1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 #include <linux/wait.h> 62 #include <linux/cgroup-defs.h> 63 64 #include <linux/filter.h> 65 #include <linux/rculist_nulls.h> 66 #include <linux/poll.h> 67 68 #include <linux/atomic.h> 69 #include <net/dst.h> 70 #include <net/checksum.h> 71 #include <net/tcp_states.h> 72 #include <linux/net_tstamp.h> 73 #include <net/smc.h> 74 75 /* 76 * This structure really needs to be cleaned up. 77 * Most of it is for TCP, and not used by any of 78 * the other protocols. 79 */ 80 81 /* Define this to get the SOCK_DBG debugging facility. */ 82 #define SOCK_DEBUGGING 83 #ifdef SOCK_DEBUGGING 84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 85 printk(KERN_DEBUG msg); } while (0) 86 #else 87 /* Validate arguments and do nothing */ 88 static inline __printf(2, 3) 89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 90 { 91 } 92 #endif 93 94 /* This is the per-socket lock. The spinlock provides a synchronization 95 * between user contexts and software interrupt processing, whereas the 96 * mini-semaphore synchronizes multiple users amongst themselves. 97 */ 98 typedef struct { 99 spinlock_t slock; 100 int owned; 101 wait_queue_head_t wq; 102 /* 103 * We express the mutex-alike socket_lock semantics 104 * to the lock validator by explicitly managing 105 * the slock as a lock variant (in addition to 106 * the slock itself): 107 */ 108 #ifdef CONFIG_DEBUG_LOCK_ALLOC 109 struct lockdep_map dep_map; 110 #endif 111 } socket_lock_t; 112 113 struct sock; 114 struct proto; 115 struct net; 116 117 typedef __u32 __bitwise __portpair; 118 typedef __u64 __bitwise __addrpair; 119 120 /** 121 * struct sock_common - minimal network layer representation of sockets 122 * @skc_daddr: Foreign IPv4 addr 123 * @skc_rcv_saddr: Bound local IPv4 addr 124 * @skc_hash: hash value used with various protocol lookup tables 125 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 126 * @skc_dport: placeholder for inet_dport/tw_dport 127 * @skc_num: placeholder for inet_num/tw_num 128 * @skc_family: network address family 129 * @skc_state: Connection state 130 * @skc_reuse: %SO_REUSEADDR setting 131 * @skc_reuseport: %SO_REUSEPORT setting 132 * @skc_bound_dev_if: bound device index if != 0 133 * @skc_bind_node: bind hash linkage for various protocol lookup tables 134 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 135 * @skc_prot: protocol handlers inside a network family 136 * @skc_net: reference to the network namespace of this socket 137 * @skc_node: main hash linkage for various protocol lookup tables 138 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 139 * @skc_tx_queue_mapping: tx queue number for this connection 140 * @skc_flags: place holder for sk_flags 141 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 142 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 143 * @skc_incoming_cpu: record/match cpu processing incoming packets 144 * @skc_refcnt: reference count 145 * 146 * This is the minimal network layer representation of sockets, the header 147 * for struct sock and struct inet_timewait_sock. 148 */ 149 struct sock_common { 150 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 151 * address on 64bit arches : cf INET_MATCH() 152 */ 153 union { 154 __addrpair skc_addrpair; 155 struct { 156 __be32 skc_daddr; 157 __be32 skc_rcv_saddr; 158 }; 159 }; 160 union { 161 unsigned int skc_hash; 162 __u16 skc_u16hashes[2]; 163 }; 164 /* skc_dport && skc_num must be grouped as well */ 165 union { 166 __portpair skc_portpair; 167 struct { 168 __be16 skc_dport; 169 __u16 skc_num; 170 }; 171 }; 172 173 unsigned short skc_family; 174 volatile unsigned char skc_state; 175 unsigned char skc_reuse:4; 176 unsigned char skc_reuseport:1; 177 unsigned char skc_ipv6only:1; 178 unsigned char skc_net_refcnt:1; 179 int skc_bound_dev_if; 180 union { 181 struct hlist_node skc_bind_node; 182 struct hlist_node skc_portaddr_node; 183 }; 184 struct proto *skc_prot; 185 possible_net_t skc_net; 186 187 #if IS_ENABLED(CONFIG_IPV6) 188 struct in6_addr skc_v6_daddr; 189 struct in6_addr skc_v6_rcv_saddr; 190 #endif 191 192 atomic64_t skc_cookie; 193 194 /* following fields are padding to force 195 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 196 * assuming IPV6 is enabled. We use this padding differently 197 * for different kind of 'sockets' 198 */ 199 union { 200 unsigned long skc_flags; 201 struct sock *skc_listener; /* request_sock */ 202 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 203 }; 204 /* 205 * fields between dontcopy_begin/dontcopy_end 206 * are not copied in sock_copy() 207 */ 208 /* private: */ 209 int skc_dontcopy_begin[0]; 210 /* public: */ 211 union { 212 struct hlist_node skc_node; 213 struct hlist_nulls_node skc_nulls_node; 214 }; 215 int skc_tx_queue_mapping; 216 union { 217 int skc_incoming_cpu; 218 u32 skc_rcv_wnd; 219 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 220 }; 221 222 atomic_t skc_refcnt; 223 /* private: */ 224 int skc_dontcopy_end[0]; 225 union { 226 u32 skc_rxhash; 227 u32 skc_window_clamp; 228 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 229 }; 230 /* public: */ 231 }; 232 233 /** 234 * struct sock - network layer representation of sockets 235 * @__sk_common: shared layout with inet_timewait_sock 236 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 237 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 238 * @sk_lock: synchronizer 239 * @sk_rcvbuf: size of receive buffer in bytes 240 * @sk_wq: sock wait queue and async head 241 * @sk_rx_dst: receive input route used by early demux 242 * @sk_dst_cache: destination cache 243 * @sk_dst_pending_confirm: need to confirm neighbour 244 * @sk_policy: flow policy 245 * @sk_receive_queue: incoming packets 246 * @sk_wmem_alloc: transmit queue bytes committed 247 * @sk_write_queue: Packet sending queue 248 * @sk_omem_alloc: "o" is "option" or "other" 249 * @sk_wmem_queued: persistent queue size 250 * @sk_forward_alloc: space allocated forward 251 * @sk_napi_id: id of the last napi context to receive data for sk 252 * @sk_ll_usec: usecs to busypoll when there is no data 253 * @sk_allocation: allocation mode 254 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 255 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 256 * @sk_sndbuf: size of send buffer in bytes 257 * @sk_padding: unused element for alignment 258 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 259 * @sk_no_check_rx: allow zero checksum in RX packets 260 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 261 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 262 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 263 * @sk_gso_max_size: Maximum GSO segment size to build 264 * @sk_gso_max_segs: Maximum number of GSO segments 265 * @sk_lingertime: %SO_LINGER l_linger setting 266 * @sk_backlog: always used with the per-socket spinlock held 267 * @sk_callback_lock: used with the callbacks in the end of this struct 268 * @sk_error_queue: rarely used 269 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 270 * IPV6_ADDRFORM for instance) 271 * @sk_err: last error 272 * @sk_err_soft: errors that don't cause failure but are the cause of a 273 * persistent failure not just 'timed out' 274 * @sk_drops: raw/udp drops counter 275 * @sk_ack_backlog: current listen backlog 276 * @sk_max_ack_backlog: listen backlog set in listen() 277 * @sk_priority: %SO_PRIORITY setting 278 * @sk_type: socket type (%SOCK_STREAM, etc) 279 * @sk_protocol: which protocol this socket belongs in this network family 280 * @sk_peer_pid: &struct pid for this socket's peer 281 * @sk_peer_cred: %SO_PEERCRED setting 282 * @sk_rcvlowat: %SO_RCVLOWAT setting 283 * @sk_rcvtimeo: %SO_RCVTIMEO setting 284 * @sk_sndtimeo: %SO_SNDTIMEO setting 285 * @sk_txhash: computed flow hash for use on transmit 286 * @sk_filter: socket filtering instructions 287 * @sk_timer: sock cleanup timer 288 * @sk_stamp: time stamp of last packet received 289 * @sk_tsflags: SO_TIMESTAMPING socket options 290 * @sk_tskey: counter to disambiguate concurrent tstamp requests 291 * @sk_socket: Identd and reporting IO signals 292 * @sk_user_data: RPC layer private data 293 * @sk_frag: cached page frag 294 * @sk_peek_off: current peek_offset value 295 * @sk_send_head: front of stuff to transmit 296 * @sk_security: used by security modules 297 * @sk_mark: generic packet mark 298 * @sk_cgrp_data: cgroup data for this cgroup 299 * @sk_memcg: this socket's memory cgroup association 300 * @sk_write_pending: a write to stream socket waits to start 301 * @sk_state_change: callback to indicate change in the state of the sock 302 * @sk_data_ready: callback to indicate there is data to be processed 303 * @sk_write_space: callback to indicate there is bf sending space available 304 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 305 * @sk_backlog_rcv: callback to process the backlog 306 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 307 * @sk_reuseport_cb: reuseport group container 308 * @sk_rcu: used during RCU grace period 309 */ 310 struct sock { 311 /* 312 * Now struct inet_timewait_sock also uses sock_common, so please just 313 * don't add nothing before this first member (__sk_common) --acme 314 */ 315 struct sock_common __sk_common; 316 #define sk_node __sk_common.skc_node 317 #define sk_nulls_node __sk_common.skc_nulls_node 318 #define sk_refcnt __sk_common.skc_refcnt 319 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 320 321 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 322 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 323 #define sk_hash __sk_common.skc_hash 324 #define sk_portpair __sk_common.skc_portpair 325 #define sk_num __sk_common.skc_num 326 #define sk_dport __sk_common.skc_dport 327 #define sk_addrpair __sk_common.skc_addrpair 328 #define sk_daddr __sk_common.skc_daddr 329 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 330 #define sk_family __sk_common.skc_family 331 #define sk_state __sk_common.skc_state 332 #define sk_reuse __sk_common.skc_reuse 333 #define sk_reuseport __sk_common.skc_reuseport 334 #define sk_ipv6only __sk_common.skc_ipv6only 335 #define sk_net_refcnt __sk_common.skc_net_refcnt 336 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 337 #define sk_bind_node __sk_common.skc_bind_node 338 #define sk_prot __sk_common.skc_prot 339 #define sk_net __sk_common.skc_net 340 #define sk_v6_daddr __sk_common.skc_v6_daddr 341 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 342 #define sk_cookie __sk_common.skc_cookie 343 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 344 #define sk_flags __sk_common.skc_flags 345 #define sk_rxhash __sk_common.skc_rxhash 346 347 socket_lock_t sk_lock; 348 atomic_t sk_drops; 349 int sk_rcvlowat; 350 struct sk_buff_head sk_error_queue; 351 struct sk_buff_head sk_receive_queue; 352 /* 353 * The backlog queue is special, it is always used with 354 * the per-socket spinlock held and requires low latency 355 * access. Therefore we special case it's implementation. 356 * Note : rmem_alloc is in this structure to fill a hole 357 * on 64bit arches, not because its logically part of 358 * backlog. 359 */ 360 struct { 361 atomic_t rmem_alloc; 362 int len; 363 struct sk_buff *head; 364 struct sk_buff *tail; 365 } sk_backlog; 366 #define sk_rmem_alloc sk_backlog.rmem_alloc 367 368 int sk_forward_alloc; 369 #ifdef CONFIG_NET_RX_BUSY_POLL 370 unsigned int sk_ll_usec; 371 /* ===== mostly read cache line ===== */ 372 unsigned int sk_napi_id; 373 #endif 374 int sk_rcvbuf; 375 376 struct sk_filter __rcu *sk_filter; 377 union { 378 struct socket_wq __rcu *sk_wq; 379 struct socket_wq *sk_wq_raw; 380 }; 381 #ifdef CONFIG_XFRM 382 struct xfrm_policy __rcu *sk_policy[2]; 383 #endif 384 struct dst_entry *sk_rx_dst; 385 struct dst_entry __rcu *sk_dst_cache; 386 atomic_t sk_omem_alloc; 387 int sk_sndbuf; 388 389 /* ===== cache line for TX ===== */ 390 int sk_wmem_queued; 391 atomic_t sk_wmem_alloc; 392 unsigned long sk_tsq_flags; 393 struct sk_buff *sk_send_head; 394 struct sk_buff_head sk_write_queue; 395 __s32 sk_peek_off; 396 int sk_write_pending; 397 __u32 sk_dst_pending_confirm; 398 /* Note: 32bit hole on 64bit arches */ 399 long sk_sndtimeo; 400 struct timer_list sk_timer; 401 __u32 sk_priority; 402 __u32 sk_mark; 403 u32 sk_pacing_rate; /* bytes per second */ 404 u32 sk_max_pacing_rate; 405 struct page_frag sk_frag; 406 netdev_features_t sk_route_caps; 407 netdev_features_t sk_route_nocaps; 408 int sk_gso_type; 409 unsigned int sk_gso_max_size; 410 gfp_t sk_allocation; 411 __u32 sk_txhash; 412 413 /* 414 * Because of non atomicity rules, all 415 * changes are protected by socket lock. 416 */ 417 unsigned int __sk_flags_offset[0]; 418 #ifdef __BIG_ENDIAN_BITFIELD 419 #define SK_FL_PROTO_SHIFT 16 420 #define SK_FL_PROTO_MASK 0x00ff0000 421 422 #define SK_FL_TYPE_SHIFT 0 423 #define SK_FL_TYPE_MASK 0x0000ffff 424 #else 425 #define SK_FL_PROTO_SHIFT 8 426 #define SK_FL_PROTO_MASK 0x0000ff00 427 428 #define SK_FL_TYPE_SHIFT 16 429 #define SK_FL_TYPE_MASK 0xffff0000 430 #endif 431 432 kmemcheck_bitfield_begin(flags); 433 unsigned int sk_padding : 2, 434 sk_no_check_tx : 1, 435 sk_no_check_rx : 1, 436 sk_userlocks : 4, 437 sk_protocol : 8, 438 sk_type : 16; 439 #define SK_PROTOCOL_MAX U8_MAX 440 kmemcheck_bitfield_end(flags); 441 442 u16 sk_gso_max_segs; 443 unsigned long sk_lingertime; 444 struct proto *sk_prot_creator; 445 rwlock_t sk_callback_lock; 446 int sk_err, 447 sk_err_soft; 448 u32 sk_ack_backlog; 449 u32 sk_max_ack_backlog; 450 kuid_t sk_uid; 451 struct pid *sk_peer_pid; 452 const struct cred *sk_peer_cred; 453 long sk_rcvtimeo; 454 ktime_t sk_stamp; 455 u16 sk_tsflags; 456 u8 sk_shutdown; 457 u32 sk_tskey; 458 struct socket *sk_socket; 459 void *sk_user_data; 460 #ifdef CONFIG_SECURITY 461 void *sk_security; 462 #endif 463 struct sock_cgroup_data sk_cgrp_data; 464 struct mem_cgroup *sk_memcg; 465 void (*sk_state_change)(struct sock *sk); 466 void (*sk_data_ready)(struct sock *sk); 467 void (*sk_write_space)(struct sock *sk); 468 void (*sk_error_report)(struct sock *sk); 469 int (*sk_backlog_rcv)(struct sock *sk, 470 struct sk_buff *skb); 471 void (*sk_destruct)(struct sock *sk); 472 struct sock_reuseport __rcu *sk_reuseport_cb; 473 struct rcu_head sk_rcu; 474 }; 475 476 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 477 478 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 479 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 480 481 /* 482 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 483 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 484 * on a socket means that the socket will reuse everybody else's port 485 * without looking at the other's sk_reuse value. 486 */ 487 488 #define SK_NO_REUSE 0 489 #define SK_CAN_REUSE 1 490 #define SK_FORCE_REUSE 2 491 492 int sk_set_peek_off(struct sock *sk, int val); 493 494 static inline int sk_peek_offset(struct sock *sk, int flags) 495 { 496 if (unlikely(flags & MSG_PEEK)) { 497 s32 off = READ_ONCE(sk->sk_peek_off); 498 if (off >= 0) 499 return off; 500 } 501 502 return 0; 503 } 504 505 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 506 { 507 s32 off = READ_ONCE(sk->sk_peek_off); 508 509 if (unlikely(off >= 0)) { 510 off = max_t(s32, off - val, 0); 511 WRITE_ONCE(sk->sk_peek_off, off); 512 } 513 } 514 515 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 516 { 517 sk_peek_offset_bwd(sk, -val); 518 } 519 520 /* 521 * Hashed lists helper routines 522 */ 523 static inline struct sock *sk_entry(const struct hlist_node *node) 524 { 525 return hlist_entry(node, struct sock, sk_node); 526 } 527 528 static inline struct sock *__sk_head(const struct hlist_head *head) 529 { 530 return hlist_entry(head->first, struct sock, sk_node); 531 } 532 533 static inline struct sock *sk_head(const struct hlist_head *head) 534 { 535 return hlist_empty(head) ? NULL : __sk_head(head); 536 } 537 538 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 539 { 540 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 541 } 542 543 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 544 { 545 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 546 } 547 548 static inline struct sock *sk_next(const struct sock *sk) 549 { 550 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 551 } 552 553 static inline struct sock *sk_nulls_next(const struct sock *sk) 554 { 555 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 556 hlist_nulls_entry(sk->sk_nulls_node.next, 557 struct sock, sk_nulls_node) : 558 NULL; 559 } 560 561 static inline bool sk_unhashed(const struct sock *sk) 562 { 563 return hlist_unhashed(&sk->sk_node); 564 } 565 566 static inline bool sk_hashed(const struct sock *sk) 567 { 568 return !sk_unhashed(sk); 569 } 570 571 static inline void sk_node_init(struct hlist_node *node) 572 { 573 node->pprev = NULL; 574 } 575 576 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 577 { 578 node->pprev = NULL; 579 } 580 581 static inline void __sk_del_node(struct sock *sk) 582 { 583 __hlist_del(&sk->sk_node); 584 } 585 586 /* NB: equivalent to hlist_del_init_rcu */ 587 static inline bool __sk_del_node_init(struct sock *sk) 588 { 589 if (sk_hashed(sk)) { 590 __sk_del_node(sk); 591 sk_node_init(&sk->sk_node); 592 return true; 593 } 594 return false; 595 } 596 597 /* Grab socket reference count. This operation is valid only 598 when sk is ALREADY grabbed f.e. it is found in hash table 599 or a list and the lookup is made under lock preventing hash table 600 modifications. 601 */ 602 603 static __always_inline void sock_hold(struct sock *sk) 604 { 605 atomic_inc(&sk->sk_refcnt); 606 } 607 608 /* Ungrab socket in the context, which assumes that socket refcnt 609 cannot hit zero, f.e. it is true in context of any socketcall. 610 */ 611 static __always_inline void __sock_put(struct sock *sk) 612 { 613 atomic_dec(&sk->sk_refcnt); 614 } 615 616 static inline bool sk_del_node_init(struct sock *sk) 617 { 618 bool rc = __sk_del_node_init(sk); 619 620 if (rc) { 621 /* paranoid for a while -acme */ 622 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 623 __sock_put(sk); 624 } 625 return rc; 626 } 627 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 628 629 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 630 { 631 if (sk_hashed(sk)) { 632 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 633 return true; 634 } 635 return false; 636 } 637 638 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 639 { 640 bool rc = __sk_nulls_del_node_init_rcu(sk); 641 642 if (rc) { 643 /* paranoid for a while -acme */ 644 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 645 __sock_put(sk); 646 } 647 return rc; 648 } 649 650 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 651 { 652 hlist_add_head(&sk->sk_node, list); 653 } 654 655 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 656 { 657 sock_hold(sk); 658 __sk_add_node(sk, list); 659 } 660 661 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 662 { 663 sock_hold(sk); 664 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 665 sk->sk_family == AF_INET6) 666 hlist_add_tail_rcu(&sk->sk_node, list); 667 else 668 hlist_add_head_rcu(&sk->sk_node, list); 669 } 670 671 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 672 { 673 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 674 sk->sk_family == AF_INET6) 675 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 676 else 677 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 678 } 679 680 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 681 { 682 sock_hold(sk); 683 __sk_nulls_add_node_rcu(sk, list); 684 } 685 686 static inline void __sk_del_bind_node(struct sock *sk) 687 { 688 __hlist_del(&sk->sk_bind_node); 689 } 690 691 static inline void sk_add_bind_node(struct sock *sk, 692 struct hlist_head *list) 693 { 694 hlist_add_head(&sk->sk_bind_node, list); 695 } 696 697 #define sk_for_each(__sk, list) \ 698 hlist_for_each_entry(__sk, list, sk_node) 699 #define sk_for_each_rcu(__sk, list) \ 700 hlist_for_each_entry_rcu(__sk, list, sk_node) 701 #define sk_nulls_for_each(__sk, node, list) \ 702 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 703 #define sk_nulls_for_each_rcu(__sk, node, list) \ 704 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 705 #define sk_for_each_from(__sk) \ 706 hlist_for_each_entry_from(__sk, sk_node) 707 #define sk_nulls_for_each_from(__sk, node) \ 708 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 709 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 710 #define sk_for_each_safe(__sk, tmp, list) \ 711 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 712 #define sk_for_each_bound(__sk, list) \ 713 hlist_for_each_entry(__sk, list, sk_bind_node) 714 715 /** 716 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 717 * @tpos: the type * to use as a loop cursor. 718 * @pos: the &struct hlist_node to use as a loop cursor. 719 * @head: the head for your list. 720 * @offset: offset of hlist_node within the struct. 721 * 722 */ 723 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 724 for (pos = rcu_dereference((head)->first); \ 725 pos != NULL && \ 726 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 727 pos = rcu_dereference(pos->next)) 728 729 static inline struct user_namespace *sk_user_ns(struct sock *sk) 730 { 731 /* Careful only use this in a context where these parameters 732 * can not change and must all be valid, such as recvmsg from 733 * userspace. 734 */ 735 return sk->sk_socket->file->f_cred->user_ns; 736 } 737 738 /* Sock flags */ 739 enum sock_flags { 740 SOCK_DEAD, 741 SOCK_DONE, 742 SOCK_URGINLINE, 743 SOCK_KEEPOPEN, 744 SOCK_LINGER, 745 SOCK_DESTROY, 746 SOCK_BROADCAST, 747 SOCK_TIMESTAMP, 748 SOCK_ZAPPED, 749 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 750 SOCK_DBG, /* %SO_DEBUG setting */ 751 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 752 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 753 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 754 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 755 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 756 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 757 SOCK_FASYNC, /* fasync() active */ 758 SOCK_RXQ_OVFL, 759 SOCK_ZEROCOPY, /* buffers from userspace */ 760 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 761 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 762 * Will use last 4 bytes of packet sent from 763 * user-space instead. 764 */ 765 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 766 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 767 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 768 }; 769 770 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 771 772 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 773 { 774 nsk->sk_flags = osk->sk_flags; 775 } 776 777 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 778 { 779 __set_bit(flag, &sk->sk_flags); 780 } 781 782 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 783 { 784 __clear_bit(flag, &sk->sk_flags); 785 } 786 787 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 788 { 789 return test_bit(flag, &sk->sk_flags); 790 } 791 792 #ifdef CONFIG_NET 793 extern struct static_key memalloc_socks; 794 static inline int sk_memalloc_socks(void) 795 { 796 return static_key_false(&memalloc_socks); 797 } 798 #else 799 800 static inline int sk_memalloc_socks(void) 801 { 802 return 0; 803 } 804 805 #endif 806 807 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 808 { 809 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 810 } 811 812 static inline void sk_acceptq_removed(struct sock *sk) 813 { 814 sk->sk_ack_backlog--; 815 } 816 817 static inline void sk_acceptq_added(struct sock *sk) 818 { 819 sk->sk_ack_backlog++; 820 } 821 822 static inline bool sk_acceptq_is_full(const struct sock *sk) 823 { 824 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 825 } 826 827 /* 828 * Compute minimal free write space needed to queue new packets. 829 */ 830 static inline int sk_stream_min_wspace(const struct sock *sk) 831 { 832 return sk->sk_wmem_queued >> 1; 833 } 834 835 static inline int sk_stream_wspace(const struct sock *sk) 836 { 837 return sk->sk_sndbuf - sk->sk_wmem_queued; 838 } 839 840 void sk_stream_write_space(struct sock *sk); 841 842 /* OOB backlog add */ 843 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 844 { 845 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 846 skb_dst_force_safe(skb); 847 848 if (!sk->sk_backlog.tail) 849 sk->sk_backlog.head = skb; 850 else 851 sk->sk_backlog.tail->next = skb; 852 853 sk->sk_backlog.tail = skb; 854 skb->next = NULL; 855 } 856 857 /* 858 * Take into account size of receive queue and backlog queue 859 * Do not take into account this skb truesize, 860 * to allow even a single big packet to come. 861 */ 862 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 863 { 864 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 865 866 return qsize > limit; 867 } 868 869 /* The per-socket spinlock must be held here. */ 870 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 871 unsigned int limit) 872 { 873 if (sk_rcvqueues_full(sk, limit)) 874 return -ENOBUFS; 875 876 /* 877 * If the skb was allocated from pfmemalloc reserves, only 878 * allow SOCK_MEMALLOC sockets to use it as this socket is 879 * helping free memory 880 */ 881 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 882 return -ENOMEM; 883 884 __sk_add_backlog(sk, skb); 885 sk->sk_backlog.len += skb->truesize; 886 return 0; 887 } 888 889 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 890 891 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 892 { 893 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 894 return __sk_backlog_rcv(sk, skb); 895 896 return sk->sk_backlog_rcv(sk, skb); 897 } 898 899 static inline void sk_incoming_cpu_update(struct sock *sk) 900 { 901 sk->sk_incoming_cpu = raw_smp_processor_id(); 902 } 903 904 static inline void sock_rps_record_flow_hash(__u32 hash) 905 { 906 #ifdef CONFIG_RPS 907 struct rps_sock_flow_table *sock_flow_table; 908 909 rcu_read_lock(); 910 sock_flow_table = rcu_dereference(rps_sock_flow_table); 911 rps_record_sock_flow(sock_flow_table, hash); 912 rcu_read_unlock(); 913 #endif 914 } 915 916 static inline void sock_rps_record_flow(const struct sock *sk) 917 { 918 #ifdef CONFIG_RPS 919 if (static_key_false(&rfs_needed)) { 920 /* Reading sk->sk_rxhash might incur an expensive cache line 921 * miss. 922 * 923 * TCP_ESTABLISHED does cover almost all states where RFS 924 * might be useful, and is cheaper [1] than testing : 925 * IPv4: inet_sk(sk)->inet_daddr 926 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 927 * OR an additional socket flag 928 * [1] : sk_state and sk_prot are in the same cache line. 929 */ 930 if (sk->sk_state == TCP_ESTABLISHED) 931 sock_rps_record_flow_hash(sk->sk_rxhash); 932 } 933 #endif 934 } 935 936 static inline void sock_rps_save_rxhash(struct sock *sk, 937 const struct sk_buff *skb) 938 { 939 #ifdef CONFIG_RPS 940 if (unlikely(sk->sk_rxhash != skb->hash)) 941 sk->sk_rxhash = skb->hash; 942 #endif 943 } 944 945 static inline void sock_rps_reset_rxhash(struct sock *sk) 946 { 947 #ifdef CONFIG_RPS 948 sk->sk_rxhash = 0; 949 #endif 950 } 951 952 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 953 ({ int __rc; \ 954 release_sock(__sk); \ 955 __rc = __condition; \ 956 if (!__rc) { \ 957 *(__timeo) = wait_woken(__wait, \ 958 TASK_INTERRUPTIBLE, \ 959 *(__timeo)); \ 960 } \ 961 sched_annotate_sleep(); \ 962 lock_sock(__sk); \ 963 __rc = __condition; \ 964 __rc; \ 965 }) 966 967 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 968 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 969 void sk_stream_wait_close(struct sock *sk, long timeo_p); 970 int sk_stream_error(struct sock *sk, int flags, int err); 971 void sk_stream_kill_queues(struct sock *sk); 972 void sk_set_memalloc(struct sock *sk); 973 void sk_clear_memalloc(struct sock *sk); 974 975 void __sk_flush_backlog(struct sock *sk); 976 977 static inline bool sk_flush_backlog(struct sock *sk) 978 { 979 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 980 __sk_flush_backlog(sk); 981 return true; 982 } 983 return false; 984 } 985 986 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 987 988 struct request_sock_ops; 989 struct timewait_sock_ops; 990 struct inet_hashinfo; 991 struct raw_hashinfo; 992 struct smc_hashinfo; 993 struct module; 994 995 /* 996 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 997 * un-modified. Special care is taken when initializing object to zero. 998 */ 999 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1000 { 1001 if (offsetof(struct sock, sk_node.next) != 0) 1002 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1003 memset(&sk->sk_node.pprev, 0, 1004 size - offsetof(struct sock, sk_node.pprev)); 1005 } 1006 1007 /* Networking protocol blocks we attach to sockets. 1008 * socket layer -> transport layer interface 1009 */ 1010 struct proto { 1011 void (*close)(struct sock *sk, 1012 long timeout); 1013 int (*connect)(struct sock *sk, 1014 struct sockaddr *uaddr, 1015 int addr_len); 1016 int (*disconnect)(struct sock *sk, int flags); 1017 1018 struct sock * (*accept)(struct sock *sk, int flags, int *err); 1019 1020 int (*ioctl)(struct sock *sk, int cmd, 1021 unsigned long arg); 1022 int (*init)(struct sock *sk); 1023 void (*destroy)(struct sock *sk); 1024 void (*shutdown)(struct sock *sk, int how); 1025 int (*setsockopt)(struct sock *sk, int level, 1026 int optname, char __user *optval, 1027 unsigned int optlen); 1028 int (*getsockopt)(struct sock *sk, int level, 1029 int optname, char __user *optval, 1030 int __user *option); 1031 void (*keepalive)(struct sock *sk, int valbool); 1032 #ifdef CONFIG_COMPAT 1033 int (*compat_setsockopt)(struct sock *sk, 1034 int level, 1035 int optname, char __user *optval, 1036 unsigned int optlen); 1037 int (*compat_getsockopt)(struct sock *sk, 1038 int level, 1039 int optname, char __user *optval, 1040 int __user *option); 1041 int (*compat_ioctl)(struct sock *sk, 1042 unsigned int cmd, unsigned long arg); 1043 #endif 1044 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1045 size_t len); 1046 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1047 size_t len, int noblock, int flags, 1048 int *addr_len); 1049 int (*sendpage)(struct sock *sk, struct page *page, 1050 int offset, size_t size, int flags); 1051 int (*bind)(struct sock *sk, 1052 struct sockaddr *uaddr, int addr_len); 1053 1054 int (*backlog_rcv) (struct sock *sk, 1055 struct sk_buff *skb); 1056 1057 void (*release_cb)(struct sock *sk); 1058 1059 /* Keeping track of sk's, looking them up, and port selection methods. */ 1060 int (*hash)(struct sock *sk); 1061 void (*unhash)(struct sock *sk); 1062 void (*rehash)(struct sock *sk); 1063 int (*get_port)(struct sock *sk, unsigned short snum); 1064 1065 /* Keeping track of sockets in use */ 1066 #ifdef CONFIG_PROC_FS 1067 unsigned int inuse_idx; 1068 #endif 1069 1070 bool (*stream_memory_free)(const struct sock *sk); 1071 /* Memory pressure */ 1072 void (*enter_memory_pressure)(struct sock *sk); 1073 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1074 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1075 /* 1076 * Pressure flag: try to collapse. 1077 * Technical note: it is used by multiple contexts non atomically. 1078 * All the __sk_mem_schedule() is of this nature: accounting 1079 * is strict, actions are advisory and have some latency. 1080 */ 1081 int *memory_pressure; 1082 long *sysctl_mem; 1083 int *sysctl_wmem; 1084 int *sysctl_rmem; 1085 int max_header; 1086 bool no_autobind; 1087 1088 struct kmem_cache *slab; 1089 unsigned int obj_size; 1090 int slab_flags; 1091 1092 struct percpu_counter *orphan_count; 1093 1094 struct request_sock_ops *rsk_prot; 1095 struct timewait_sock_ops *twsk_prot; 1096 1097 union { 1098 struct inet_hashinfo *hashinfo; 1099 struct udp_table *udp_table; 1100 struct raw_hashinfo *raw_hash; 1101 struct smc_hashinfo *smc_hash; 1102 } h; 1103 1104 struct module *owner; 1105 1106 char name[32]; 1107 1108 struct list_head node; 1109 #ifdef SOCK_REFCNT_DEBUG 1110 atomic_t socks; 1111 #endif 1112 int (*diag_destroy)(struct sock *sk, int err); 1113 }; 1114 1115 int proto_register(struct proto *prot, int alloc_slab); 1116 void proto_unregister(struct proto *prot); 1117 1118 #ifdef SOCK_REFCNT_DEBUG 1119 static inline void sk_refcnt_debug_inc(struct sock *sk) 1120 { 1121 atomic_inc(&sk->sk_prot->socks); 1122 } 1123 1124 static inline void sk_refcnt_debug_dec(struct sock *sk) 1125 { 1126 atomic_dec(&sk->sk_prot->socks); 1127 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1128 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1129 } 1130 1131 static inline void sk_refcnt_debug_release(const struct sock *sk) 1132 { 1133 if (atomic_read(&sk->sk_refcnt) != 1) 1134 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1135 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1136 } 1137 #else /* SOCK_REFCNT_DEBUG */ 1138 #define sk_refcnt_debug_inc(sk) do { } while (0) 1139 #define sk_refcnt_debug_dec(sk) do { } while (0) 1140 #define sk_refcnt_debug_release(sk) do { } while (0) 1141 #endif /* SOCK_REFCNT_DEBUG */ 1142 1143 static inline bool sk_stream_memory_free(const struct sock *sk) 1144 { 1145 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1146 return false; 1147 1148 return sk->sk_prot->stream_memory_free ? 1149 sk->sk_prot->stream_memory_free(sk) : true; 1150 } 1151 1152 static inline bool sk_stream_is_writeable(const struct sock *sk) 1153 { 1154 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1155 sk_stream_memory_free(sk); 1156 } 1157 1158 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1159 struct cgroup *ancestor) 1160 { 1161 #ifdef CONFIG_SOCK_CGROUP_DATA 1162 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1163 ancestor); 1164 #else 1165 return -ENOTSUPP; 1166 #endif 1167 } 1168 1169 static inline bool sk_has_memory_pressure(const struct sock *sk) 1170 { 1171 return sk->sk_prot->memory_pressure != NULL; 1172 } 1173 1174 static inline bool sk_under_memory_pressure(const struct sock *sk) 1175 { 1176 if (!sk->sk_prot->memory_pressure) 1177 return false; 1178 1179 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1180 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1181 return true; 1182 1183 return !!*sk->sk_prot->memory_pressure; 1184 } 1185 1186 static inline void sk_leave_memory_pressure(struct sock *sk) 1187 { 1188 int *memory_pressure = sk->sk_prot->memory_pressure; 1189 1190 if (!memory_pressure) 1191 return; 1192 1193 if (*memory_pressure) 1194 *memory_pressure = 0; 1195 } 1196 1197 static inline void sk_enter_memory_pressure(struct sock *sk) 1198 { 1199 if (!sk->sk_prot->enter_memory_pressure) 1200 return; 1201 1202 sk->sk_prot->enter_memory_pressure(sk); 1203 } 1204 1205 static inline long 1206 sk_memory_allocated(const struct sock *sk) 1207 { 1208 return atomic_long_read(sk->sk_prot->memory_allocated); 1209 } 1210 1211 static inline long 1212 sk_memory_allocated_add(struct sock *sk, int amt) 1213 { 1214 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1215 } 1216 1217 static inline void 1218 sk_memory_allocated_sub(struct sock *sk, int amt) 1219 { 1220 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1221 } 1222 1223 static inline void sk_sockets_allocated_dec(struct sock *sk) 1224 { 1225 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1226 } 1227 1228 static inline void sk_sockets_allocated_inc(struct sock *sk) 1229 { 1230 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1231 } 1232 1233 static inline int 1234 sk_sockets_allocated_read_positive(struct sock *sk) 1235 { 1236 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1237 } 1238 1239 static inline int 1240 proto_sockets_allocated_sum_positive(struct proto *prot) 1241 { 1242 return percpu_counter_sum_positive(prot->sockets_allocated); 1243 } 1244 1245 static inline long 1246 proto_memory_allocated(struct proto *prot) 1247 { 1248 return atomic_long_read(prot->memory_allocated); 1249 } 1250 1251 static inline bool 1252 proto_memory_pressure(struct proto *prot) 1253 { 1254 if (!prot->memory_pressure) 1255 return false; 1256 return !!*prot->memory_pressure; 1257 } 1258 1259 1260 #ifdef CONFIG_PROC_FS 1261 /* Called with local bh disabled */ 1262 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1263 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1264 #else 1265 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1266 int inc) 1267 { 1268 } 1269 #endif 1270 1271 1272 /* With per-bucket locks this operation is not-atomic, so that 1273 * this version is not worse. 1274 */ 1275 static inline int __sk_prot_rehash(struct sock *sk) 1276 { 1277 sk->sk_prot->unhash(sk); 1278 return sk->sk_prot->hash(sk); 1279 } 1280 1281 /* About 10 seconds */ 1282 #define SOCK_DESTROY_TIME (10*HZ) 1283 1284 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1285 #define PROT_SOCK 1024 1286 1287 #define SHUTDOWN_MASK 3 1288 #define RCV_SHUTDOWN 1 1289 #define SEND_SHUTDOWN 2 1290 1291 #define SOCK_SNDBUF_LOCK 1 1292 #define SOCK_RCVBUF_LOCK 2 1293 #define SOCK_BINDADDR_LOCK 4 1294 #define SOCK_BINDPORT_LOCK 8 1295 1296 struct socket_alloc { 1297 struct socket socket; 1298 struct inode vfs_inode; 1299 }; 1300 1301 static inline struct socket *SOCKET_I(struct inode *inode) 1302 { 1303 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1304 } 1305 1306 static inline struct inode *SOCK_INODE(struct socket *socket) 1307 { 1308 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1309 } 1310 1311 /* 1312 * Functions for memory accounting 1313 */ 1314 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1315 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1316 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1317 void __sk_mem_reclaim(struct sock *sk, int amount); 1318 1319 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1320 * do not necessarily have 16x time more memory than 4KB ones. 1321 */ 1322 #define SK_MEM_QUANTUM 4096 1323 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1324 #define SK_MEM_SEND 0 1325 #define SK_MEM_RECV 1 1326 1327 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1328 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1329 { 1330 long val = sk->sk_prot->sysctl_mem[index]; 1331 1332 #if PAGE_SIZE > SK_MEM_QUANTUM 1333 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1334 #elif PAGE_SIZE < SK_MEM_QUANTUM 1335 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1336 #endif 1337 return val; 1338 } 1339 1340 static inline int sk_mem_pages(int amt) 1341 { 1342 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1343 } 1344 1345 static inline bool sk_has_account(struct sock *sk) 1346 { 1347 /* return true if protocol supports memory accounting */ 1348 return !!sk->sk_prot->memory_allocated; 1349 } 1350 1351 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1352 { 1353 if (!sk_has_account(sk)) 1354 return true; 1355 return size <= sk->sk_forward_alloc || 1356 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1357 } 1358 1359 static inline bool 1360 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1361 { 1362 if (!sk_has_account(sk)) 1363 return true; 1364 return size<= sk->sk_forward_alloc || 1365 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1366 skb_pfmemalloc(skb); 1367 } 1368 1369 static inline void sk_mem_reclaim(struct sock *sk) 1370 { 1371 if (!sk_has_account(sk)) 1372 return; 1373 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1374 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1375 } 1376 1377 static inline void sk_mem_reclaim_partial(struct sock *sk) 1378 { 1379 if (!sk_has_account(sk)) 1380 return; 1381 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1382 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1383 } 1384 1385 static inline void sk_mem_charge(struct sock *sk, int size) 1386 { 1387 if (!sk_has_account(sk)) 1388 return; 1389 sk->sk_forward_alloc -= size; 1390 } 1391 1392 static inline void sk_mem_uncharge(struct sock *sk, int size) 1393 { 1394 if (!sk_has_account(sk)) 1395 return; 1396 sk->sk_forward_alloc += size; 1397 1398 /* Avoid a possible overflow. 1399 * TCP send queues can make this happen, if sk_mem_reclaim() 1400 * is not called and more than 2 GBytes are released at once. 1401 * 1402 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1403 * no need to hold that much forward allocation anyway. 1404 */ 1405 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1406 __sk_mem_reclaim(sk, 1 << 20); 1407 } 1408 1409 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1410 { 1411 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1412 sk->sk_wmem_queued -= skb->truesize; 1413 sk_mem_uncharge(sk, skb->truesize); 1414 __kfree_skb(skb); 1415 } 1416 1417 static inline void sock_release_ownership(struct sock *sk) 1418 { 1419 if (sk->sk_lock.owned) { 1420 sk->sk_lock.owned = 0; 1421 1422 /* The sk_lock has mutex_unlock() semantics: */ 1423 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1424 } 1425 } 1426 1427 /* 1428 * Macro so as to not evaluate some arguments when 1429 * lockdep is not enabled. 1430 * 1431 * Mark both the sk_lock and the sk_lock.slock as a 1432 * per-address-family lock class. 1433 */ 1434 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1435 do { \ 1436 sk->sk_lock.owned = 0; \ 1437 init_waitqueue_head(&sk->sk_lock.wq); \ 1438 spin_lock_init(&(sk)->sk_lock.slock); \ 1439 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1440 sizeof((sk)->sk_lock)); \ 1441 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1442 (skey), (sname)); \ 1443 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1444 } while (0) 1445 1446 #ifdef CONFIG_LOCKDEP 1447 static inline bool lockdep_sock_is_held(const struct sock *csk) 1448 { 1449 struct sock *sk = (struct sock *)csk; 1450 1451 return lockdep_is_held(&sk->sk_lock) || 1452 lockdep_is_held(&sk->sk_lock.slock); 1453 } 1454 #endif 1455 1456 void lock_sock_nested(struct sock *sk, int subclass); 1457 1458 static inline void lock_sock(struct sock *sk) 1459 { 1460 lock_sock_nested(sk, 0); 1461 } 1462 1463 void release_sock(struct sock *sk); 1464 1465 /* BH context may only use the following locking interface. */ 1466 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1467 #define bh_lock_sock_nested(__sk) \ 1468 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1469 SINGLE_DEPTH_NESTING) 1470 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1471 1472 bool lock_sock_fast(struct sock *sk); 1473 /** 1474 * unlock_sock_fast - complement of lock_sock_fast 1475 * @sk: socket 1476 * @slow: slow mode 1477 * 1478 * fast unlock socket for user context. 1479 * If slow mode is on, we call regular release_sock() 1480 */ 1481 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1482 { 1483 if (slow) 1484 release_sock(sk); 1485 else 1486 spin_unlock_bh(&sk->sk_lock.slock); 1487 } 1488 1489 /* Used by processes to "lock" a socket state, so that 1490 * interrupts and bottom half handlers won't change it 1491 * from under us. It essentially blocks any incoming 1492 * packets, so that we won't get any new data or any 1493 * packets that change the state of the socket. 1494 * 1495 * While locked, BH processing will add new packets to 1496 * the backlog queue. This queue is processed by the 1497 * owner of the socket lock right before it is released. 1498 * 1499 * Since ~2.3.5 it is also exclusive sleep lock serializing 1500 * accesses from user process context. 1501 */ 1502 1503 static inline void sock_owned_by_me(const struct sock *sk) 1504 { 1505 #ifdef CONFIG_LOCKDEP 1506 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1507 #endif 1508 } 1509 1510 static inline bool sock_owned_by_user(const struct sock *sk) 1511 { 1512 sock_owned_by_me(sk); 1513 return sk->sk_lock.owned; 1514 } 1515 1516 /* no reclassification while locks are held */ 1517 static inline bool sock_allow_reclassification(const struct sock *csk) 1518 { 1519 struct sock *sk = (struct sock *)csk; 1520 1521 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1522 } 1523 1524 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1525 struct proto *prot, int kern); 1526 void sk_free(struct sock *sk); 1527 void sk_destruct(struct sock *sk); 1528 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1529 1530 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1531 gfp_t priority); 1532 void __sock_wfree(struct sk_buff *skb); 1533 void sock_wfree(struct sk_buff *skb); 1534 void skb_orphan_partial(struct sk_buff *skb); 1535 void sock_rfree(struct sk_buff *skb); 1536 void sock_efree(struct sk_buff *skb); 1537 #ifdef CONFIG_INET 1538 void sock_edemux(struct sk_buff *skb); 1539 #else 1540 #define sock_edemux sock_efree 1541 #endif 1542 1543 int sock_setsockopt(struct socket *sock, int level, int op, 1544 char __user *optval, unsigned int optlen); 1545 1546 int sock_getsockopt(struct socket *sock, int level, int op, 1547 char __user *optval, int __user *optlen); 1548 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1549 int noblock, int *errcode); 1550 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1551 unsigned long data_len, int noblock, 1552 int *errcode, int max_page_order); 1553 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1554 void sock_kfree_s(struct sock *sk, void *mem, int size); 1555 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1556 void sk_send_sigurg(struct sock *sk); 1557 1558 struct sockcm_cookie { 1559 u32 mark; 1560 u16 tsflags; 1561 }; 1562 1563 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1564 struct sockcm_cookie *sockc); 1565 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1566 struct sockcm_cookie *sockc); 1567 1568 /* 1569 * Functions to fill in entries in struct proto_ops when a protocol 1570 * does not implement a particular function. 1571 */ 1572 int sock_no_bind(struct socket *, struct sockaddr *, int); 1573 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1574 int sock_no_socketpair(struct socket *, struct socket *); 1575 int sock_no_accept(struct socket *, struct socket *, int); 1576 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1577 unsigned int sock_no_poll(struct file *, struct socket *, 1578 struct poll_table_struct *); 1579 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1580 int sock_no_listen(struct socket *, int); 1581 int sock_no_shutdown(struct socket *, int); 1582 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1583 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1584 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1585 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1586 int sock_no_mmap(struct file *file, struct socket *sock, 1587 struct vm_area_struct *vma); 1588 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1589 size_t size, int flags); 1590 1591 /* 1592 * Functions to fill in entries in struct proto_ops when a protocol 1593 * uses the inet style. 1594 */ 1595 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1596 char __user *optval, int __user *optlen); 1597 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1598 int flags); 1599 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1600 char __user *optval, unsigned int optlen); 1601 int compat_sock_common_getsockopt(struct socket *sock, int level, 1602 int optname, char __user *optval, int __user *optlen); 1603 int compat_sock_common_setsockopt(struct socket *sock, int level, 1604 int optname, char __user *optval, unsigned int optlen); 1605 1606 void sk_common_release(struct sock *sk); 1607 1608 /* 1609 * Default socket callbacks and setup code 1610 */ 1611 1612 /* Initialise core socket variables */ 1613 void sock_init_data(struct socket *sock, struct sock *sk); 1614 1615 /* 1616 * Socket reference counting postulates. 1617 * 1618 * * Each user of socket SHOULD hold a reference count. 1619 * * Each access point to socket (an hash table bucket, reference from a list, 1620 * running timer, skb in flight MUST hold a reference count. 1621 * * When reference count hits 0, it means it will never increase back. 1622 * * When reference count hits 0, it means that no references from 1623 * outside exist to this socket and current process on current CPU 1624 * is last user and may/should destroy this socket. 1625 * * sk_free is called from any context: process, BH, IRQ. When 1626 * it is called, socket has no references from outside -> sk_free 1627 * may release descendant resources allocated by the socket, but 1628 * to the time when it is called, socket is NOT referenced by any 1629 * hash tables, lists etc. 1630 * * Packets, delivered from outside (from network or from another process) 1631 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1632 * when they sit in queue. Otherwise, packets will leak to hole, when 1633 * socket is looked up by one cpu and unhasing is made by another CPU. 1634 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1635 * (leak to backlog). Packet socket does all the processing inside 1636 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1637 * use separate SMP lock, so that they are prone too. 1638 */ 1639 1640 /* Ungrab socket and destroy it, if it was the last reference. */ 1641 static inline void sock_put(struct sock *sk) 1642 { 1643 if (atomic_dec_and_test(&sk->sk_refcnt)) 1644 sk_free(sk); 1645 } 1646 /* Generic version of sock_put(), dealing with all sockets 1647 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1648 */ 1649 void sock_gen_put(struct sock *sk); 1650 1651 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1652 unsigned int trim_cap, bool refcounted); 1653 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1654 const int nested) 1655 { 1656 return __sk_receive_skb(sk, skb, nested, 1, true); 1657 } 1658 1659 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1660 { 1661 sk->sk_tx_queue_mapping = tx_queue; 1662 } 1663 1664 static inline void sk_tx_queue_clear(struct sock *sk) 1665 { 1666 sk->sk_tx_queue_mapping = -1; 1667 } 1668 1669 static inline int sk_tx_queue_get(const struct sock *sk) 1670 { 1671 return sk ? sk->sk_tx_queue_mapping : -1; 1672 } 1673 1674 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1675 { 1676 sk_tx_queue_clear(sk); 1677 sk->sk_socket = sock; 1678 } 1679 1680 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1681 { 1682 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1683 return &rcu_dereference_raw(sk->sk_wq)->wait; 1684 } 1685 /* Detach socket from process context. 1686 * Announce socket dead, detach it from wait queue and inode. 1687 * Note that parent inode held reference count on this struct sock, 1688 * we do not release it in this function, because protocol 1689 * probably wants some additional cleanups or even continuing 1690 * to work with this socket (TCP). 1691 */ 1692 static inline void sock_orphan(struct sock *sk) 1693 { 1694 write_lock_bh(&sk->sk_callback_lock); 1695 sock_set_flag(sk, SOCK_DEAD); 1696 sk_set_socket(sk, NULL); 1697 sk->sk_wq = NULL; 1698 write_unlock_bh(&sk->sk_callback_lock); 1699 } 1700 1701 static inline void sock_graft(struct sock *sk, struct socket *parent) 1702 { 1703 write_lock_bh(&sk->sk_callback_lock); 1704 sk->sk_wq = parent->wq; 1705 parent->sk = sk; 1706 sk_set_socket(sk, parent); 1707 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1708 security_sock_graft(sk, parent); 1709 write_unlock_bh(&sk->sk_callback_lock); 1710 } 1711 1712 kuid_t sock_i_uid(struct sock *sk); 1713 unsigned long sock_i_ino(struct sock *sk); 1714 1715 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1716 { 1717 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1718 } 1719 1720 static inline u32 net_tx_rndhash(void) 1721 { 1722 u32 v = prandom_u32(); 1723 1724 return v ?: 1; 1725 } 1726 1727 static inline void sk_set_txhash(struct sock *sk) 1728 { 1729 sk->sk_txhash = net_tx_rndhash(); 1730 } 1731 1732 static inline void sk_rethink_txhash(struct sock *sk) 1733 { 1734 if (sk->sk_txhash) 1735 sk_set_txhash(sk); 1736 } 1737 1738 static inline struct dst_entry * 1739 __sk_dst_get(struct sock *sk) 1740 { 1741 return rcu_dereference_check(sk->sk_dst_cache, 1742 lockdep_sock_is_held(sk)); 1743 } 1744 1745 static inline struct dst_entry * 1746 sk_dst_get(struct sock *sk) 1747 { 1748 struct dst_entry *dst; 1749 1750 rcu_read_lock(); 1751 dst = rcu_dereference(sk->sk_dst_cache); 1752 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1753 dst = NULL; 1754 rcu_read_unlock(); 1755 return dst; 1756 } 1757 1758 static inline void dst_negative_advice(struct sock *sk) 1759 { 1760 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1761 1762 sk_rethink_txhash(sk); 1763 1764 if (dst && dst->ops->negative_advice) { 1765 ndst = dst->ops->negative_advice(dst); 1766 1767 if (ndst != dst) { 1768 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1769 sk_tx_queue_clear(sk); 1770 sk->sk_dst_pending_confirm = 0; 1771 } 1772 } 1773 } 1774 1775 static inline void 1776 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1777 { 1778 struct dst_entry *old_dst; 1779 1780 sk_tx_queue_clear(sk); 1781 sk->sk_dst_pending_confirm = 0; 1782 /* 1783 * This can be called while sk is owned by the caller only, 1784 * with no state that can be checked in a rcu_dereference_check() cond 1785 */ 1786 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1787 rcu_assign_pointer(sk->sk_dst_cache, dst); 1788 dst_release(old_dst); 1789 } 1790 1791 static inline void 1792 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1793 { 1794 struct dst_entry *old_dst; 1795 1796 sk_tx_queue_clear(sk); 1797 sk->sk_dst_pending_confirm = 0; 1798 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1799 dst_release(old_dst); 1800 } 1801 1802 static inline void 1803 __sk_dst_reset(struct sock *sk) 1804 { 1805 __sk_dst_set(sk, NULL); 1806 } 1807 1808 static inline void 1809 sk_dst_reset(struct sock *sk) 1810 { 1811 sk_dst_set(sk, NULL); 1812 } 1813 1814 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1815 1816 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1817 1818 static inline void sk_dst_confirm(struct sock *sk) 1819 { 1820 if (!sk->sk_dst_pending_confirm) 1821 sk->sk_dst_pending_confirm = 1; 1822 } 1823 1824 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1825 { 1826 if (skb_get_dst_pending_confirm(skb)) { 1827 struct sock *sk = skb->sk; 1828 unsigned long now = jiffies; 1829 1830 /* avoid dirtying neighbour */ 1831 if (n->confirmed != now) 1832 n->confirmed = now; 1833 if (sk && sk->sk_dst_pending_confirm) 1834 sk->sk_dst_pending_confirm = 0; 1835 } 1836 } 1837 1838 bool sk_mc_loop(struct sock *sk); 1839 1840 static inline bool sk_can_gso(const struct sock *sk) 1841 { 1842 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1843 } 1844 1845 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1846 1847 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1848 { 1849 sk->sk_route_nocaps |= flags; 1850 sk->sk_route_caps &= ~flags; 1851 } 1852 1853 static inline bool sk_check_csum_caps(struct sock *sk) 1854 { 1855 return (sk->sk_route_caps & NETIF_F_HW_CSUM) || 1856 (sk->sk_family == PF_INET && 1857 (sk->sk_route_caps & NETIF_F_IP_CSUM)) || 1858 (sk->sk_family == PF_INET6 && 1859 (sk->sk_route_caps & NETIF_F_IPV6_CSUM)); 1860 } 1861 1862 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1863 struct iov_iter *from, char *to, 1864 int copy, int offset) 1865 { 1866 if (skb->ip_summed == CHECKSUM_NONE) { 1867 __wsum csum = 0; 1868 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 1869 return -EFAULT; 1870 skb->csum = csum_block_add(skb->csum, csum, offset); 1871 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1872 if (!copy_from_iter_full_nocache(to, copy, from)) 1873 return -EFAULT; 1874 } else if (!copy_from_iter_full(to, copy, from)) 1875 return -EFAULT; 1876 1877 return 0; 1878 } 1879 1880 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1881 struct iov_iter *from, int copy) 1882 { 1883 int err, offset = skb->len; 1884 1885 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1886 copy, offset); 1887 if (err) 1888 __skb_trim(skb, offset); 1889 1890 return err; 1891 } 1892 1893 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1894 struct sk_buff *skb, 1895 struct page *page, 1896 int off, int copy) 1897 { 1898 int err; 1899 1900 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1901 copy, skb->len); 1902 if (err) 1903 return err; 1904 1905 skb->len += copy; 1906 skb->data_len += copy; 1907 skb->truesize += copy; 1908 sk->sk_wmem_queued += copy; 1909 sk_mem_charge(sk, copy); 1910 return 0; 1911 } 1912 1913 /** 1914 * sk_wmem_alloc_get - returns write allocations 1915 * @sk: socket 1916 * 1917 * Returns sk_wmem_alloc minus initial offset of one 1918 */ 1919 static inline int sk_wmem_alloc_get(const struct sock *sk) 1920 { 1921 return atomic_read(&sk->sk_wmem_alloc) - 1; 1922 } 1923 1924 /** 1925 * sk_rmem_alloc_get - returns read allocations 1926 * @sk: socket 1927 * 1928 * Returns sk_rmem_alloc 1929 */ 1930 static inline int sk_rmem_alloc_get(const struct sock *sk) 1931 { 1932 return atomic_read(&sk->sk_rmem_alloc); 1933 } 1934 1935 /** 1936 * sk_has_allocations - check if allocations are outstanding 1937 * @sk: socket 1938 * 1939 * Returns true if socket has write or read allocations 1940 */ 1941 static inline bool sk_has_allocations(const struct sock *sk) 1942 { 1943 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1944 } 1945 1946 /** 1947 * skwq_has_sleeper - check if there are any waiting processes 1948 * @wq: struct socket_wq 1949 * 1950 * Returns true if socket_wq has waiting processes 1951 * 1952 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 1953 * barrier call. They were added due to the race found within the tcp code. 1954 * 1955 * Consider following tcp code paths: 1956 * 1957 * CPU1 CPU2 1958 * 1959 * sys_select receive packet 1960 * ... ... 1961 * __add_wait_queue update tp->rcv_nxt 1962 * ... ... 1963 * tp->rcv_nxt check sock_def_readable 1964 * ... { 1965 * schedule rcu_read_lock(); 1966 * wq = rcu_dereference(sk->sk_wq); 1967 * if (wq && waitqueue_active(&wq->wait)) 1968 * wake_up_interruptible(&wq->wait) 1969 * ... 1970 * } 1971 * 1972 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1973 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1974 * could then endup calling schedule and sleep forever if there are no more 1975 * data on the socket. 1976 * 1977 */ 1978 static inline bool skwq_has_sleeper(struct socket_wq *wq) 1979 { 1980 return wq && wq_has_sleeper(&wq->wait); 1981 } 1982 1983 /** 1984 * sock_poll_wait - place memory barrier behind the poll_wait call. 1985 * @filp: file 1986 * @wait_address: socket wait queue 1987 * @p: poll_table 1988 * 1989 * See the comments in the wq_has_sleeper function. 1990 */ 1991 static inline void sock_poll_wait(struct file *filp, 1992 wait_queue_head_t *wait_address, poll_table *p) 1993 { 1994 if (!poll_does_not_wait(p) && wait_address) { 1995 poll_wait(filp, wait_address, p); 1996 /* We need to be sure we are in sync with the 1997 * socket flags modification. 1998 * 1999 * This memory barrier is paired in the wq_has_sleeper. 2000 */ 2001 smp_mb(); 2002 } 2003 } 2004 2005 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2006 { 2007 if (sk->sk_txhash) { 2008 skb->l4_hash = 1; 2009 skb->hash = sk->sk_txhash; 2010 } 2011 } 2012 2013 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2014 2015 /* 2016 * Queue a received datagram if it will fit. Stream and sequenced 2017 * protocols can't normally use this as they need to fit buffers in 2018 * and play with them. 2019 * 2020 * Inlined as it's very short and called for pretty much every 2021 * packet ever received. 2022 */ 2023 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2024 { 2025 skb_orphan(skb); 2026 skb->sk = sk; 2027 skb->destructor = sock_rfree; 2028 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2029 sk_mem_charge(sk, skb->truesize); 2030 } 2031 2032 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2033 unsigned long expires); 2034 2035 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2036 2037 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb, 2038 unsigned int flags, 2039 void (*destructor)(struct sock *sk, 2040 struct sk_buff *skb)); 2041 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2042 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2043 2044 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2045 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2046 2047 /* 2048 * Recover an error report and clear atomically 2049 */ 2050 2051 static inline int sock_error(struct sock *sk) 2052 { 2053 int err; 2054 if (likely(!sk->sk_err)) 2055 return 0; 2056 err = xchg(&sk->sk_err, 0); 2057 return -err; 2058 } 2059 2060 static inline unsigned long sock_wspace(struct sock *sk) 2061 { 2062 int amt = 0; 2063 2064 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2065 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2066 if (amt < 0) 2067 amt = 0; 2068 } 2069 return amt; 2070 } 2071 2072 /* Note: 2073 * We use sk->sk_wq_raw, from contexts knowing this 2074 * pointer is not NULL and cannot disappear/change. 2075 */ 2076 static inline void sk_set_bit(int nr, struct sock *sk) 2077 { 2078 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2079 !sock_flag(sk, SOCK_FASYNC)) 2080 return; 2081 2082 set_bit(nr, &sk->sk_wq_raw->flags); 2083 } 2084 2085 static inline void sk_clear_bit(int nr, struct sock *sk) 2086 { 2087 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2088 !sock_flag(sk, SOCK_FASYNC)) 2089 return; 2090 2091 clear_bit(nr, &sk->sk_wq_raw->flags); 2092 } 2093 2094 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2095 { 2096 if (sock_flag(sk, SOCK_FASYNC)) { 2097 rcu_read_lock(); 2098 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2099 rcu_read_unlock(); 2100 } 2101 } 2102 2103 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2104 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2105 * Note: for send buffers, TCP works better if we can build two skbs at 2106 * minimum. 2107 */ 2108 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2109 2110 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2111 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2112 2113 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2114 { 2115 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2116 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2117 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2118 } 2119 } 2120 2121 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2122 bool force_schedule); 2123 2124 /** 2125 * sk_page_frag - return an appropriate page_frag 2126 * @sk: socket 2127 * 2128 * If socket allocation mode allows current thread to sleep, it means its 2129 * safe to use the per task page_frag instead of the per socket one. 2130 */ 2131 static inline struct page_frag *sk_page_frag(struct sock *sk) 2132 { 2133 if (gfpflags_allow_blocking(sk->sk_allocation)) 2134 return ¤t->task_frag; 2135 2136 return &sk->sk_frag; 2137 } 2138 2139 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2140 2141 /* 2142 * Default write policy as shown to user space via poll/select/SIGIO 2143 */ 2144 static inline bool sock_writeable(const struct sock *sk) 2145 { 2146 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2147 } 2148 2149 static inline gfp_t gfp_any(void) 2150 { 2151 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2152 } 2153 2154 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2155 { 2156 return noblock ? 0 : sk->sk_rcvtimeo; 2157 } 2158 2159 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2160 { 2161 return noblock ? 0 : sk->sk_sndtimeo; 2162 } 2163 2164 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2165 { 2166 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2167 } 2168 2169 /* Alas, with timeout socket operations are not restartable. 2170 * Compare this to poll(). 2171 */ 2172 static inline int sock_intr_errno(long timeo) 2173 { 2174 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2175 } 2176 2177 struct sock_skb_cb { 2178 u32 dropcount; 2179 }; 2180 2181 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2182 * using skb->cb[] would keep using it directly and utilize its 2183 * alignement guarantee. 2184 */ 2185 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2186 sizeof(struct sock_skb_cb))) 2187 2188 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2189 SOCK_SKB_CB_OFFSET)) 2190 2191 #define sock_skb_cb_check_size(size) \ 2192 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2193 2194 static inline void 2195 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2196 { 2197 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2198 atomic_read(&sk->sk_drops) : 0; 2199 } 2200 2201 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2202 { 2203 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2204 2205 atomic_add(segs, &sk->sk_drops); 2206 } 2207 2208 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2209 struct sk_buff *skb); 2210 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2211 struct sk_buff *skb); 2212 2213 static inline void 2214 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2215 { 2216 ktime_t kt = skb->tstamp; 2217 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2218 2219 /* 2220 * generate control messages if 2221 * - receive time stamping in software requested 2222 * - software time stamp available and wanted 2223 * - hardware time stamps available and wanted 2224 */ 2225 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2226 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2227 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2228 (hwtstamps->hwtstamp && 2229 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2230 __sock_recv_timestamp(msg, sk, skb); 2231 else 2232 sk->sk_stamp = kt; 2233 2234 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2235 __sock_recv_wifi_status(msg, sk, skb); 2236 } 2237 2238 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2239 struct sk_buff *skb); 2240 2241 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2242 struct sk_buff *skb) 2243 { 2244 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2245 (1UL << SOCK_RCVTSTAMP)) 2246 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2247 SOF_TIMESTAMPING_RAW_HARDWARE) 2248 2249 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2250 __sock_recv_ts_and_drops(msg, sk, skb); 2251 else 2252 sk->sk_stamp = skb->tstamp; 2253 } 2254 2255 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2256 2257 /** 2258 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2259 * @sk: socket sending this packet 2260 * @tsflags: timestamping flags to use 2261 * @tx_flags: completed with instructions for time stamping 2262 * 2263 * Note : callers should take care of initial *tx_flags value (usually 0) 2264 */ 2265 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags, 2266 __u8 *tx_flags) 2267 { 2268 if (unlikely(tsflags)) 2269 __sock_tx_timestamp(tsflags, tx_flags); 2270 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2271 *tx_flags |= SKBTX_WIFI_STATUS; 2272 } 2273 2274 /** 2275 * sk_eat_skb - Release a skb if it is no longer needed 2276 * @sk: socket to eat this skb from 2277 * @skb: socket buffer to eat 2278 * 2279 * This routine must be called with interrupts disabled or with the socket 2280 * locked so that the sk_buff queue operation is ok. 2281 */ 2282 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2283 { 2284 __skb_unlink(skb, &sk->sk_receive_queue); 2285 __kfree_skb(skb); 2286 } 2287 2288 static inline 2289 struct net *sock_net(const struct sock *sk) 2290 { 2291 return read_pnet(&sk->sk_net); 2292 } 2293 2294 static inline 2295 void sock_net_set(struct sock *sk, struct net *net) 2296 { 2297 write_pnet(&sk->sk_net, net); 2298 } 2299 2300 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2301 { 2302 if (skb->sk) { 2303 struct sock *sk = skb->sk; 2304 2305 skb->destructor = NULL; 2306 skb->sk = NULL; 2307 return sk; 2308 } 2309 return NULL; 2310 } 2311 2312 /* This helper checks if a socket is a full socket, 2313 * ie _not_ a timewait or request socket. 2314 */ 2315 static inline bool sk_fullsock(const struct sock *sk) 2316 { 2317 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2318 } 2319 2320 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2321 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2322 */ 2323 static inline bool sk_listener(const struct sock *sk) 2324 { 2325 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2326 } 2327 2328 /** 2329 * sk_state_load - read sk->sk_state for lockless contexts 2330 * @sk: socket pointer 2331 * 2332 * Paired with sk_state_store(). Used in places we do not hold socket lock : 2333 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ... 2334 */ 2335 static inline int sk_state_load(const struct sock *sk) 2336 { 2337 return smp_load_acquire(&sk->sk_state); 2338 } 2339 2340 /** 2341 * sk_state_store - update sk->sk_state 2342 * @sk: socket pointer 2343 * @newstate: new state 2344 * 2345 * Paired with sk_state_load(). Should be used in contexts where 2346 * state change might impact lockless readers. 2347 */ 2348 static inline void sk_state_store(struct sock *sk, int newstate) 2349 { 2350 smp_store_release(&sk->sk_state, newstate); 2351 } 2352 2353 void sock_enable_timestamp(struct sock *sk, int flag); 2354 int sock_get_timestamp(struct sock *, struct timeval __user *); 2355 int sock_get_timestampns(struct sock *, struct timespec __user *); 2356 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2357 int type); 2358 2359 bool sk_ns_capable(const struct sock *sk, 2360 struct user_namespace *user_ns, int cap); 2361 bool sk_capable(const struct sock *sk, int cap); 2362 bool sk_net_capable(const struct sock *sk, int cap); 2363 2364 extern __u32 sysctl_wmem_max; 2365 extern __u32 sysctl_rmem_max; 2366 2367 extern int sysctl_tstamp_allow_data; 2368 extern int sysctl_optmem_max; 2369 2370 extern __u32 sysctl_wmem_default; 2371 extern __u32 sysctl_rmem_default; 2372 2373 #endif /* _SOCK_H */ 2374