xref: /openbmc/linux/include/net/sock.h (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
76 
77 /*
78  * This structure really needs to be cleaned up.
79  * Most of it is for TCP, and not used by any of
80  * the other protocols.
81  */
82 
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 					printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 {
93 }
94 #endif
95 
96 /* This is the per-socket lock.  The spinlock provides a synchronization
97  * between user contexts and software interrupt processing, whereas the
98  * mini-semaphore synchronizes multiple users amongst themselves.
99  */
100 typedef struct {
101 	spinlock_t		slock;
102 	int			owned;
103 	wait_queue_head_t	wq;
104 	/*
105 	 * We express the mutex-alike socket_lock semantics
106 	 * to the lock validator by explicitly managing
107 	 * the slock as a lock variant (in addition to
108 	 * the slock itself):
109 	 */
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 	struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
114 
115 struct sock;
116 struct proto;
117 struct net;
118 
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
121 
122 /**
123  *	struct sock_common - minimal network layer representation of sockets
124  *	@skc_daddr: Foreign IPv4 addr
125  *	@skc_rcv_saddr: Bound local IPv4 addr
126  *	@skc_hash: hash value used with various protocol lookup tables
127  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
128  *	@skc_dport: placeholder for inet_dport/tw_dport
129  *	@skc_num: placeholder for inet_num/tw_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_node: main hash linkage for various protocol lookup tables
140  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141  *	@skc_tx_queue_mapping: tx queue number for this connection
142  *	@skc_rx_queue_mapping: rx queue number for this connection
143  *	@skc_flags: place holder for sk_flags
144  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146  *	@skc_incoming_cpu: record/match cpu processing incoming packets
147  *	@skc_refcnt: reference count
148  *
149  *	This is the minimal network layer representation of sockets, the header
150  *	for struct sock and struct inet_timewait_sock.
151  */
152 struct sock_common {
153 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 	 * address on 64bit arches : cf INET_MATCH()
155 	 */
156 	union {
157 		__addrpair	skc_addrpair;
158 		struct {
159 			__be32	skc_daddr;
160 			__be32	skc_rcv_saddr;
161 		};
162 	};
163 	union  {
164 		unsigned int	skc_hash;
165 		__u16		skc_u16hashes[2];
166 	};
167 	/* skc_dport && skc_num must be grouped as well */
168 	union {
169 		__portpair	skc_portpair;
170 		struct {
171 			__be16	skc_dport;
172 			__u16	skc_num;
173 		};
174 	};
175 
176 	unsigned short		skc_family;
177 	volatile unsigned char	skc_state;
178 	unsigned char		skc_reuse:4;
179 	unsigned char		skc_reuseport:1;
180 	unsigned char		skc_ipv6only:1;
181 	unsigned char		skc_net_refcnt:1;
182 	int			skc_bound_dev_if;
183 	union {
184 		struct hlist_node	skc_bind_node;
185 		struct hlist_node	skc_portaddr_node;
186 	};
187 	struct proto		*skc_prot;
188 	possible_net_t		skc_net;
189 
190 #if IS_ENABLED(CONFIG_IPV6)
191 	struct in6_addr		skc_v6_daddr;
192 	struct in6_addr		skc_v6_rcv_saddr;
193 #endif
194 
195 	atomic64_t		skc_cookie;
196 
197 	/* following fields are padding to force
198 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 	 * assuming IPV6 is enabled. We use this padding differently
200 	 * for different kind of 'sockets'
201 	 */
202 	union {
203 		unsigned long	skc_flags;
204 		struct sock	*skc_listener; /* request_sock */
205 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 	};
207 	/*
208 	 * fields between dontcopy_begin/dontcopy_end
209 	 * are not copied in sock_copy()
210 	 */
211 	/* private: */
212 	int			skc_dontcopy_begin[0];
213 	/* public: */
214 	union {
215 		struct hlist_node	skc_node;
216 		struct hlist_nulls_node skc_nulls_node;
217 	};
218 	unsigned short		skc_tx_queue_mapping;
219 #ifdef CONFIG_XPS
220 	unsigned short		skc_rx_queue_mapping;
221 #endif
222 	union {
223 		int		skc_incoming_cpu;
224 		u32		skc_rcv_wnd;
225 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
226 	};
227 
228 	refcount_t		skc_refcnt;
229 	/* private: */
230 	int                     skc_dontcopy_end[0];
231 	union {
232 		u32		skc_rxhash;
233 		u32		skc_window_clamp;
234 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 	};
236 	/* public: */
237 };
238 
239 /**
240   *	struct sock - network layer representation of sockets
241   *	@__sk_common: shared layout with inet_timewait_sock
242   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244   *	@sk_lock:	synchronizer
245   *	@sk_kern_sock: True if sock is using kernel lock classes
246   *	@sk_rcvbuf: size of receive buffer in bytes
247   *	@sk_wq: sock wait queue and async head
248   *	@sk_rx_dst: receive input route used by early demux
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_napi_id: id of the last napi context to receive data for sk
260   *	@sk_ll_usec: usecs to busypoll when there is no data
261   *	@sk_allocation: allocation mode
262   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
264   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265   *	@sk_sndbuf: size of send buffer in bytes
266   *	@__sk_flags_offset: empty field used to determine location of bitfield
267   *	@sk_padding: unused element for alignment
268   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269   *	@sk_no_check_rx: allow zero checksum in RX packets
270   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273   *	@sk_gso_max_size: Maximum GSO segment size to build
274   *	@sk_gso_max_segs: Maximum number of GSO segments
275   *	@sk_pacing_shift: scaling factor for TCP Small Queues
276   *	@sk_lingertime: %SO_LINGER l_linger setting
277   *	@sk_backlog: always used with the per-socket spinlock held
278   *	@sk_callback_lock: used with the callbacks in the end of this struct
279   *	@sk_error_queue: rarely used
280   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281   *			  IPV6_ADDRFORM for instance)
282   *	@sk_err: last error
283   *	@sk_err_soft: errors that don't cause failure but are the cause of a
284   *		      persistent failure not just 'timed out'
285   *	@sk_drops: raw/udp drops counter
286   *	@sk_ack_backlog: current listen backlog
287   *	@sk_max_ack_backlog: listen backlog set in listen()
288   *	@sk_uid: user id of owner
289   *	@sk_priority: %SO_PRIORITY setting
290   *	@sk_type: socket type (%SOCK_STREAM, etc)
291   *	@sk_protocol: which protocol this socket belongs in this network family
292   *	@sk_peer_pid: &struct pid for this socket's peer
293   *	@sk_peer_cred: %SO_PEERCRED setting
294   *	@sk_rcvlowat: %SO_RCVLOWAT setting
295   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
296   *	@sk_sndtimeo: %SO_SNDTIMEO setting
297   *	@sk_txhash: computed flow hash for use on transmit
298   *	@sk_filter: socket filtering instructions
299   *	@sk_timer: sock cleanup timer
300   *	@sk_stamp: time stamp of last packet received
301   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
302   *	@sk_tsflags: SO_TIMESTAMPING socket options
303   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
304   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
305   *	@sk_socket: Identd and reporting IO signals
306   *	@sk_user_data: RPC layer private data
307   *	@sk_frag: cached page frag
308   *	@sk_peek_off: current peek_offset value
309   *	@sk_send_head: front of stuff to transmit
310   *	@sk_security: used by security modules
311   *	@sk_mark: generic packet mark
312   *	@sk_cgrp_data: cgroup data for this cgroup
313   *	@sk_memcg: this socket's memory cgroup association
314   *	@sk_write_pending: a write to stream socket waits to start
315   *	@sk_state_change: callback to indicate change in the state of the sock
316   *	@sk_data_ready: callback to indicate there is data to be processed
317   *	@sk_write_space: callback to indicate there is bf sending space available
318   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319   *	@sk_backlog_rcv: callback to process the backlog
320   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321   *	@sk_reuseport_cb: reuseport group container
322   *	@sk_rcu: used during RCU grace period
323   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
324   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
325   *	@sk_txtime_unused: unused txtime flags
326   */
327 struct sock {
328 	/*
329 	 * Now struct inet_timewait_sock also uses sock_common, so please just
330 	 * don't add nothing before this first member (__sk_common) --acme
331 	 */
332 	struct sock_common	__sk_common;
333 #define sk_node			__sk_common.skc_node
334 #define sk_nulls_node		__sk_common.skc_nulls_node
335 #define sk_refcnt		__sk_common.skc_refcnt
336 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
337 #ifdef CONFIG_XPS
338 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
339 #endif
340 
341 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
342 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
343 #define sk_hash			__sk_common.skc_hash
344 #define sk_portpair		__sk_common.skc_portpair
345 #define sk_num			__sk_common.skc_num
346 #define sk_dport		__sk_common.skc_dport
347 #define sk_addrpair		__sk_common.skc_addrpair
348 #define sk_daddr		__sk_common.skc_daddr
349 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
350 #define sk_family		__sk_common.skc_family
351 #define sk_state		__sk_common.skc_state
352 #define sk_reuse		__sk_common.skc_reuse
353 #define sk_reuseport		__sk_common.skc_reuseport
354 #define sk_ipv6only		__sk_common.skc_ipv6only
355 #define sk_net_refcnt		__sk_common.skc_net_refcnt
356 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
357 #define sk_bind_node		__sk_common.skc_bind_node
358 #define sk_prot			__sk_common.skc_prot
359 #define sk_net			__sk_common.skc_net
360 #define sk_v6_daddr		__sk_common.skc_v6_daddr
361 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
362 #define sk_cookie		__sk_common.skc_cookie
363 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
364 #define sk_flags		__sk_common.skc_flags
365 #define sk_rxhash		__sk_common.skc_rxhash
366 
367 	socket_lock_t		sk_lock;
368 	atomic_t		sk_drops;
369 	int			sk_rcvlowat;
370 	struct sk_buff_head	sk_error_queue;
371 	struct sk_buff_head	sk_receive_queue;
372 	/*
373 	 * The backlog queue is special, it is always used with
374 	 * the per-socket spinlock held and requires low latency
375 	 * access. Therefore we special case it's implementation.
376 	 * Note : rmem_alloc is in this structure to fill a hole
377 	 * on 64bit arches, not because its logically part of
378 	 * backlog.
379 	 */
380 	struct {
381 		atomic_t	rmem_alloc;
382 		int		len;
383 		struct sk_buff	*head;
384 		struct sk_buff	*tail;
385 	} sk_backlog;
386 #define sk_rmem_alloc sk_backlog.rmem_alloc
387 
388 	int			sk_forward_alloc;
389 #ifdef CONFIG_NET_RX_BUSY_POLL
390 	unsigned int		sk_ll_usec;
391 	/* ===== mostly read cache line ===== */
392 	unsigned int		sk_napi_id;
393 #endif
394 	int			sk_rcvbuf;
395 
396 	struct sk_filter __rcu	*sk_filter;
397 	union {
398 		struct socket_wq __rcu	*sk_wq;
399 		struct socket_wq	*sk_wq_raw;
400 	};
401 #ifdef CONFIG_XFRM
402 	struct xfrm_policy __rcu *sk_policy[2];
403 #endif
404 	struct dst_entry	*sk_rx_dst;
405 	struct dst_entry __rcu	*sk_dst_cache;
406 	atomic_t		sk_omem_alloc;
407 	int			sk_sndbuf;
408 
409 	/* ===== cache line for TX ===== */
410 	int			sk_wmem_queued;
411 	refcount_t		sk_wmem_alloc;
412 	unsigned long		sk_tsq_flags;
413 	union {
414 		struct sk_buff	*sk_send_head;
415 		struct rb_root	tcp_rtx_queue;
416 	};
417 	struct sk_buff_head	sk_write_queue;
418 	__s32			sk_peek_off;
419 	int			sk_write_pending;
420 	__u32			sk_dst_pending_confirm;
421 	u32			sk_pacing_status; /* see enum sk_pacing */
422 	long			sk_sndtimeo;
423 	struct timer_list	sk_timer;
424 	__u32			sk_priority;
425 	__u32			sk_mark;
426 	unsigned long		sk_pacing_rate; /* bytes per second */
427 	unsigned long		sk_max_pacing_rate;
428 	struct page_frag	sk_frag;
429 	netdev_features_t	sk_route_caps;
430 	netdev_features_t	sk_route_nocaps;
431 	netdev_features_t	sk_route_forced_caps;
432 	int			sk_gso_type;
433 	unsigned int		sk_gso_max_size;
434 	gfp_t			sk_allocation;
435 	__u32			sk_txhash;
436 
437 	/*
438 	 * Because of non atomicity rules, all
439 	 * changes are protected by socket lock.
440 	 */
441 	unsigned int		__sk_flags_offset[0];
442 #ifdef __BIG_ENDIAN_BITFIELD
443 #define SK_FL_PROTO_SHIFT  16
444 #define SK_FL_PROTO_MASK   0x00ff0000
445 
446 #define SK_FL_TYPE_SHIFT   0
447 #define SK_FL_TYPE_MASK    0x0000ffff
448 #else
449 #define SK_FL_PROTO_SHIFT  8
450 #define SK_FL_PROTO_MASK   0x0000ff00
451 
452 #define SK_FL_TYPE_SHIFT   16
453 #define SK_FL_TYPE_MASK    0xffff0000
454 #endif
455 
456 	unsigned int		sk_padding : 1,
457 				sk_kern_sock : 1,
458 				sk_no_check_tx : 1,
459 				sk_no_check_rx : 1,
460 				sk_userlocks : 4,
461 				sk_protocol  : 8,
462 				sk_type      : 16;
463 #define SK_PROTOCOL_MAX U8_MAX
464 	u16			sk_gso_max_segs;
465 	u8			sk_pacing_shift;
466 	unsigned long	        sk_lingertime;
467 	struct proto		*sk_prot_creator;
468 	rwlock_t		sk_callback_lock;
469 	int			sk_err,
470 				sk_err_soft;
471 	u32			sk_ack_backlog;
472 	u32			sk_max_ack_backlog;
473 	kuid_t			sk_uid;
474 	struct pid		*sk_peer_pid;
475 	const struct cred	*sk_peer_cred;
476 	long			sk_rcvtimeo;
477 	ktime_t			sk_stamp;
478 #if BITS_PER_LONG==32
479 	seqlock_t		sk_stamp_seq;
480 #endif
481 	u16			sk_tsflags;
482 	u8			sk_shutdown;
483 	u32			sk_tskey;
484 	atomic_t		sk_zckey;
485 
486 	u8			sk_clockid;
487 	u8			sk_txtime_deadline_mode : 1,
488 				sk_txtime_report_errors : 1,
489 				sk_txtime_unused : 6;
490 
491 	struct socket		*sk_socket;
492 	void			*sk_user_data;
493 #ifdef CONFIG_SECURITY
494 	void			*sk_security;
495 #endif
496 	struct sock_cgroup_data	sk_cgrp_data;
497 	struct mem_cgroup	*sk_memcg;
498 	void			(*sk_state_change)(struct sock *sk);
499 	void			(*sk_data_ready)(struct sock *sk);
500 	void			(*sk_write_space)(struct sock *sk);
501 	void			(*sk_error_report)(struct sock *sk);
502 	int			(*sk_backlog_rcv)(struct sock *sk,
503 						  struct sk_buff *skb);
504 #ifdef CONFIG_SOCK_VALIDATE_XMIT
505 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
506 							struct net_device *dev,
507 							struct sk_buff *skb);
508 #endif
509 	void                    (*sk_destruct)(struct sock *sk);
510 	struct sock_reuseport __rcu	*sk_reuseport_cb;
511 	struct rcu_head		sk_rcu;
512 };
513 
514 enum sk_pacing {
515 	SK_PACING_NONE		= 0,
516 	SK_PACING_NEEDED	= 1,
517 	SK_PACING_FQ		= 2,
518 };
519 
520 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
521 
522 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
523 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
524 
525 /*
526  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
527  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
528  * on a socket means that the socket will reuse everybody else's port
529  * without looking at the other's sk_reuse value.
530  */
531 
532 #define SK_NO_REUSE	0
533 #define SK_CAN_REUSE	1
534 #define SK_FORCE_REUSE	2
535 
536 int sk_set_peek_off(struct sock *sk, int val);
537 
538 static inline int sk_peek_offset(struct sock *sk, int flags)
539 {
540 	if (unlikely(flags & MSG_PEEK)) {
541 		return READ_ONCE(sk->sk_peek_off);
542 	}
543 
544 	return 0;
545 }
546 
547 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
548 {
549 	s32 off = READ_ONCE(sk->sk_peek_off);
550 
551 	if (unlikely(off >= 0)) {
552 		off = max_t(s32, off - val, 0);
553 		WRITE_ONCE(sk->sk_peek_off, off);
554 	}
555 }
556 
557 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
558 {
559 	sk_peek_offset_bwd(sk, -val);
560 }
561 
562 /*
563  * Hashed lists helper routines
564  */
565 static inline struct sock *sk_entry(const struct hlist_node *node)
566 {
567 	return hlist_entry(node, struct sock, sk_node);
568 }
569 
570 static inline struct sock *__sk_head(const struct hlist_head *head)
571 {
572 	return hlist_entry(head->first, struct sock, sk_node);
573 }
574 
575 static inline struct sock *sk_head(const struct hlist_head *head)
576 {
577 	return hlist_empty(head) ? NULL : __sk_head(head);
578 }
579 
580 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
581 {
582 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
583 }
584 
585 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
586 {
587 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
588 }
589 
590 static inline struct sock *sk_next(const struct sock *sk)
591 {
592 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
593 }
594 
595 static inline struct sock *sk_nulls_next(const struct sock *sk)
596 {
597 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
598 		hlist_nulls_entry(sk->sk_nulls_node.next,
599 				  struct sock, sk_nulls_node) :
600 		NULL;
601 }
602 
603 static inline bool sk_unhashed(const struct sock *sk)
604 {
605 	return hlist_unhashed(&sk->sk_node);
606 }
607 
608 static inline bool sk_hashed(const struct sock *sk)
609 {
610 	return !sk_unhashed(sk);
611 }
612 
613 static inline void sk_node_init(struct hlist_node *node)
614 {
615 	node->pprev = NULL;
616 }
617 
618 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
619 {
620 	node->pprev = NULL;
621 }
622 
623 static inline void __sk_del_node(struct sock *sk)
624 {
625 	__hlist_del(&sk->sk_node);
626 }
627 
628 /* NB: equivalent to hlist_del_init_rcu */
629 static inline bool __sk_del_node_init(struct sock *sk)
630 {
631 	if (sk_hashed(sk)) {
632 		__sk_del_node(sk);
633 		sk_node_init(&sk->sk_node);
634 		return true;
635 	}
636 	return false;
637 }
638 
639 /* Grab socket reference count. This operation is valid only
640    when sk is ALREADY grabbed f.e. it is found in hash table
641    or a list and the lookup is made under lock preventing hash table
642    modifications.
643  */
644 
645 static __always_inline void sock_hold(struct sock *sk)
646 {
647 	refcount_inc(&sk->sk_refcnt);
648 }
649 
650 /* Ungrab socket in the context, which assumes that socket refcnt
651    cannot hit zero, f.e. it is true in context of any socketcall.
652  */
653 static __always_inline void __sock_put(struct sock *sk)
654 {
655 	refcount_dec(&sk->sk_refcnt);
656 }
657 
658 static inline bool sk_del_node_init(struct sock *sk)
659 {
660 	bool rc = __sk_del_node_init(sk);
661 
662 	if (rc) {
663 		/* paranoid for a while -acme */
664 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
665 		__sock_put(sk);
666 	}
667 	return rc;
668 }
669 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
670 
671 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
672 {
673 	if (sk_hashed(sk)) {
674 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
675 		return true;
676 	}
677 	return false;
678 }
679 
680 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
681 {
682 	bool rc = __sk_nulls_del_node_init_rcu(sk);
683 
684 	if (rc) {
685 		/* paranoid for a while -acme */
686 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
687 		__sock_put(sk);
688 	}
689 	return rc;
690 }
691 
692 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
693 {
694 	hlist_add_head(&sk->sk_node, list);
695 }
696 
697 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
698 {
699 	sock_hold(sk);
700 	__sk_add_node(sk, list);
701 }
702 
703 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
704 {
705 	sock_hold(sk);
706 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
707 	    sk->sk_family == AF_INET6)
708 		hlist_add_tail_rcu(&sk->sk_node, list);
709 	else
710 		hlist_add_head_rcu(&sk->sk_node, list);
711 }
712 
713 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
714 {
715 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
716 }
717 
718 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
719 {
720 	sock_hold(sk);
721 	__sk_nulls_add_node_rcu(sk, list);
722 }
723 
724 static inline void __sk_del_bind_node(struct sock *sk)
725 {
726 	__hlist_del(&sk->sk_bind_node);
727 }
728 
729 static inline void sk_add_bind_node(struct sock *sk,
730 					struct hlist_head *list)
731 {
732 	hlist_add_head(&sk->sk_bind_node, list);
733 }
734 
735 #define sk_for_each(__sk, list) \
736 	hlist_for_each_entry(__sk, list, sk_node)
737 #define sk_for_each_rcu(__sk, list) \
738 	hlist_for_each_entry_rcu(__sk, list, sk_node)
739 #define sk_nulls_for_each(__sk, node, list) \
740 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
741 #define sk_nulls_for_each_rcu(__sk, node, list) \
742 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
743 #define sk_for_each_from(__sk) \
744 	hlist_for_each_entry_from(__sk, sk_node)
745 #define sk_nulls_for_each_from(__sk, node) \
746 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
747 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
748 #define sk_for_each_safe(__sk, tmp, list) \
749 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
750 #define sk_for_each_bound(__sk, list) \
751 	hlist_for_each_entry(__sk, list, sk_bind_node)
752 
753 /**
754  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
755  * @tpos:	the type * to use as a loop cursor.
756  * @pos:	the &struct hlist_node to use as a loop cursor.
757  * @head:	the head for your list.
758  * @offset:	offset of hlist_node within the struct.
759  *
760  */
761 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
762 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
763 	     pos != NULL &&						       \
764 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
765 	     pos = rcu_dereference(hlist_next_rcu(pos)))
766 
767 static inline struct user_namespace *sk_user_ns(struct sock *sk)
768 {
769 	/* Careful only use this in a context where these parameters
770 	 * can not change and must all be valid, such as recvmsg from
771 	 * userspace.
772 	 */
773 	return sk->sk_socket->file->f_cred->user_ns;
774 }
775 
776 /* Sock flags */
777 enum sock_flags {
778 	SOCK_DEAD,
779 	SOCK_DONE,
780 	SOCK_URGINLINE,
781 	SOCK_KEEPOPEN,
782 	SOCK_LINGER,
783 	SOCK_DESTROY,
784 	SOCK_BROADCAST,
785 	SOCK_TIMESTAMP,
786 	SOCK_ZAPPED,
787 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
788 	SOCK_DBG, /* %SO_DEBUG setting */
789 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
790 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
791 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
792 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
793 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
794 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
795 	SOCK_FASYNC, /* fasync() active */
796 	SOCK_RXQ_OVFL,
797 	SOCK_ZEROCOPY, /* buffers from userspace */
798 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
799 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
800 		     * Will use last 4 bytes of packet sent from
801 		     * user-space instead.
802 		     */
803 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
804 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
805 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
806 	SOCK_TXTIME,
807 	SOCK_XDP, /* XDP is attached */
808 };
809 
810 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
811 
812 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
813 {
814 	nsk->sk_flags = osk->sk_flags;
815 }
816 
817 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
818 {
819 	__set_bit(flag, &sk->sk_flags);
820 }
821 
822 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
823 {
824 	__clear_bit(flag, &sk->sk_flags);
825 }
826 
827 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
828 {
829 	return test_bit(flag, &sk->sk_flags);
830 }
831 
832 #ifdef CONFIG_NET
833 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
834 static inline int sk_memalloc_socks(void)
835 {
836 	return static_branch_unlikely(&memalloc_socks_key);
837 }
838 #else
839 
840 static inline int sk_memalloc_socks(void)
841 {
842 	return 0;
843 }
844 
845 #endif
846 
847 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
848 {
849 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
850 }
851 
852 static inline void sk_acceptq_removed(struct sock *sk)
853 {
854 	sk->sk_ack_backlog--;
855 }
856 
857 static inline void sk_acceptq_added(struct sock *sk)
858 {
859 	sk->sk_ack_backlog++;
860 }
861 
862 static inline bool sk_acceptq_is_full(const struct sock *sk)
863 {
864 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
865 }
866 
867 /*
868  * Compute minimal free write space needed to queue new packets.
869  */
870 static inline int sk_stream_min_wspace(const struct sock *sk)
871 {
872 	return sk->sk_wmem_queued >> 1;
873 }
874 
875 static inline int sk_stream_wspace(const struct sock *sk)
876 {
877 	return sk->sk_sndbuf - sk->sk_wmem_queued;
878 }
879 
880 void sk_stream_write_space(struct sock *sk);
881 
882 /* OOB backlog add */
883 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
884 {
885 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
886 	skb_dst_force(skb);
887 
888 	if (!sk->sk_backlog.tail)
889 		sk->sk_backlog.head = skb;
890 	else
891 		sk->sk_backlog.tail->next = skb;
892 
893 	sk->sk_backlog.tail = skb;
894 	skb->next = NULL;
895 }
896 
897 /*
898  * Take into account size of receive queue and backlog queue
899  * Do not take into account this skb truesize,
900  * to allow even a single big packet to come.
901  */
902 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
903 {
904 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
905 
906 	return qsize > limit;
907 }
908 
909 /* The per-socket spinlock must be held here. */
910 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
911 					      unsigned int limit)
912 {
913 	if (sk_rcvqueues_full(sk, limit))
914 		return -ENOBUFS;
915 
916 	/*
917 	 * If the skb was allocated from pfmemalloc reserves, only
918 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
919 	 * helping free memory
920 	 */
921 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
922 		return -ENOMEM;
923 
924 	__sk_add_backlog(sk, skb);
925 	sk->sk_backlog.len += skb->truesize;
926 	return 0;
927 }
928 
929 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
930 
931 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
932 {
933 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
934 		return __sk_backlog_rcv(sk, skb);
935 
936 	return sk->sk_backlog_rcv(sk, skb);
937 }
938 
939 static inline void sk_incoming_cpu_update(struct sock *sk)
940 {
941 	int cpu = raw_smp_processor_id();
942 
943 	if (unlikely(sk->sk_incoming_cpu != cpu))
944 		sk->sk_incoming_cpu = cpu;
945 }
946 
947 static inline void sock_rps_record_flow_hash(__u32 hash)
948 {
949 #ifdef CONFIG_RPS
950 	struct rps_sock_flow_table *sock_flow_table;
951 
952 	rcu_read_lock();
953 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
954 	rps_record_sock_flow(sock_flow_table, hash);
955 	rcu_read_unlock();
956 #endif
957 }
958 
959 static inline void sock_rps_record_flow(const struct sock *sk)
960 {
961 #ifdef CONFIG_RPS
962 	if (static_key_false(&rfs_needed)) {
963 		/* Reading sk->sk_rxhash might incur an expensive cache line
964 		 * miss.
965 		 *
966 		 * TCP_ESTABLISHED does cover almost all states where RFS
967 		 * might be useful, and is cheaper [1] than testing :
968 		 *	IPv4: inet_sk(sk)->inet_daddr
969 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
970 		 * OR	an additional socket flag
971 		 * [1] : sk_state and sk_prot are in the same cache line.
972 		 */
973 		if (sk->sk_state == TCP_ESTABLISHED)
974 			sock_rps_record_flow_hash(sk->sk_rxhash);
975 	}
976 #endif
977 }
978 
979 static inline void sock_rps_save_rxhash(struct sock *sk,
980 					const struct sk_buff *skb)
981 {
982 #ifdef CONFIG_RPS
983 	if (unlikely(sk->sk_rxhash != skb->hash))
984 		sk->sk_rxhash = skb->hash;
985 #endif
986 }
987 
988 static inline void sock_rps_reset_rxhash(struct sock *sk)
989 {
990 #ifdef CONFIG_RPS
991 	sk->sk_rxhash = 0;
992 #endif
993 }
994 
995 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
996 	({	int __rc;						\
997 		release_sock(__sk);					\
998 		__rc = __condition;					\
999 		if (!__rc) {						\
1000 			*(__timeo) = wait_woken(__wait,			\
1001 						TASK_INTERRUPTIBLE,	\
1002 						*(__timeo));		\
1003 		}							\
1004 		sched_annotate_sleep();					\
1005 		lock_sock(__sk);					\
1006 		__rc = __condition;					\
1007 		__rc;							\
1008 	})
1009 
1010 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1011 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1012 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1013 int sk_stream_error(struct sock *sk, int flags, int err);
1014 void sk_stream_kill_queues(struct sock *sk);
1015 void sk_set_memalloc(struct sock *sk);
1016 void sk_clear_memalloc(struct sock *sk);
1017 
1018 void __sk_flush_backlog(struct sock *sk);
1019 
1020 static inline bool sk_flush_backlog(struct sock *sk)
1021 {
1022 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1023 		__sk_flush_backlog(sk);
1024 		return true;
1025 	}
1026 	return false;
1027 }
1028 
1029 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1030 
1031 struct request_sock_ops;
1032 struct timewait_sock_ops;
1033 struct inet_hashinfo;
1034 struct raw_hashinfo;
1035 struct smc_hashinfo;
1036 struct module;
1037 
1038 /*
1039  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1040  * un-modified. Special care is taken when initializing object to zero.
1041  */
1042 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1043 {
1044 	if (offsetof(struct sock, sk_node.next) != 0)
1045 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1046 	memset(&sk->sk_node.pprev, 0,
1047 	       size - offsetof(struct sock, sk_node.pprev));
1048 }
1049 
1050 /* Networking protocol blocks we attach to sockets.
1051  * socket layer -> transport layer interface
1052  */
1053 struct proto {
1054 	void			(*close)(struct sock *sk,
1055 					long timeout);
1056 	int			(*pre_connect)(struct sock *sk,
1057 					struct sockaddr *uaddr,
1058 					int addr_len);
1059 	int			(*connect)(struct sock *sk,
1060 					struct sockaddr *uaddr,
1061 					int addr_len);
1062 	int			(*disconnect)(struct sock *sk, int flags);
1063 
1064 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1065 					  bool kern);
1066 
1067 	int			(*ioctl)(struct sock *sk, int cmd,
1068 					 unsigned long arg);
1069 	int			(*init)(struct sock *sk);
1070 	void			(*destroy)(struct sock *sk);
1071 	void			(*shutdown)(struct sock *sk, int how);
1072 	int			(*setsockopt)(struct sock *sk, int level,
1073 					int optname, char __user *optval,
1074 					unsigned int optlen);
1075 	int			(*getsockopt)(struct sock *sk, int level,
1076 					int optname, char __user *optval,
1077 					int __user *option);
1078 	void			(*keepalive)(struct sock *sk, int valbool);
1079 #ifdef CONFIG_COMPAT
1080 	int			(*compat_setsockopt)(struct sock *sk,
1081 					int level,
1082 					int optname, char __user *optval,
1083 					unsigned int optlen);
1084 	int			(*compat_getsockopt)(struct sock *sk,
1085 					int level,
1086 					int optname, char __user *optval,
1087 					int __user *option);
1088 	int			(*compat_ioctl)(struct sock *sk,
1089 					unsigned int cmd, unsigned long arg);
1090 #endif
1091 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1092 					   size_t len);
1093 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1094 					   size_t len, int noblock, int flags,
1095 					   int *addr_len);
1096 	int			(*sendpage)(struct sock *sk, struct page *page,
1097 					int offset, size_t size, int flags);
1098 	int			(*bind)(struct sock *sk,
1099 					struct sockaddr *uaddr, int addr_len);
1100 
1101 	int			(*backlog_rcv) (struct sock *sk,
1102 						struct sk_buff *skb);
1103 
1104 	void		(*release_cb)(struct sock *sk);
1105 
1106 	/* Keeping track of sk's, looking them up, and port selection methods. */
1107 	int			(*hash)(struct sock *sk);
1108 	void			(*unhash)(struct sock *sk);
1109 	void			(*rehash)(struct sock *sk);
1110 	int			(*get_port)(struct sock *sk, unsigned short snum);
1111 
1112 	/* Keeping track of sockets in use */
1113 #ifdef CONFIG_PROC_FS
1114 	unsigned int		inuse_idx;
1115 #endif
1116 
1117 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1118 	bool			(*stream_memory_read)(const struct sock *sk);
1119 	/* Memory pressure */
1120 	void			(*enter_memory_pressure)(struct sock *sk);
1121 	void			(*leave_memory_pressure)(struct sock *sk);
1122 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1123 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1124 	/*
1125 	 * Pressure flag: try to collapse.
1126 	 * Technical note: it is used by multiple contexts non atomically.
1127 	 * All the __sk_mem_schedule() is of this nature: accounting
1128 	 * is strict, actions are advisory and have some latency.
1129 	 */
1130 	unsigned long		*memory_pressure;
1131 	long			*sysctl_mem;
1132 
1133 	int			*sysctl_wmem;
1134 	int			*sysctl_rmem;
1135 	u32			sysctl_wmem_offset;
1136 	u32			sysctl_rmem_offset;
1137 
1138 	int			max_header;
1139 	bool			no_autobind;
1140 
1141 	struct kmem_cache	*slab;
1142 	unsigned int		obj_size;
1143 	slab_flags_t		slab_flags;
1144 	unsigned int		useroffset;	/* Usercopy region offset */
1145 	unsigned int		usersize;	/* Usercopy region size */
1146 
1147 	struct percpu_counter	*orphan_count;
1148 
1149 	struct request_sock_ops	*rsk_prot;
1150 	struct timewait_sock_ops *twsk_prot;
1151 
1152 	union {
1153 		struct inet_hashinfo	*hashinfo;
1154 		struct udp_table	*udp_table;
1155 		struct raw_hashinfo	*raw_hash;
1156 		struct smc_hashinfo	*smc_hash;
1157 	} h;
1158 
1159 	struct module		*owner;
1160 
1161 	char			name[32];
1162 
1163 	struct list_head	node;
1164 #ifdef SOCK_REFCNT_DEBUG
1165 	atomic_t		socks;
1166 #endif
1167 	int			(*diag_destroy)(struct sock *sk, int err);
1168 } __randomize_layout;
1169 
1170 int proto_register(struct proto *prot, int alloc_slab);
1171 void proto_unregister(struct proto *prot);
1172 int sock_load_diag_module(int family, int protocol);
1173 
1174 #ifdef SOCK_REFCNT_DEBUG
1175 static inline void sk_refcnt_debug_inc(struct sock *sk)
1176 {
1177 	atomic_inc(&sk->sk_prot->socks);
1178 }
1179 
1180 static inline void sk_refcnt_debug_dec(struct sock *sk)
1181 {
1182 	atomic_dec(&sk->sk_prot->socks);
1183 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1184 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1185 }
1186 
1187 static inline void sk_refcnt_debug_release(const struct sock *sk)
1188 {
1189 	if (refcount_read(&sk->sk_refcnt) != 1)
1190 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1191 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1192 }
1193 #else /* SOCK_REFCNT_DEBUG */
1194 #define sk_refcnt_debug_inc(sk) do { } while (0)
1195 #define sk_refcnt_debug_dec(sk) do { } while (0)
1196 #define sk_refcnt_debug_release(sk) do { } while (0)
1197 #endif /* SOCK_REFCNT_DEBUG */
1198 
1199 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1200 {
1201 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1202 		return false;
1203 
1204 	return sk->sk_prot->stream_memory_free ?
1205 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1206 }
1207 
1208 static inline bool sk_stream_memory_free(const struct sock *sk)
1209 {
1210 	return __sk_stream_memory_free(sk, 0);
1211 }
1212 
1213 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1214 {
1215 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1216 	       __sk_stream_memory_free(sk, wake);
1217 }
1218 
1219 static inline bool sk_stream_is_writeable(const struct sock *sk)
1220 {
1221 	return __sk_stream_is_writeable(sk, 0);
1222 }
1223 
1224 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1225 					    struct cgroup *ancestor)
1226 {
1227 #ifdef CONFIG_SOCK_CGROUP_DATA
1228 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1229 				    ancestor);
1230 #else
1231 	return -ENOTSUPP;
1232 #endif
1233 }
1234 
1235 static inline bool sk_has_memory_pressure(const struct sock *sk)
1236 {
1237 	return sk->sk_prot->memory_pressure != NULL;
1238 }
1239 
1240 static inline bool sk_under_memory_pressure(const struct sock *sk)
1241 {
1242 	if (!sk->sk_prot->memory_pressure)
1243 		return false;
1244 
1245 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1246 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1247 		return true;
1248 
1249 	return !!*sk->sk_prot->memory_pressure;
1250 }
1251 
1252 static inline long
1253 sk_memory_allocated(const struct sock *sk)
1254 {
1255 	return atomic_long_read(sk->sk_prot->memory_allocated);
1256 }
1257 
1258 static inline long
1259 sk_memory_allocated_add(struct sock *sk, int amt)
1260 {
1261 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1262 }
1263 
1264 static inline void
1265 sk_memory_allocated_sub(struct sock *sk, int amt)
1266 {
1267 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1268 }
1269 
1270 static inline void sk_sockets_allocated_dec(struct sock *sk)
1271 {
1272 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1273 }
1274 
1275 static inline void sk_sockets_allocated_inc(struct sock *sk)
1276 {
1277 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1278 }
1279 
1280 static inline int
1281 sk_sockets_allocated_read_positive(struct sock *sk)
1282 {
1283 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1284 }
1285 
1286 static inline int
1287 proto_sockets_allocated_sum_positive(struct proto *prot)
1288 {
1289 	return percpu_counter_sum_positive(prot->sockets_allocated);
1290 }
1291 
1292 static inline long
1293 proto_memory_allocated(struct proto *prot)
1294 {
1295 	return atomic_long_read(prot->memory_allocated);
1296 }
1297 
1298 static inline bool
1299 proto_memory_pressure(struct proto *prot)
1300 {
1301 	if (!prot->memory_pressure)
1302 		return false;
1303 	return !!*prot->memory_pressure;
1304 }
1305 
1306 
1307 #ifdef CONFIG_PROC_FS
1308 /* Called with local bh disabled */
1309 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1310 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1311 int sock_inuse_get(struct net *net);
1312 #else
1313 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1314 		int inc)
1315 {
1316 }
1317 #endif
1318 
1319 
1320 /* With per-bucket locks this operation is not-atomic, so that
1321  * this version is not worse.
1322  */
1323 static inline int __sk_prot_rehash(struct sock *sk)
1324 {
1325 	sk->sk_prot->unhash(sk);
1326 	return sk->sk_prot->hash(sk);
1327 }
1328 
1329 /* About 10 seconds */
1330 #define SOCK_DESTROY_TIME (10*HZ)
1331 
1332 /* Sockets 0-1023 can't be bound to unless you are superuser */
1333 #define PROT_SOCK	1024
1334 
1335 #define SHUTDOWN_MASK	3
1336 #define RCV_SHUTDOWN	1
1337 #define SEND_SHUTDOWN	2
1338 
1339 #define SOCK_SNDBUF_LOCK	1
1340 #define SOCK_RCVBUF_LOCK	2
1341 #define SOCK_BINDADDR_LOCK	4
1342 #define SOCK_BINDPORT_LOCK	8
1343 
1344 struct socket_alloc {
1345 	struct socket socket;
1346 	struct inode vfs_inode;
1347 };
1348 
1349 static inline struct socket *SOCKET_I(struct inode *inode)
1350 {
1351 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1352 }
1353 
1354 static inline struct inode *SOCK_INODE(struct socket *socket)
1355 {
1356 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1357 }
1358 
1359 /*
1360  * Functions for memory accounting
1361  */
1362 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1363 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1364 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1365 void __sk_mem_reclaim(struct sock *sk, int amount);
1366 
1367 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1368  * do not necessarily have 16x time more memory than 4KB ones.
1369  */
1370 #define SK_MEM_QUANTUM 4096
1371 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1372 #define SK_MEM_SEND	0
1373 #define SK_MEM_RECV	1
1374 
1375 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1376 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1377 {
1378 	long val = sk->sk_prot->sysctl_mem[index];
1379 
1380 #if PAGE_SIZE > SK_MEM_QUANTUM
1381 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1382 #elif PAGE_SIZE < SK_MEM_QUANTUM
1383 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1384 #endif
1385 	return val;
1386 }
1387 
1388 static inline int sk_mem_pages(int amt)
1389 {
1390 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1391 }
1392 
1393 static inline bool sk_has_account(struct sock *sk)
1394 {
1395 	/* return true if protocol supports memory accounting */
1396 	return !!sk->sk_prot->memory_allocated;
1397 }
1398 
1399 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1400 {
1401 	if (!sk_has_account(sk))
1402 		return true;
1403 	return size <= sk->sk_forward_alloc ||
1404 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1405 }
1406 
1407 static inline bool
1408 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1409 {
1410 	if (!sk_has_account(sk))
1411 		return true;
1412 	return size<= sk->sk_forward_alloc ||
1413 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1414 		skb_pfmemalloc(skb);
1415 }
1416 
1417 static inline void sk_mem_reclaim(struct sock *sk)
1418 {
1419 	if (!sk_has_account(sk))
1420 		return;
1421 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1422 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1423 }
1424 
1425 static inline void sk_mem_reclaim_partial(struct sock *sk)
1426 {
1427 	if (!sk_has_account(sk))
1428 		return;
1429 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1430 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1431 }
1432 
1433 static inline void sk_mem_charge(struct sock *sk, int size)
1434 {
1435 	if (!sk_has_account(sk))
1436 		return;
1437 	sk->sk_forward_alloc -= size;
1438 }
1439 
1440 static inline void sk_mem_uncharge(struct sock *sk, int size)
1441 {
1442 	if (!sk_has_account(sk))
1443 		return;
1444 	sk->sk_forward_alloc += size;
1445 
1446 	/* Avoid a possible overflow.
1447 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1448 	 * is not called and more than 2 GBytes are released at once.
1449 	 *
1450 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1451 	 * no need to hold that much forward allocation anyway.
1452 	 */
1453 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1454 		__sk_mem_reclaim(sk, 1 << 20);
1455 }
1456 
1457 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1458 {
1459 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1460 	sk->sk_wmem_queued -= skb->truesize;
1461 	sk_mem_uncharge(sk, skb->truesize);
1462 	__kfree_skb(skb);
1463 }
1464 
1465 static inline void sock_release_ownership(struct sock *sk)
1466 {
1467 	if (sk->sk_lock.owned) {
1468 		sk->sk_lock.owned = 0;
1469 
1470 		/* The sk_lock has mutex_unlock() semantics: */
1471 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1472 	}
1473 }
1474 
1475 /*
1476  * Macro so as to not evaluate some arguments when
1477  * lockdep is not enabled.
1478  *
1479  * Mark both the sk_lock and the sk_lock.slock as a
1480  * per-address-family lock class.
1481  */
1482 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1483 do {									\
1484 	sk->sk_lock.owned = 0;						\
1485 	init_waitqueue_head(&sk->sk_lock.wq);				\
1486 	spin_lock_init(&(sk)->sk_lock.slock);				\
1487 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1488 			sizeof((sk)->sk_lock));				\
1489 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1490 				(skey), (sname));				\
1491 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1492 } while (0)
1493 
1494 #ifdef CONFIG_LOCKDEP
1495 static inline bool lockdep_sock_is_held(const struct sock *sk)
1496 {
1497 	return lockdep_is_held(&sk->sk_lock) ||
1498 	       lockdep_is_held(&sk->sk_lock.slock);
1499 }
1500 #endif
1501 
1502 void lock_sock_nested(struct sock *sk, int subclass);
1503 
1504 static inline void lock_sock(struct sock *sk)
1505 {
1506 	lock_sock_nested(sk, 0);
1507 }
1508 
1509 void __release_sock(struct sock *sk);
1510 void release_sock(struct sock *sk);
1511 
1512 /* BH context may only use the following locking interface. */
1513 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1514 #define bh_lock_sock_nested(__sk) \
1515 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1516 				SINGLE_DEPTH_NESTING)
1517 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1518 
1519 bool lock_sock_fast(struct sock *sk);
1520 /**
1521  * unlock_sock_fast - complement of lock_sock_fast
1522  * @sk: socket
1523  * @slow: slow mode
1524  *
1525  * fast unlock socket for user context.
1526  * If slow mode is on, we call regular release_sock()
1527  */
1528 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1529 {
1530 	if (slow)
1531 		release_sock(sk);
1532 	else
1533 		spin_unlock_bh(&sk->sk_lock.slock);
1534 }
1535 
1536 /* Used by processes to "lock" a socket state, so that
1537  * interrupts and bottom half handlers won't change it
1538  * from under us. It essentially blocks any incoming
1539  * packets, so that we won't get any new data or any
1540  * packets that change the state of the socket.
1541  *
1542  * While locked, BH processing will add new packets to
1543  * the backlog queue.  This queue is processed by the
1544  * owner of the socket lock right before it is released.
1545  *
1546  * Since ~2.3.5 it is also exclusive sleep lock serializing
1547  * accesses from user process context.
1548  */
1549 
1550 static inline void sock_owned_by_me(const struct sock *sk)
1551 {
1552 #ifdef CONFIG_LOCKDEP
1553 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1554 #endif
1555 }
1556 
1557 static inline bool sock_owned_by_user(const struct sock *sk)
1558 {
1559 	sock_owned_by_me(sk);
1560 	return sk->sk_lock.owned;
1561 }
1562 
1563 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1564 {
1565 	return sk->sk_lock.owned;
1566 }
1567 
1568 /* no reclassification while locks are held */
1569 static inline bool sock_allow_reclassification(const struct sock *csk)
1570 {
1571 	struct sock *sk = (struct sock *)csk;
1572 
1573 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1574 }
1575 
1576 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1577 		      struct proto *prot, int kern);
1578 void sk_free(struct sock *sk);
1579 void sk_destruct(struct sock *sk);
1580 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1581 void sk_free_unlock_clone(struct sock *sk);
1582 
1583 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1584 			     gfp_t priority);
1585 void __sock_wfree(struct sk_buff *skb);
1586 void sock_wfree(struct sk_buff *skb);
1587 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1588 			     gfp_t priority);
1589 void skb_orphan_partial(struct sk_buff *skb);
1590 void sock_rfree(struct sk_buff *skb);
1591 void sock_efree(struct sk_buff *skb);
1592 #ifdef CONFIG_INET
1593 void sock_edemux(struct sk_buff *skb);
1594 #else
1595 #define sock_edemux sock_efree
1596 #endif
1597 
1598 int sock_setsockopt(struct socket *sock, int level, int op,
1599 		    char __user *optval, unsigned int optlen);
1600 
1601 int sock_getsockopt(struct socket *sock, int level, int op,
1602 		    char __user *optval, int __user *optlen);
1603 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1604 				    int noblock, int *errcode);
1605 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1606 				     unsigned long data_len, int noblock,
1607 				     int *errcode, int max_page_order);
1608 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1609 void sock_kfree_s(struct sock *sk, void *mem, int size);
1610 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1611 void sk_send_sigurg(struct sock *sk);
1612 
1613 struct sockcm_cookie {
1614 	u64 transmit_time;
1615 	u32 mark;
1616 	u16 tsflags;
1617 };
1618 
1619 static inline void sockcm_init(struct sockcm_cookie *sockc,
1620 			       const struct sock *sk)
1621 {
1622 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1623 }
1624 
1625 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1626 		     struct sockcm_cookie *sockc);
1627 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1628 		   struct sockcm_cookie *sockc);
1629 
1630 /*
1631  * Functions to fill in entries in struct proto_ops when a protocol
1632  * does not implement a particular function.
1633  */
1634 int sock_no_bind(struct socket *, struct sockaddr *, int);
1635 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1636 int sock_no_socketpair(struct socket *, struct socket *);
1637 int sock_no_accept(struct socket *, struct socket *, int, bool);
1638 int sock_no_getname(struct socket *, struct sockaddr *, int);
1639 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1640 int sock_no_listen(struct socket *, int);
1641 int sock_no_shutdown(struct socket *, int);
1642 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1643 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1644 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1645 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1646 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1647 int sock_no_mmap(struct file *file, struct socket *sock,
1648 		 struct vm_area_struct *vma);
1649 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1650 			 size_t size, int flags);
1651 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1652 				int offset, size_t size, int flags);
1653 
1654 /*
1655  * Functions to fill in entries in struct proto_ops when a protocol
1656  * uses the inet style.
1657  */
1658 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1659 				  char __user *optval, int __user *optlen);
1660 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1661 			int flags);
1662 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1663 				  char __user *optval, unsigned int optlen);
1664 int compat_sock_common_getsockopt(struct socket *sock, int level,
1665 		int optname, char __user *optval, int __user *optlen);
1666 int compat_sock_common_setsockopt(struct socket *sock, int level,
1667 		int optname, char __user *optval, unsigned int optlen);
1668 
1669 void sk_common_release(struct sock *sk);
1670 
1671 /*
1672  *	Default socket callbacks and setup code
1673  */
1674 
1675 /* Initialise core socket variables */
1676 void sock_init_data(struct socket *sock, struct sock *sk);
1677 
1678 /*
1679  * Socket reference counting postulates.
1680  *
1681  * * Each user of socket SHOULD hold a reference count.
1682  * * Each access point to socket (an hash table bucket, reference from a list,
1683  *   running timer, skb in flight MUST hold a reference count.
1684  * * When reference count hits 0, it means it will never increase back.
1685  * * When reference count hits 0, it means that no references from
1686  *   outside exist to this socket and current process on current CPU
1687  *   is last user and may/should destroy this socket.
1688  * * sk_free is called from any context: process, BH, IRQ. When
1689  *   it is called, socket has no references from outside -> sk_free
1690  *   may release descendant resources allocated by the socket, but
1691  *   to the time when it is called, socket is NOT referenced by any
1692  *   hash tables, lists etc.
1693  * * Packets, delivered from outside (from network or from another process)
1694  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1695  *   when they sit in queue. Otherwise, packets will leak to hole, when
1696  *   socket is looked up by one cpu and unhasing is made by another CPU.
1697  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1698  *   (leak to backlog). Packet socket does all the processing inside
1699  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1700  *   use separate SMP lock, so that they are prone too.
1701  */
1702 
1703 /* Ungrab socket and destroy it, if it was the last reference. */
1704 static inline void sock_put(struct sock *sk)
1705 {
1706 	if (refcount_dec_and_test(&sk->sk_refcnt))
1707 		sk_free(sk);
1708 }
1709 /* Generic version of sock_put(), dealing with all sockets
1710  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1711  */
1712 void sock_gen_put(struct sock *sk);
1713 
1714 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1715 		     unsigned int trim_cap, bool refcounted);
1716 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1717 				 const int nested)
1718 {
1719 	return __sk_receive_skb(sk, skb, nested, 1, true);
1720 }
1721 
1722 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1723 {
1724 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1725 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1726 		return;
1727 	sk->sk_tx_queue_mapping = tx_queue;
1728 }
1729 
1730 #define NO_QUEUE_MAPPING	USHRT_MAX
1731 
1732 static inline void sk_tx_queue_clear(struct sock *sk)
1733 {
1734 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1735 }
1736 
1737 static inline int sk_tx_queue_get(const struct sock *sk)
1738 {
1739 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1740 		return sk->sk_tx_queue_mapping;
1741 
1742 	return -1;
1743 }
1744 
1745 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1746 {
1747 #ifdef CONFIG_XPS
1748 	if (skb_rx_queue_recorded(skb)) {
1749 		u16 rx_queue = skb_get_rx_queue(skb);
1750 
1751 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1752 			return;
1753 
1754 		sk->sk_rx_queue_mapping = rx_queue;
1755 	}
1756 #endif
1757 }
1758 
1759 static inline void sk_rx_queue_clear(struct sock *sk)
1760 {
1761 #ifdef CONFIG_XPS
1762 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1763 #endif
1764 }
1765 
1766 #ifdef CONFIG_XPS
1767 static inline int sk_rx_queue_get(const struct sock *sk)
1768 {
1769 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1770 		return sk->sk_rx_queue_mapping;
1771 
1772 	return -1;
1773 }
1774 #endif
1775 
1776 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1777 {
1778 	sk_tx_queue_clear(sk);
1779 	sk->sk_socket = sock;
1780 }
1781 
1782 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1783 {
1784 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1785 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1786 }
1787 /* Detach socket from process context.
1788  * Announce socket dead, detach it from wait queue and inode.
1789  * Note that parent inode held reference count on this struct sock,
1790  * we do not release it in this function, because protocol
1791  * probably wants some additional cleanups or even continuing
1792  * to work with this socket (TCP).
1793  */
1794 static inline void sock_orphan(struct sock *sk)
1795 {
1796 	write_lock_bh(&sk->sk_callback_lock);
1797 	sock_set_flag(sk, SOCK_DEAD);
1798 	sk_set_socket(sk, NULL);
1799 	sk->sk_wq  = NULL;
1800 	write_unlock_bh(&sk->sk_callback_lock);
1801 }
1802 
1803 static inline void sock_graft(struct sock *sk, struct socket *parent)
1804 {
1805 	WARN_ON(parent->sk);
1806 	write_lock_bh(&sk->sk_callback_lock);
1807 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1808 	parent->sk = sk;
1809 	sk_set_socket(sk, parent);
1810 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1811 	security_sock_graft(sk, parent);
1812 	write_unlock_bh(&sk->sk_callback_lock);
1813 }
1814 
1815 kuid_t sock_i_uid(struct sock *sk);
1816 unsigned long sock_i_ino(struct sock *sk);
1817 
1818 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1819 {
1820 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1821 }
1822 
1823 static inline u32 net_tx_rndhash(void)
1824 {
1825 	u32 v = prandom_u32();
1826 
1827 	return v ?: 1;
1828 }
1829 
1830 static inline void sk_set_txhash(struct sock *sk)
1831 {
1832 	sk->sk_txhash = net_tx_rndhash();
1833 }
1834 
1835 static inline void sk_rethink_txhash(struct sock *sk)
1836 {
1837 	if (sk->sk_txhash)
1838 		sk_set_txhash(sk);
1839 }
1840 
1841 static inline struct dst_entry *
1842 __sk_dst_get(struct sock *sk)
1843 {
1844 	return rcu_dereference_check(sk->sk_dst_cache,
1845 				     lockdep_sock_is_held(sk));
1846 }
1847 
1848 static inline struct dst_entry *
1849 sk_dst_get(struct sock *sk)
1850 {
1851 	struct dst_entry *dst;
1852 
1853 	rcu_read_lock();
1854 	dst = rcu_dereference(sk->sk_dst_cache);
1855 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1856 		dst = NULL;
1857 	rcu_read_unlock();
1858 	return dst;
1859 }
1860 
1861 static inline void dst_negative_advice(struct sock *sk)
1862 {
1863 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1864 
1865 	sk_rethink_txhash(sk);
1866 
1867 	if (dst && dst->ops->negative_advice) {
1868 		ndst = dst->ops->negative_advice(dst);
1869 
1870 		if (ndst != dst) {
1871 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1872 			sk_tx_queue_clear(sk);
1873 			sk->sk_dst_pending_confirm = 0;
1874 		}
1875 	}
1876 }
1877 
1878 static inline void
1879 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1880 {
1881 	struct dst_entry *old_dst;
1882 
1883 	sk_tx_queue_clear(sk);
1884 	sk->sk_dst_pending_confirm = 0;
1885 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1886 					    lockdep_sock_is_held(sk));
1887 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1888 	dst_release(old_dst);
1889 }
1890 
1891 static inline void
1892 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1893 {
1894 	struct dst_entry *old_dst;
1895 
1896 	sk_tx_queue_clear(sk);
1897 	sk->sk_dst_pending_confirm = 0;
1898 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1899 	dst_release(old_dst);
1900 }
1901 
1902 static inline void
1903 __sk_dst_reset(struct sock *sk)
1904 {
1905 	__sk_dst_set(sk, NULL);
1906 }
1907 
1908 static inline void
1909 sk_dst_reset(struct sock *sk)
1910 {
1911 	sk_dst_set(sk, NULL);
1912 }
1913 
1914 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1915 
1916 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1917 
1918 static inline void sk_dst_confirm(struct sock *sk)
1919 {
1920 	if (!sk->sk_dst_pending_confirm)
1921 		sk->sk_dst_pending_confirm = 1;
1922 }
1923 
1924 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1925 {
1926 	if (skb_get_dst_pending_confirm(skb)) {
1927 		struct sock *sk = skb->sk;
1928 		unsigned long now = jiffies;
1929 
1930 		/* avoid dirtying neighbour */
1931 		if (n->confirmed != now)
1932 			n->confirmed = now;
1933 		if (sk && sk->sk_dst_pending_confirm)
1934 			sk->sk_dst_pending_confirm = 0;
1935 	}
1936 }
1937 
1938 bool sk_mc_loop(struct sock *sk);
1939 
1940 static inline bool sk_can_gso(const struct sock *sk)
1941 {
1942 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1943 }
1944 
1945 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1946 
1947 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1948 {
1949 	sk->sk_route_nocaps |= flags;
1950 	sk->sk_route_caps &= ~flags;
1951 }
1952 
1953 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1954 					   struct iov_iter *from, char *to,
1955 					   int copy, int offset)
1956 {
1957 	if (skb->ip_summed == CHECKSUM_NONE) {
1958 		__wsum csum = 0;
1959 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1960 			return -EFAULT;
1961 		skb->csum = csum_block_add(skb->csum, csum, offset);
1962 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1963 		if (!copy_from_iter_full_nocache(to, copy, from))
1964 			return -EFAULT;
1965 	} else if (!copy_from_iter_full(to, copy, from))
1966 		return -EFAULT;
1967 
1968 	return 0;
1969 }
1970 
1971 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1972 				       struct iov_iter *from, int copy)
1973 {
1974 	int err, offset = skb->len;
1975 
1976 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1977 				       copy, offset);
1978 	if (err)
1979 		__skb_trim(skb, offset);
1980 
1981 	return err;
1982 }
1983 
1984 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1985 					   struct sk_buff *skb,
1986 					   struct page *page,
1987 					   int off, int copy)
1988 {
1989 	int err;
1990 
1991 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1992 				       copy, skb->len);
1993 	if (err)
1994 		return err;
1995 
1996 	skb->len	     += copy;
1997 	skb->data_len	     += copy;
1998 	skb->truesize	     += copy;
1999 	sk->sk_wmem_queued   += copy;
2000 	sk_mem_charge(sk, copy);
2001 	return 0;
2002 }
2003 
2004 /**
2005  * sk_wmem_alloc_get - returns write allocations
2006  * @sk: socket
2007  *
2008  * Returns sk_wmem_alloc minus initial offset of one
2009  */
2010 static inline int sk_wmem_alloc_get(const struct sock *sk)
2011 {
2012 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2013 }
2014 
2015 /**
2016  * sk_rmem_alloc_get - returns read allocations
2017  * @sk: socket
2018  *
2019  * Returns sk_rmem_alloc
2020  */
2021 static inline int sk_rmem_alloc_get(const struct sock *sk)
2022 {
2023 	return atomic_read(&sk->sk_rmem_alloc);
2024 }
2025 
2026 /**
2027  * sk_has_allocations - check if allocations are outstanding
2028  * @sk: socket
2029  *
2030  * Returns true if socket has write or read allocations
2031  */
2032 static inline bool sk_has_allocations(const struct sock *sk)
2033 {
2034 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2035 }
2036 
2037 /**
2038  * skwq_has_sleeper - check if there are any waiting processes
2039  * @wq: struct socket_wq
2040  *
2041  * Returns true if socket_wq has waiting processes
2042  *
2043  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2044  * barrier call. They were added due to the race found within the tcp code.
2045  *
2046  * Consider following tcp code paths::
2047  *
2048  *   CPU1                CPU2
2049  *   sys_select          receive packet
2050  *   ...                 ...
2051  *   __add_wait_queue    update tp->rcv_nxt
2052  *   ...                 ...
2053  *   tp->rcv_nxt check   sock_def_readable
2054  *   ...                 {
2055  *   schedule               rcu_read_lock();
2056  *                          wq = rcu_dereference(sk->sk_wq);
2057  *                          if (wq && waitqueue_active(&wq->wait))
2058  *                              wake_up_interruptible(&wq->wait)
2059  *                          ...
2060  *                       }
2061  *
2062  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2063  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2064  * could then endup calling schedule and sleep forever if there are no more
2065  * data on the socket.
2066  *
2067  */
2068 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2069 {
2070 	return wq && wq_has_sleeper(&wq->wait);
2071 }
2072 
2073 /**
2074  * sock_poll_wait - place memory barrier behind the poll_wait call.
2075  * @filp:           file
2076  * @sock:           socket to wait on
2077  * @p:              poll_table
2078  *
2079  * See the comments in the wq_has_sleeper function.
2080  *
2081  * Do not derive sock from filp->private_data here. An SMC socket establishes
2082  * an internal TCP socket that is used in the fallback case. All socket
2083  * operations on the SMC socket are then forwarded to the TCP socket. In case of
2084  * poll, the filp->private_data pointer references the SMC socket because the
2085  * TCP socket has no file assigned.
2086  */
2087 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2088 				  poll_table *p)
2089 {
2090 	if (!poll_does_not_wait(p)) {
2091 		poll_wait(filp, &sock->wq->wait, p);
2092 		/* We need to be sure we are in sync with the
2093 		 * socket flags modification.
2094 		 *
2095 		 * This memory barrier is paired in the wq_has_sleeper.
2096 		 */
2097 		smp_mb();
2098 	}
2099 }
2100 
2101 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2102 {
2103 	if (sk->sk_txhash) {
2104 		skb->l4_hash = 1;
2105 		skb->hash = sk->sk_txhash;
2106 	}
2107 }
2108 
2109 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2110 
2111 /*
2112  *	Queue a received datagram if it will fit. Stream and sequenced
2113  *	protocols can't normally use this as they need to fit buffers in
2114  *	and play with them.
2115  *
2116  *	Inlined as it's very short and called for pretty much every
2117  *	packet ever received.
2118  */
2119 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2120 {
2121 	skb_orphan(skb);
2122 	skb->sk = sk;
2123 	skb->destructor = sock_rfree;
2124 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2125 	sk_mem_charge(sk, skb->truesize);
2126 }
2127 
2128 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2129 		    unsigned long expires);
2130 
2131 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2132 
2133 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2134 			struct sk_buff *skb, unsigned int flags,
2135 			void (*destructor)(struct sock *sk,
2136 					   struct sk_buff *skb));
2137 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2138 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2139 
2140 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2141 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2142 
2143 /*
2144  *	Recover an error report and clear atomically
2145  */
2146 
2147 static inline int sock_error(struct sock *sk)
2148 {
2149 	int err;
2150 	if (likely(!sk->sk_err))
2151 		return 0;
2152 	err = xchg(&sk->sk_err, 0);
2153 	return -err;
2154 }
2155 
2156 static inline unsigned long sock_wspace(struct sock *sk)
2157 {
2158 	int amt = 0;
2159 
2160 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2161 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2162 		if (amt < 0)
2163 			amt = 0;
2164 	}
2165 	return amt;
2166 }
2167 
2168 /* Note:
2169  *  We use sk->sk_wq_raw, from contexts knowing this
2170  *  pointer is not NULL and cannot disappear/change.
2171  */
2172 static inline void sk_set_bit(int nr, struct sock *sk)
2173 {
2174 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2175 	    !sock_flag(sk, SOCK_FASYNC))
2176 		return;
2177 
2178 	set_bit(nr, &sk->sk_wq_raw->flags);
2179 }
2180 
2181 static inline void sk_clear_bit(int nr, struct sock *sk)
2182 {
2183 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2184 	    !sock_flag(sk, SOCK_FASYNC))
2185 		return;
2186 
2187 	clear_bit(nr, &sk->sk_wq_raw->flags);
2188 }
2189 
2190 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2191 {
2192 	if (sock_flag(sk, SOCK_FASYNC)) {
2193 		rcu_read_lock();
2194 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2195 		rcu_read_unlock();
2196 	}
2197 }
2198 
2199 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2200  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2201  * Note: for send buffers, TCP works better if we can build two skbs at
2202  * minimum.
2203  */
2204 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2205 
2206 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2207 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2208 
2209 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2210 {
2211 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2212 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2213 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2214 	}
2215 }
2216 
2217 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2218 				    bool force_schedule);
2219 
2220 /**
2221  * sk_page_frag - return an appropriate page_frag
2222  * @sk: socket
2223  *
2224  * If socket allocation mode allows current thread to sleep, it means its
2225  * safe to use the per task page_frag instead of the per socket one.
2226  */
2227 static inline struct page_frag *sk_page_frag(struct sock *sk)
2228 {
2229 	if (gfpflags_allow_blocking(sk->sk_allocation))
2230 		return &current->task_frag;
2231 
2232 	return &sk->sk_frag;
2233 }
2234 
2235 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2236 
2237 /*
2238  *	Default write policy as shown to user space via poll/select/SIGIO
2239  */
2240 static inline bool sock_writeable(const struct sock *sk)
2241 {
2242 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2243 }
2244 
2245 static inline gfp_t gfp_any(void)
2246 {
2247 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2248 }
2249 
2250 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2251 {
2252 	return noblock ? 0 : sk->sk_rcvtimeo;
2253 }
2254 
2255 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2256 {
2257 	return noblock ? 0 : sk->sk_sndtimeo;
2258 }
2259 
2260 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2261 {
2262 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2263 }
2264 
2265 /* Alas, with timeout socket operations are not restartable.
2266  * Compare this to poll().
2267  */
2268 static inline int sock_intr_errno(long timeo)
2269 {
2270 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2271 }
2272 
2273 struct sock_skb_cb {
2274 	u32 dropcount;
2275 };
2276 
2277 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2278  * using skb->cb[] would keep using it directly and utilize its
2279  * alignement guarantee.
2280  */
2281 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2282 			    sizeof(struct sock_skb_cb)))
2283 
2284 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2285 			    SOCK_SKB_CB_OFFSET))
2286 
2287 #define sock_skb_cb_check_size(size) \
2288 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2289 
2290 static inline void
2291 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2292 {
2293 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2294 						atomic_read(&sk->sk_drops) : 0;
2295 }
2296 
2297 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2298 {
2299 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2300 
2301 	atomic_add(segs, &sk->sk_drops);
2302 }
2303 
2304 static inline ktime_t sock_read_timestamp(struct sock *sk)
2305 {
2306 #if BITS_PER_LONG==32
2307 	unsigned int seq;
2308 	ktime_t kt;
2309 
2310 	do {
2311 		seq = read_seqbegin(&sk->sk_stamp_seq);
2312 		kt = sk->sk_stamp;
2313 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2314 
2315 	return kt;
2316 #else
2317 	return sk->sk_stamp;
2318 #endif
2319 }
2320 
2321 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2322 {
2323 #if BITS_PER_LONG==32
2324 	write_seqlock(&sk->sk_stamp_seq);
2325 	sk->sk_stamp = kt;
2326 	write_sequnlock(&sk->sk_stamp_seq);
2327 #else
2328 	sk->sk_stamp = kt;
2329 #endif
2330 }
2331 
2332 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2333 			   struct sk_buff *skb);
2334 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2335 			     struct sk_buff *skb);
2336 
2337 static inline void
2338 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2339 {
2340 	ktime_t kt = skb->tstamp;
2341 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2342 
2343 	/*
2344 	 * generate control messages if
2345 	 * - receive time stamping in software requested
2346 	 * - software time stamp available and wanted
2347 	 * - hardware time stamps available and wanted
2348 	 */
2349 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2350 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2351 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2352 	    (hwtstamps->hwtstamp &&
2353 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2354 		__sock_recv_timestamp(msg, sk, skb);
2355 	else
2356 		sock_write_timestamp(sk, kt);
2357 
2358 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2359 		__sock_recv_wifi_status(msg, sk, skb);
2360 }
2361 
2362 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2363 			      struct sk_buff *skb);
2364 
2365 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2366 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2367 					  struct sk_buff *skb)
2368 {
2369 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2370 			   (1UL << SOCK_RCVTSTAMP))
2371 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2372 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2373 
2374 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2375 		__sock_recv_ts_and_drops(msg, sk, skb);
2376 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2377 		sock_write_timestamp(sk, skb->tstamp);
2378 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2379 		sock_write_timestamp(sk, 0);
2380 }
2381 
2382 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2383 
2384 /**
2385  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2386  * @sk:		socket sending this packet
2387  * @tsflags:	timestamping flags to use
2388  * @tx_flags:	completed with instructions for time stamping
2389  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2390  *
2391  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2392  */
2393 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2394 				      __u8 *tx_flags, __u32 *tskey)
2395 {
2396 	if (unlikely(tsflags)) {
2397 		__sock_tx_timestamp(tsflags, tx_flags);
2398 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2399 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2400 			*tskey = sk->sk_tskey++;
2401 	}
2402 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2403 		*tx_flags |= SKBTX_WIFI_STATUS;
2404 }
2405 
2406 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2407 				     __u8 *tx_flags)
2408 {
2409 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2410 }
2411 
2412 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2413 {
2414 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2415 			   &skb_shinfo(skb)->tskey);
2416 }
2417 
2418 /**
2419  * sk_eat_skb - Release a skb if it is no longer needed
2420  * @sk: socket to eat this skb from
2421  * @skb: socket buffer to eat
2422  *
2423  * This routine must be called with interrupts disabled or with the socket
2424  * locked so that the sk_buff queue operation is ok.
2425 */
2426 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2427 {
2428 	__skb_unlink(skb, &sk->sk_receive_queue);
2429 	__kfree_skb(skb);
2430 }
2431 
2432 static inline
2433 struct net *sock_net(const struct sock *sk)
2434 {
2435 	return read_pnet(&sk->sk_net);
2436 }
2437 
2438 static inline
2439 void sock_net_set(struct sock *sk, struct net *net)
2440 {
2441 	write_pnet(&sk->sk_net, net);
2442 }
2443 
2444 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2445 {
2446 	if (skb->sk) {
2447 		struct sock *sk = skb->sk;
2448 
2449 		skb->destructor = NULL;
2450 		skb->sk = NULL;
2451 		return sk;
2452 	}
2453 	return NULL;
2454 }
2455 
2456 /* This helper checks if a socket is a full socket,
2457  * ie _not_ a timewait or request socket.
2458  */
2459 static inline bool sk_fullsock(const struct sock *sk)
2460 {
2461 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2462 }
2463 
2464 /* Checks if this SKB belongs to an HW offloaded socket
2465  * and whether any SW fallbacks are required based on dev.
2466  */
2467 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2468 						   struct net_device *dev)
2469 {
2470 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2471 	struct sock *sk = skb->sk;
2472 
2473 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2474 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2475 #endif
2476 
2477 	return skb;
2478 }
2479 
2480 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2481  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2482  */
2483 static inline bool sk_listener(const struct sock *sk)
2484 {
2485 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2486 }
2487 
2488 void sock_enable_timestamp(struct sock *sk, int flag);
2489 int sock_get_timestamp(struct sock *, struct timeval __user *);
2490 int sock_get_timestampns(struct sock *, struct timespec __user *);
2491 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2492 		       int type);
2493 
2494 bool sk_ns_capable(const struct sock *sk,
2495 		   struct user_namespace *user_ns, int cap);
2496 bool sk_capable(const struct sock *sk, int cap);
2497 bool sk_net_capable(const struct sock *sk, int cap);
2498 
2499 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2500 
2501 /* Take into consideration the size of the struct sk_buff overhead in the
2502  * determination of these values, since that is non-constant across
2503  * platforms.  This makes socket queueing behavior and performance
2504  * not depend upon such differences.
2505  */
2506 #define _SK_MEM_PACKETS		256
2507 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2508 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2509 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2510 
2511 extern __u32 sysctl_wmem_max;
2512 extern __u32 sysctl_rmem_max;
2513 
2514 extern int sysctl_tstamp_allow_data;
2515 extern int sysctl_optmem_max;
2516 
2517 extern __u32 sysctl_wmem_default;
2518 extern __u32 sysctl_rmem_default;
2519 
2520 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2521 {
2522 	/* Does this proto have per netns sysctl_wmem ? */
2523 	if (proto->sysctl_wmem_offset)
2524 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2525 
2526 	return *proto->sysctl_wmem;
2527 }
2528 
2529 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2530 {
2531 	/* Does this proto have per netns sysctl_rmem ? */
2532 	if (proto->sysctl_rmem_offset)
2533 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2534 
2535 	return *proto->sysctl_rmem;
2536 }
2537 
2538 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2539  * Some wifi drivers need to tweak it to get more chunks.
2540  * They can use this helper from their ndo_start_xmit()
2541  */
2542 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2543 {
2544 	if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2545 		return;
2546 	sk->sk_pacing_shift = val;
2547 }
2548 
2549 /* if a socket is bound to a device, check that the given device
2550  * index is either the same or that the socket is bound to an L3
2551  * master device and the given device index is also enslaved to
2552  * that L3 master
2553  */
2554 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2555 {
2556 	int mdif;
2557 
2558 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2559 		return true;
2560 
2561 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2562 	if (mdif && mdif == sk->sk_bound_dev_if)
2563 		return true;
2564 
2565 	return false;
2566 }
2567 
2568 #endif	/* _SOCK_H */
2569