg); 984 int (*init)(struct sock *sk); 985 void (*destroy)(struct sock *sk); 986 void (*shutdown)(struct sock *sk, int how); 987 int (*setsockopt)(struct sock *sk, int level, 988 int optname, char __user *optval, 989 unsigned int optlen); 990 int (*getsockopt)(struct sock *sk, int level, 991 int optname, char __user *optval, 992 int __user *option); 993 #ifdef CONFIG_COMPAT 994 int (*compat_setsockopt)(struct sock *sk, 995 int level, 996 int optname, char __user *optval, 997 unsigned int optlen); 998 int (*compat_getsockopt)(struct sock *sk, 999 int level, 1000 int optname, char __user *optval, 1001 int __user *option); 1002 int (*compat_ioctl)(struct sock *sk, 1003 unsigned int cmd, unsigned long arg); 1004 #endif 1005 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1006 size_t len); 1007 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1008 size_t len, int noblock, int flags, 1009 int *addr_len); 1010 int (*sendpage)(struct sock *sk, struct page *page, 1011 int offset, size_t size, int flags); 1012 int (*bind)(struct sock *sk, 1013 struct sockaddr *uaddr, int addr_len); 1014 1015 int (*backlog_rcv) (struct sock *sk, 1016 struct sk_buff *skb); 1017 1018 void (*release_cb)(struct sock *sk); 1019 1020 /* Keeping track of sk's, looking them up, and port selection methods. */ 1021 int (*hash)(struct sock *sk); 1022 void (*unhash)(struct sock *sk); 1023 void (*rehash)(struct sock *sk); 1024 int (*get_port)(struct sock *sk, unsigned short snum); 1025 1026 /* Keeping track of sockets in use */ 1027 #ifdef CONFIG_PROC_FS 1028 unsigned int inuse_idx; 1029 #endif 1030 1031 bool (*stream_memory_free)(const struct sock *sk); 1032 /* Memory pressure */ 1033 void (*enter_memory_pressure)(struct sock *sk); 1034 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1035 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1036 /* 1037 * Pressure flag: try to collapse. 1038 * Technical note: it is used by multiple contexts non atomically. 1039 * All the __sk_mem_schedule() is of this nature: accounting 1040 * is strict, actions are advisory and have some latency. 1041 */ 1042 int *memory_pressure; 1043 long *sysctl_mem; 1044 int *sysctl_wmem; 1045 int *sysctl_rmem; 1046 int max_header; 1047 bool no_autobind; 1048 1049 struct kmem_cache *slab; 1050 unsigned int obj_size; 1051 int slab_flags; 1052 1053 struct percpu_counter *orphan_count; 1054 1055 struct request_sock_ops *rsk_prot; 1056 struct timewait_sock_ops *twsk_prot; 1057 1058 union { 1059 struct inet_hashinfo *hashinfo; 1060 struct udp_table *udp_table; 1061 struct raw_hashinfo *raw_hash; 1062 } h; 1063 1064 struct module *owner; 1065 1066 char name[32]; 1067 1068 struct list_head node; 1069 #ifdef SOCK_REFCNT_DEBUG 1070 atomic_t socks; 1071 #endif 1072 int (*diag_destroy)(struct sock *sk, int err); 1073 }; 1074 1075 int proto_register(struct proto *prot, int alloc_slab); 1076 void proto_unregister(struct proto *prot); 1077 1078 #ifdef SOCK_REFCNT_DEBUG 1079 static inline void sk_refcnt_debug_inc(struct sock *sk) 1080 { 1081 atomic_inc(&sk->sk_prot->socks); 1082 } 1083 1084 static inline void sk_refcnt_debug_dec(struct sock *sk) 1085 { 1086 atomic_dec(&sk->sk_prot->socks); 1087 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1088 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1089 } 1090 1091 static inline void sk_refcnt_debug_release(const struct sock *sk) 1092 { 1093 if (atomic_read(&sk->sk_refcnt) != 1) 1094 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1095 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1096 } 1097 #else /* SOCK_REFCNT_DEBUG */ 1098 #define sk_refcnt_debug_inc(sk) do { } while (0) 1099 #define sk_refcnt_debug_dec(sk) do { } while (0) 1100 #define sk_refcnt_debug_release(sk) do { } while (0) 1101 #endif /* SOCK_REFCNT_DEBUG */ 1102 1103 static inline bool sk_stream_memory_free(const struct sock *sk) 1104 { 1105 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1106 return false; 1107 1108 return sk->sk_prot->stream_memory_free ? 1109 sk->sk_prot->stream_memory_free(sk) : true; 1110 } 1111 1112 static inline bool sk_stream_is_writeable(const struct sock *sk) 1113 { 1114 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1115 sk_stream_memory_free(sk); 1116 } 1117 1118 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1119 struct cgroup *ancestor) 1120 { 1121 #ifdef CONFIG_SOCK_CGROUP_DATA 1122 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1123 ancestor); 1124 #else 1125 return -ENOTSUPP; 1126 #endif 1127 } 1128 1129 static inline bool sk_has_memory_pressure(const struct sock *sk) 1130 { 1131 return sk->sk_prot->memory_pressure != NULL; 1132 } 1133 1134 static inline bool sk_under_memory_pressure(const struct sock *sk) 1135 { 1136 if (!sk->sk_prot->memory_pressure) 1137 return false; 1138 1139 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1140 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1141 return true; 1142 1143 return !!*sk->sk_prot->memory_pressure; 1144 } 1145 1146 static inline void sk_leave_memory_pressure(struct sock *sk) 1147 { 1148 int *memory_pressure = sk->sk_prot->memory_pressure; 1149 1150 if (!memory_pressure) 1151 return; 1152 1153 if (*memory_pressure) 1154 *memory_pressure = 0; 1155 } 1156 1157 static inline void sk_enter_memory_pressure(struct sock *sk) 1158 { 1159 if (!sk->sk_prot->enter_memory_pressure) 1160 return; 1161 1162 sk->sk_prot->enter_memory_pressure(sk); 1163 } 1164 1165 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1166 { 1167 return sk->sk_prot->sysctl_mem[index]; 1168 } 1169 1170 static inline long 1171 sk_memory_allocated(const struct sock *sk) 1172 { 1173 return atomic_long_read(sk->sk_prot->memory_allocated); 1174 } 1175 1176 static inline long 1177 sk_memory_allocated_add(struct sock *sk, int amt) 1178 { 1179 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1180 } 1181 1182 static inline void 1183 sk_memory_allocated_sub(struct sock *sk, int amt) 1184 { 1185 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1186 } 1187 1188 static inline void sk_sockets_allocated_dec(struct sock *sk) 1189 { 1190 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1191 } 1192 1193 static inline void sk_sockets_allocated_inc(struct sock *sk) 1194 { 1195 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1196 } 1197 1198 static inline int 1199 sk_sockets_allocated_read_positive(struct sock *sk) 1200 { 1201 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1202 } 1203 1204 static inline int 1205 proto_sockets_allocated_sum_positive(struct proto *prot) 1206 { 1207 return percpu_counter_sum_positive(prot->sockets_allocated); 1208 } 1209 1210 static inline long 1211 proto_memory_allocated(struct proto *prot) 1212 { 1213 return atomic_long_read(prot->memory_allocated); 1214 } 1215 1216 static inline bool 1217 proto_memory_pressure(struct proto *prot) 1218 { 1219 if (!prot->memory_pressure) 1220 return false; 1221 return !!*prot->memory_pressure; 1222 } 1223 1224 1225 #ifdef CONFIG_PROC_FS 1226 /* Called with local bh disabled */ 1227 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1228 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1229 #else 1230 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1231 int inc) 1232 { 1233 } 1234 #endif 1235 1236 1237 /* With per-bucket locks this operation is not-atomic, so that 1238 * this version is not worse. 1239 */ 1240 static inline int __sk_prot_rehash(struct sock *sk) 1241 { 1242 sk->sk_prot->unhash(sk); 1243 return sk->sk_prot->hash(sk); 1244 } 1245 1246 /* About 10 seconds */ 1247 #define SOCK_DESTROY_TIME (10*HZ) 1248 1249 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1250 #define PROT_SOCK 1024 1251 1252 #define SHUTDOWN_MASK 3 1253 #define RCV_SHUTDOWN 1 1254 #define SEND_SHUTDOWN 2 1255 1256 #define SOCK_SNDBUF_LOCK 1 1257 #define SOCK_RCVBUF_LOCK 2 1258 #define SOCK_BINDADDR_LOCK 4 1259 #define SOCK_BINDPORT_LOCK 8 1260 1261 struct socket_alloc { 1262 struct socket socket; 1263 struct inode vfs_inode; 1264 }; 1265 1266 static inline struct socket *SOCKET_I(struct inode *inode) 1267 { 1268 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1269 } 1270 1271 static inline struct inode *SOCK_INODE(struct socket *socket) 1272 { 1273 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1274 } 1275 1276 /* 1277 * Functions for memory accounting 1278 */ 1279 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1280 void __sk_mem_reclaim(struct sock *sk, int amount); 1281 1282 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1283 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1284 #define SK_MEM_SEND 0 1285 #define SK_MEM_RECV 1 1286 1287 static inline int sk_mem_pages(int amt) 1288 { 1289 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1290 } 1291 1292 static inline bool sk_has_account(struct sock *sk) 1293 { 1294 /* return true if protocol supports memory accounting */ 1295 return !!sk->sk_prot->memory_allocated; 1296 } 1297 1298 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1299 { 1300 if (!sk_has_account(sk)) 1301 return true; 1302 return size <= sk->sk_forward_alloc || 1303 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1304 } 1305 1306 static inline bool 1307 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1308 { 1309 if (!sk_has_account(sk)) 1310 return true; 1311 return size<= sk->sk_forward_alloc || 1312 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1313 skb_pfmemalloc(skb); 1314 } 1315 1316 static inline void sk_mem_reclaim(struct sock *sk) 1317 { 1318 if (!sk_has_account(sk)) 1319 return; 1320 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1321 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1322 } 1323 1324 static inline void sk_mem_reclaim_partial(struct sock *sk) 1325 { 1326 if (!sk_has_account(sk)) 1327 return; 1328 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1329 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1330 } 1331 1332 static inline void sk_mem_charge(struct sock *sk, int size) 1333 { 1334 if (!sk_has_account(sk)) 1335 return; 1336 sk->sk_forward_alloc -= size; 1337 } 1338 1339 static inline void sk_mem_uncharge(struct sock *sk, int size) 1340 { 1341 if (!sk_has_account(sk)) 1342 return; 1343 sk->sk_forward_alloc += size; 1344 1345 /* Avoid a possible overflow. 1346 * TCP send queues can make this happen, if sk_mem_reclaim() 1347 * is not called and more than 2 GBytes are released at once. 1348 * 1349 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1350 * no need to hold that much forward allocation anyway. 1351 */ 1352 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1353 __sk_mem_reclaim(sk, 1 << 20); 1354 } 1355 1356 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1357 { 1358 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1359 sk->sk_wmem_queued -= skb->truesize; 1360 sk_mem_uncharge(sk, skb->truesize); 1361 __kfree_skb(skb); 1362 } 1363 1364 static inline void sock_release_ownership(struct sock *sk) 1365 { 1366 if (sk->sk_lock.owned) { 1367 sk->sk_lock.owned = 0; 1368 1369 /* The sk_lock has mutex_unlock() semantics: */ 1370 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1371 } 1372 } 1373 1374 /* 1375 * Macro so as to not evaluate some arguments when 1376 * lockdep is not enabled. 1377 * 1378 * Mark both the sk_lock and the sk_lock.slock as a 1379 * per-address-family lock class. 1380 */ 1381 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1382 do { \ 1383 sk->sk_lock.owned = 0; \ 1384 init_waitqueue_head(&sk->sk_lock.wq); \ 1385 spin_lock_init(&(sk)->sk_lock.slock); \ 1386 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1387 sizeof((sk)->sk_lock)); \ 1388 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1389 (skey), (sname)); \ 1390 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1391 } while (0) 1392 1393 #ifdef CONFIG_LOCKDEP 1394 static inline bool lockdep_sock_is_held(const struct sock *csk) 1395 { 1396 struct sock *sk = (struct sock *)csk; 1397 1398 return lockdep_is_held(&sk->sk_lock) || 1399 lockdep_is_held(&sk->sk_lock.slock); 1400 } 1401 #endif 1402 1403 void lock_sock_nested(struct sock *sk, int subclass); 1404 1405 static inline void lock_sock(struct sock *sk) 1406 { 1407 lock_sock_nested(sk, 0); 1408 } 1409 1410 void release_sock(struct sock *sk); 1411 1412 /* BH context may only use the following locking interface. */ 1413 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1414 #define bh_lock_sock_nested(__sk) \ 1415 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1416 SINGLE_DEPTH_NESTING) 1417 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1418 1419 bool lock_sock_fast(struct sock *sk); 1420 /** 1421 * unlock_sock_fast - complement of lock_sock_fast 1422 * @sk: socket 1423 * @slow: slow mode 1424 * 1425 * fast unlock socket for user context. 1426 * If slow mode is on, we call regular release_sock() 1427 */ 1428 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1429 { 1430 if (slow) 1431 release_sock(sk); 1432 else 1433 spin_unlock_bh(&sk->sk_lock.slock); 1434 } 1435 1436 /* Used by processes to "lock" a socket state, so that 1437 * interrupts and bottom half handlers won't change it 1438 * from under us. It essentially blocks any incoming 1439 * packets, so that we won't get any new data or any 1440 * packets that change the state of the socket. 1441 * 1442 * While locked, BH processing will add new packets to 1443 * the backlog queue. This queue is processed by the 1444 * owner of the socket lock right before it is released. 1445 * 1446 * Since ~2.3.5 it is also exclusive sleep lock serializing 1447 * accesses from user process context. 1448 */ 1449 1450 static inline void sock_owned_by_me(const struct sock *sk) 1451 { 1452 #ifdef CONFIG_LOCKDEP 1453 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1454 #endif 1455 } 1456 1457 static inline bool sock_owned_by_user(const struct sock *sk) 1458 { 1459 sock_owned_by_me(sk); 1460 return sk->sk_lock.owned; 1461 } 1462 1463 /* no reclassification while locks are held */ 1464 static inline bool sock_allow_reclassification(const struct sock *csk) 1465 { 1466 struct sock *sk = (struct sock *)csk; 1467 1468 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1469 } 1470 1471 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1472 struct proto *prot, int kern); 1473 void sk_free(struct sock *sk); 1474 void sk_destruct(struct sock *sk); 1475 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1476 1477 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1478 gfp_t priority); 1479 void __sock_wfree(struct sk_buff *skb); 1480 void sock_wfree(struct sk_buff *skb); 1481 void skb_orphan_partial(struct sk_buff *skb); 1482 void sock_rfree(struct sk_buff *skb); 1483 void sock_efree(struct sk_buff *skb); 1484 #ifdef CONFIG_INET 1485 void sock_edemux(struct sk_buff *skb); 1486 #else 1487 #define sock_edemux(skb) sock_efree(skb) 1488 #endif 1489 1490 int sock_setsockopt(struct socket *sock, int level, int op, 1491 char __user *optval, unsigned int optlen); 1492 1493 int sock_getsockopt(struct socket *sock, int level, int op, 1494 char __user *optval, int __user *optlen); 1495 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1496 int noblock, int *errcode); 1497 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1498 unsigned long data_len, int noblock, 1499 int *errcode, int max_page_order); 1500 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1501 void sock_kfree_s(struct sock *sk, void *mem, int size); 1502 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1503 void sk_send_sigurg(struct sock *sk); 1504 1505 struct sockcm_cookie { 1506 u32 mark; 1507 u16 tsflags; 1508 }; 1509 1510 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1511 struct sockcm_cookie *sockc); 1512 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1513 struct sockcm_cookie *sockc); 1514 1515 /* 1516 * Functions to fill in entries in struct proto_ops when a protocol 1517 * does not implement a particular function. 1518 */ 1519 int sock_no_bind(struct socket *, struct sockaddr *, int); 1520 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1521 int sock_no_socketpair(struct socket *, struct socket *); 1522 int sock_no_accept(struct socket *, struct socket *, int); 1523 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1524 unsigned int sock_no_poll(struct file *, struct socket *, 1525 struct poll_table_struct *); 1526 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1527 int sock_no_listen(struct socket *, int); 1528 int sock_no_shutdown(struct socket *, int); 1529 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1530 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1531 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1532 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1533 int sock_no_mmap(struct file *file, struct socket *sock, 1534 struct vm_area_struct *vma); 1535 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1536 size_t size, int flags); 1537 1538 /* 1539 * Functions to fill in entries in struct proto_ops when a protocol 1540 * uses the inet style. 1541 */ 1542 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1543 char __user *optval, int __user *optlen); 1544 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1545 int flags); 1546 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1547 char __user *optval, unsigned int optlen); 1548 int compat_sock_common_getsockopt(struct socket *sock, int level, 1549 int optname, char __user *optval, int __user *optlen); 1550 int compat_sock_common_setsockopt(struct socket *sock, int level, 1551 int optname, char __user *optval, unsigned int optlen); 1552 1553 void sk_common_release(struct sock *sk); 1554 1555 /* 1556 * Default socket callbacks and setup code 1557 */ 1558 1559 /* Initialise core socket variables */ 1560 void sock_init_data(struct socket *sock, struct sock *sk); 1561 1562 /* 1563 * Socket reference counting postulates. 1564 * 1565 * * Each user of socket SHOULD hold a reference count. 1566 * * Each access point to socket (an hash table bucket, reference from a list, 1567 * running timer, skb in flight MUST hold a reference count. 1568 * * When reference count hits 0, it means it will never increase back. 1569 * * When reference count hits 0, it means that no references from 1570 * outside exist to this socket and current process on current CPU 1571 * is last user and may/should destroy this socket. 1572 * * sk_free is called from any context: process, BH, IRQ. When 1573 * it is called, socket has no references from outside -> sk_free 1574 * may release descendant resources allocated by the socket, but 1575 * to the time when it is called, socket is NOT referenced by any 1576 * hash tables, lists etc. 1577 * * Packets, delivered from outside (from network or from another process) 1578 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1579 * when they sit in queue. Otherwise, packets will leak to hole, when 1580 * socket is looked up by one cpu and unhasing is made by another CPU. 1581 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1582 * (leak to backlog). Packet socket does all the processing inside 1583 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1584 * use separate SMP lock, so that they are prone too. 1585 */ 1586 1587 /* Ungrab socket and destroy it, if it was the last reference. */ 1588 static inline void sock_put(struct sock *sk) 1589 { 1590 if (atomic_dec_and_test(&sk->sk_refcnt)) 1591 sk_free(sk); 1592 } 1593 /* Generic version of sock_put(), dealing with all sockets 1594 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1595 */ 1596 void sock_gen_put(struct sock *sk); 1597 1598 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1599 unsigned int trim_cap); 1600 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1601 const int nested) 1602 { 1603 return __sk_receive_skb(sk, skb, nested, 1); 1604 } 1605 1606 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1607 { 1608 sk->sk_tx_queue_mapping = tx_queue; 1609 } 1610 1611 static inline void sk_tx_queue_clear(struct sock *sk) 1612 { 1613 sk->sk_tx_queue_mapping = -1; 1614 } 1615 1616 static inline int sk_tx_queue_get(const struct sock *sk) 1617 { 1618 return sk ? sk->sk_tx_queue_mapping : -1; 1619 } 1620 1621 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1622 { 1623 sk_tx_queue_clear(sk); 1624 sk->sk_socket = sock; 1625 } 1626 1627 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1628 { 1629 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1630 return &rcu_dereference_raw(sk->sk_wq)->wait; 1631 } 1632 /* Detach socket from process context. 1633 * Announce socket dead, detach it from wait queue and inode. 1634 * Note that parent inode held reference count on this struct sock, 1635 * we do not release it in this function, because protocol 1636 * probably wants some additional cleanups or even continuing 1637 * to work with this socket (TCP). 1638 */ 1639 static inline void sock_orphan(struct sock *sk) 1640 { 1641 write_lock_bh(&sk->sk_callback_lock); 1642 sock_set_flag(sk, SOCK_DEAD); 1643 sk_set_socket(sk, NULL); 1644 sk->sk_wq = NULL; 1645 write_unlock_bh(&sk->sk_callback_lock); 1646 } 1647 1648 static inline void sock_graft(struct sock *sk, struct socket *parent) 1649 { 1650 write_lock_bh(&sk->sk_callback_lock); 1651 sk->sk_wq = parent->wq; 1652 parent->sk = sk; 1653 sk_set_socket(sk, parent); 1654 security_sock_graft(sk, parent); 1655 write_unlock_bh(&sk->sk_callback_lock); 1656 } 1657 1658 kuid_t sock_i_uid(struct sock *sk); 1659 unsigned long sock_i_ino(struct sock *sk); 1660 1661 static inline u32 net_tx_rndhash(void) 1662 { 1663 u32 v = prandom_u32(); 1664 1665 return v ?: 1; 1666 } 1667 1668 static inline void sk_set_txhash(struct sock *sk) 1669 { 1670 sk->sk_txhash = net_tx_rndhash(); 1671 } 1672 1673 static inline void sk_rethink_txhash(struct sock *sk) 1674 { 1675 if (sk->sk_txhash) 1676 sk_set_txhash(sk); 1677 } 1678 1679 static inline struct dst_entry * 1680 __sk_dst_get(struct sock *sk) 1681 { 1682 return rcu_dereference_check(sk->sk_dst_cache, 1683 lockdep_sock_is_held(sk)); 1684 } 1685 1686 static inline struct dst_entry * 1687 sk_dst_get(struct sock *sk) 1688 { 1689 struct dst_entry *dst; 1690 1691 rcu_read_lock(); 1692 dst = rcu_dereference(sk->sk_dst_cache); 1693 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1694 dst = NULL; 1695 rcu_read_unlock(); 1696 return dst; 1697 } 1698 1699 static inline void dst_negative_advice(struct sock *sk) 1700 { 1701 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1702 1703 sk_rethink_txhash(sk); 1704 1705 if (dst && dst->ops->negative_advice) { 1706 ndst = dst->ops->negative_advice(dst); 1707 1708 if (ndst != dst) { 1709 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1710 sk_tx_queue_clear(sk); 1711 } 1712 } 1713 } 1714 1715 static inline void 1716 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1717 { 1718 struct dst_entry *old_dst; 1719 1720 sk_tx_queue_clear(sk); 1721 /* 1722 * This can be called while sk is owned by the caller only, 1723 * with no state that can be checked in a rcu_dereference_check() cond 1724 */ 1725 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1726 rcu_assign_pointer(sk->sk_dst_cache, dst); 1727 dst_release(old_dst); 1728 } 1729 1730 static inline void 1731 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1732 { 1733 struct dst_entry *old_dst; 1734 1735 sk_tx_queue_clear(sk); 1736 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1737 dst_release(old_dst); 1738 } 1739 1740 static inline void 1741 __sk_dst_reset(struct sock *sk) 1742 { 1743 __sk_dst_set(sk, NULL); 1744 } 1745 1746 static inline void 1747 sk_dst_reset(struct sock *sk) 1748 { 1749 sk_dst_set(sk, NULL); 1750 } 1751 1752 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1753 1754 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1755 1756 bool sk_mc_loop(struct sock *sk); 1757 1758 static inline bool sk_can_gso(const struct sock *sk) 1759 { 1760 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1761 } 1762 1763 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1764 1765 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1766 { 1767 sk->sk_route_nocaps |= flags; 1768 sk->sk_route_caps &= ~flags; 1769 } 1770 1771 static inline bool sk_check_csum_caps(struct sock *sk) 1772 { 1773 return (sk->sk_route_caps & NETIF_F_HW_CSUM) || 1774 (sk->sk_family == PF_INET && 1775 (sk->sk_route_caps & NETIF_F_IP_CSUM)) || 1776 (sk->sk_family == PF_INET6 && 1777 (sk->sk_route_caps & NETIF_F_IPV6_CSUM)); 1778 } 1779 1780 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1781 struct iov_iter *from, char *to, 1782 int copy, int offset) 1783 { 1784 if (skb->ip_summed == CHECKSUM_NONE) { 1785 __wsum csum = 0; 1786 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy) 1787 return -EFAULT; 1788 skb->csum = csum_block_add(skb->csum, csum, offset); 1789 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1790 if (copy_from_iter_nocache(to, copy, from) != copy) 1791 return -EFAULT; 1792 } else if (copy_from_iter(to, copy, from) != copy) 1793 return -EFAULT; 1794 1795 return 0; 1796 } 1797 1798 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1799 struct iov_iter *from, int copy) 1800 { 1801 int err, offset = skb->len; 1802 1803 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1804 copy, offset); 1805 if (err) 1806 __skb_trim(skb, offset); 1807 1808 return err; 1809 } 1810 1811 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1812 struct sk_buff *skb, 1813 struct page *page, 1814 int off, int copy) 1815 { 1816 int err; 1817 1818 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1819 copy, skb->len); 1820 if (err) 1821 return err; 1822 1823 skb->len += copy; 1824 skb->data_len += copy; 1825 skb->truesize += copy; 1826 sk->sk_wmem_queued += copy; 1827 sk_mem_charge(sk, copy); 1828 return 0; 1829 } 1830 1831 /** 1832 * sk_wmem_alloc_get - returns write allocations 1833 * @sk: socket 1834 * 1835 * Returns sk_wmem_alloc minus initial offset of one 1836 */ 1837 static inline int sk_wmem_alloc_get(const struct sock *sk) 1838 { 1839 return atomic_read(&sk->sk_wmem_alloc) - 1; 1840 } 1841 1842 /** 1843 * sk_rmem_alloc_get - returns read allocations 1844 * @sk: socket 1845 * 1846 * Returns sk_rmem_alloc 1847 */ 1848 static inline int sk_rmem_alloc_get(const struct sock *sk) 1849 { 1850 return atomic_read(&sk->sk_rmem_alloc); 1851 } 1852 1853 /** 1854 * sk_has_allocations - check if allocations are outstanding 1855 * @sk: socket 1856 * 1857 * Returns true if socket has write or read allocations 1858 */ 1859 static inline bool sk_has_allocations(const struct sock *sk) 1860 { 1861 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1862 } 1863 1864 /** 1865 * skwq_has_sleeper - check if there are any waiting processes 1866 * @wq: struct socket_wq 1867 * 1868 * Returns true if socket_wq has waiting processes 1869 * 1870 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 1871 * barrier call. They were added due to the race found within the tcp code. 1872 * 1873 * Consider following tcp code paths: 1874 * 1875 * CPU1 CPU2 1876 * 1877 * sys_select receive packet 1878 * ... ... 1879 * __add_wait_queue update tp->rcv_nxt 1880 * ... ... 1881 * tp->rcv_nxt check sock_def_readable 1882 * ... { 1883 * schedule rcu_read_lock(); 1884 * wq = rcu_dereference(sk->sk_wq); 1885 * if (wq && waitqueue_active(&wq->wait)) 1886 * wake_up_interruptible(&wq->wait) 1887 * ... 1888 * } 1889 * 1890 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1891 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1892 * could then endup calling schedule and sleep forever if there are no more 1893 * data on the socket. 1894 * 1895 */ 1896 static inline bool skwq_has_sleeper(struct socket_wq *wq) 1897 { 1898 return wq && wq_has_sleeper(&wq->wait); 1899 } 1900 1901 /** 1902 * sock_poll_wait - place memory barrier behind the poll_wait call. 1903 * @filp: file 1904 * @wait_address: socket wait queue 1905 * @p: poll_table 1906 * 1907 * See the comments in the wq_has_sleeper function. 1908 */ 1909 static inline void sock_poll_wait(struct file *filp, 1910 wait_queue_head_t *wait_address, poll_table *p) 1911 { 1912 if (!poll_does_not_wait(p) && wait_address) { 1913 poll_wait(filp, wait_address, p); 1914 /* We need to be sure we are in sync with the 1915 * socket flags modification. 1916 * 1917 * This memory barrier is paired in the wq_has_sleeper. 1918 */ 1919 smp_mb(); 1920 } 1921 } 1922 1923 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1924 { 1925 if (sk->sk_txhash) { 1926 skb->l4_hash = 1; 1927 skb->hash = sk->sk_txhash; 1928 } 1929 } 1930 1931 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 1932 1933 /* 1934 * Queue a received datagram if it will fit. Stream and sequenced 1935 * protocols can't normally use this as they need to fit buffers in 1936 * and play with them. 1937 * 1938 * Inlined as it's very short and called for pretty much every 1939 * packet ever received. 1940 */ 1941 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1942 { 1943 skb_orphan(skb); 1944 skb->sk = sk; 1945 skb->destructor = sock_rfree; 1946 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1947 sk_mem_charge(sk, skb->truesize); 1948 } 1949 1950 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 1951 unsigned long expires); 1952 1953 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 1954 1955 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1956 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1957 1958 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1959 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 1960 1961 /* 1962 * Recover an error report and clear atomically 1963 */ 1964 1965 static inline int sock_error(struct sock *sk) 1966 { 1967 int err; 1968 if (likely(!sk->sk_err)) 1969 return 0; 1970 err = xchg(&sk->sk_err, 0); 1971 return -err; 1972 } 1973 1974 static inline unsigned long sock_wspace(struct sock *sk) 1975 { 1976 int amt = 0; 1977 1978 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1979 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1980 if (amt < 0) 1981 amt = 0; 1982 } 1983 return amt; 1984 } 1985 1986 /* Note: 1987 * We use sk->sk_wq_raw, from contexts knowing this 1988 * pointer is not NULL and cannot disappear/change. 1989 */ 1990 static inline void sk_set_bit(int nr, struct sock *sk) 1991 { 1992 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 1993 !sock_flag(sk, SOCK_FASYNC)) 1994 return; 1995 1996 set_bit(nr, &sk->sk_wq_raw->flags); 1997 } 1998 1999 static inline void sk_clear_bit(int nr, struct sock *sk) 2000 { 2001 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2002 !sock_flag(sk, SOCK_FASYNC)) 2003 return; 2004 2005 clear_bit(nr, &sk->sk_wq_raw->flags); 2006 } 2007 2008 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2009 { 2010 if (sock_flag(sk, SOCK_FASYNC)) { 2011 rcu_read_lock(); 2012 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2013 rcu_read_unlock(); 2014 } 2015 } 2016 2017 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2018 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2019 * Note: for send buffers, TCP works better if we can build two skbs at 2020 * minimum. 2021 */ 2022 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2023 2024 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2025 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2026 2027 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2028 { 2029 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2030 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2031 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2032 } 2033 } 2034 2035 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2036 bool force_schedule); 2037 2038 /** 2039 * sk_page_frag - return an appropriate page_frag 2040 * @sk: socket 2041 * 2042 * If socket allocation mode allows current thread to sleep, it means its 2043 * safe to use the per task page_frag instead of the per socket one. 2044 */ 2045 static inline struct page_frag *sk_page_frag(struct sock *sk) 2046 { 2047 if (gfpflags_allow_blocking(sk->sk_allocation)) 2048 return ¤t->task_frag; 2049 2050 return &sk->sk_frag; 2051 } 2052 2053 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2054 2055 /* 2056 * Default write policy as shown to user space via poll/select/SIGIO 2057 */ 2058 static inline bool sock_writeable(const struct sock *sk) 2059 { 2060 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2061 } 2062 2063 static inline gfp_t gfp_any(void) 2064 { 2065 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2066 } 2067 2068 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2069 { 2070 return noblock ? 0 : sk->sk_rcvtimeo; 2071 } 2072 2073 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2074 { 2075 return noblock ? 0 : sk->sk_sndtimeo; 2076 } 2077 2078 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2079 { 2080 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2081 } 2082 2083 /* Alas, with timeout socket operations are not restartable. 2084 * Compare this to poll(). 2085 */ 2086 static inline int sock_intr_errno(long timeo) 2087 { 2088 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2089 } 2090 2091 struct sock_skb_cb { 2092 u32 dropcount; 2093 }; 2094 2095 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2096 * using skb->cb[] would keep using it directly and utilize its 2097 * alignement guarantee. 2098 */ 2099 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2100 sizeof(struct sock_skb_cb))) 2101 2102 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2103 SOCK_SKB_CB_OFFSET)) 2104 2105 #define sock_skb_cb_check_size(size) \ 2106 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2107 2108 static inline void 2109 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2110 { 2111 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops); 2112 } 2113 2114 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2115 { 2116 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2117 2118 atomic_add(segs, &sk->sk_drops); 2119 } 2120 2121 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2122 struct sk_buff *skb); 2123 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2124 struct sk_buff *skb); 2125 2126 static inline void 2127 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2128 { 2129 ktime_t kt = skb->tstamp; 2130 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2131 2132 /* 2133 * generate control messages if 2134 * - receive time stamping in software requested 2135 * - software time stamp available and wanted 2136 * - hardware time stamps available and wanted 2137 */ 2138 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2139 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2140 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2141 (hwtstamps->hwtstamp.tv64 && 2142 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2143 __sock_recv_timestamp(msg, sk, skb); 2144 else 2145 sk->sk_stamp = kt; 2146 2147 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2148 __sock_recv_wifi_status(msg, sk, skb); 2149 } 2150 2151 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2152 struct sk_buff *skb); 2153 2154 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2155 struct sk_buff *skb) 2156 { 2157 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2158 (1UL << SOCK_RCVTSTAMP)) 2159 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2160 SOF_TIMESTAMPING_RAW_HARDWARE) 2161 2162 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2163 __sock_recv_ts_and_drops(msg, sk, skb); 2164 else 2165 sk->sk_stamp = skb->tstamp; 2166 } 2167 2168 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2169 2170 /** 2171 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2172 * @sk: socket sending this packet 2173 * @tsflags: timestamping flags to use 2174 * @tx_flags: completed with instructions for time stamping 2175 * 2176 * Note : callers should take care of initial *tx_flags value (usually 0) 2177 */ 2178 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags, 2179 __u8 *tx_flags) 2180 { 2181 if (unlikely(tsflags)) 2182 __sock_tx_timestamp(tsflags, tx_flags); 2183 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2184 *tx_flags |= SKBTX_WIFI_STATUS; 2185 } 2186 2187 /** 2188 * sk_eat_skb - Release a skb if it is no longer needed 2189 * @sk: socket to eat this skb from 2190 * @skb: socket buffer to eat 2191 * 2192 * This routine must be called with interrupts disabled or with the socket 2193 * locked so that the sk_buff queue operation is ok. 2194 */ 2195 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2196 { 2197 __skb_unlink(skb, &sk->sk_receive_queue); 2198 __kfree_skb(skb); 2199 } 2200 2201 static inline 2202 struct net *sock_net(const struct sock *sk) 2203 { 2204 return read_pnet(&sk->sk_net); 2205 } 2206 2207 static inline 2208 void sock_net_set(struct sock *sk, struct net *net) 2209 { 2210 write_pnet(&sk->sk_net, net); 2211 } 2212 2213 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2214 { 2215 if (skb->sk) { 2216 struct sock *sk = skb->sk; 2217 2218 skb->destructor = NULL; 2219 skb->sk = NULL; 2220 return sk; 2221 } 2222 return NULL; 2223 } 2224 2225 /* This helper checks if a socket is a full socket, 2226 * ie _not_ a timewait or request socket. 2227 */ 2228 static inline bool sk_fullsock(const struct sock *sk) 2229 { 2230 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2231 } 2232 2233 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2234 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2235 */ 2236 static inline bool sk_listener(const struct sock *sk) 2237 { 2238 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2239 } 2240 2241 /** 2242 * sk_state_load - read sk->sk_state for lockless contexts 2243 * @sk: socket pointer 2244 * 2245 * Paired with sk_state_store(). Used in places we do not hold socket lock : 2246 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ... 2247 */ 2248 static inline int sk_state_load(const struct sock *sk) 2249 { 2250 return smp_load_acquire(&sk->sk_state); 2251 } 2252 2253 /** 2254 * sk_state_store - update sk->sk_state 2255 * @sk: socket pointer 2256 * @newstate: new state 2257 * 2258 * Paired with sk_state_load(). Should be used in contexts where 2259 * state change might impact lockless readers. 2260 */ 2261 static inline void sk_state_store(struct sock *sk, int newstate) 2262 { 2263 smp_store_release(&sk->sk_state, newstate); 2264 } 2265 2266 void sock_enable_timestamp(struct sock *sk, int flag); 2267 int sock_get_timestamp(struct sock *, struct timeval __user *); 2268 int sock_get_timestampns(struct sock *, struct timespec __user *); 2269 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2270 int type); 2271 2272 bool sk_ns_capable(const struct sock *sk, 2273 struct user_namespace *user_ns, int cap); 2274 bool sk_capable(const struct sock *sk, int cap); 2275 bool sk_net_capable(const struct sock *sk, int cap); 2276 2277 extern __u32 sysctl_wmem_max; 2278 extern __u32 sysctl_rmem_max; 2279 2280 extern int sysctl_tstamp_allow_data; 2281 extern int sysctl_optmem_max; 2282 2283 extern __u32 sysctl_wmem_default; 2284 extern __u32 sysctl_rmem_default; 2285 2286 #endif /* _SOCK_H */ 2287