xref: /openbmc/linux/include/net/sock.h (revision 7e4588e8)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 	return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88  * This structure really needs to be cleaned up.
89  * Most of it is for TCP, and not used by any of
90  * the other protocols.
91  */
92 
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 					printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105 
106 /* This is the per-socket lock.  The spinlock provides a synchronization
107  * between user contexts and software interrupt processing, whereas the
108  * mini-semaphore synchronizes multiple users amongst themselves.
109  */
110 typedef struct {
111 	spinlock_t		slock;
112 	int			owned;
113 	wait_queue_head_t	wq;
114 	/*
115 	 * We express the mutex-alike socket_lock semantics
116 	 * to the lock validator by explicitly managing
117 	 * the slock as a lock variant (in addition to
118 	 * the slock itself):
119 	 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 	struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124 
125 struct sock;
126 struct proto;
127 struct net;
128 
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131 
132 /**
133  *	struct sock_common - minimal network layer representation of sockets
134  *	@skc_daddr: Foreign IPv4 addr
135  *	@skc_rcv_saddr: Bound local IPv4 addr
136  *	@skc_hash: hash value used with various protocol lookup tables
137  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
138  *	@skc_dport: placeholder for inet_dport/tw_dport
139  *	@skc_num: placeholder for inet_num/tw_num
140  *	@skc_family: network address family
141  *	@skc_state: Connection state
142  *	@skc_reuse: %SO_REUSEADDR setting
143  *	@skc_reuseport: %SO_REUSEPORT setting
144  *	@skc_bound_dev_if: bound device index if != 0
145  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
146  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147  *	@skc_prot: protocol handlers inside a network family
148  *	@skc_net: reference to the network namespace of this socket
149  *	@skc_node: main hash linkage for various protocol lookup tables
150  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151  *	@skc_tx_queue_mapping: tx queue number for this connection
152  *	@skc_refcnt: reference count
153  *
154  *	This is the minimal network layer representation of sockets, the header
155  *	for struct sock and struct inet_timewait_sock.
156  */
157 struct sock_common {
158 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 	 * address on 64bit arches : cf INET_MATCH()
160 	 */
161 	union {
162 		__addrpair	skc_addrpair;
163 		struct {
164 			__be32	skc_daddr;
165 			__be32	skc_rcv_saddr;
166 		};
167 	};
168 	union  {
169 		unsigned int	skc_hash;
170 		__u16		skc_u16hashes[2];
171 	};
172 	/* skc_dport && skc_num must be grouped as well */
173 	union {
174 		__portpair	skc_portpair;
175 		struct {
176 			__be16	skc_dport;
177 			__u16	skc_num;
178 		};
179 	};
180 
181 	unsigned short		skc_family;
182 	volatile unsigned char	skc_state;
183 	unsigned char		skc_reuse:4;
184 	unsigned char		skc_reuseport:4;
185 	int			skc_bound_dev_if;
186 	union {
187 		struct hlist_node	skc_bind_node;
188 		struct hlist_nulls_node skc_portaddr_node;
189 	};
190 	struct proto		*skc_prot;
191 #ifdef CONFIG_NET_NS
192 	struct net	 	*skc_net;
193 #endif
194 
195 #if IS_ENABLED(CONFIG_IPV6)
196 	struct in6_addr		skc_v6_daddr;
197 	struct in6_addr		skc_v6_rcv_saddr;
198 #endif
199 
200 	/*
201 	 * fields between dontcopy_begin/dontcopy_end
202 	 * are not copied in sock_copy()
203 	 */
204 	/* private: */
205 	int			skc_dontcopy_begin[0];
206 	/* public: */
207 	union {
208 		struct hlist_node	skc_node;
209 		struct hlist_nulls_node skc_nulls_node;
210 	};
211 	int			skc_tx_queue_mapping;
212 	atomic_t		skc_refcnt;
213 	/* private: */
214 	int                     skc_dontcopy_end[0];
215 	/* public: */
216 };
217 
218 struct cg_proto;
219 /**
220   *	struct sock - network layer representation of sockets
221   *	@__sk_common: shared layout with inet_timewait_sock
222   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
223   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
224   *	@sk_lock:	synchronizer
225   *	@sk_rcvbuf: size of receive buffer in bytes
226   *	@sk_wq: sock wait queue and async head
227   *	@sk_rx_dst: receive input route used by early demux
228   *	@sk_dst_cache: destination cache
229   *	@sk_dst_lock: destination cache lock
230   *	@sk_policy: flow policy
231   *	@sk_receive_queue: incoming packets
232   *	@sk_wmem_alloc: transmit queue bytes committed
233   *	@sk_write_queue: Packet sending queue
234   *	@sk_async_wait_queue: DMA copied packets
235   *	@sk_omem_alloc: "o" is "option" or "other"
236   *	@sk_wmem_queued: persistent queue size
237   *	@sk_forward_alloc: space allocated forward
238   *	@sk_napi_id: id of the last napi context to receive data for sk
239   *	@sk_ll_usec: usecs to busypoll when there is no data
240   *	@sk_allocation: allocation mode
241   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
242   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
243   *	@sk_sndbuf: size of send buffer in bytes
244   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
245   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
246   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
247   *	@sk_no_check_rx: allow zero checksum in RX packets
248   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
249   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
250   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
251   *	@sk_gso_max_size: Maximum GSO segment size to build
252   *	@sk_gso_max_segs: Maximum number of GSO segments
253   *	@sk_lingertime: %SO_LINGER l_linger setting
254   *	@sk_backlog: always used with the per-socket spinlock held
255   *	@sk_callback_lock: used with the callbacks in the end of this struct
256   *	@sk_error_queue: rarely used
257   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
258   *			  IPV6_ADDRFORM for instance)
259   *	@sk_err: last error
260   *	@sk_err_soft: errors that don't cause failure but are the cause of a
261   *		      persistent failure not just 'timed out'
262   *	@sk_drops: raw/udp drops counter
263   *	@sk_ack_backlog: current listen backlog
264   *	@sk_max_ack_backlog: listen backlog set in listen()
265   *	@sk_priority: %SO_PRIORITY setting
266   *	@sk_cgrp_prioidx: socket group's priority map index
267   *	@sk_type: socket type (%SOCK_STREAM, etc)
268   *	@sk_protocol: which protocol this socket belongs in this network family
269   *	@sk_peer_pid: &struct pid for this socket's peer
270   *	@sk_peer_cred: %SO_PEERCRED setting
271   *	@sk_rcvlowat: %SO_RCVLOWAT setting
272   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
273   *	@sk_sndtimeo: %SO_SNDTIMEO setting
274   *	@sk_rxhash: flow hash received from netif layer
275   *	@sk_filter: socket filtering instructions
276   *	@sk_protinfo: private area, net family specific, when not using slab
277   *	@sk_timer: sock cleanup timer
278   *	@sk_stamp: time stamp of last packet received
279   *	@sk_socket: Identd and reporting IO signals
280   *	@sk_user_data: RPC layer private data
281   *	@sk_frag: cached page frag
282   *	@sk_peek_off: current peek_offset value
283   *	@sk_send_head: front of stuff to transmit
284   *	@sk_security: used by security modules
285   *	@sk_mark: generic packet mark
286   *	@sk_classid: this socket's cgroup classid
287   *	@sk_cgrp: this socket's cgroup-specific proto data
288   *	@sk_write_pending: a write to stream socket waits to start
289   *	@sk_state_change: callback to indicate change in the state of the sock
290   *	@sk_data_ready: callback to indicate there is data to be processed
291   *	@sk_write_space: callback to indicate there is bf sending space available
292   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
293   *	@sk_backlog_rcv: callback to process the backlog
294   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
295  */
296 struct sock {
297 	/*
298 	 * Now struct inet_timewait_sock also uses sock_common, so please just
299 	 * don't add nothing before this first member (__sk_common) --acme
300 	 */
301 	struct sock_common	__sk_common;
302 #define sk_node			__sk_common.skc_node
303 #define sk_nulls_node		__sk_common.skc_nulls_node
304 #define sk_refcnt		__sk_common.skc_refcnt
305 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
306 
307 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
308 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
309 #define sk_hash			__sk_common.skc_hash
310 #define sk_portpair		__sk_common.skc_portpair
311 #define sk_num			__sk_common.skc_num
312 #define sk_dport		__sk_common.skc_dport
313 #define sk_addrpair		__sk_common.skc_addrpair
314 #define sk_daddr		__sk_common.skc_daddr
315 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
316 #define sk_family		__sk_common.skc_family
317 #define sk_state		__sk_common.skc_state
318 #define sk_reuse		__sk_common.skc_reuse
319 #define sk_reuseport		__sk_common.skc_reuseport
320 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
321 #define sk_bind_node		__sk_common.skc_bind_node
322 #define sk_prot			__sk_common.skc_prot
323 #define sk_net			__sk_common.skc_net
324 #define sk_v6_daddr		__sk_common.skc_v6_daddr
325 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
326 
327 	socket_lock_t		sk_lock;
328 	struct sk_buff_head	sk_receive_queue;
329 	/*
330 	 * The backlog queue is special, it is always used with
331 	 * the per-socket spinlock held and requires low latency
332 	 * access. Therefore we special case it's implementation.
333 	 * Note : rmem_alloc is in this structure to fill a hole
334 	 * on 64bit arches, not because its logically part of
335 	 * backlog.
336 	 */
337 	struct {
338 		atomic_t	rmem_alloc;
339 		int		len;
340 		struct sk_buff	*head;
341 		struct sk_buff	*tail;
342 	} sk_backlog;
343 #define sk_rmem_alloc sk_backlog.rmem_alloc
344 	int			sk_forward_alloc;
345 #ifdef CONFIG_RPS
346 	__u32			sk_rxhash;
347 #endif
348 #ifdef CONFIG_NET_RX_BUSY_POLL
349 	unsigned int		sk_napi_id;
350 	unsigned int		sk_ll_usec;
351 #endif
352 	atomic_t		sk_drops;
353 	int			sk_rcvbuf;
354 
355 	struct sk_filter __rcu	*sk_filter;
356 	struct socket_wq __rcu	*sk_wq;
357 
358 #ifdef CONFIG_NET_DMA
359 	struct sk_buff_head	sk_async_wait_queue;
360 #endif
361 
362 #ifdef CONFIG_XFRM
363 	struct xfrm_policy	*sk_policy[2];
364 #endif
365 	unsigned long 		sk_flags;
366 	struct dst_entry	*sk_rx_dst;
367 	struct dst_entry __rcu	*sk_dst_cache;
368 	spinlock_t		sk_dst_lock;
369 	atomic_t		sk_wmem_alloc;
370 	atomic_t		sk_omem_alloc;
371 	int			sk_sndbuf;
372 	struct sk_buff_head	sk_write_queue;
373 	kmemcheck_bitfield_begin(flags);
374 	unsigned int		sk_shutdown  : 2,
375 				sk_no_check_tx : 1,
376 				sk_no_check_rx : 1,
377 				sk_userlocks : 4,
378 				sk_protocol  : 8,
379 				sk_type      : 16;
380 	kmemcheck_bitfield_end(flags);
381 	int			sk_wmem_queued;
382 	gfp_t			sk_allocation;
383 	u32			sk_pacing_rate; /* bytes per second */
384 	u32			sk_max_pacing_rate;
385 	netdev_features_t	sk_route_caps;
386 	netdev_features_t	sk_route_nocaps;
387 	int			sk_gso_type;
388 	unsigned int		sk_gso_max_size;
389 	u16			sk_gso_max_segs;
390 	int			sk_rcvlowat;
391 	unsigned long	        sk_lingertime;
392 	struct sk_buff_head	sk_error_queue;
393 	struct proto		*sk_prot_creator;
394 	rwlock_t		sk_callback_lock;
395 	int			sk_err,
396 				sk_err_soft;
397 	unsigned short		sk_ack_backlog;
398 	unsigned short		sk_max_ack_backlog;
399 	__u32			sk_priority;
400 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
401 	__u32			sk_cgrp_prioidx;
402 #endif
403 	struct pid		*sk_peer_pid;
404 	const struct cred	*sk_peer_cred;
405 	long			sk_rcvtimeo;
406 	long			sk_sndtimeo;
407 	void			*sk_protinfo;
408 	struct timer_list	sk_timer;
409 	ktime_t			sk_stamp;
410 	struct socket		*sk_socket;
411 	void			*sk_user_data;
412 	struct page_frag	sk_frag;
413 	struct sk_buff		*sk_send_head;
414 	__s32			sk_peek_off;
415 	int			sk_write_pending;
416 #ifdef CONFIG_SECURITY
417 	void			*sk_security;
418 #endif
419 	__u32			sk_mark;
420 	u32			sk_classid;
421 	struct cg_proto		*sk_cgrp;
422 	void			(*sk_state_change)(struct sock *sk);
423 	void			(*sk_data_ready)(struct sock *sk);
424 	void			(*sk_write_space)(struct sock *sk);
425 	void			(*sk_error_report)(struct sock *sk);
426 	int			(*sk_backlog_rcv)(struct sock *sk,
427 						  struct sk_buff *skb);
428 	void                    (*sk_destruct)(struct sock *sk);
429 };
430 
431 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
432 
433 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
434 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
435 
436 /*
437  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
438  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
439  * on a socket means that the socket will reuse everybody else's port
440  * without looking at the other's sk_reuse value.
441  */
442 
443 #define SK_NO_REUSE	0
444 #define SK_CAN_REUSE	1
445 #define SK_FORCE_REUSE	2
446 
447 static inline int sk_peek_offset(struct sock *sk, int flags)
448 {
449 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
450 		return sk->sk_peek_off;
451 	else
452 		return 0;
453 }
454 
455 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
456 {
457 	if (sk->sk_peek_off >= 0) {
458 		if (sk->sk_peek_off >= val)
459 			sk->sk_peek_off -= val;
460 		else
461 			sk->sk_peek_off = 0;
462 	}
463 }
464 
465 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
466 {
467 	if (sk->sk_peek_off >= 0)
468 		sk->sk_peek_off += val;
469 }
470 
471 /*
472  * Hashed lists helper routines
473  */
474 static inline struct sock *sk_entry(const struct hlist_node *node)
475 {
476 	return hlist_entry(node, struct sock, sk_node);
477 }
478 
479 static inline struct sock *__sk_head(const struct hlist_head *head)
480 {
481 	return hlist_entry(head->first, struct sock, sk_node);
482 }
483 
484 static inline struct sock *sk_head(const struct hlist_head *head)
485 {
486 	return hlist_empty(head) ? NULL : __sk_head(head);
487 }
488 
489 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
490 {
491 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
492 }
493 
494 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
495 {
496 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
497 }
498 
499 static inline struct sock *sk_next(const struct sock *sk)
500 {
501 	return sk->sk_node.next ?
502 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
503 }
504 
505 static inline struct sock *sk_nulls_next(const struct sock *sk)
506 {
507 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
508 		hlist_nulls_entry(sk->sk_nulls_node.next,
509 				  struct sock, sk_nulls_node) :
510 		NULL;
511 }
512 
513 static inline bool sk_unhashed(const struct sock *sk)
514 {
515 	return hlist_unhashed(&sk->sk_node);
516 }
517 
518 static inline bool sk_hashed(const struct sock *sk)
519 {
520 	return !sk_unhashed(sk);
521 }
522 
523 static inline void sk_node_init(struct hlist_node *node)
524 {
525 	node->pprev = NULL;
526 }
527 
528 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
529 {
530 	node->pprev = NULL;
531 }
532 
533 static inline void __sk_del_node(struct sock *sk)
534 {
535 	__hlist_del(&sk->sk_node);
536 }
537 
538 /* NB: equivalent to hlist_del_init_rcu */
539 static inline bool __sk_del_node_init(struct sock *sk)
540 {
541 	if (sk_hashed(sk)) {
542 		__sk_del_node(sk);
543 		sk_node_init(&sk->sk_node);
544 		return true;
545 	}
546 	return false;
547 }
548 
549 /* Grab socket reference count. This operation is valid only
550    when sk is ALREADY grabbed f.e. it is found in hash table
551    or a list and the lookup is made under lock preventing hash table
552    modifications.
553  */
554 
555 static inline void sock_hold(struct sock *sk)
556 {
557 	atomic_inc(&sk->sk_refcnt);
558 }
559 
560 /* Ungrab socket in the context, which assumes that socket refcnt
561    cannot hit zero, f.e. it is true in context of any socketcall.
562  */
563 static inline void __sock_put(struct sock *sk)
564 {
565 	atomic_dec(&sk->sk_refcnt);
566 }
567 
568 static inline bool sk_del_node_init(struct sock *sk)
569 {
570 	bool rc = __sk_del_node_init(sk);
571 
572 	if (rc) {
573 		/* paranoid for a while -acme */
574 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
575 		__sock_put(sk);
576 	}
577 	return rc;
578 }
579 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
580 
581 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
582 {
583 	if (sk_hashed(sk)) {
584 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
585 		return true;
586 	}
587 	return false;
588 }
589 
590 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
591 {
592 	bool rc = __sk_nulls_del_node_init_rcu(sk);
593 
594 	if (rc) {
595 		/* paranoid for a while -acme */
596 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
597 		__sock_put(sk);
598 	}
599 	return rc;
600 }
601 
602 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
603 {
604 	hlist_add_head(&sk->sk_node, list);
605 }
606 
607 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
608 {
609 	sock_hold(sk);
610 	__sk_add_node(sk, list);
611 }
612 
613 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
614 {
615 	sock_hold(sk);
616 	hlist_add_head_rcu(&sk->sk_node, list);
617 }
618 
619 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
620 {
621 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
622 }
623 
624 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
625 {
626 	sock_hold(sk);
627 	__sk_nulls_add_node_rcu(sk, list);
628 }
629 
630 static inline void __sk_del_bind_node(struct sock *sk)
631 {
632 	__hlist_del(&sk->sk_bind_node);
633 }
634 
635 static inline void sk_add_bind_node(struct sock *sk,
636 					struct hlist_head *list)
637 {
638 	hlist_add_head(&sk->sk_bind_node, list);
639 }
640 
641 #define sk_for_each(__sk, list) \
642 	hlist_for_each_entry(__sk, list, sk_node)
643 #define sk_for_each_rcu(__sk, list) \
644 	hlist_for_each_entry_rcu(__sk, list, sk_node)
645 #define sk_nulls_for_each(__sk, node, list) \
646 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
647 #define sk_nulls_for_each_rcu(__sk, node, list) \
648 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
649 #define sk_for_each_from(__sk) \
650 	hlist_for_each_entry_from(__sk, sk_node)
651 #define sk_nulls_for_each_from(__sk, node) \
652 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
653 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
654 #define sk_for_each_safe(__sk, tmp, list) \
655 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
656 #define sk_for_each_bound(__sk, list) \
657 	hlist_for_each_entry(__sk, list, sk_bind_node)
658 
659 static inline struct user_namespace *sk_user_ns(struct sock *sk)
660 {
661 	/* Careful only use this in a context where these parameters
662 	 * can not change and must all be valid, such as recvmsg from
663 	 * userspace.
664 	 */
665 	return sk->sk_socket->file->f_cred->user_ns;
666 }
667 
668 /* Sock flags */
669 enum sock_flags {
670 	SOCK_DEAD,
671 	SOCK_DONE,
672 	SOCK_URGINLINE,
673 	SOCK_KEEPOPEN,
674 	SOCK_LINGER,
675 	SOCK_DESTROY,
676 	SOCK_BROADCAST,
677 	SOCK_TIMESTAMP,
678 	SOCK_ZAPPED,
679 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
680 	SOCK_DBG, /* %SO_DEBUG setting */
681 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
682 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
683 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
684 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
685 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
686 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
687 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
688 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
689 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
690 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
691 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
692 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
693 	SOCK_FASYNC, /* fasync() active */
694 	SOCK_RXQ_OVFL,
695 	SOCK_ZEROCOPY, /* buffers from userspace */
696 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
697 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
698 		     * Will use last 4 bytes of packet sent from
699 		     * user-space instead.
700 		     */
701 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
702 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
703 };
704 
705 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
706 {
707 	nsk->sk_flags = osk->sk_flags;
708 }
709 
710 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
711 {
712 	__set_bit(flag, &sk->sk_flags);
713 }
714 
715 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
716 {
717 	__clear_bit(flag, &sk->sk_flags);
718 }
719 
720 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
721 {
722 	return test_bit(flag, &sk->sk_flags);
723 }
724 
725 #ifdef CONFIG_NET
726 extern struct static_key memalloc_socks;
727 static inline int sk_memalloc_socks(void)
728 {
729 	return static_key_false(&memalloc_socks);
730 }
731 #else
732 
733 static inline int sk_memalloc_socks(void)
734 {
735 	return 0;
736 }
737 
738 #endif
739 
740 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
741 {
742 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
743 }
744 
745 static inline void sk_acceptq_removed(struct sock *sk)
746 {
747 	sk->sk_ack_backlog--;
748 }
749 
750 static inline void sk_acceptq_added(struct sock *sk)
751 {
752 	sk->sk_ack_backlog++;
753 }
754 
755 static inline bool sk_acceptq_is_full(const struct sock *sk)
756 {
757 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
758 }
759 
760 /*
761  * Compute minimal free write space needed to queue new packets.
762  */
763 static inline int sk_stream_min_wspace(const struct sock *sk)
764 {
765 	return sk->sk_wmem_queued >> 1;
766 }
767 
768 static inline int sk_stream_wspace(const struct sock *sk)
769 {
770 	return sk->sk_sndbuf - sk->sk_wmem_queued;
771 }
772 
773 void sk_stream_write_space(struct sock *sk);
774 
775 /* OOB backlog add */
776 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
777 {
778 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
779 	skb_dst_force(skb);
780 
781 	if (!sk->sk_backlog.tail)
782 		sk->sk_backlog.head = skb;
783 	else
784 		sk->sk_backlog.tail->next = skb;
785 
786 	sk->sk_backlog.tail = skb;
787 	skb->next = NULL;
788 }
789 
790 /*
791  * Take into account size of receive queue and backlog queue
792  * Do not take into account this skb truesize,
793  * to allow even a single big packet to come.
794  */
795 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
796 				     unsigned int limit)
797 {
798 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
799 
800 	return qsize > limit;
801 }
802 
803 /* The per-socket spinlock must be held here. */
804 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
805 					      unsigned int limit)
806 {
807 	if (sk_rcvqueues_full(sk, skb, limit))
808 		return -ENOBUFS;
809 
810 	__sk_add_backlog(sk, skb);
811 	sk->sk_backlog.len += skb->truesize;
812 	return 0;
813 }
814 
815 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
816 
817 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
818 {
819 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
820 		return __sk_backlog_rcv(sk, skb);
821 
822 	return sk->sk_backlog_rcv(sk, skb);
823 }
824 
825 static inline void sock_rps_record_flow_hash(__u32 hash)
826 {
827 #ifdef CONFIG_RPS
828 	struct rps_sock_flow_table *sock_flow_table;
829 
830 	rcu_read_lock();
831 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
832 	rps_record_sock_flow(sock_flow_table, hash);
833 	rcu_read_unlock();
834 #endif
835 }
836 
837 static inline void sock_rps_reset_flow_hash(__u32 hash)
838 {
839 #ifdef CONFIG_RPS
840 	struct rps_sock_flow_table *sock_flow_table;
841 
842 	rcu_read_lock();
843 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
844 	rps_reset_sock_flow(sock_flow_table, hash);
845 	rcu_read_unlock();
846 #endif
847 }
848 
849 static inline void sock_rps_record_flow(const struct sock *sk)
850 {
851 #ifdef CONFIG_RPS
852 	sock_rps_record_flow_hash(sk->sk_rxhash);
853 #endif
854 }
855 
856 static inline void sock_rps_reset_flow(const struct sock *sk)
857 {
858 #ifdef CONFIG_RPS
859 	sock_rps_reset_flow_hash(sk->sk_rxhash);
860 #endif
861 }
862 
863 static inline void sock_rps_save_rxhash(struct sock *sk,
864 					const struct sk_buff *skb)
865 {
866 #ifdef CONFIG_RPS
867 	if (unlikely(sk->sk_rxhash != skb->hash)) {
868 		sock_rps_reset_flow(sk);
869 		sk->sk_rxhash = skb->hash;
870 	}
871 #endif
872 }
873 
874 static inline void sock_rps_reset_rxhash(struct sock *sk)
875 {
876 #ifdef CONFIG_RPS
877 	sock_rps_reset_flow(sk);
878 	sk->sk_rxhash = 0;
879 #endif
880 }
881 
882 #define sk_wait_event(__sk, __timeo, __condition)			\
883 	({	int __rc;						\
884 		release_sock(__sk);					\
885 		__rc = __condition;					\
886 		if (!__rc) {						\
887 			*(__timeo) = schedule_timeout(*(__timeo));	\
888 		}							\
889 		lock_sock(__sk);					\
890 		__rc = __condition;					\
891 		__rc;							\
892 	})
893 
894 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
895 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
896 void sk_stream_wait_close(struct sock *sk, long timeo_p);
897 int sk_stream_error(struct sock *sk, int flags, int err);
898 void sk_stream_kill_queues(struct sock *sk);
899 void sk_set_memalloc(struct sock *sk);
900 void sk_clear_memalloc(struct sock *sk);
901 
902 int sk_wait_data(struct sock *sk, long *timeo);
903 
904 struct request_sock_ops;
905 struct timewait_sock_ops;
906 struct inet_hashinfo;
907 struct raw_hashinfo;
908 struct module;
909 
910 /*
911  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
912  * un-modified. Special care is taken when initializing object to zero.
913  */
914 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
915 {
916 	if (offsetof(struct sock, sk_node.next) != 0)
917 		memset(sk, 0, offsetof(struct sock, sk_node.next));
918 	memset(&sk->sk_node.pprev, 0,
919 	       size - offsetof(struct sock, sk_node.pprev));
920 }
921 
922 /* Networking protocol blocks we attach to sockets.
923  * socket layer -> transport layer interface
924  * transport -> network interface is defined by struct inet_proto
925  */
926 struct proto {
927 	void			(*close)(struct sock *sk,
928 					long timeout);
929 	int			(*connect)(struct sock *sk,
930 					struct sockaddr *uaddr,
931 					int addr_len);
932 	int			(*disconnect)(struct sock *sk, int flags);
933 
934 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
935 
936 	int			(*ioctl)(struct sock *sk, int cmd,
937 					 unsigned long arg);
938 	int			(*init)(struct sock *sk);
939 	void			(*destroy)(struct sock *sk);
940 	void			(*shutdown)(struct sock *sk, int how);
941 	int			(*setsockopt)(struct sock *sk, int level,
942 					int optname, char __user *optval,
943 					unsigned int optlen);
944 	int			(*getsockopt)(struct sock *sk, int level,
945 					int optname, char __user *optval,
946 					int __user *option);
947 #ifdef CONFIG_COMPAT
948 	int			(*compat_setsockopt)(struct sock *sk,
949 					int level,
950 					int optname, char __user *optval,
951 					unsigned int optlen);
952 	int			(*compat_getsockopt)(struct sock *sk,
953 					int level,
954 					int optname, char __user *optval,
955 					int __user *option);
956 	int			(*compat_ioctl)(struct sock *sk,
957 					unsigned int cmd, unsigned long arg);
958 #endif
959 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
960 					   struct msghdr *msg, size_t len);
961 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
962 					   struct msghdr *msg,
963 					   size_t len, int noblock, int flags,
964 					   int *addr_len);
965 	int			(*sendpage)(struct sock *sk, struct page *page,
966 					int offset, size_t size, int flags);
967 	int			(*bind)(struct sock *sk,
968 					struct sockaddr *uaddr, int addr_len);
969 
970 	int			(*backlog_rcv) (struct sock *sk,
971 						struct sk_buff *skb);
972 
973 	void		(*release_cb)(struct sock *sk);
974 	void		(*mtu_reduced)(struct sock *sk);
975 
976 	/* Keeping track of sk's, looking them up, and port selection methods. */
977 	void			(*hash)(struct sock *sk);
978 	void			(*unhash)(struct sock *sk);
979 	void			(*rehash)(struct sock *sk);
980 	int			(*get_port)(struct sock *sk, unsigned short snum);
981 	void			(*clear_sk)(struct sock *sk, int size);
982 
983 	/* Keeping track of sockets in use */
984 #ifdef CONFIG_PROC_FS
985 	unsigned int		inuse_idx;
986 #endif
987 
988 	bool			(*stream_memory_free)(const struct sock *sk);
989 	/* Memory pressure */
990 	void			(*enter_memory_pressure)(struct sock *sk);
991 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
992 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
993 	/*
994 	 * Pressure flag: try to collapse.
995 	 * Technical note: it is used by multiple contexts non atomically.
996 	 * All the __sk_mem_schedule() is of this nature: accounting
997 	 * is strict, actions are advisory and have some latency.
998 	 */
999 	int			*memory_pressure;
1000 	long			*sysctl_mem;
1001 	int			*sysctl_wmem;
1002 	int			*sysctl_rmem;
1003 	int			max_header;
1004 	bool			no_autobind;
1005 
1006 	struct kmem_cache	*slab;
1007 	unsigned int		obj_size;
1008 	int			slab_flags;
1009 
1010 	struct percpu_counter	*orphan_count;
1011 
1012 	struct request_sock_ops	*rsk_prot;
1013 	struct timewait_sock_ops *twsk_prot;
1014 
1015 	union {
1016 		struct inet_hashinfo	*hashinfo;
1017 		struct udp_table	*udp_table;
1018 		struct raw_hashinfo	*raw_hash;
1019 	} h;
1020 
1021 	struct module		*owner;
1022 
1023 	char			name[32];
1024 
1025 	struct list_head	node;
1026 #ifdef SOCK_REFCNT_DEBUG
1027 	atomic_t		socks;
1028 #endif
1029 #ifdef CONFIG_MEMCG_KMEM
1030 	/*
1031 	 * cgroup specific init/deinit functions. Called once for all
1032 	 * protocols that implement it, from cgroups populate function.
1033 	 * This function has to setup any files the protocol want to
1034 	 * appear in the kmem cgroup filesystem.
1035 	 */
1036 	int			(*init_cgroup)(struct mem_cgroup *memcg,
1037 					       struct cgroup_subsys *ss);
1038 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1039 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1040 #endif
1041 };
1042 
1043 /*
1044  * Bits in struct cg_proto.flags
1045  */
1046 enum cg_proto_flags {
1047 	/* Currently active and new sockets should be assigned to cgroups */
1048 	MEMCG_SOCK_ACTIVE,
1049 	/* It was ever activated; we must disarm static keys on destruction */
1050 	MEMCG_SOCK_ACTIVATED,
1051 };
1052 
1053 struct cg_proto {
1054 	struct res_counter	memory_allocated;	/* Current allocated memory. */
1055 	struct percpu_counter	sockets_allocated;	/* Current number of sockets. */
1056 	int			memory_pressure;
1057 	long			sysctl_mem[3];
1058 	unsigned long		flags;
1059 	/*
1060 	 * memcg field is used to find which memcg we belong directly
1061 	 * Each memcg struct can hold more than one cg_proto, so container_of
1062 	 * won't really cut.
1063 	 *
1064 	 * The elegant solution would be having an inverse function to
1065 	 * proto_cgroup in struct proto, but that means polluting the structure
1066 	 * for everybody, instead of just for memcg users.
1067 	 */
1068 	struct mem_cgroup	*memcg;
1069 };
1070 
1071 int proto_register(struct proto *prot, int alloc_slab);
1072 void proto_unregister(struct proto *prot);
1073 
1074 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1075 {
1076 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1077 }
1078 
1079 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1080 {
1081 	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1082 }
1083 
1084 #ifdef SOCK_REFCNT_DEBUG
1085 static inline void sk_refcnt_debug_inc(struct sock *sk)
1086 {
1087 	atomic_inc(&sk->sk_prot->socks);
1088 }
1089 
1090 static inline void sk_refcnt_debug_dec(struct sock *sk)
1091 {
1092 	atomic_dec(&sk->sk_prot->socks);
1093 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1094 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1095 }
1096 
1097 static inline void sk_refcnt_debug_release(const struct sock *sk)
1098 {
1099 	if (atomic_read(&sk->sk_refcnt) != 1)
1100 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1101 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1102 }
1103 #else /* SOCK_REFCNT_DEBUG */
1104 #define sk_refcnt_debug_inc(sk) do { } while (0)
1105 #define sk_refcnt_debug_dec(sk) do { } while (0)
1106 #define sk_refcnt_debug_release(sk) do { } while (0)
1107 #endif /* SOCK_REFCNT_DEBUG */
1108 
1109 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1110 extern struct static_key memcg_socket_limit_enabled;
1111 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1112 					       struct cg_proto *cg_proto)
1113 {
1114 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1115 }
1116 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1117 #else
1118 #define mem_cgroup_sockets_enabled 0
1119 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1120 					       struct cg_proto *cg_proto)
1121 {
1122 	return NULL;
1123 }
1124 #endif
1125 
1126 static inline bool sk_stream_memory_free(const struct sock *sk)
1127 {
1128 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1129 		return false;
1130 
1131 	return sk->sk_prot->stream_memory_free ?
1132 		sk->sk_prot->stream_memory_free(sk) : true;
1133 }
1134 
1135 static inline bool sk_stream_is_writeable(const struct sock *sk)
1136 {
1137 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1138 	       sk_stream_memory_free(sk);
1139 }
1140 
1141 
1142 static inline bool sk_has_memory_pressure(const struct sock *sk)
1143 {
1144 	return sk->sk_prot->memory_pressure != NULL;
1145 }
1146 
1147 static inline bool sk_under_memory_pressure(const struct sock *sk)
1148 {
1149 	if (!sk->sk_prot->memory_pressure)
1150 		return false;
1151 
1152 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1153 		return !!sk->sk_cgrp->memory_pressure;
1154 
1155 	return !!*sk->sk_prot->memory_pressure;
1156 }
1157 
1158 static inline void sk_leave_memory_pressure(struct sock *sk)
1159 {
1160 	int *memory_pressure = sk->sk_prot->memory_pressure;
1161 
1162 	if (!memory_pressure)
1163 		return;
1164 
1165 	if (*memory_pressure)
1166 		*memory_pressure = 0;
1167 
1168 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1169 		struct cg_proto *cg_proto = sk->sk_cgrp;
1170 		struct proto *prot = sk->sk_prot;
1171 
1172 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1173 			cg_proto->memory_pressure = 0;
1174 	}
1175 
1176 }
1177 
1178 static inline void sk_enter_memory_pressure(struct sock *sk)
1179 {
1180 	if (!sk->sk_prot->enter_memory_pressure)
1181 		return;
1182 
1183 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1184 		struct cg_proto *cg_proto = sk->sk_cgrp;
1185 		struct proto *prot = sk->sk_prot;
1186 
1187 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1188 			cg_proto->memory_pressure = 1;
1189 	}
1190 
1191 	sk->sk_prot->enter_memory_pressure(sk);
1192 }
1193 
1194 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1195 {
1196 	long *prot = sk->sk_prot->sysctl_mem;
1197 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1198 		prot = sk->sk_cgrp->sysctl_mem;
1199 	return prot[index];
1200 }
1201 
1202 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1203 					      unsigned long amt,
1204 					      int *parent_status)
1205 {
1206 	struct res_counter *fail;
1207 	int ret;
1208 
1209 	ret = res_counter_charge_nofail(&prot->memory_allocated,
1210 					amt << PAGE_SHIFT, &fail);
1211 	if (ret < 0)
1212 		*parent_status = OVER_LIMIT;
1213 }
1214 
1215 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1216 					      unsigned long amt)
1217 {
1218 	res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
1219 }
1220 
1221 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1222 {
1223 	u64 ret;
1224 	ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
1225 	return ret >> PAGE_SHIFT;
1226 }
1227 
1228 static inline long
1229 sk_memory_allocated(const struct sock *sk)
1230 {
1231 	struct proto *prot = sk->sk_prot;
1232 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1233 		return memcg_memory_allocated_read(sk->sk_cgrp);
1234 
1235 	return atomic_long_read(prot->memory_allocated);
1236 }
1237 
1238 static inline long
1239 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1240 {
1241 	struct proto *prot = sk->sk_prot;
1242 
1243 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1244 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1245 		/* update the root cgroup regardless */
1246 		atomic_long_add_return(amt, prot->memory_allocated);
1247 		return memcg_memory_allocated_read(sk->sk_cgrp);
1248 	}
1249 
1250 	return atomic_long_add_return(amt, prot->memory_allocated);
1251 }
1252 
1253 static inline void
1254 sk_memory_allocated_sub(struct sock *sk, int amt)
1255 {
1256 	struct proto *prot = sk->sk_prot;
1257 
1258 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1259 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1260 
1261 	atomic_long_sub(amt, prot->memory_allocated);
1262 }
1263 
1264 static inline void sk_sockets_allocated_dec(struct sock *sk)
1265 {
1266 	struct proto *prot = sk->sk_prot;
1267 
1268 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1269 		struct cg_proto *cg_proto = sk->sk_cgrp;
1270 
1271 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1272 			percpu_counter_dec(&cg_proto->sockets_allocated);
1273 	}
1274 
1275 	percpu_counter_dec(prot->sockets_allocated);
1276 }
1277 
1278 static inline void sk_sockets_allocated_inc(struct sock *sk)
1279 {
1280 	struct proto *prot = sk->sk_prot;
1281 
1282 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1283 		struct cg_proto *cg_proto = sk->sk_cgrp;
1284 
1285 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1286 			percpu_counter_inc(&cg_proto->sockets_allocated);
1287 	}
1288 
1289 	percpu_counter_inc(prot->sockets_allocated);
1290 }
1291 
1292 static inline int
1293 sk_sockets_allocated_read_positive(struct sock *sk)
1294 {
1295 	struct proto *prot = sk->sk_prot;
1296 
1297 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1298 		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1299 
1300 	return percpu_counter_read_positive(prot->sockets_allocated);
1301 }
1302 
1303 static inline int
1304 proto_sockets_allocated_sum_positive(struct proto *prot)
1305 {
1306 	return percpu_counter_sum_positive(prot->sockets_allocated);
1307 }
1308 
1309 static inline long
1310 proto_memory_allocated(struct proto *prot)
1311 {
1312 	return atomic_long_read(prot->memory_allocated);
1313 }
1314 
1315 static inline bool
1316 proto_memory_pressure(struct proto *prot)
1317 {
1318 	if (!prot->memory_pressure)
1319 		return false;
1320 	return !!*prot->memory_pressure;
1321 }
1322 
1323 
1324 #ifdef CONFIG_PROC_FS
1325 /* Called with local bh disabled */
1326 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1327 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1328 #else
1329 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1330 		int inc)
1331 {
1332 }
1333 #endif
1334 
1335 
1336 /* With per-bucket locks this operation is not-atomic, so that
1337  * this version is not worse.
1338  */
1339 static inline void __sk_prot_rehash(struct sock *sk)
1340 {
1341 	sk->sk_prot->unhash(sk);
1342 	sk->sk_prot->hash(sk);
1343 }
1344 
1345 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1346 
1347 /* About 10 seconds */
1348 #define SOCK_DESTROY_TIME (10*HZ)
1349 
1350 /* Sockets 0-1023 can't be bound to unless you are superuser */
1351 #define PROT_SOCK	1024
1352 
1353 #define SHUTDOWN_MASK	3
1354 #define RCV_SHUTDOWN	1
1355 #define SEND_SHUTDOWN	2
1356 
1357 #define SOCK_SNDBUF_LOCK	1
1358 #define SOCK_RCVBUF_LOCK	2
1359 #define SOCK_BINDADDR_LOCK	4
1360 #define SOCK_BINDPORT_LOCK	8
1361 
1362 /* sock_iocb: used to kick off async processing of socket ios */
1363 struct sock_iocb {
1364 	struct list_head	list;
1365 
1366 	int			flags;
1367 	int			size;
1368 	struct socket		*sock;
1369 	struct sock		*sk;
1370 	struct scm_cookie	*scm;
1371 	struct msghdr		*msg, async_msg;
1372 	struct kiocb		*kiocb;
1373 };
1374 
1375 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1376 {
1377 	return (struct sock_iocb *)iocb->private;
1378 }
1379 
1380 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1381 {
1382 	return si->kiocb;
1383 }
1384 
1385 struct socket_alloc {
1386 	struct socket socket;
1387 	struct inode vfs_inode;
1388 };
1389 
1390 static inline struct socket *SOCKET_I(struct inode *inode)
1391 {
1392 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1393 }
1394 
1395 static inline struct inode *SOCK_INODE(struct socket *socket)
1396 {
1397 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1398 }
1399 
1400 /*
1401  * Functions for memory accounting
1402  */
1403 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1404 void __sk_mem_reclaim(struct sock *sk);
1405 
1406 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1407 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1408 #define SK_MEM_SEND	0
1409 #define SK_MEM_RECV	1
1410 
1411 static inline int sk_mem_pages(int amt)
1412 {
1413 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1414 }
1415 
1416 static inline bool sk_has_account(struct sock *sk)
1417 {
1418 	/* return true if protocol supports memory accounting */
1419 	return !!sk->sk_prot->memory_allocated;
1420 }
1421 
1422 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1423 {
1424 	if (!sk_has_account(sk))
1425 		return true;
1426 	return size <= sk->sk_forward_alloc ||
1427 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1428 }
1429 
1430 static inline bool
1431 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1432 {
1433 	if (!sk_has_account(sk))
1434 		return true;
1435 	return size<= sk->sk_forward_alloc ||
1436 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1437 		skb_pfmemalloc(skb);
1438 }
1439 
1440 static inline void sk_mem_reclaim(struct sock *sk)
1441 {
1442 	if (!sk_has_account(sk))
1443 		return;
1444 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1445 		__sk_mem_reclaim(sk);
1446 }
1447 
1448 static inline void sk_mem_reclaim_partial(struct sock *sk)
1449 {
1450 	if (!sk_has_account(sk))
1451 		return;
1452 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1453 		__sk_mem_reclaim(sk);
1454 }
1455 
1456 static inline void sk_mem_charge(struct sock *sk, int size)
1457 {
1458 	if (!sk_has_account(sk))
1459 		return;
1460 	sk->sk_forward_alloc -= size;
1461 }
1462 
1463 static inline void sk_mem_uncharge(struct sock *sk, int size)
1464 {
1465 	if (!sk_has_account(sk))
1466 		return;
1467 	sk->sk_forward_alloc += size;
1468 }
1469 
1470 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1471 {
1472 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1473 	sk->sk_wmem_queued -= skb->truesize;
1474 	sk_mem_uncharge(sk, skb->truesize);
1475 	__kfree_skb(skb);
1476 }
1477 
1478 /* Used by processes to "lock" a socket state, so that
1479  * interrupts and bottom half handlers won't change it
1480  * from under us. It essentially blocks any incoming
1481  * packets, so that we won't get any new data or any
1482  * packets that change the state of the socket.
1483  *
1484  * While locked, BH processing will add new packets to
1485  * the backlog queue.  This queue is processed by the
1486  * owner of the socket lock right before it is released.
1487  *
1488  * Since ~2.3.5 it is also exclusive sleep lock serializing
1489  * accesses from user process context.
1490  */
1491 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1492 
1493 static inline void sock_release_ownership(struct sock *sk)
1494 {
1495 	sk->sk_lock.owned = 0;
1496 }
1497 
1498 /*
1499  * Macro so as to not evaluate some arguments when
1500  * lockdep is not enabled.
1501  *
1502  * Mark both the sk_lock and the sk_lock.slock as a
1503  * per-address-family lock class.
1504  */
1505 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1506 do {									\
1507 	sk->sk_lock.owned = 0;						\
1508 	init_waitqueue_head(&sk->sk_lock.wq);				\
1509 	spin_lock_init(&(sk)->sk_lock.slock);				\
1510 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1511 			sizeof((sk)->sk_lock));				\
1512 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1513 				(skey), (sname));				\
1514 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1515 } while (0)
1516 
1517 void lock_sock_nested(struct sock *sk, int subclass);
1518 
1519 static inline void lock_sock(struct sock *sk)
1520 {
1521 	lock_sock_nested(sk, 0);
1522 }
1523 
1524 void release_sock(struct sock *sk);
1525 
1526 /* BH context may only use the following locking interface. */
1527 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1528 #define bh_lock_sock_nested(__sk) \
1529 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1530 				SINGLE_DEPTH_NESTING)
1531 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1532 
1533 bool lock_sock_fast(struct sock *sk);
1534 /**
1535  * unlock_sock_fast - complement of lock_sock_fast
1536  * @sk: socket
1537  * @slow: slow mode
1538  *
1539  * fast unlock socket for user context.
1540  * If slow mode is on, we call regular release_sock()
1541  */
1542 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1543 {
1544 	if (slow)
1545 		release_sock(sk);
1546 	else
1547 		spin_unlock_bh(&sk->sk_lock.slock);
1548 }
1549 
1550 
1551 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1552 		      struct proto *prot);
1553 void sk_free(struct sock *sk);
1554 void sk_release_kernel(struct sock *sk);
1555 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1556 
1557 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1558 			     gfp_t priority);
1559 void sock_wfree(struct sk_buff *skb);
1560 void skb_orphan_partial(struct sk_buff *skb);
1561 void sock_rfree(struct sk_buff *skb);
1562 void sock_edemux(struct sk_buff *skb);
1563 
1564 int sock_setsockopt(struct socket *sock, int level, int op,
1565 		    char __user *optval, unsigned int optlen);
1566 
1567 int sock_getsockopt(struct socket *sock, int level, int op,
1568 		    char __user *optval, int __user *optlen);
1569 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1570 				    int noblock, int *errcode);
1571 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1572 				     unsigned long data_len, int noblock,
1573 				     int *errcode, int max_page_order);
1574 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1575 void sock_kfree_s(struct sock *sk, void *mem, int size);
1576 void sk_send_sigurg(struct sock *sk);
1577 
1578 /*
1579  * Functions to fill in entries in struct proto_ops when a protocol
1580  * does not implement a particular function.
1581  */
1582 int sock_no_bind(struct socket *, struct sockaddr *, int);
1583 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1584 int sock_no_socketpair(struct socket *, struct socket *);
1585 int sock_no_accept(struct socket *, struct socket *, int);
1586 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1587 unsigned int sock_no_poll(struct file *, struct socket *,
1588 			  struct poll_table_struct *);
1589 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1590 int sock_no_listen(struct socket *, int);
1591 int sock_no_shutdown(struct socket *, int);
1592 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1593 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1594 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1595 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1596 		    int);
1597 int sock_no_mmap(struct file *file, struct socket *sock,
1598 		 struct vm_area_struct *vma);
1599 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1600 			 size_t size, int flags);
1601 
1602 /*
1603  * Functions to fill in entries in struct proto_ops when a protocol
1604  * uses the inet style.
1605  */
1606 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1607 				  char __user *optval, int __user *optlen);
1608 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1609 			       struct msghdr *msg, size_t size, int flags);
1610 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1611 				  char __user *optval, unsigned int optlen);
1612 int compat_sock_common_getsockopt(struct socket *sock, int level,
1613 		int optname, char __user *optval, int __user *optlen);
1614 int compat_sock_common_setsockopt(struct socket *sock, int level,
1615 		int optname, char __user *optval, unsigned int optlen);
1616 
1617 void sk_common_release(struct sock *sk);
1618 
1619 /*
1620  *	Default socket callbacks and setup code
1621  */
1622 
1623 /* Initialise core socket variables */
1624 void sock_init_data(struct socket *sock, struct sock *sk);
1625 
1626 /*
1627  * Socket reference counting postulates.
1628  *
1629  * * Each user of socket SHOULD hold a reference count.
1630  * * Each access point to socket (an hash table bucket, reference from a list,
1631  *   running timer, skb in flight MUST hold a reference count.
1632  * * When reference count hits 0, it means it will never increase back.
1633  * * When reference count hits 0, it means that no references from
1634  *   outside exist to this socket and current process on current CPU
1635  *   is last user and may/should destroy this socket.
1636  * * sk_free is called from any context: process, BH, IRQ. When
1637  *   it is called, socket has no references from outside -> sk_free
1638  *   may release descendant resources allocated by the socket, but
1639  *   to the time when it is called, socket is NOT referenced by any
1640  *   hash tables, lists etc.
1641  * * Packets, delivered from outside (from network or from another process)
1642  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1643  *   when they sit in queue. Otherwise, packets will leak to hole, when
1644  *   socket is looked up by one cpu and unhasing is made by another CPU.
1645  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1646  *   (leak to backlog). Packet socket does all the processing inside
1647  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1648  *   use separate SMP lock, so that they are prone too.
1649  */
1650 
1651 /* Ungrab socket and destroy it, if it was the last reference. */
1652 static inline void sock_put(struct sock *sk)
1653 {
1654 	if (atomic_dec_and_test(&sk->sk_refcnt))
1655 		sk_free(sk);
1656 }
1657 /* Generic version of sock_put(), dealing with all sockets
1658  * (TCP_TIMEWAIT, ESTABLISHED...)
1659  */
1660 void sock_gen_put(struct sock *sk);
1661 
1662 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1663 
1664 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1665 {
1666 	sk->sk_tx_queue_mapping = tx_queue;
1667 }
1668 
1669 static inline void sk_tx_queue_clear(struct sock *sk)
1670 {
1671 	sk->sk_tx_queue_mapping = -1;
1672 }
1673 
1674 static inline int sk_tx_queue_get(const struct sock *sk)
1675 {
1676 	return sk ? sk->sk_tx_queue_mapping : -1;
1677 }
1678 
1679 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1680 {
1681 	sk_tx_queue_clear(sk);
1682 	sk->sk_socket = sock;
1683 }
1684 
1685 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1686 {
1687 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1688 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1689 }
1690 /* Detach socket from process context.
1691  * Announce socket dead, detach it from wait queue and inode.
1692  * Note that parent inode held reference count on this struct sock,
1693  * we do not release it in this function, because protocol
1694  * probably wants some additional cleanups or even continuing
1695  * to work with this socket (TCP).
1696  */
1697 static inline void sock_orphan(struct sock *sk)
1698 {
1699 	write_lock_bh(&sk->sk_callback_lock);
1700 	sock_set_flag(sk, SOCK_DEAD);
1701 	sk_set_socket(sk, NULL);
1702 	sk->sk_wq  = NULL;
1703 	write_unlock_bh(&sk->sk_callback_lock);
1704 }
1705 
1706 static inline void sock_graft(struct sock *sk, struct socket *parent)
1707 {
1708 	write_lock_bh(&sk->sk_callback_lock);
1709 	sk->sk_wq = parent->wq;
1710 	parent->sk = sk;
1711 	sk_set_socket(sk, parent);
1712 	security_sock_graft(sk, parent);
1713 	write_unlock_bh(&sk->sk_callback_lock);
1714 }
1715 
1716 kuid_t sock_i_uid(struct sock *sk);
1717 unsigned long sock_i_ino(struct sock *sk);
1718 
1719 static inline struct dst_entry *
1720 __sk_dst_get(struct sock *sk)
1721 {
1722 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1723 						       lockdep_is_held(&sk->sk_lock.slock));
1724 }
1725 
1726 static inline struct dst_entry *
1727 sk_dst_get(struct sock *sk)
1728 {
1729 	struct dst_entry *dst;
1730 
1731 	rcu_read_lock();
1732 	dst = rcu_dereference(sk->sk_dst_cache);
1733 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1734 		dst = NULL;
1735 	rcu_read_unlock();
1736 	return dst;
1737 }
1738 
1739 static inline void dst_negative_advice(struct sock *sk)
1740 {
1741 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1742 
1743 	if (dst && dst->ops->negative_advice) {
1744 		ndst = dst->ops->negative_advice(dst);
1745 
1746 		if (ndst != dst) {
1747 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1748 			sk_tx_queue_clear(sk);
1749 		}
1750 	}
1751 }
1752 
1753 static inline void
1754 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1755 {
1756 	struct dst_entry *old_dst;
1757 
1758 	sk_tx_queue_clear(sk);
1759 	/*
1760 	 * This can be called while sk is owned by the caller only,
1761 	 * with no state that can be checked in a rcu_dereference_check() cond
1762 	 */
1763 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1764 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1765 	dst_release(old_dst);
1766 }
1767 
1768 static inline void
1769 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1770 {
1771 	spin_lock(&sk->sk_dst_lock);
1772 	__sk_dst_set(sk, dst);
1773 	spin_unlock(&sk->sk_dst_lock);
1774 }
1775 
1776 static inline void
1777 __sk_dst_reset(struct sock *sk)
1778 {
1779 	__sk_dst_set(sk, NULL);
1780 }
1781 
1782 static inline void
1783 sk_dst_reset(struct sock *sk)
1784 {
1785 	spin_lock(&sk->sk_dst_lock);
1786 	__sk_dst_reset(sk);
1787 	spin_unlock(&sk->sk_dst_lock);
1788 }
1789 
1790 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1791 
1792 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1793 
1794 static inline bool sk_can_gso(const struct sock *sk)
1795 {
1796 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1797 }
1798 
1799 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1800 
1801 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1802 {
1803 	sk->sk_route_nocaps |= flags;
1804 	sk->sk_route_caps &= ~flags;
1805 }
1806 
1807 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1808 					   char __user *from, char *to,
1809 					   int copy, int offset)
1810 {
1811 	if (skb->ip_summed == CHECKSUM_NONE) {
1812 		int err = 0;
1813 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1814 		if (err)
1815 			return err;
1816 		skb->csum = csum_block_add(skb->csum, csum, offset);
1817 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1818 		if (!access_ok(VERIFY_READ, from, copy) ||
1819 		    __copy_from_user_nocache(to, from, copy))
1820 			return -EFAULT;
1821 	} else if (copy_from_user(to, from, copy))
1822 		return -EFAULT;
1823 
1824 	return 0;
1825 }
1826 
1827 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1828 				       char __user *from, int copy)
1829 {
1830 	int err, offset = skb->len;
1831 
1832 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1833 				       copy, offset);
1834 	if (err)
1835 		__skb_trim(skb, offset);
1836 
1837 	return err;
1838 }
1839 
1840 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1841 					   struct sk_buff *skb,
1842 					   struct page *page,
1843 					   int off, int copy)
1844 {
1845 	int err;
1846 
1847 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1848 				       copy, skb->len);
1849 	if (err)
1850 		return err;
1851 
1852 	skb->len	     += copy;
1853 	skb->data_len	     += copy;
1854 	skb->truesize	     += copy;
1855 	sk->sk_wmem_queued   += copy;
1856 	sk_mem_charge(sk, copy);
1857 	return 0;
1858 }
1859 
1860 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1861 				   struct sk_buff *skb, struct page *page,
1862 				   int off, int copy)
1863 {
1864 	if (skb->ip_summed == CHECKSUM_NONE) {
1865 		int err = 0;
1866 		__wsum csum = csum_and_copy_from_user(from,
1867 						     page_address(page) + off,
1868 							    copy, 0, &err);
1869 		if (err)
1870 			return err;
1871 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1872 	} else if (copy_from_user(page_address(page) + off, from, copy))
1873 		return -EFAULT;
1874 
1875 	skb->len	     += copy;
1876 	skb->data_len	     += copy;
1877 	skb->truesize	     += copy;
1878 	sk->sk_wmem_queued   += copy;
1879 	sk_mem_charge(sk, copy);
1880 	return 0;
1881 }
1882 
1883 /**
1884  * sk_wmem_alloc_get - returns write allocations
1885  * @sk: socket
1886  *
1887  * Returns sk_wmem_alloc minus initial offset of one
1888  */
1889 static inline int sk_wmem_alloc_get(const struct sock *sk)
1890 {
1891 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1892 }
1893 
1894 /**
1895  * sk_rmem_alloc_get - returns read allocations
1896  * @sk: socket
1897  *
1898  * Returns sk_rmem_alloc
1899  */
1900 static inline int sk_rmem_alloc_get(const struct sock *sk)
1901 {
1902 	return atomic_read(&sk->sk_rmem_alloc);
1903 }
1904 
1905 /**
1906  * sk_has_allocations - check if allocations are outstanding
1907  * @sk: socket
1908  *
1909  * Returns true if socket has write or read allocations
1910  */
1911 static inline bool sk_has_allocations(const struct sock *sk)
1912 {
1913 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1914 }
1915 
1916 /**
1917  * wq_has_sleeper - check if there are any waiting processes
1918  * @wq: struct socket_wq
1919  *
1920  * Returns true if socket_wq has waiting processes
1921  *
1922  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1923  * barrier call. They were added due to the race found within the tcp code.
1924  *
1925  * Consider following tcp code paths:
1926  *
1927  * CPU1                  CPU2
1928  *
1929  * sys_select            receive packet
1930  *   ...                 ...
1931  *   __add_wait_queue    update tp->rcv_nxt
1932  *   ...                 ...
1933  *   tp->rcv_nxt check   sock_def_readable
1934  *   ...                 {
1935  *   schedule               rcu_read_lock();
1936  *                          wq = rcu_dereference(sk->sk_wq);
1937  *                          if (wq && waitqueue_active(&wq->wait))
1938  *                              wake_up_interruptible(&wq->wait)
1939  *                          ...
1940  *                       }
1941  *
1942  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1943  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1944  * could then endup calling schedule and sleep forever if there are no more
1945  * data on the socket.
1946  *
1947  */
1948 static inline bool wq_has_sleeper(struct socket_wq *wq)
1949 {
1950 	/* We need to be sure we are in sync with the
1951 	 * add_wait_queue modifications to the wait queue.
1952 	 *
1953 	 * This memory barrier is paired in the sock_poll_wait.
1954 	 */
1955 	smp_mb();
1956 	return wq && waitqueue_active(&wq->wait);
1957 }
1958 
1959 /**
1960  * sock_poll_wait - place memory barrier behind the poll_wait call.
1961  * @filp:           file
1962  * @wait_address:   socket wait queue
1963  * @p:              poll_table
1964  *
1965  * See the comments in the wq_has_sleeper function.
1966  */
1967 static inline void sock_poll_wait(struct file *filp,
1968 		wait_queue_head_t *wait_address, poll_table *p)
1969 {
1970 	if (!poll_does_not_wait(p) && wait_address) {
1971 		poll_wait(filp, wait_address, p);
1972 		/* We need to be sure we are in sync with the
1973 		 * socket flags modification.
1974 		 *
1975 		 * This memory barrier is paired in the wq_has_sleeper.
1976 		 */
1977 		smp_mb();
1978 	}
1979 }
1980 
1981 /*
1982  *	Queue a received datagram if it will fit. Stream and sequenced
1983  *	protocols can't normally use this as they need to fit buffers in
1984  *	and play with them.
1985  *
1986  *	Inlined as it's very short and called for pretty much every
1987  *	packet ever received.
1988  */
1989 
1990 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1991 {
1992 	skb_orphan(skb);
1993 	skb->sk = sk;
1994 	skb->destructor = sock_wfree;
1995 	/*
1996 	 * We used to take a refcount on sk, but following operation
1997 	 * is enough to guarantee sk_free() wont free this sock until
1998 	 * all in-flight packets are completed
1999 	 */
2000 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2001 }
2002 
2003 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2004 {
2005 	skb_orphan(skb);
2006 	skb->sk = sk;
2007 	skb->destructor = sock_rfree;
2008 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2009 	sk_mem_charge(sk, skb->truesize);
2010 }
2011 
2012 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2013 		    unsigned long expires);
2014 
2015 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2016 
2017 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2018 
2019 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2020 
2021 /*
2022  *	Recover an error report and clear atomically
2023  */
2024 
2025 static inline int sock_error(struct sock *sk)
2026 {
2027 	int err;
2028 	if (likely(!sk->sk_err))
2029 		return 0;
2030 	err = xchg(&sk->sk_err, 0);
2031 	return -err;
2032 }
2033 
2034 static inline unsigned long sock_wspace(struct sock *sk)
2035 {
2036 	int amt = 0;
2037 
2038 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2039 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2040 		if (amt < 0)
2041 			amt = 0;
2042 	}
2043 	return amt;
2044 }
2045 
2046 static inline void sk_wake_async(struct sock *sk, int how, int band)
2047 {
2048 	if (sock_flag(sk, SOCK_FASYNC))
2049 		sock_wake_async(sk->sk_socket, how, band);
2050 }
2051 
2052 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2053  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2054  * Note: for send buffers, TCP works better if we can build two skbs at
2055  * minimum.
2056  */
2057 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2058 
2059 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2060 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2061 
2062 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2063 {
2064 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2065 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2066 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2067 	}
2068 }
2069 
2070 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2071 
2072 /**
2073  * sk_page_frag - return an appropriate page_frag
2074  * @sk: socket
2075  *
2076  * If socket allocation mode allows current thread to sleep, it means its
2077  * safe to use the per task page_frag instead of the per socket one.
2078  */
2079 static inline struct page_frag *sk_page_frag(struct sock *sk)
2080 {
2081 	if (sk->sk_allocation & __GFP_WAIT)
2082 		return &current->task_frag;
2083 
2084 	return &sk->sk_frag;
2085 }
2086 
2087 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2088 
2089 /*
2090  *	Default write policy as shown to user space via poll/select/SIGIO
2091  */
2092 static inline bool sock_writeable(const struct sock *sk)
2093 {
2094 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2095 }
2096 
2097 static inline gfp_t gfp_any(void)
2098 {
2099 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2100 }
2101 
2102 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2103 {
2104 	return noblock ? 0 : sk->sk_rcvtimeo;
2105 }
2106 
2107 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2108 {
2109 	return noblock ? 0 : sk->sk_sndtimeo;
2110 }
2111 
2112 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2113 {
2114 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2115 }
2116 
2117 /* Alas, with timeout socket operations are not restartable.
2118  * Compare this to poll().
2119  */
2120 static inline int sock_intr_errno(long timeo)
2121 {
2122 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2123 }
2124 
2125 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2126 			   struct sk_buff *skb);
2127 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2128 			     struct sk_buff *skb);
2129 
2130 static inline void
2131 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2132 {
2133 	ktime_t kt = skb->tstamp;
2134 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2135 
2136 	/*
2137 	 * generate control messages if
2138 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2139 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2140 	 * - software time stamp available and wanted
2141 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2142 	 * - hardware time stamps available and wanted
2143 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2144 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2145 	 */
2146 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2147 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2148 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2149 	    (hwtstamps->hwtstamp.tv64 &&
2150 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2151 	    (hwtstamps->syststamp.tv64 &&
2152 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2153 		__sock_recv_timestamp(msg, sk, skb);
2154 	else
2155 		sk->sk_stamp = kt;
2156 
2157 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2158 		__sock_recv_wifi_status(msg, sk, skb);
2159 }
2160 
2161 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2162 			      struct sk_buff *skb);
2163 
2164 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2165 					  struct sk_buff *skb)
2166 {
2167 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2168 			   (1UL << SOCK_RCVTSTAMP)			| \
2169 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2170 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)	| \
2171 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2172 
2173 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2174 		__sock_recv_ts_and_drops(msg, sk, skb);
2175 	else
2176 		sk->sk_stamp = skb->tstamp;
2177 }
2178 
2179 /**
2180  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2181  * @sk:		socket sending this packet
2182  * @tx_flags:	filled with instructions for time stamping
2183  *
2184  * Currently only depends on SOCK_TIMESTAMPING* flags.
2185  */
2186 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2187 
2188 /**
2189  * sk_eat_skb - Release a skb if it is no longer needed
2190  * @sk: socket to eat this skb from
2191  * @skb: socket buffer to eat
2192  * @copied_early: flag indicating whether DMA operations copied this data early
2193  *
2194  * This routine must be called with interrupts disabled or with the socket
2195  * locked so that the sk_buff queue operation is ok.
2196 */
2197 #ifdef CONFIG_NET_DMA
2198 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2199 {
2200 	__skb_unlink(skb, &sk->sk_receive_queue);
2201 	if (!copied_early)
2202 		__kfree_skb(skb);
2203 	else
2204 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2205 }
2206 #else
2207 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2208 {
2209 	__skb_unlink(skb, &sk->sk_receive_queue);
2210 	__kfree_skb(skb);
2211 }
2212 #endif
2213 
2214 static inline
2215 struct net *sock_net(const struct sock *sk)
2216 {
2217 	return read_pnet(&sk->sk_net);
2218 }
2219 
2220 static inline
2221 void sock_net_set(struct sock *sk, struct net *net)
2222 {
2223 	write_pnet(&sk->sk_net, net);
2224 }
2225 
2226 /*
2227  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2228  * They should not hold a reference to a namespace in order to allow
2229  * to stop it.
2230  * Sockets after sk_change_net should be released using sk_release_kernel
2231  */
2232 static inline void sk_change_net(struct sock *sk, struct net *net)
2233 {
2234 	struct net *current_net = sock_net(sk);
2235 
2236 	if (!net_eq(current_net, net)) {
2237 		put_net(current_net);
2238 		sock_net_set(sk, hold_net(net));
2239 	}
2240 }
2241 
2242 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2243 {
2244 	if (skb->sk) {
2245 		struct sock *sk = skb->sk;
2246 
2247 		skb->destructor = NULL;
2248 		skb->sk = NULL;
2249 		return sk;
2250 	}
2251 	return NULL;
2252 }
2253 
2254 void sock_enable_timestamp(struct sock *sk, int flag);
2255 int sock_get_timestamp(struct sock *, struct timeval __user *);
2256 int sock_get_timestampns(struct sock *, struct timespec __user *);
2257 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2258 		       int type);
2259 
2260 bool sk_ns_capable(const struct sock *sk,
2261 		   struct user_namespace *user_ns, int cap);
2262 bool sk_capable(const struct sock *sk, int cap);
2263 bool sk_net_capable(const struct sock *sk, int cap);
2264 
2265 /*
2266  *	Enable debug/info messages
2267  */
2268 extern int net_msg_warn;
2269 #define NETDEBUG(fmt, args...) \
2270 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2271 
2272 #define LIMIT_NETDEBUG(fmt, args...) \
2273 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2274 
2275 extern __u32 sysctl_wmem_max;
2276 extern __u32 sysctl_rmem_max;
2277 
2278 extern int sysctl_optmem_max;
2279 
2280 extern __u32 sysctl_wmem_default;
2281 extern __u32 sysctl_rmem_default;
2282 
2283 #endif	/* _SOCK_H */
2284