xref: /openbmc/linux/include/net/sock.h (revision 7dd65feb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57 #include <linux/poll.h>
58 
59 #include <asm/atomic.h>
60 #include <net/dst.h>
61 #include <net/checksum.h>
62 
63 /*
64  * This structure really needs to be cleaned up.
65  * Most of it is for TCP, and not used by any of
66  * the other protocols.
67  */
68 
69 /* Define this to get the SOCK_DBG debugging facility. */
70 #define SOCK_DEBUGGING
71 #ifdef SOCK_DEBUGGING
72 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
73 					printk(KERN_DEBUG msg); } while (0)
74 #else
75 /* Validate arguments and do nothing */
76 static void inline int __attribute__ ((format (printf, 2, 3)))
77 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
78 {
79 }
80 #endif
81 
82 /* This is the per-socket lock.  The spinlock provides a synchronization
83  * between user contexts and software interrupt processing, whereas the
84  * mini-semaphore synchronizes multiple users amongst themselves.
85  */
86 typedef struct {
87 	spinlock_t		slock;
88 	int			owned;
89 	wait_queue_head_t	wq;
90 	/*
91 	 * We express the mutex-alike socket_lock semantics
92 	 * to the lock validator by explicitly managing
93 	 * the slock as a lock variant (in addition to
94 	 * the slock itself):
95 	 */
96 #ifdef CONFIG_DEBUG_LOCK_ALLOC
97 	struct lockdep_map dep_map;
98 #endif
99 } socket_lock_t;
100 
101 struct sock;
102 struct proto;
103 struct net;
104 
105 /**
106  *	struct sock_common - minimal network layer representation of sockets
107  *	@skc_node: main hash linkage for various protocol lookup tables
108  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
109  *	@skc_refcnt: reference count
110  *	@skc_tx_queue_mapping: tx queue number for this connection
111  *	@skc_hash: hash value used with various protocol lookup tables
112  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
113  *	@skc_family: network address family
114  *	@skc_state: Connection state
115  *	@skc_reuse: %SO_REUSEADDR setting
116  *	@skc_bound_dev_if: bound device index if != 0
117  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
118  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
119  *	@skc_prot: protocol handlers inside a network family
120  *	@skc_net: reference to the network namespace of this socket
121  *
122  *	This is the minimal network layer representation of sockets, the header
123  *	for struct sock and struct inet_timewait_sock.
124  */
125 struct sock_common {
126 	/*
127 	 * first fields are not copied in sock_copy()
128 	 */
129 	union {
130 		struct hlist_node	skc_node;
131 		struct hlist_nulls_node skc_nulls_node;
132 	};
133 	atomic_t		skc_refcnt;
134 	int			skc_tx_queue_mapping;
135 
136 	union  {
137 		unsigned int	skc_hash;
138 		__u16		skc_u16hashes[2];
139 	};
140 	unsigned short		skc_family;
141 	volatile unsigned char	skc_state;
142 	unsigned char		skc_reuse;
143 	int			skc_bound_dev_if;
144 	union {
145 		struct hlist_node	skc_bind_node;
146 		struct hlist_nulls_node skc_portaddr_node;
147 	};
148 	struct proto		*skc_prot;
149 #ifdef CONFIG_NET_NS
150 	struct net	 	*skc_net;
151 #endif
152 };
153 
154 /**
155   *	struct sock - network layer representation of sockets
156   *	@__sk_common: shared layout with inet_timewait_sock
157   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
158   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
159   *	@sk_lock:	synchronizer
160   *	@sk_rcvbuf: size of receive buffer in bytes
161   *	@sk_sleep: sock wait queue
162   *	@sk_dst_cache: destination cache
163   *	@sk_dst_lock: destination cache lock
164   *	@sk_policy: flow policy
165   *	@sk_rmem_alloc: receive queue bytes committed
166   *	@sk_receive_queue: incoming packets
167   *	@sk_wmem_alloc: transmit queue bytes committed
168   *	@sk_write_queue: Packet sending queue
169   *	@sk_async_wait_queue: DMA copied packets
170   *	@sk_omem_alloc: "o" is "option" or "other"
171   *	@sk_wmem_queued: persistent queue size
172   *	@sk_forward_alloc: space allocated forward
173   *	@sk_allocation: allocation mode
174   *	@sk_sndbuf: size of send buffer in bytes
175   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
176   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
177   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
178   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
179   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
180   *	@sk_gso_max_size: Maximum GSO segment size to build
181   *	@sk_lingertime: %SO_LINGER l_linger setting
182   *	@sk_backlog: always used with the per-socket spinlock held
183   *	@sk_callback_lock: used with the callbacks in the end of this struct
184   *	@sk_error_queue: rarely used
185   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
186   *			  IPV6_ADDRFORM for instance)
187   *	@sk_err: last error
188   *	@sk_err_soft: errors that don't cause failure but are the cause of a
189   *		      persistent failure not just 'timed out'
190   *	@sk_drops: raw/udp drops counter
191   *	@sk_ack_backlog: current listen backlog
192   *	@sk_max_ack_backlog: listen backlog set in listen()
193   *	@sk_priority: %SO_PRIORITY setting
194   *	@sk_type: socket type (%SOCK_STREAM, etc)
195   *	@sk_protocol: which protocol this socket belongs in this network family
196   *	@sk_peercred: %SO_PEERCRED setting
197   *	@sk_rcvlowat: %SO_RCVLOWAT setting
198   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
199   *	@sk_sndtimeo: %SO_SNDTIMEO setting
200   *	@sk_filter: socket filtering instructions
201   *	@sk_protinfo: private area, net family specific, when not using slab
202   *	@sk_timer: sock cleanup timer
203   *	@sk_stamp: time stamp of last packet received
204   *	@sk_socket: Identd and reporting IO signals
205   *	@sk_user_data: RPC layer private data
206   *	@sk_sndmsg_page: cached page for sendmsg
207   *	@sk_sndmsg_off: cached offset for sendmsg
208   *	@sk_send_head: front of stuff to transmit
209   *	@sk_security: used by security modules
210   *	@sk_mark: generic packet mark
211   *	@sk_write_pending: a write to stream socket waits to start
212   *	@sk_state_change: callback to indicate change in the state of the sock
213   *	@sk_data_ready: callback to indicate there is data to be processed
214   *	@sk_write_space: callback to indicate there is bf sending space available
215   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
216   *	@sk_backlog_rcv: callback to process the backlog
217   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
218  */
219 struct sock {
220 	/*
221 	 * Now struct inet_timewait_sock also uses sock_common, so please just
222 	 * don't add nothing before this first member (__sk_common) --acme
223 	 */
224 	struct sock_common	__sk_common;
225 #define sk_node			__sk_common.skc_node
226 #define sk_nulls_node		__sk_common.skc_nulls_node
227 #define sk_refcnt		__sk_common.skc_refcnt
228 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
229 
230 #define sk_copy_start		__sk_common.skc_hash
231 #define sk_hash			__sk_common.skc_hash
232 #define sk_family		__sk_common.skc_family
233 #define sk_state		__sk_common.skc_state
234 #define sk_reuse		__sk_common.skc_reuse
235 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
236 #define sk_bind_node		__sk_common.skc_bind_node
237 #define sk_prot			__sk_common.skc_prot
238 #define sk_net			__sk_common.skc_net
239 	kmemcheck_bitfield_begin(flags);
240 	unsigned int		sk_shutdown  : 2,
241 				sk_no_check  : 2,
242 				sk_userlocks : 4,
243 				sk_protocol  : 8,
244 				sk_type      : 16;
245 	kmemcheck_bitfield_end(flags);
246 	int			sk_rcvbuf;
247 	socket_lock_t		sk_lock;
248 	/*
249 	 * The backlog queue is special, it is always used with
250 	 * the per-socket spinlock held and requires low latency
251 	 * access. Therefore we special case it's implementation.
252 	 */
253 	struct {
254 		struct sk_buff *head;
255 		struct sk_buff *tail;
256 	} sk_backlog;
257 	wait_queue_head_t	*sk_sleep;
258 	struct dst_entry	*sk_dst_cache;
259 #ifdef CONFIG_XFRM
260 	struct xfrm_policy	*sk_policy[2];
261 #endif
262 	rwlock_t		sk_dst_lock;
263 	atomic_t		sk_rmem_alloc;
264 	atomic_t		sk_wmem_alloc;
265 	atomic_t		sk_omem_alloc;
266 	int			sk_sndbuf;
267 	struct sk_buff_head	sk_receive_queue;
268 	struct sk_buff_head	sk_write_queue;
269 #ifdef CONFIG_NET_DMA
270 	struct sk_buff_head	sk_async_wait_queue;
271 #endif
272 	int			sk_wmem_queued;
273 	int			sk_forward_alloc;
274 	gfp_t			sk_allocation;
275 	int			sk_route_caps;
276 	int			sk_gso_type;
277 	unsigned int		sk_gso_max_size;
278 	int			sk_rcvlowat;
279 	unsigned long 		sk_flags;
280 	unsigned long	        sk_lingertime;
281 	struct sk_buff_head	sk_error_queue;
282 	struct proto		*sk_prot_creator;
283 	rwlock_t		sk_callback_lock;
284 	int			sk_err,
285 				sk_err_soft;
286 	atomic_t		sk_drops;
287 	unsigned short		sk_ack_backlog;
288 	unsigned short		sk_max_ack_backlog;
289 	__u32			sk_priority;
290 	struct ucred		sk_peercred;
291 	long			sk_rcvtimeo;
292 	long			sk_sndtimeo;
293 	struct sk_filter      	*sk_filter;
294 	void			*sk_protinfo;
295 	struct timer_list	sk_timer;
296 	ktime_t			sk_stamp;
297 	struct socket		*sk_socket;
298 	void			*sk_user_data;
299 	struct page		*sk_sndmsg_page;
300 	struct sk_buff		*sk_send_head;
301 	__u32			sk_sndmsg_off;
302 	int			sk_write_pending;
303 #ifdef CONFIG_SECURITY
304 	void			*sk_security;
305 #endif
306 	__u32			sk_mark;
307 	/* XXX 4 bytes hole on 64 bit */
308 	void			(*sk_state_change)(struct sock *sk);
309 	void			(*sk_data_ready)(struct sock *sk, int bytes);
310 	void			(*sk_write_space)(struct sock *sk);
311 	void			(*sk_error_report)(struct sock *sk);
312   	int			(*sk_backlog_rcv)(struct sock *sk,
313 						  struct sk_buff *skb);
314 	void                    (*sk_destruct)(struct sock *sk);
315 };
316 
317 /*
318  * Hashed lists helper routines
319  */
320 static inline struct sock *__sk_head(const struct hlist_head *head)
321 {
322 	return hlist_entry(head->first, struct sock, sk_node);
323 }
324 
325 static inline struct sock *sk_head(const struct hlist_head *head)
326 {
327 	return hlist_empty(head) ? NULL : __sk_head(head);
328 }
329 
330 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
331 {
332 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
333 }
334 
335 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
336 {
337 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
338 }
339 
340 static inline struct sock *sk_next(const struct sock *sk)
341 {
342 	return sk->sk_node.next ?
343 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
344 }
345 
346 static inline struct sock *sk_nulls_next(const struct sock *sk)
347 {
348 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
349 		hlist_nulls_entry(sk->sk_nulls_node.next,
350 				  struct sock, sk_nulls_node) :
351 		NULL;
352 }
353 
354 static inline int sk_unhashed(const struct sock *sk)
355 {
356 	return hlist_unhashed(&sk->sk_node);
357 }
358 
359 static inline int sk_hashed(const struct sock *sk)
360 {
361 	return !sk_unhashed(sk);
362 }
363 
364 static __inline__ void sk_node_init(struct hlist_node *node)
365 {
366 	node->pprev = NULL;
367 }
368 
369 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
370 {
371 	node->pprev = NULL;
372 }
373 
374 static __inline__ void __sk_del_node(struct sock *sk)
375 {
376 	__hlist_del(&sk->sk_node);
377 }
378 
379 static __inline__ int __sk_del_node_init(struct sock *sk)
380 {
381 	if (sk_hashed(sk)) {
382 		__sk_del_node(sk);
383 		sk_node_init(&sk->sk_node);
384 		return 1;
385 	}
386 	return 0;
387 }
388 
389 /* Grab socket reference count. This operation is valid only
390    when sk is ALREADY grabbed f.e. it is found in hash table
391    or a list and the lookup is made under lock preventing hash table
392    modifications.
393  */
394 
395 static inline void sock_hold(struct sock *sk)
396 {
397 	atomic_inc(&sk->sk_refcnt);
398 }
399 
400 /* Ungrab socket in the context, which assumes that socket refcnt
401    cannot hit zero, f.e. it is true in context of any socketcall.
402  */
403 static inline void __sock_put(struct sock *sk)
404 {
405 	atomic_dec(&sk->sk_refcnt);
406 }
407 
408 static __inline__ int sk_del_node_init(struct sock *sk)
409 {
410 	int rc = __sk_del_node_init(sk);
411 
412 	if (rc) {
413 		/* paranoid for a while -acme */
414 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
415 		__sock_put(sk);
416 	}
417 	return rc;
418 }
419 
420 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
421 {
422 	if (sk_hashed(sk)) {
423 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
424 		return 1;
425 	}
426 	return 0;
427 }
428 
429 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
430 {
431 	int rc = __sk_nulls_del_node_init_rcu(sk);
432 
433 	if (rc) {
434 		/* paranoid for a while -acme */
435 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
436 		__sock_put(sk);
437 	}
438 	return rc;
439 }
440 
441 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
442 {
443 	hlist_add_head(&sk->sk_node, list);
444 }
445 
446 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
447 {
448 	sock_hold(sk);
449 	__sk_add_node(sk, list);
450 }
451 
452 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
453 {
454 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
455 }
456 
457 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
458 {
459 	sock_hold(sk);
460 	__sk_nulls_add_node_rcu(sk, list);
461 }
462 
463 static __inline__ void __sk_del_bind_node(struct sock *sk)
464 {
465 	__hlist_del(&sk->sk_bind_node);
466 }
467 
468 static __inline__ void sk_add_bind_node(struct sock *sk,
469 					struct hlist_head *list)
470 {
471 	hlist_add_head(&sk->sk_bind_node, list);
472 }
473 
474 #define sk_for_each(__sk, node, list) \
475 	hlist_for_each_entry(__sk, node, list, sk_node)
476 #define sk_nulls_for_each(__sk, node, list) \
477 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
478 #define sk_nulls_for_each_rcu(__sk, node, list) \
479 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
480 #define sk_for_each_from(__sk, node) \
481 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
482 		hlist_for_each_entry_from(__sk, node, sk_node)
483 #define sk_nulls_for_each_from(__sk, node) \
484 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
485 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
486 #define sk_for_each_continue(__sk, node) \
487 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
488 		hlist_for_each_entry_continue(__sk, node, sk_node)
489 #define sk_for_each_safe(__sk, node, tmp, list) \
490 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
491 #define sk_for_each_bound(__sk, node, list) \
492 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
493 
494 /* Sock flags */
495 enum sock_flags {
496 	SOCK_DEAD,
497 	SOCK_DONE,
498 	SOCK_URGINLINE,
499 	SOCK_KEEPOPEN,
500 	SOCK_LINGER,
501 	SOCK_DESTROY,
502 	SOCK_BROADCAST,
503 	SOCK_TIMESTAMP,
504 	SOCK_ZAPPED,
505 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
506 	SOCK_DBG, /* %SO_DEBUG setting */
507 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
508 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
509 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
510 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
511 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
512 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
513 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
514 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
515 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
516 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
517 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
518 	SOCK_FASYNC, /* fasync() active */
519 	SOCK_RXQ_OVFL,
520 };
521 
522 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
523 {
524 	nsk->sk_flags = osk->sk_flags;
525 }
526 
527 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
528 {
529 	__set_bit(flag, &sk->sk_flags);
530 }
531 
532 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
533 {
534 	__clear_bit(flag, &sk->sk_flags);
535 }
536 
537 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
538 {
539 	return test_bit(flag, &sk->sk_flags);
540 }
541 
542 static inline void sk_acceptq_removed(struct sock *sk)
543 {
544 	sk->sk_ack_backlog--;
545 }
546 
547 static inline void sk_acceptq_added(struct sock *sk)
548 {
549 	sk->sk_ack_backlog++;
550 }
551 
552 static inline int sk_acceptq_is_full(struct sock *sk)
553 {
554 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
555 }
556 
557 /*
558  * Compute minimal free write space needed to queue new packets.
559  */
560 static inline int sk_stream_min_wspace(struct sock *sk)
561 {
562 	return sk->sk_wmem_queued >> 1;
563 }
564 
565 static inline int sk_stream_wspace(struct sock *sk)
566 {
567 	return sk->sk_sndbuf - sk->sk_wmem_queued;
568 }
569 
570 extern void sk_stream_write_space(struct sock *sk);
571 
572 static inline int sk_stream_memory_free(struct sock *sk)
573 {
574 	return sk->sk_wmem_queued < sk->sk_sndbuf;
575 }
576 
577 /* The per-socket spinlock must be held here. */
578 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
579 {
580 	if (!sk->sk_backlog.tail) {
581 		sk->sk_backlog.head = sk->sk_backlog.tail = skb;
582 	} else {
583 		sk->sk_backlog.tail->next = skb;
584 		sk->sk_backlog.tail = skb;
585 	}
586 	skb->next = NULL;
587 }
588 
589 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
590 {
591 	return sk->sk_backlog_rcv(sk, skb);
592 }
593 
594 #define sk_wait_event(__sk, __timeo, __condition)			\
595 	({	int __rc;						\
596 		release_sock(__sk);					\
597 		__rc = __condition;					\
598 		if (!__rc) {						\
599 			*(__timeo) = schedule_timeout(*(__timeo));	\
600 		}							\
601 		lock_sock(__sk);					\
602 		__rc = __condition;					\
603 		__rc;							\
604 	})
605 
606 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
607 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
608 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
609 extern int sk_stream_error(struct sock *sk, int flags, int err);
610 extern void sk_stream_kill_queues(struct sock *sk);
611 
612 extern int sk_wait_data(struct sock *sk, long *timeo);
613 
614 struct request_sock_ops;
615 struct timewait_sock_ops;
616 struct inet_hashinfo;
617 struct raw_hashinfo;
618 
619 /* Networking protocol blocks we attach to sockets.
620  * socket layer -> transport layer interface
621  * transport -> network interface is defined by struct inet_proto
622  */
623 struct proto {
624 	void			(*close)(struct sock *sk,
625 					long timeout);
626 	int			(*connect)(struct sock *sk,
627 				        struct sockaddr *uaddr,
628 					int addr_len);
629 	int			(*disconnect)(struct sock *sk, int flags);
630 
631 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
632 
633 	int			(*ioctl)(struct sock *sk, int cmd,
634 					 unsigned long arg);
635 	int			(*init)(struct sock *sk);
636 	void			(*destroy)(struct sock *sk);
637 	void			(*shutdown)(struct sock *sk, int how);
638 	int			(*setsockopt)(struct sock *sk, int level,
639 					int optname, char __user *optval,
640 					unsigned int optlen);
641 	int			(*getsockopt)(struct sock *sk, int level,
642 					int optname, char __user *optval,
643 					int __user *option);
644 #ifdef CONFIG_COMPAT
645 	int			(*compat_setsockopt)(struct sock *sk,
646 					int level,
647 					int optname, char __user *optval,
648 					unsigned int optlen);
649 	int			(*compat_getsockopt)(struct sock *sk,
650 					int level,
651 					int optname, char __user *optval,
652 					int __user *option);
653 #endif
654 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
655 					   struct msghdr *msg, size_t len);
656 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
657 					   struct msghdr *msg,
658 					size_t len, int noblock, int flags,
659 					int *addr_len);
660 	int			(*sendpage)(struct sock *sk, struct page *page,
661 					int offset, size_t size, int flags);
662 	int			(*bind)(struct sock *sk,
663 					struct sockaddr *uaddr, int addr_len);
664 
665 	int			(*backlog_rcv) (struct sock *sk,
666 						struct sk_buff *skb);
667 
668 	/* Keeping track of sk's, looking them up, and port selection methods. */
669 	void			(*hash)(struct sock *sk);
670 	void			(*unhash)(struct sock *sk);
671 	int			(*get_port)(struct sock *sk, unsigned short snum);
672 
673 	/* Keeping track of sockets in use */
674 #ifdef CONFIG_PROC_FS
675 	unsigned int		inuse_idx;
676 #endif
677 
678 	/* Memory pressure */
679 	void			(*enter_memory_pressure)(struct sock *sk);
680 	atomic_t		*memory_allocated;	/* Current allocated memory. */
681 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
682 	/*
683 	 * Pressure flag: try to collapse.
684 	 * Technical note: it is used by multiple contexts non atomically.
685 	 * All the __sk_mem_schedule() is of this nature: accounting
686 	 * is strict, actions are advisory and have some latency.
687 	 */
688 	int			*memory_pressure;
689 	int			*sysctl_mem;
690 	int			*sysctl_wmem;
691 	int			*sysctl_rmem;
692 	int			max_header;
693 
694 	struct kmem_cache	*slab;
695 	unsigned int		obj_size;
696 	int			slab_flags;
697 
698 	struct percpu_counter	*orphan_count;
699 
700 	struct request_sock_ops	*rsk_prot;
701 	struct timewait_sock_ops *twsk_prot;
702 
703 	union {
704 		struct inet_hashinfo	*hashinfo;
705 		struct udp_table	*udp_table;
706 		struct raw_hashinfo	*raw_hash;
707 	} h;
708 
709 	struct module		*owner;
710 
711 	char			name[32];
712 
713 	struct list_head	node;
714 #ifdef SOCK_REFCNT_DEBUG
715 	atomic_t		socks;
716 #endif
717 };
718 
719 extern int proto_register(struct proto *prot, int alloc_slab);
720 extern void proto_unregister(struct proto *prot);
721 
722 #ifdef SOCK_REFCNT_DEBUG
723 static inline void sk_refcnt_debug_inc(struct sock *sk)
724 {
725 	atomic_inc(&sk->sk_prot->socks);
726 }
727 
728 static inline void sk_refcnt_debug_dec(struct sock *sk)
729 {
730 	atomic_dec(&sk->sk_prot->socks);
731 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
732 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
733 }
734 
735 static inline void sk_refcnt_debug_release(const struct sock *sk)
736 {
737 	if (atomic_read(&sk->sk_refcnt) != 1)
738 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
739 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
740 }
741 #else /* SOCK_REFCNT_DEBUG */
742 #define sk_refcnt_debug_inc(sk) do { } while (0)
743 #define sk_refcnt_debug_dec(sk) do { } while (0)
744 #define sk_refcnt_debug_release(sk) do { } while (0)
745 #endif /* SOCK_REFCNT_DEBUG */
746 
747 
748 #ifdef CONFIG_PROC_FS
749 /* Called with local bh disabled */
750 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
751 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
752 #else
753 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
754 		int inc)
755 {
756 }
757 #endif
758 
759 
760 /* With per-bucket locks this operation is not-atomic, so that
761  * this version is not worse.
762  */
763 static inline void __sk_prot_rehash(struct sock *sk)
764 {
765 	sk->sk_prot->unhash(sk);
766 	sk->sk_prot->hash(sk);
767 }
768 
769 /* About 10 seconds */
770 #define SOCK_DESTROY_TIME (10*HZ)
771 
772 /* Sockets 0-1023 can't be bound to unless you are superuser */
773 #define PROT_SOCK	1024
774 
775 #define SHUTDOWN_MASK	3
776 #define RCV_SHUTDOWN	1
777 #define SEND_SHUTDOWN	2
778 
779 #define SOCK_SNDBUF_LOCK	1
780 #define SOCK_RCVBUF_LOCK	2
781 #define SOCK_BINDADDR_LOCK	4
782 #define SOCK_BINDPORT_LOCK	8
783 
784 /* sock_iocb: used to kick off async processing of socket ios */
785 struct sock_iocb {
786 	struct list_head	list;
787 
788 	int			flags;
789 	int			size;
790 	struct socket		*sock;
791 	struct sock		*sk;
792 	struct scm_cookie	*scm;
793 	struct msghdr		*msg, async_msg;
794 	struct kiocb		*kiocb;
795 };
796 
797 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
798 {
799 	return (struct sock_iocb *)iocb->private;
800 }
801 
802 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
803 {
804 	return si->kiocb;
805 }
806 
807 struct socket_alloc {
808 	struct socket socket;
809 	struct inode vfs_inode;
810 };
811 
812 static inline struct socket *SOCKET_I(struct inode *inode)
813 {
814 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
815 }
816 
817 static inline struct inode *SOCK_INODE(struct socket *socket)
818 {
819 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
820 }
821 
822 /*
823  * Functions for memory accounting
824  */
825 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
826 extern void __sk_mem_reclaim(struct sock *sk);
827 
828 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
829 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
830 #define SK_MEM_SEND	0
831 #define SK_MEM_RECV	1
832 
833 static inline int sk_mem_pages(int amt)
834 {
835 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
836 }
837 
838 static inline int sk_has_account(struct sock *sk)
839 {
840 	/* return true if protocol supports memory accounting */
841 	return !!sk->sk_prot->memory_allocated;
842 }
843 
844 static inline int sk_wmem_schedule(struct sock *sk, int size)
845 {
846 	if (!sk_has_account(sk))
847 		return 1;
848 	return size <= sk->sk_forward_alloc ||
849 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
850 }
851 
852 static inline int sk_rmem_schedule(struct sock *sk, int size)
853 {
854 	if (!sk_has_account(sk))
855 		return 1;
856 	return size <= sk->sk_forward_alloc ||
857 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
858 }
859 
860 static inline void sk_mem_reclaim(struct sock *sk)
861 {
862 	if (!sk_has_account(sk))
863 		return;
864 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
865 		__sk_mem_reclaim(sk);
866 }
867 
868 static inline void sk_mem_reclaim_partial(struct sock *sk)
869 {
870 	if (!sk_has_account(sk))
871 		return;
872 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
873 		__sk_mem_reclaim(sk);
874 }
875 
876 static inline void sk_mem_charge(struct sock *sk, int size)
877 {
878 	if (!sk_has_account(sk))
879 		return;
880 	sk->sk_forward_alloc -= size;
881 }
882 
883 static inline void sk_mem_uncharge(struct sock *sk, int size)
884 {
885 	if (!sk_has_account(sk))
886 		return;
887 	sk->sk_forward_alloc += size;
888 }
889 
890 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
891 {
892 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
893 	sk->sk_wmem_queued -= skb->truesize;
894 	sk_mem_uncharge(sk, skb->truesize);
895 	__kfree_skb(skb);
896 }
897 
898 /* Used by processes to "lock" a socket state, so that
899  * interrupts and bottom half handlers won't change it
900  * from under us. It essentially blocks any incoming
901  * packets, so that we won't get any new data or any
902  * packets that change the state of the socket.
903  *
904  * While locked, BH processing will add new packets to
905  * the backlog queue.  This queue is processed by the
906  * owner of the socket lock right before it is released.
907  *
908  * Since ~2.3.5 it is also exclusive sleep lock serializing
909  * accesses from user process context.
910  */
911 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
912 
913 /*
914  * Macro so as to not evaluate some arguments when
915  * lockdep is not enabled.
916  *
917  * Mark both the sk_lock and the sk_lock.slock as a
918  * per-address-family lock class.
919  */
920 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
921 do {									\
922 	sk->sk_lock.owned = 0;						\
923 	init_waitqueue_head(&sk->sk_lock.wq);				\
924 	spin_lock_init(&(sk)->sk_lock.slock);				\
925 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
926 			sizeof((sk)->sk_lock));				\
927 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
928 		       	(skey), (sname));				\
929 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
930 } while (0)
931 
932 extern void lock_sock_nested(struct sock *sk, int subclass);
933 
934 static inline void lock_sock(struct sock *sk)
935 {
936 	lock_sock_nested(sk, 0);
937 }
938 
939 extern void release_sock(struct sock *sk);
940 
941 /* BH context may only use the following locking interface. */
942 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
943 #define bh_lock_sock_nested(__sk) \
944 				spin_lock_nested(&((__sk)->sk_lock.slock), \
945 				SINGLE_DEPTH_NESTING)
946 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
947 
948 extern struct sock		*sk_alloc(struct net *net, int family,
949 					  gfp_t priority,
950 					  struct proto *prot);
951 extern void			sk_free(struct sock *sk);
952 extern void			sk_release_kernel(struct sock *sk);
953 extern struct sock		*sk_clone(const struct sock *sk,
954 					  const gfp_t priority);
955 
956 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
957 					      unsigned long size, int force,
958 					      gfp_t priority);
959 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
960 					      unsigned long size, int force,
961 					      gfp_t priority);
962 extern void			sock_wfree(struct sk_buff *skb);
963 extern void			sock_rfree(struct sk_buff *skb);
964 
965 extern int			sock_setsockopt(struct socket *sock, int level,
966 						int op, char __user *optval,
967 						unsigned int optlen);
968 
969 extern int			sock_getsockopt(struct socket *sock, int level,
970 						int op, char __user *optval,
971 						int __user *optlen);
972 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
973 						     unsigned long size,
974 						     int noblock,
975 						     int *errcode);
976 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
977 						      unsigned long header_len,
978 						      unsigned long data_len,
979 						      int noblock,
980 						      int *errcode);
981 extern void *sock_kmalloc(struct sock *sk, int size,
982 			  gfp_t priority);
983 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
984 extern void sk_send_sigurg(struct sock *sk);
985 
986 /*
987  * Functions to fill in entries in struct proto_ops when a protocol
988  * does not implement a particular function.
989  */
990 extern int                      sock_no_bind(struct socket *,
991 					     struct sockaddr *, int);
992 extern int                      sock_no_connect(struct socket *,
993 						struct sockaddr *, int, int);
994 extern int                      sock_no_socketpair(struct socket *,
995 						   struct socket *);
996 extern int                      sock_no_accept(struct socket *,
997 					       struct socket *, int);
998 extern int                      sock_no_getname(struct socket *,
999 						struct sockaddr *, int *, int);
1000 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1001 					     struct poll_table_struct *);
1002 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1003 					      unsigned long);
1004 extern int			sock_no_listen(struct socket *, int);
1005 extern int                      sock_no_shutdown(struct socket *, int);
1006 extern int			sock_no_getsockopt(struct socket *, int , int,
1007 						   char __user *, int __user *);
1008 extern int			sock_no_setsockopt(struct socket *, int, int,
1009 						   char __user *, unsigned int);
1010 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1011 						struct msghdr *, size_t);
1012 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1013 						struct msghdr *, size_t, int);
1014 extern int			sock_no_mmap(struct file *file,
1015 					     struct socket *sock,
1016 					     struct vm_area_struct *vma);
1017 extern ssize_t			sock_no_sendpage(struct socket *sock,
1018 						struct page *page,
1019 						int offset, size_t size,
1020 						int flags);
1021 
1022 /*
1023  * Functions to fill in entries in struct proto_ops when a protocol
1024  * uses the inet style.
1025  */
1026 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1027 				  char __user *optval, int __user *optlen);
1028 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1029 			       struct msghdr *msg, size_t size, int flags);
1030 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1031 				  char __user *optval, unsigned int optlen);
1032 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1033 		int optname, char __user *optval, int __user *optlen);
1034 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1035 		int optname, char __user *optval, unsigned int optlen);
1036 
1037 extern void sk_common_release(struct sock *sk);
1038 
1039 /*
1040  *	Default socket callbacks and setup code
1041  */
1042 
1043 /* Initialise core socket variables */
1044 extern void sock_init_data(struct socket *sock, struct sock *sk);
1045 
1046 /**
1047  *	sk_filter_release: Release a socket filter
1048  *	@fp: filter to remove
1049  *
1050  *	Remove a filter from a socket and release its resources.
1051  */
1052 
1053 static inline void sk_filter_release(struct sk_filter *fp)
1054 {
1055 	if (atomic_dec_and_test(&fp->refcnt))
1056 		kfree(fp);
1057 }
1058 
1059 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1060 {
1061 	unsigned int size = sk_filter_len(fp);
1062 
1063 	atomic_sub(size, &sk->sk_omem_alloc);
1064 	sk_filter_release(fp);
1065 }
1066 
1067 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1068 {
1069 	atomic_inc(&fp->refcnt);
1070 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1071 }
1072 
1073 /*
1074  * Socket reference counting postulates.
1075  *
1076  * * Each user of socket SHOULD hold a reference count.
1077  * * Each access point to socket (an hash table bucket, reference from a list,
1078  *   running timer, skb in flight MUST hold a reference count.
1079  * * When reference count hits 0, it means it will never increase back.
1080  * * When reference count hits 0, it means that no references from
1081  *   outside exist to this socket and current process on current CPU
1082  *   is last user and may/should destroy this socket.
1083  * * sk_free is called from any context: process, BH, IRQ. When
1084  *   it is called, socket has no references from outside -> sk_free
1085  *   may release descendant resources allocated by the socket, but
1086  *   to the time when it is called, socket is NOT referenced by any
1087  *   hash tables, lists etc.
1088  * * Packets, delivered from outside (from network or from another process)
1089  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1090  *   when they sit in queue. Otherwise, packets will leak to hole, when
1091  *   socket is looked up by one cpu and unhasing is made by another CPU.
1092  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1093  *   (leak to backlog). Packet socket does all the processing inside
1094  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1095  *   use separate SMP lock, so that they are prone too.
1096  */
1097 
1098 /* Ungrab socket and destroy it, if it was the last reference. */
1099 static inline void sock_put(struct sock *sk)
1100 {
1101 	if (atomic_dec_and_test(&sk->sk_refcnt))
1102 		sk_free(sk);
1103 }
1104 
1105 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1106 			  const int nested);
1107 
1108 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1109 {
1110 	sk->sk_tx_queue_mapping = tx_queue;
1111 }
1112 
1113 static inline void sk_tx_queue_clear(struct sock *sk)
1114 {
1115 	sk->sk_tx_queue_mapping = -1;
1116 }
1117 
1118 static inline int sk_tx_queue_get(const struct sock *sk)
1119 {
1120 	return sk->sk_tx_queue_mapping;
1121 }
1122 
1123 static inline bool sk_tx_queue_recorded(const struct sock *sk)
1124 {
1125 	return (sk && sk->sk_tx_queue_mapping >= 0);
1126 }
1127 
1128 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1129 {
1130 	sk_tx_queue_clear(sk);
1131 	sk->sk_socket = sock;
1132 }
1133 
1134 /* Detach socket from process context.
1135  * Announce socket dead, detach it from wait queue and inode.
1136  * Note that parent inode held reference count on this struct sock,
1137  * we do not release it in this function, because protocol
1138  * probably wants some additional cleanups or even continuing
1139  * to work with this socket (TCP).
1140  */
1141 static inline void sock_orphan(struct sock *sk)
1142 {
1143 	write_lock_bh(&sk->sk_callback_lock);
1144 	sock_set_flag(sk, SOCK_DEAD);
1145 	sk_set_socket(sk, NULL);
1146 	sk->sk_sleep  = NULL;
1147 	write_unlock_bh(&sk->sk_callback_lock);
1148 }
1149 
1150 static inline void sock_graft(struct sock *sk, struct socket *parent)
1151 {
1152 	write_lock_bh(&sk->sk_callback_lock);
1153 	sk->sk_sleep = &parent->wait;
1154 	parent->sk = sk;
1155 	sk_set_socket(sk, parent);
1156 	security_sock_graft(sk, parent);
1157 	write_unlock_bh(&sk->sk_callback_lock);
1158 }
1159 
1160 extern int sock_i_uid(struct sock *sk);
1161 extern unsigned long sock_i_ino(struct sock *sk);
1162 
1163 static inline struct dst_entry *
1164 __sk_dst_get(struct sock *sk)
1165 {
1166 	return sk->sk_dst_cache;
1167 }
1168 
1169 static inline struct dst_entry *
1170 sk_dst_get(struct sock *sk)
1171 {
1172 	struct dst_entry *dst;
1173 
1174 	read_lock(&sk->sk_dst_lock);
1175 	dst = sk->sk_dst_cache;
1176 	if (dst)
1177 		dst_hold(dst);
1178 	read_unlock(&sk->sk_dst_lock);
1179 	return dst;
1180 }
1181 
1182 static inline void
1183 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1184 {
1185 	struct dst_entry *old_dst;
1186 
1187 	sk_tx_queue_clear(sk);
1188 	old_dst = sk->sk_dst_cache;
1189 	sk->sk_dst_cache = dst;
1190 	dst_release(old_dst);
1191 }
1192 
1193 static inline void
1194 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1195 {
1196 	write_lock(&sk->sk_dst_lock);
1197 	__sk_dst_set(sk, dst);
1198 	write_unlock(&sk->sk_dst_lock);
1199 }
1200 
1201 static inline void
1202 __sk_dst_reset(struct sock *sk)
1203 {
1204 	struct dst_entry *old_dst;
1205 
1206 	sk_tx_queue_clear(sk);
1207 	old_dst = sk->sk_dst_cache;
1208 	sk->sk_dst_cache = NULL;
1209 	dst_release(old_dst);
1210 }
1211 
1212 static inline void
1213 sk_dst_reset(struct sock *sk)
1214 {
1215 	write_lock(&sk->sk_dst_lock);
1216 	__sk_dst_reset(sk);
1217 	write_unlock(&sk->sk_dst_lock);
1218 }
1219 
1220 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1221 
1222 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1223 
1224 static inline int sk_can_gso(const struct sock *sk)
1225 {
1226 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1227 }
1228 
1229 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1230 
1231 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1232 				   struct sk_buff *skb, struct page *page,
1233 				   int off, int copy)
1234 {
1235 	if (skb->ip_summed == CHECKSUM_NONE) {
1236 		int err = 0;
1237 		__wsum csum = csum_and_copy_from_user(from,
1238 						     page_address(page) + off,
1239 							    copy, 0, &err);
1240 		if (err)
1241 			return err;
1242 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1243 	} else if (copy_from_user(page_address(page) + off, from, copy))
1244 		return -EFAULT;
1245 
1246 	skb->len	     += copy;
1247 	skb->data_len	     += copy;
1248 	skb->truesize	     += copy;
1249 	sk->sk_wmem_queued   += copy;
1250 	sk_mem_charge(sk, copy);
1251 	return 0;
1252 }
1253 
1254 /**
1255  * sk_wmem_alloc_get - returns write allocations
1256  * @sk: socket
1257  *
1258  * Returns sk_wmem_alloc minus initial offset of one
1259  */
1260 static inline int sk_wmem_alloc_get(const struct sock *sk)
1261 {
1262 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1263 }
1264 
1265 /**
1266  * sk_rmem_alloc_get - returns read allocations
1267  * @sk: socket
1268  *
1269  * Returns sk_rmem_alloc
1270  */
1271 static inline int sk_rmem_alloc_get(const struct sock *sk)
1272 {
1273 	return atomic_read(&sk->sk_rmem_alloc);
1274 }
1275 
1276 /**
1277  * sk_has_allocations - check if allocations are outstanding
1278  * @sk: socket
1279  *
1280  * Returns true if socket has write or read allocations
1281  */
1282 static inline int sk_has_allocations(const struct sock *sk)
1283 {
1284 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1285 }
1286 
1287 /**
1288  * sk_has_sleeper - check if there are any waiting processes
1289  * @sk: socket
1290  *
1291  * Returns true if socket has waiting processes
1292  *
1293  * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1294  * barrier call. They were added due to the race found within the tcp code.
1295  *
1296  * Consider following tcp code paths:
1297  *
1298  * CPU1                  CPU2
1299  *
1300  * sys_select            receive packet
1301  *   ...                 ...
1302  *   __add_wait_queue    update tp->rcv_nxt
1303  *   ...                 ...
1304  *   tp->rcv_nxt check   sock_def_readable
1305  *   ...                 {
1306  *   schedule               ...
1307  *                          if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1308  *                              wake_up_interruptible(sk->sk_sleep)
1309  *                          ...
1310  *                       }
1311  *
1312  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1313  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1314  * could then endup calling schedule and sleep forever if there are no more
1315  * data on the socket.
1316  *
1317  * The sk_has_sleeper is always called right after a call to read_lock, so we
1318  * can use smp_mb__after_lock barrier.
1319  */
1320 static inline int sk_has_sleeper(struct sock *sk)
1321 {
1322 	/*
1323 	 * We need to be sure we are in sync with the
1324 	 * add_wait_queue modifications to the wait queue.
1325 	 *
1326 	 * This memory barrier is paired in the sock_poll_wait.
1327 	 */
1328 	smp_mb__after_lock();
1329 	return sk->sk_sleep && waitqueue_active(sk->sk_sleep);
1330 }
1331 
1332 /**
1333  * sock_poll_wait - place memory barrier behind the poll_wait call.
1334  * @filp:           file
1335  * @wait_address:   socket wait queue
1336  * @p:              poll_table
1337  *
1338  * See the comments in the sk_has_sleeper function.
1339  */
1340 static inline void sock_poll_wait(struct file *filp,
1341 		wait_queue_head_t *wait_address, poll_table *p)
1342 {
1343 	if (p && wait_address) {
1344 		poll_wait(filp, wait_address, p);
1345 		/*
1346 		 * We need to be sure we are in sync with the
1347 		 * socket flags modification.
1348 		 *
1349 		 * This memory barrier is paired in the sk_has_sleeper.
1350 		*/
1351 		smp_mb();
1352 	}
1353 }
1354 
1355 /*
1356  * 	Queue a received datagram if it will fit. Stream and sequenced
1357  *	protocols can't normally use this as they need to fit buffers in
1358  *	and play with them.
1359  *
1360  * 	Inlined as it's very short and called for pretty much every
1361  *	packet ever received.
1362  */
1363 
1364 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1365 {
1366 	skb_orphan(skb);
1367 	skb->sk = sk;
1368 	skb->destructor = sock_wfree;
1369 	/*
1370 	 * We used to take a refcount on sk, but following operation
1371 	 * is enough to guarantee sk_free() wont free this sock until
1372 	 * all in-flight packets are completed
1373 	 */
1374 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1375 }
1376 
1377 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1378 {
1379 	skb_orphan(skb);
1380 	skb->sk = sk;
1381 	skb->destructor = sock_rfree;
1382 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1383 	sk_mem_charge(sk, skb->truesize);
1384 }
1385 
1386 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1387 			   unsigned long expires);
1388 
1389 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1390 
1391 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1392 
1393 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1394 {
1395 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1396 	   number of warnings when compiling with -W --ANK
1397 	 */
1398 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1399 	    (unsigned)sk->sk_rcvbuf)
1400 		return -ENOMEM;
1401 	skb_set_owner_r(skb, sk);
1402 	skb_queue_tail(&sk->sk_error_queue, skb);
1403 	if (!sock_flag(sk, SOCK_DEAD))
1404 		sk->sk_data_ready(sk, skb->len);
1405 	return 0;
1406 }
1407 
1408 /*
1409  *	Recover an error report and clear atomically
1410  */
1411 
1412 static inline int sock_error(struct sock *sk)
1413 {
1414 	int err;
1415 	if (likely(!sk->sk_err))
1416 		return 0;
1417 	err = xchg(&sk->sk_err, 0);
1418 	return -err;
1419 }
1420 
1421 static inline unsigned long sock_wspace(struct sock *sk)
1422 {
1423 	int amt = 0;
1424 
1425 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1426 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1427 		if (amt < 0)
1428 			amt = 0;
1429 	}
1430 	return amt;
1431 }
1432 
1433 static inline void sk_wake_async(struct sock *sk, int how, int band)
1434 {
1435 	if (sock_flag(sk, SOCK_FASYNC))
1436 		sock_wake_async(sk->sk_socket, how, band);
1437 }
1438 
1439 #define SOCK_MIN_SNDBUF 2048
1440 #define SOCK_MIN_RCVBUF 256
1441 
1442 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1443 {
1444 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1445 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1446 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1447 	}
1448 }
1449 
1450 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1451 
1452 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1453 {
1454 	struct page *page = NULL;
1455 
1456 	page = alloc_pages(sk->sk_allocation, 0);
1457 	if (!page) {
1458 		sk->sk_prot->enter_memory_pressure(sk);
1459 		sk_stream_moderate_sndbuf(sk);
1460 	}
1461 	return page;
1462 }
1463 
1464 /*
1465  *	Default write policy as shown to user space via poll/select/SIGIO
1466  */
1467 static inline int sock_writeable(const struct sock *sk)
1468 {
1469 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1470 }
1471 
1472 static inline gfp_t gfp_any(void)
1473 {
1474 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1475 }
1476 
1477 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1478 {
1479 	return noblock ? 0 : sk->sk_rcvtimeo;
1480 }
1481 
1482 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1483 {
1484 	return noblock ? 0 : sk->sk_sndtimeo;
1485 }
1486 
1487 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1488 {
1489 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1490 }
1491 
1492 /* Alas, with timeout socket operations are not restartable.
1493  * Compare this to poll().
1494  */
1495 static inline int sock_intr_errno(long timeo)
1496 {
1497 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1498 }
1499 
1500 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1501 	struct sk_buff *skb);
1502 
1503 static __inline__ void
1504 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1505 {
1506 	ktime_t kt = skb->tstamp;
1507 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1508 
1509 	/*
1510 	 * generate control messages if
1511 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1512 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1513 	 * - software time stamp available and wanted
1514 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1515 	 * - hardware time stamps available and wanted
1516 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1517 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1518 	 */
1519 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1520 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1521 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1522 	    (hwtstamps->hwtstamp.tv64 &&
1523 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1524 	    (hwtstamps->syststamp.tv64 &&
1525 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1526 		__sock_recv_timestamp(msg, sk, skb);
1527 	else
1528 		sk->sk_stamp = kt;
1529 }
1530 
1531 extern void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb);
1532 
1533 /**
1534  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1535  * @msg:	outgoing packet
1536  * @sk:		socket sending this packet
1537  * @shtx:	filled with instructions for time stamping
1538  *
1539  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1540  * parameters are invalid.
1541  */
1542 extern int sock_tx_timestamp(struct msghdr *msg,
1543 			     struct sock *sk,
1544 			     union skb_shared_tx *shtx);
1545 
1546 
1547 /**
1548  * sk_eat_skb - Release a skb if it is no longer needed
1549  * @sk: socket to eat this skb from
1550  * @skb: socket buffer to eat
1551  * @copied_early: flag indicating whether DMA operations copied this data early
1552  *
1553  * This routine must be called with interrupts disabled or with the socket
1554  * locked so that the sk_buff queue operation is ok.
1555 */
1556 #ifdef CONFIG_NET_DMA
1557 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1558 {
1559 	__skb_unlink(skb, &sk->sk_receive_queue);
1560 	if (!copied_early)
1561 		__kfree_skb(skb);
1562 	else
1563 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1564 }
1565 #else
1566 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1567 {
1568 	__skb_unlink(skb, &sk->sk_receive_queue);
1569 	__kfree_skb(skb);
1570 }
1571 #endif
1572 
1573 static inline
1574 struct net *sock_net(const struct sock *sk)
1575 {
1576 #ifdef CONFIG_NET_NS
1577 	return sk->sk_net;
1578 #else
1579 	return &init_net;
1580 #endif
1581 }
1582 
1583 static inline
1584 void sock_net_set(struct sock *sk, struct net *net)
1585 {
1586 #ifdef CONFIG_NET_NS
1587 	sk->sk_net = net;
1588 #endif
1589 }
1590 
1591 /*
1592  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1593  * They should not hold a referrence to a namespace in order to allow
1594  * to stop it.
1595  * Sockets after sk_change_net should be released using sk_release_kernel
1596  */
1597 static inline void sk_change_net(struct sock *sk, struct net *net)
1598 {
1599 	put_net(sock_net(sk));
1600 	sock_net_set(sk, hold_net(net));
1601 }
1602 
1603 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1604 {
1605 	if (unlikely(skb->sk)) {
1606 		struct sock *sk = skb->sk;
1607 
1608 		skb->destructor = NULL;
1609 		skb->sk = NULL;
1610 		return sk;
1611 	}
1612 	return NULL;
1613 }
1614 
1615 extern void sock_enable_timestamp(struct sock *sk, int flag);
1616 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1617 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1618 
1619 /*
1620  *	Enable debug/info messages
1621  */
1622 extern int net_msg_warn;
1623 #define NETDEBUG(fmt, args...) \
1624 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1625 
1626 #define LIMIT_NETDEBUG(fmt, args...) \
1627 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1628 
1629 extern __u32 sysctl_wmem_max;
1630 extern __u32 sysctl_rmem_max;
1631 
1632 extern void sk_init(void);
1633 
1634 extern int sysctl_optmem_max;
1635 
1636 extern __u32 sysctl_wmem_default;
1637 extern __u32 sysctl_rmem_default;
1638 
1639 #endif	/* _SOCK_H */
1640