1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/memcontrol.h> 58 #include <linux/res_counter.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 71 struct cgroup; 72 struct cgroup_subsys; 73 #ifdef CONFIG_NET 74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 76 #else 77 static inline 78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 79 { 80 return 0; 81 } 82 static inline 83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 84 { 85 } 86 #endif 87 /* 88 * This structure really needs to be cleaned up. 89 * Most of it is for TCP, and not used by any of 90 * the other protocols. 91 */ 92 93 /* Define this to get the SOCK_DBG debugging facility. */ 94 #define SOCK_DEBUGGING 95 #ifdef SOCK_DEBUGGING 96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 97 printk(KERN_DEBUG msg); } while (0) 98 #else 99 /* Validate arguments and do nothing */ 100 static inline __printf(2, 3) 101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 102 { 103 } 104 #endif 105 106 /* This is the per-socket lock. The spinlock provides a synchronization 107 * between user contexts and software interrupt processing, whereas the 108 * mini-semaphore synchronizes multiple users amongst themselves. 109 */ 110 typedef struct { 111 spinlock_t slock; 112 int owned; 113 wait_queue_head_t wq; 114 /* 115 * We express the mutex-alike socket_lock semantics 116 * to the lock validator by explicitly managing 117 * the slock as a lock variant (in addition to 118 * the slock itself): 119 */ 120 #ifdef CONFIG_DEBUG_LOCK_ALLOC 121 struct lockdep_map dep_map; 122 #endif 123 } socket_lock_t; 124 125 struct sock; 126 struct proto; 127 struct net; 128 129 typedef __u32 __bitwise __portpair; 130 typedef __u64 __bitwise __addrpair; 131 132 /** 133 * struct sock_common - minimal network layer representation of sockets 134 * @skc_daddr: Foreign IPv4 addr 135 * @skc_rcv_saddr: Bound local IPv4 addr 136 * @skc_hash: hash value used with various protocol lookup tables 137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 138 * @skc_dport: placeholder for inet_dport/tw_dport 139 * @skc_num: placeholder for inet_num/tw_num 140 * @skc_family: network address family 141 * @skc_state: Connection state 142 * @skc_reuse: %SO_REUSEADDR setting 143 * @skc_reuseport: %SO_REUSEPORT setting 144 * @skc_bound_dev_if: bound device index if != 0 145 * @skc_bind_node: bind hash linkage for various protocol lookup tables 146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 147 * @skc_prot: protocol handlers inside a network family 148 * @skc_net: reference to the network namespace of this socket 149 * @skc_node: main hash linkage for various protocol lookup tables 150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 151 * @skc_tx_queue_mapping: tx queue number for this connection 152 * @skc_refcnt: reference count 153 * 154 * This is the minimal network layer representation of sockets, the header 155 * for struct sock and struct inet_timewait_sock. 156 */ 157 struct sock_common { 158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 159 * address on 64bit arches : cf INET_MATCH() 160 */ 161 union { 162 __addrpair skc_addrpair; 163 struct { 164 __be32 skc_daddr; 165 __be32 skc_rcv_saddr; 166 }; 167 }; 168 union { 169 unsigned int skc_hash; 170 __u16 skc_u16hashes[2]; 171 }; 172 /* skc_dport && skc_num must be grouped as well */ 173 union { 174 __portpair skc_portpair; 175 struct { 176 __be16 skc_dport; 177 __u16 skc_num; 178 }; 179 }; 180 181 unsigned short skc_family; 182 volatile unsigned char skc_state; 183 unsigned char skc_reuse:4; 184 unsigned char skc_reuseport:4; 185 int skc_bound_dev_if; 186 union { 187 struct hlist_node skc_bind_node; 188 struct hlist_nulls_node skc_portaddr_node; 189 }; 190 struct proto *skc_prot; 191 #ifdef CONFIG_NET_NS 192 struct net *skc_net; 193 #endif 194 195 #if IS_ENABLED(CONFIG_IPV6) 196 struct in6_addr skc_v6_daddr; 197 struct in6_addr skc_v6_rcv_saddr; 198 #endif 199 200 /* 201 * fields between dontcopy_begin/dontcopy_end 202 * are not copied in sock_copy() 203 */ 204 /* private: */ 205 int skc_dontcopy_begin[0]; 206 /* public: */ 207 union { 208 struct hlist_node skc_node; 209 struct hlist_nulls_node skc_nulls_node; 210 }; 211 int skc_tx_queue_mapping; 212 atomic_t skc_refcnt; 213 /* private: */ 214 int skc_dontcopy_end[0]; 215 /* public: */ 216 }; 217 218 struct cg_proto; 219 /** 220 * struct sock - network layer representation of sockets 221 * @__sk_common: shared layout with inet_timewait_sock 222 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 223 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 224 * @sk_lock: synchronizer 225 * @sk_rcvbuf: size of receive buffer in bytes 226 * @sk_wq: sock wait queue and async head 227 * @sk_rx_dst: receive input route used by early demux 228 * @sk_dst_cache: destination cache 229 * @sk_dst_lock: destination cache lock 230 * @sk_policy: flow policy 231 * @sk_receive_queue: incoming packets 232 * @sk_wmem_alloc: transmit queue bytes committed 233 * @sk_write_queue: Packet sending queue 234 * @sk_async_wait_queue: DMA copied packets 235 * @sk_omem_alloc: "o" is "option" or "other" 236 * @sk_wmem_queued: persistent queue size 237 * @sk_forward_alloc: space allocated forward 238 * @sk_napi_id: id of the last napi context to receive data for sk 239 * @sk_ll_usec: usecs to busypoll when there is no data 240 * @sk_allocation: allocation mode 241 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 242 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 243 * @sk_sndbuf: size of send buffer in bytes 244 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 245 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 246 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets 247 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 248 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 249 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 250 * @sk_gso_max_size: Maximum GSO segment size to build 251 * @sk_gso_max_segs: Maximum number of GSO segments 252 * @sk_lingertime: %SO_LINGER l_linger setting 253 * @sk_backlog: always used with the per-socket spinlock held 254 * @sk_callback_lock: used with the callbacks in the end of this struct 255 * @sk_error_queue: rarely used 256 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 257 * IPV6_ADDRFORM for instance) 258 * @sk_err: last error 259 * @sk_err_soft: errors that don't cause failure but are the cause of a 260 * persistent failure not just 'timed out' 261 * @sk_drops: raw/udp drops counter 262 * @sk_ack_backlog: current listen backlog 263 * @sk_max_ack_backlog: listen backlog set in listen() 264 * @sk_priority: %SO_PRIORITY setting 265 * @sk_cgrp_prioidx: socket group's priority map index 266 * @sk_type: socket type (%SOCK_STREAM, etc) 267 * @sk_protocol: which protocol this socket belongs in this network family 268 * @sk_peer_pid: &struct pid for this socket's peer 269 * @sk_peer_cred: %SO_PEERCRED setting 270 * @sk_rcvlowat: %SO_RCVLOWAT setting 271 * @sk_rcvtimeo: %SO_RCVTIMEO setting 272 * @sk_sndtimeo: %SO_SNDTIMEO setting 273 * @sk_rxhash: flow hash received from netif layer 274 * @sk_filter: socket filtering instructions 275 * @sk_protinfo: private area, net family specific, when not using slab 276 * @sk_timer: sock cleanup timer 277 * @sk_stamp: time stamp of last packet received 278 * @sk_socket: Identd and reporting IO signals 279 * @sk_user_data: RPC layer private data 280 * @sk_frag: cached page frag 281 * @sk_peek_off: current peek_offset value 282 * @sk_send_head: front of stuff to transmit 283 * @sk_security: used by security modules 284 * @sk_mark: generic packet mark 285 * @sk_classid: this socket's cgroup classid 286 * @sk_cgrp: this socket's cgroup-specific proto data 287 * @sk_write_pending: a write to stream socket waits to start 288 * @sk_state_change: callback to indicate change in the state of the sock 289 * @sk_data_ready: callback to indicate there is data to be processed 290 * @sk_write_space: callback to indicate there is bf sending space available 291 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 292 * @sk_backlog_rcv: callback to process the backlog 293 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 294 */ 295 struct sock { 296 /* 297 * Now struct inet_timewait_sock also uses sock_common, so please just 298 * don't add nothing before this first member (__sk_common) --acme 299 */ 300 struct sock_common __sk_common; 301 #define sk_node __sk_common.skc_node 302 #define sk_nulls_node __sk_common.skc_nulls_node 303 #define sk_refcnt __sk_common.skc_refcnt 304 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 305 306 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 307 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 308 #define sk_hash __sk_common.skc_hash 309 #define sk_portpair __sk_common.skc_portpair 310 #define sk_num __sk_common.skc_num 311 #define sk_dport __sk_common.skc_dport 312 #define sk_addrpair __sk_common.skc_addrpair 313 #define sk_daddr __sk_common.skc_daddr 314 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 315 #define sk_family __sk_common.skc_family 316 #define sk_state __sk_common.skc_state 317 #define sk_reuse __sk_common.skc_reuse 318 #define sk_reuseport __sk_common.skc_reuseport 319 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 320 #define sk_bind_node __sk_common.skc_bind_node 321 #define sk_prot __sk_common.skc_prot 322 #define sk_net __sk_common.skc_net 323 #define sk_v6_daddr __sk_common.skc_v6_daddr 324 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 325 326 socket_lock_t sk_lock; 327 struct sk_buff_head sk_receive_queue; 328 /* 329 * The backlog queue is special, it is always used with 330 * the per-socket spinlock held and requires low latency 331 * access. Therefore we special case it's implementation. 332 * Note : rmem_alloc is in this structure to fill a hole 333 * on 64bit arches, not because its logically part of 334 * backlog. 335 */ 336 struct { 337 atomic_t rmem_alloc; 338 int len; 339 struct sk_buff *head; 340 struct sk_buff *tail; 341 } sk_backlog; 342 #define sk_rmem_alloc sk_backlog.rmem_alloc 343 int sk_forward_alloc; 344 #ifdef CONFIG_RPS 345 __u32 sk_rxhash; 346 #endif 347 #ifdef CONFIG_NET_RX_BUSY_POLL 348 unsigned int sk_napi_id; 349 unsigned int sk_ll_usec; 350 #endif 351 atomic_t sk_drops; 352 int sk_rcvbuf; 353 354 struct sk_filter __rcu *sk_filter; 355 struct socket_wq __rcu *sk_wq; 356 357 #ifdef CONFIG_NET_DMA 358 struct sk_buff_head sk_async_wait_queue; 359 #endif 360 361 #ifdef CONFIG_XFRM 362 struct xfrm_policy *sk_policy[2]; 363 #endif 364 unsigned long sk_flags; 365 struct dst_entry *sk_rx_dst; 366 struct dst_entry __rcu *sk_dst_cache; 367 spinlock_t sk_dst_lock; 368 atomic_t sk_wmem_alloc; 369 atomic_t sk_omem_alloc; 370 int sk_sndbuf; 371 struct sk_buff_head sk_write_queue; 372 kmemcheck_bitfield_begin(flags); 373 unsigned int sk_shutdown : 2, 374 sk_no_check : 2, 375 sk_userlocks : 4, 376 sk_protocol : 8, 377 sk_type : 16; 378 kmemcheck_bitfield_end(flags); 379 int sk_wmem_queued; 380 gfp_t sk_allocation; 381 u32 sk_pacing_rate; /* bytes per second */ 382 u32 sk_max_pacing_rate; 383 netdev_features_t sk_route_caps; 384 netdev_features_t sk_route_nocaps; 385 int sk_gso_type; 386 unsigned int sk_gso_max_size; 387 u16 sk_gso_max_segs; 388 int sk_rcvlowat; 389 unsigned long sk_lingertime; 390 struct sk_buff_head sk_error_queue; 391 struct proto *sk_prot_creator; 392 rwlock_t sk_callback_lock; 393 int sk_err, 394 sk_err_soft; 395 unsigned short sk_ack_backlog; 396 unsigned short sk_max_ack_backlog; 397 __u32 sk_priority; 398 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 399 __u32 sk_cgrp_prioidx; 400 #endif 401 struct pid *sk_peer_pid; 402 const struct cred *sk_peer_cred; 403 long sk_rcvtimeo; 404 long sk_sndtimeo; 405 void *sk_protinfo; 406 struct timer_list sk_timer; 407 ktime_t sk_stamp; 408 struct socket *sk_socket; 409 void *sk_user_data; 410 struct page_frag sk_frag; 411 struct sk_buff *sk_send_head; 412 __s32 sk_peek_off; 413 int sk_write_pending; 414 #ifdef CONFIG_SECURITY 415 void *sk_security; 416 #endif 417 __u32 sk_mark; 418 u32 sk_classid; 419 struct cg_proto *sk_cgrp; 420 void (*sk_state_change)(struct sock *sk); 421 void (*sk_data_ready)(struct sock *sk, int bytes); 422 void (*sk_write_space)(struct sock *sk); 423 void (*sk_error_report)(struct sock *sk); 424 int (*sk_backlog_rcv)(struct sock *sk, 425 struct sk_buff *skb); 426 void (*sk_destruct)(struct sock *sk); 427 }; 428 429 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 430 431 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 432 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 433 434 /* 435 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 436 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 437 * on a socket means that the socket will reuse everybody else's port 438 * without looking at the other's sk_reuse value. 439 */ 440 441 #define SK_NO_REUSE 0 442 #define SK_CAN_REUSE 1 443 #define SK_FORCE_REUSE 2 444 445 static inline int sk_peek_offset(struct sock *sk, int flags) 446 { 447 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 448 return sk->sk_peek_off; 449 else 450 return 0; 451 } 452 453 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 454 { 455 if (sk->sk_peek_off >= 0) { 456 if (sk->sk_peek_off >= val) 457 sk->sk_peek_off -= val; 458 else 459 sk->sk_peek_off = 0; 460 } 461 } 462 463 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 464 { 465 if (sk->sk_peek_off >= 0) 466 sk->sk_peek_off += val; 467 } 468 469 /* 470 * Hashed lists helper routines 471 */ 472 static inline struct sock *sk_entry(const struct hlist_node *node) 473 { 474 return hlist_entry(node, struct sock, sk_node); 475 } 476 477 static inline struct sock *__sk_head(const struct hlist_head *head) 478 { 479 return hlist_entry(head->first, struct sock, sk_node); 480 } 481 482 static inline struct sock *sk_head(const struct hlist_head *head) 483 { 484 return hlist_empty(head) ? NULL : __sk_head(head); 485 } 486 487 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 488 { 489 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 490 } 491 492 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 493 { 494 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 495 } 496 497 static inline struct sock *sk_next(const struct sock *sk) 498 { 499 return sk->sk_node.next ? 500 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 501 } 502 503 static inline struct sock *sk_nulls_next(const struct sock *sk) 504 { 505 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 506 hlist_nulls_entry(sk->sk_nulls_node.next, 507 struct sock, sk_nulls_node) : 508 NULL; 509 } 510 511 static inline bool sk_unhashed(const struct sock *sk) 512 { 513 return hlist_unhashed(&sk->sk_node); 514 } 515 516 static inline bool sk_hashed(const struct sock *sk) 517 { 518 return !sk_unhashed(sk); 519 } 520 521 static inline void sk_node_init(struct hlist_node *node) 522 { 523 node->pprev = NULL; 524 } 525 526 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 527 { 528 node->pprev = NULL; 529 } 530 531 static inline void __sk_del_node(struct sock *sk) 532 { 533 __hlist_del(&sk->sk_node); 534 } 535 536 /* NB: equivalent to hlist_del_init_rcu */ 537 static inline bool __sk_del_node_init(struct sock *sk) 538 { 539 if (sk_hashed(sk)) { 540 __sk_del_node(sk); 541 sk_node_init(&sk->sk_node); 542 return true; 543 } 544 return false; 545 } 546 547 /* Grab socket reference count. This operation is valid only 548 when sk is ALREADY grabbed f.e. it is found in hash table 549 or a list and the lookup is made under lock preventing hash table 550 modifications. 551 */ 552 553 static inline void sock_hold(struct sock *sk) 554 { 555 atomic_inc(&sk->sk_refcnt); 556 } 557 558 /* Ungrab socket in the context, which assumes that socket refcnt 559 cannot hit zero, f.e. it is true in context of any socketcall. 560 */ 561 static inline void __sock_put(struct sock *sk) 562 { 563 atomic_dec(&sk->sk_refcnt); 564 } 565 566 static inline bool sk_del_node_init(struct sock *sk) 567 { 568 bool rc = __sk_del_node_init(sk); 569 570 if (rc) { 571 /* paranoid for a while -acme */ 572 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 573 __sock_put(sk); 574 } 575 return rc; 576 } 577 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 578 579 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 580 { 581 if (sk_hashed(sk)) { 582 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 583 return true; 584 } 585 return false; 586 } 587 588 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 589 { 590 bool rc = __sk_nulls_del_node_init_rcu(sk); 591 592 if (rc) { 593 /* paranoid for a while -acme */ 594 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 595 __sock_put(sk); 596 } 597 return rc; 598 } 599 600 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 601 { 602 hlist_add_head(&sk->sk_node, list); 603 } 604 605 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 606 { 607 sock_hold(sk); 608 __sk_add_node(sk, list); 609 } 610 611 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 612 { 613 sock_hold(sk); 614 hlist_add_head_rcu(&sk->sk_node, list); 615 } 616 617 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 618 { 619 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 620 } 621 622 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 623 { 624 sock_hold(sk); 625 __sk_nulls_add_node_rcu(sk, list); 626 } 627 628 static inline void __sk_del_bind_node(struct sock *sk) 629 { 630 __hlist_del(&sk->sk_bind_node); 631 } 632 633 static inline void sk_add_bind_node(struct sock *sk, 634 struct hlist_head *list) 635 { 636 hlist_add_head(&sk->sk_bind_node, list); 637 } 638 639 #define sk_for_each(__sk, list) \ 640 hlist_for_each_entry(__sk, list, sk_node) 641 #define sk_for_each_rcu(__sk, list) \ 642 hlist_for_each_entry_rcu(__sk, list, sk_node) 643 #define sk_nulls_for_each(__sk, node, list) \ 644 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 645 #define sk_nulls_for_each_rcu(__sk, node, list) \ 646 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 647 #define sk_for_each_from(__sk) \ 648 hlist_for_each_entry_from(__sk, sk_node) 649 #define sk_nulls_for_each_from(__sk, node) \ 650 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 651 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 652 #define sk_for_each_safe(__sk, tmp, list) \ 653 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 654 #define sk_for_each_bound(__sk, list) \ 655 hlist_for_each_entry(__sk, list, sk_bind_node) 656 657 static inline struct user_namespace *sk_user_ns(struct sock *sk) 658 { 659 /* Careful only use this in a context where these parameters 660 * can not change and must all be valid, such as recvmsg from 661 * userspace. 662 */ 663 return sk->sk_socket->file->f_cred->user_ns; 664 } 665 666 /* Sock flags */ 667 enum sock_flags { 668 SOCK_DEAD, 669 SOCK_DONE, 670 SOCK_URGINLINE, 671 SOCK_KEEPOPEN, 672 SOCK_LINGER, 673 SOCK_DESTROY, 674 SOCK_BROADCAST, 675 SOCK_TIMESTAMP, 676 SOCK_ZAPPED, 677 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 678 SOCK_DBG, /* %SO_DEBUG setting */ 679 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 680 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 681 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 682 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 683 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 684 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 685 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 686 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 687 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 688 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 689 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 690 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 691 SOCK_FASYNC, /* fasync() active */ 692 SOCK_RXQ_OVFL, 693 SOCK_ZEROCOPY, /* buffers from userspace */ 694 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 695 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 696 * Will use last 4 bytes of packet sent from 697 * user-space instead. 698 */ 699 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 700 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 701 }; 702 703 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 704 { 705 nsk->sk_flags = osk->sk_flags; 706 } 707 708 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 709 { 710 __set_bit(flag, &sk->sk_flags); 711 } 712 713 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 714 { 715 __clear_bit(flag, &sk->sk_flags); 716 } 717 718 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 719 { 720 return test_bit(flag, &sk->sk_flags); 721 } 722 723 #ifdef CONFIG_NET 724 extern struct static_key memalloc_socks; 725 static inline int sk_memalloc_socks(void) 726 { 727 return static_key_false(&memalloc_socks); 728 } 729 #else 730 731 static inline int sk_memalloc_socks(void) 732 { 733 return 0; 734 } 735 736 #endif 737 738 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 739 { 740 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 741 } 742 743 static inline void sk_acceptq_removed(struct sock *sk) 744 { 745 sk->sk_ack_backlog--; 746 } 747 748 static inline void sk_acceptq_added(struct sock *sk) 749 { 750 sk->sk_ack_backlog++; 751 } 752 753 static inline bool sk_acceptq_is_full(const struct sock *sk) 754 { 755 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 756 } 757 758 /* 759 * Compute minimal free write space needed to queue new packets. 760 */ 761 static inline int sk_stream_min_wspace(const struct sock *sk) 762 { 763 return sk->sk_wmem_queued >> 1; 764 } 765 766 static inline int sk_stream_wspace(const struct sock *sk) 767 { 768 return sk->sk_sndbuf - sk->sk_wmem_queued; 769 } 770 771 void sk_stream_write_space(struct sock *sk); 772 773 /* OOB backlog add */ 774 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 775 { 776 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 777 skb_dst_force(skb); 778 779 if (!sk->sk_backlog.tail) 780 sk->sk_backlog.head = skb; 781 else 782 sk->sk_backlog.tail->next = skb; 783 784 sk->sk_backlog.tail = skb; 785 skb->next = NULL; 786 } 787 788 /* 789 * Take into account size of receive queue and backlog queue 790 * Do not take into account this skb truesize, 791 * to allow even a single big packet to come. 792 */ 793 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb, 794 unsigned int limit) 795 { 796 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 797 798 return qsize > limit; 799 } 800 801 /* The per-socket spinlock must be held here. */ 802 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 803 unsigned int limit) 804 { 805 if (sk_rcvqueues_full(sk, skb, limit)) 806 return -ENOBUFS; 807 808 __sk_add_backlog(sk, skb); 809 sk->sk_backlog.len += skb->truesize; 810 return 0; 811 } 812 813 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 814 815 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 816 { 817 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 818 return __sk_backlog_rcv(sk, skb); 819 820 return sk->sk_backlog_rcv(sk, skb); 821 } 822 823 static inline void sock_rps_record_flow(const struct sock *sk) 824 { 825 #ifdef CONFIG_RPS 826 struct rps_sock_flow_table *sock_flow_table; 827 828 rcu_read_lock(); 829 sock_flow_table = rcu_dereference(rps_sock_flow_table); 830 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash); 831 rcu_read_unlock(); 832 #endif 833 } 834 835 static inline void sock_rps_reset_flow(const struct sock *sk) 836 { 837 #ifdef CONFIG_RPS 838 struct rps_sock_flow_table *sock_flow_table; 839 840 rcu_read_lock(); 841 sock_flow_table = rcu_dereference(rps_sock_flow_table); 842 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash); 843 rcu_read_unlock(); 844 #endif 845 } 846 847 static inline void sock_rps_save_rxhash(struct sock *sk, 848 const struct sk_buff *skb) 849 { 850 #ifdef CONFIG_RPS 851 if (unlikely(sk->sk_rxhash != skb->rxhash)) { 852 sock_rps_reset_flow(sk); 853 sk->sk_rxhash = skb->rxhash; 854 } 855 #endif 856 } 857 858 static inline void sock_rps_reset_rxhash(struct sock *sk) 859 { 860 #ifdef CONFIG_RPS 861 sock_rps_reset_flow(sk); 862 sk->sk_rxhash = 0; 863 #endif 864 } 865 866 #define sk_wait_event(__sk, __timeo, __condition) \ 867 ({ int __rc; \ 868 release_sock(__sk); \ 869 __rc = __condition; \ 870 if (!__rc) { \ 871 *(__timeo) = schedule_timeout(*(__timeo)); \ 872 } \ 873 lock_sock(__sk); \ 874 __rc = __condition; \ 875 __rc; \ 876 }) 877 878 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 879 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 880 void sk_stream_wait_close(struct sock *sk, long timeo_p); 881 int sk_stream_error(struct sock *sk, int flags, int err); 882 void sk_stream_kill_queues(struct sock *sk); 883 void sk_set_memalloc(struct sock *sk); 884 void sk_clear_memalloc(struct sock *sk); 885 886 int sk_wait_data(struct sock *sk, long *timeo); 887 888 struct request_sock_ops; 889 struct timewait_sock_ops; 890 struct inet_hashinfo; 891 struct raw_hashinfo; 892 struct module; 893 894 /* 895 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 896 * un-modified. Special care is taken when initializing object to zero. 897 */ 898 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 899 { 900 if (offsetof(struct sock, sk_node.next) != 0) 901 memset(sk, 0, offsetof(struct sock, sk_node.next)); 902 memset(&sk->sk_node.pprev, 0, 903 size - offsetof(struct sock, sk_node.pprev)); 904 } 905 906 /* Networking protocol blocks we attach to sockets. 907 * socket layer -> transport layer interface 908 * transport -> network interface is defined by struct inet_proto 909 */ 910 struct proto { 911 void (*close)(struct sock *sk, 912 long timeout); 913 int (*connect)(struct sock *sk, 914 struct sockaddr *uaddr, 915 int addr_len); 916 int (*disconnect)(struct sock *sk, int flags); 917 918 struct sock * (*accept)(struct sock *sk, int flags, int *err); 919 920 int (*ioctl)(struct sock *sk, int cmd, 921 unsigned long arg); 922 int (*init)(struct sock *sk); 923 void (*destroy)(struct sock *sk); 924 void (*shutdown)(struct sock *sk, int how); 925 int (*setsockopt)(struct sock *sk, int level, 926 int optname, char __user *optval, 927 unsigned int optlen); 928 int (*getsockopt)(struct sock *sk, int level, 929 int optname, char __user *optval, 930 int __user *option); 931 #ifdef CONFIG_COMPAT 932 int (*compat_setsockopt)(struct sock *sk, 933 int level, 934 int optname, char __user *optval, 935 unsigned int optlen); 936 int (*compat_getsockopt)(struct sock *sk, 937 int level, 938 int optname, char __user *optval, 939 int __user *option); 940 int (*compat_ioctl)(struct sock *sk, 941 unsigned int cmd, unsigned long arg); 942 #endif 943 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 944 struct msghdr *msg, size_t len); 945 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 946 struct msghdr *msg, 947 size_t len, int noblock, int flags, 948 int *addr_len); 949 int (*sendpage)(struct sock *sk, struct page *page, 950 int offset, size_t size, int flags); 951 int (*bind)(struct sock *sk, 952 struct sockaddr *uaddr, int addr_len); 953 954 int (*backlog_rcv) (struct sock *sk, 955 struct sk_buff *skb); 956 957 void (*release_cb)(struct sock *sk); 958 void (*mtu_reduced)(struct sock *sk); 959 960 /* Keeping track of sk's, looking them up, and port selection methods. */ 961 void (*hash)(struct sock *sk); 962 void (*unhash)(struct sock *sk); 963 void (*rehash)(struct sock *sk); 964 int (*get_port)(struct sock *sk, unsigned short snum); 965 void (*clear_sk)(struct sock *sk, int size); 966 967 /* Keeping track of sockets in use */ 968 #ifdef CONFIG_PROC_FS 969 unsigned int inuse_idx; 970 #endif 971 972 bool (*stream_memory_free)(const struct sock *sk); 973 /* Memory pressure */ 974 void (*enter_memory_pressure)(struct sock *sk); 975 atomic_long_t *memory_allocated; /* Current allocated memory. */ 976 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 977 /* 978 * Pressure flag: try to collapse. 979 * Technical note: it is used by multiple contexts non atomically. 980 * All the __sk_mem_schedule() is of this nature: accounting 981 * is strict, actions are advisory and have some latency. 982 */ 983 int *memory_pressure; 984 long *sysctl_mem; 985 int *sysctl_wmem; 986 int *sysctl_rmem; 987 int max_header; 988 bool no_autobind; 989 990 struct kmem_cache *slab; 991 unsigned int obj_size; 992 int slab_flags; 993 994 struct percpu_counter *orphan_count; 995 996 struct request_sock_ops *rsk_prot; 997 struct timewait_sock_ops *twsk_prot; 998 999 union { 1000 struct inet_hashinfo *hashinfo; 1001 struct udp_table *udp_table; 1002 struct raw_hashinfo *raw_hash; 1003 } h; 1004 1005 struct module *owner; 1006 1007 char name[32]; 1008 1009 struct list_head node; 1010 #ifdef SOCK_REFCNT_DEBUG 1011 atomic_t socks; 1012 #endif 1013 #ifdef CONFIG_MEMCG_KMEM 1014 /* 1015 * cgroup specific init/deinit functions. Called once for all 1016 * protocols that implement it, from cgroups populate function. 1017 * This function has to setup any files the protocol want to 1018 * appear in the kmem cgroup filesystem. 1019 */ 1020 int (*init_cgroup)(struct mem_cgroup *memcg, 1021 struct cgroup_subsys *ss); 1022 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1023 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1024 #endif 1025 }; 1026 1027 /* 1028 * Bits in struct cg_proto.flags 1029 */ 1030 enum cg_proto_flags { 1031 /* Currently active and new sockets should be assigned to cgroups */ 1032 MEMCG_SOCK_ACTIVE, 1033 /* It was ever activated; we must disarm static keys on destruction */ 1034 MEMCG_SOCK_ACTIVATED, 1035 }; 1036 1037 struct cg_proto { 1038 void (*enter_memory_pressure)(struct sock *sk); 1039 struct res_counter memory_allocated; /* Current allocated memory. */ 1040 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1041 int memory_pressure; 1042 long sysctl_mem[3]; 1043 unsigned long flags; 1044 /* 1045 * memcg field is used to find which memcg we belong directly 1046 * Each memcg struct can hold more than one cg_proto, so container_of 1047 * won't really cut. 1048 * 1049 * The elegant solution would be having an inverse function to 1050 * proto_cgroup in struct proto, but that means polluting the structure 1051 * for everybody, instead of just for memcg users. 1052 */ 1053 struct mem_cgroup *memcg; 1054 }; 1055 1056 int proto_register(struct proto *prot, int alloc_slab); 1057 void proto_unregister(struct proto *prot); 1058 1059 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1060 { 1061 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1062 } 1063 1064 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 1065 { 1066 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1067 } 1068 1069 #ifdef SOCK_REFCNT_DEBUG 1070 static inline void sk_refcnt_debug_inc(struct sock *sk) 1071 { 1072 atomic_inc(&sk->sk_prot->socks); 1073 } 1074 1075 static inline void sk_refcnt_debug_dec(struct sock *sk) 1076 { 1077 atomic_dec(&sk->sk_prot->socks); 1078 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1079 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1080 } 1081 1082 static inline void sk_refcnt_debug_release(const struct sock *sk) 1083 { 1084 if (atomic_read(&sk->sk_refcnt) != 1) 1085 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1086 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1087 } 1088 #else /* SOCK_REFCNT_DEBUG */ 1089 #define sk_refcnt_debug_inc(sk) do { } while (0) 1090 #define sk_refcnt_debug_dec(sk) do { } while (0) 1091 #define sk_refcnt_debug_release(sk) do { } while (0) 1092 #endif /* SOCK_REFCNT_DEBUG */ 1093 1094 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1095 extern struct static_key memcg_socket_limit_enabled; 1096 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1097 struct cg_proto *cg_proto) 1098 { 1099 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1100 } 1101 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1102 #else 1103 #define mem_cgroup_sockets_enabled 0 1104 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1105 struct cg_proto *cg_proto) 1106 { 1107 return NULL; 1108 } 1109 #endif 1110 1111 static inline bool sk_stream_memory_free(const struct sock *sk) 1112 { 1113 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1114 return false; 1115 1116 return sk->sk_prot->stream_memory_free ? 1117 sk->sk_prot->stream_memory_free(sk) : true; 1118 } 1119 1120 static inline bool sk_stream_is_writeable(const struct sock *sk) 1121 { 1122 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1123 sk_stream_memory_free(sk); 1124 } 1125 1126 1127 static inline bool sk_has_memory_pressure(const struct sock *sk) 1128 { 1129 return sk->sk_prot->memory_pressure != NULL; 1130 } 1131 1132 static inline bool sk_under_memory_pressure(const struct sock *sk) 1133 { 1134 if (!sk->sk_prot->memory_pressure) 1135 return false; 1136 1137 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1138 return !!sk->sk_cgrp->memory_pressure; 1139 1140 return !!*sk->sk_prot->memory_pressure; 1141 } 1142 1143 static inline void sk_leave_memory_pressure(struct sock *sk) 1144 { 1145 int *memory_pressure = sk->sk_prot->memory_pressure; 1146 1147 if (!memory_pressure) 1148 return; 1149 1150 if (*memory_pressure) 1151 *memory_pressure = 0; 1152 1153 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1154 struct cg_proto *cg_proto = sk->sk_cgrp; 1155 struct proto *prot = sk->sk_prot; 1156 1157 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1158 if (cg_proto->memory_pressure) 1159 cg_proto->memory_pressure = 0; 1160 } 1161 1162 } 1163 1164 static inline void sk_enter_memory_pressure(struct sock *sk) 1165 { 1166 if (!sk->sk_prot->enter_memory_pressure) 1167 return; 1168 1169 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1170 struct cg_proto *cg_proto = sk->sk_cgrp; 1171 struct proto *prot = sk->sk_prot; 1172 1173 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1174 cg_proto->enter_memory_pressure(sk); 1175 } 1176 1177 sk->sk_prot->enter_memory_pressure(sk); 1178 } 1179 1180 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1181 { 1182 long *prot = sk->sk_prot->sysctl_mem; 1183 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1184 prot = sk->sk_cgrp->sysctl_mem; 1185 return prot[index]; 1186 } 1187 1188 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1189 unsigned long amt, 1190 int *parent_status) 1191 { 1192 struct res_counter *fail; 1193 int ret; 1194 1195 ret = res_counter_charge_nofail(&prot->memory_allocated, 1196 amt << PAGE_SHIFT, &fail); 1197 if (ret < 0) 1198 *parent_status = OVER_LIMIT; 1199 } 1200 1201 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1202 unsigned long amt) 1203 { 1204 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT); 1205 } 1206 1207 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1208 { 1209 u64 ret; 1210 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE); 1211 return ret >> PAGE_SHIFT; 1212 } 1213 1214 static inline long 1215 sk_memory_allocated(const struct sock *sk) 1216 { 1217 struct proto *prot = sk->sk_prot; 1218 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1219 return memcg_memory_allocated_read(sk->sk_cgrp); 1220 1221 return atomic_long_read(prot->memory_allocated); 1222 } 1223 1224 static inline long 1225 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1226 { 1227 struct proto *prot = sk->sk_prot; 1228 1229 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1230 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1231 /* update the root cgroup regardless */ 1232 atomic_long_add_return(amt, prot->memory_allocated); 1233 return memcg_memory_allocated_read(sk->sk_cgrp); 1234 } 1235 1236 return atomic_long_add_return(amt, prot->memory_allocated); 1237 } 1238 1239 static inline void 1240 sk_memory_allocated_sub(struct sock *sk, int amt) 1241 { 1242 struct proto *prot = sk->sk_prot; 1243 1244 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1245 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1246 1247 atomic_long_sub(amt, prot->memory_allocated); 1248 } 1249 1250 static inline void sk_sockets_allocated_dec(struct sock *sk) 1251 { 1252 struct proto *prot = sk->sk_prot; 1253 1254 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1255 struct cg_proto *cg_proto = sk->sk_cgrp; 1256 1257 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1258 percpu_counter_dec(&cg_proto->sockets_allocated); 1259 } 1260 1261 percpu_counter_dec(prot->sockets_allocated); 1262 } 1263 1264 static inline void sk_sockets_allocated_inc(struct sock *sk) 1265 { 1266 struct proto *prot = sk->sk_prot; 1267 1268 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1269 struct cg_proto *cg_proto = sk->sk_cgrp; 1270 1271 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1272 percpu_counter_inc(&cg_proto->sockets_allocated); 1273 } 1274 1275 percpu_counter_inc(prot->sockets_allocated); 1276 } 1277 1278 static inline int 1279 sk_sockets_allocated_read_positive(struct sock *sk) 1280 { 1281 struct proto *prot = sk->sk_prot; 1282 1283 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1284 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1285 1286 return percpu_counter_read_positive(prot->sockets_allocated); 1287 } 1288 1289 static inline int 1290 proto_sockets_allocated_sum_positive(struct proto *prot) 1291 { 1292 return percpu_counter_sum_positive(prot->sockets_allocated); 1293 } 1294 1295 static inline long 1296 proto_memory_allocated(struct proto *prot) 1297 { 1298 return atomic_long_read(prot->memory_allocated); 1299 } 1300 1301 static inline bool 1302 proto_memory_pressure(struct proto *prot) 1303 { 1304 if (!prot->memory_pressure) 1305 return false; 1306 return !!*prot->memory_pressure; 1307 } 1308 1309 1310 #ifdef CONFIG_PROC_FS 1311 /* Called with local bh disabled */ 1312 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1313 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1314 #else 1315 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1316 int inc) 1317 { 1318 } 1319 #endif 1320 1321 1322 /* With per-bucket locks this operation is not-atomic, so that 1323 * this version is not worse. 1324 */ 1325 static inline void __sk_prot_rehash(struct sock *sk) 1326 { 1327 sk->sk_prot->unhash(sk); 1328 sk->sk_prot->hash(sk); 1329 } 1330 1331 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1332 1333 /* About 10 seconds */ 1334 #define SOCK_DESTROY_TIME (10*HZ) 1335 1336 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1337 #define PROT_SOCK 1024 1338 1339 #define SHUTDOWN_MASK 3 1340 #define RCV_SHUTDOWN 1 1341 #define SEND_SHUTDOWN 2 1342 1343 #define SOCK_SNDBUF_LOCK 1 1344 #define SOCK_RCVBUF_LOCK 2 1345 #define SOCK_BINDADDR_LOCK 4 1346 #define SOCK_BINDPORT_LOCK 8 1347 1348 /* sock_iocb: used to kick off async processing of socket ios */ 1349 struct sock_iocb { 1350 struct list_head list; 1351 1352 int flags; 1353 int size; 1354 struct socket *sock; 1355 struct sock *sk; 1356 struct scm_cookie *scm; 1357 struct msghdr *msg, async_msg; 1358 struct kiocb *kiocb; 1359 }; 1360 1361 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1362 { 1363 return (struct sock_iocb *)iocb->private; 1364 } 1365 1366 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1367 { 1368 return si->kiocb; 1369 } 1370 1371 struct socket_alloc { 1372 struct socket socket; 1373 struct inode vfs_inode; 1374 }; 1375 1376 static inline struct socket *SOCKET_I(struct inode *inode) 1377 { 1378 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1379 } 1380 1381 static inline struct inode *SOCK_INODE(struct socket *socket) 1382 { 1383 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1384 } 1385 1386 /* 1387 * Functions for memory accounting 1388 */ 1389 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1390 void __sk_mem_reclaim(struct sock *sk); 1391 1392 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1393 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1394 #define SK_MEM_SEND 0 1395 #define SK_MEM_RECV 1 1396 1397 static inline int sk_mem_pages(int amt) 1398 { 1399 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1400 } 1401 1402 static inline bool sk_has_account(struct sock *sk) 1403 { 1404 /* return true if protocol supports memory accounting */ 1405 return !!sk->sk_prot->memory_allocated; 1406 } 1407 1408 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1409 { 1410 if (!sk_has_account(sk)) 1411 return true; 1412 return size <= sk->sk_forward_alloc || 1413 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1414 } 1415 1416 static inline bool 1417 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1418 { 1419 if (!sk_has_account(sk)) 1420 return true; 1421 return size<= sk->sk_forward_alloc || 1422 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1423 skb_pfmemalloc(skb); 1424 } 1425 1426 static inline void sk_mem_reclaim(struct sock *sk) 1427 { 1428 if (!sk_has_account(sk)) 1429 return; 1430 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1431 __sk_mem_reclaim(sk); 1432 } 1433 1434 static inline void sk_mem_reclaim_partial(struct sock *sk) 1435 { 1436 if (!sk_has_account(sk)) 1437 return; 1438 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1439 __sk_mem_reclaim(sk); 1440 } 1441 1442 static inline void sk_mem_charge(struct sock *sk, int size) 1443 { 1444 if (!sk_has_account(sk)) 1445 return; 1446 sk->sk_forward_alloc -= size; 1447 } 1448 1449 static inline void sk_mem_uncharge(struct sock *sk, int size) 1450 { 1451 if (!sk_has_account(sk)) 1452 return; 1453 sk->sk_forward_alloc += size; 1454 } 1455 1456 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1457 { 1458 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1459 sk->sk_wmem_queued -= skb->truesize; 1460 sk_mem_uncharge(sk, skb->truesize); 1461 __kfree_skb(skb); 1462 } 1463 1464 /* Used by processes to "lock" a socket state, so that 1465 * interrupts and bottom half handlers won't change it 1466 * from under us. It essentially blocks any incoming 1467 * packets, so that we won't get any new data or any 1468 * packets that change the state of the socket. 1469 * 1470 * While locked, BH processing will add new packets to 1471 * the backlog queue. This queue is processed by the 1472 * owner of the socket lock right before it is released. 1473 * 1474 * Since ~2.3.5 it is also exclusive sleep lock serializing 1475 * accesses from user process context. 1476 */ 1477 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1478 1479 /* 1480 * Macro so as to not evaluate some arguments when 1481 * lockdep is not enabled. 1482 * 1483 * Mark both the sk_lock and the sk_lock.slock as a 1484 * per-address-family lock class. 1485 */ 1486 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1487 do { \ 1488 sk->sk_lock.owned = 0; \ 1489 init_waitqueue_head(&sk->sk_lock.wq); \ 1490 spin_lock_init(&(sk)->sk_lock.slock); \ 1491 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1492 sizeof((sk)->sk_lock)); \ 1493 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1494 (skey), (sname)); \ 1495 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1496 } while (0) 1497 1498 void lock_sock_nested(struct sock *sk, int subclass); 1499 1500 static inline void lock_sock(struct sock *sk) 1501 { 1502 lock_sock_nested(sk, 0); 1503 } 1504 1505 void release_sock(struct sock *sk); 1506 1507 /* BH context may only use the following locking interface. */ 1508 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1509 #define bh_lock_sock_nested(__sk) \ 1510 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1511 SINGLE_DEPTH_NESTING) 1512 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1513 1514 bool lock_sock_fast(struct sock *sk); 1515 /** 1516 * unlock_sock_fast - complement of lock_sock_fast 1517 * @sk: socket 1518 * @slow: slow mode 1519 * 1520 * fast unlock socket for user context. 1521 * If slow mode is on, we call regular release_sock() 1522 */ 1523 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1524 { 1525 if (slow) 1526 release_sock(sk); 1527 else 1528 spin_unlock_bh(&sk->sk_lock.slock); 1529 } 1530 1531 1532 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1533 struct proto *prot); 1534 void sk_free(struct sock *sk); 1535 void sk_release_kernel(struct sock *sk); 1536 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1537 1538 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1539 gfp_t priority); 1540 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, 1541 gfp_t priority); 1542 void sock_wfree(struct sk_buff *skb); 1543 void skb_orphan_partial(struct sk_buff *skb); 1544 void sock_rfree(struct sk_buff *skb); 1545 void sock_edemux(struct sk_buff *skb); 1546 1547 int sock_setsockopt(struct socket *sock, int level, int op, 1548 char __user *optval, unsigned int optlen); 1549 1550 int sock_getsockopt(struct socket *sock, int level, int op, 1551 char __user *optval, int __user *optlen); 1552 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1553 int noblock, int *errcode); 1554 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1555 unsigned long data_len, int noblock, 1556 int *errcode, int max_page_order); 1557 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1558 void sock_kfree_s(struct sock *sk, void *mem, int size); 1559 void sk_send_sigurg(struct sock *sk); 1560 1561 /* 1562 * Functions to fill in entries in struct proto_ops when a protocol 1563 * does not implement a particular function. 1564 */ 1565 int sock_no_bind(struct socket *, struct sockaddr *, int); 1566 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1567 int sock_no_socketpair(struct socket *, struct socket *); 1568 int sock_no_accept(struct socket *, struct socket *, int); 1569 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1570 unsigned int sock_no_poll(struct file *, struct socket *, 1571 struct poll_table_struct *); 1572 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1573 int sock_no_listen(struct socket *, int); 1574 int sock_no_shutdown(struct socket *, int); 1575 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1576 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1577 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); 1578 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, 1579 int); 1580 int sock_no_mmap(struct file *file, struct socket *sock, 1581 struct vm_area_struct *vma); 1582 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1583 size_t size, int flags); 1584 1585 /* 1586 * Functions to fill in entries in struct proto_ops when a protocol 1587 * uses the inet style. 1588 */ 1589 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1590 char __user *optval, int __user *optlen); 1591 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1592 struct msghdr *msg, size_t size, int flags); 1593 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1594 char __user *optval, unsigned int optlen); 1595 int compat_sock_common_getsockopt(struct socket *sock, int level, 1596 int optname, char __user *optval, int __user *optlen); 1597 int compat_sock_common_setsockopt(struct socket *sock, int level, 1598 int optname, char __user *optval, unsigned int optlen); 1599 1600 void sk_common_release(struct sock *sk); 1601 1602 /* 1603 * Default socket callbacks and setup code 1604 */ 1605 1606 /* Initialise core socket variables */ 1607 void sock_init_data(struct socket *sock, struct sock *sk); 1608 1609 void sk_filter_release_rcu(struct rcu_head *rcu); 1610 1611 /** 1612 * sk_filter_release - release a socket filter 1613 * @fp: filter to remove 1614 * 1615 * Remove a filter from a socket and release its resources. 1616 */ 1617 1618 static inline void sk_filter_release(struct sk_filter *fp) 1619 { 1620 if (atomic_dec_and_test(&fp->refcnt)) 1621 call_rcu(&fp->rcu, sk_filter_release_rcu); 1622 } 1623 1624 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1625 { 1626 atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc); 1627 sk_filter_release(fp); 1628 } 1629 1630 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1631 { 1632 atomic_inc(&fp->refcnt); 1633 atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc); 1634 } 1635 1636 /* 1637 * Socket reference counting postulates. 1638 * 1639 * * Each user of socket SHOULD hold a reference count. 1640 * * Each access point to socket (an hash table bucket, reference from a list, 1641 * running timer, skb in flight MUST hold a reference count. 1642 * * When reference count hits 0, it means it will never increase back. 1643 * * When reference count hits 0, it means that no references from 1644 * outside exist to this socket and current process on current CPU 1645 * is last user and may/should destroy this socket. 1646 * * sk_free is called from any context: process, BH, IRQ. When 1647 * it is called, socket has no references from outside -> sk_free 1648 * may release descendant resources allocated by the socket, but 1649 * to the time when it is called, socket is NOT referenced by any 1650 * hash tables, lists etc. 1651 * * Packets, delivered from outside (from network or from another process) 1652 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1653 * when they sit in queue. Otherwise, packets will leak to hole, when 1654 * socket is looked up by one cpu and unhasing is made by another CPU. 1655 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1656 * (leak to backlog). Packet socket does all the processing inside 1657 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1658 * use separate SMP lock, so that they are prone too. 1659 */ 1660 1661 /* Ungrab socket and destroy it, if it was the last reference. */ 1662 static inline void sock_put(struct sock *sk) 1663 { 1664 if (atomic_dec_and_test(&sk->sk_refcnt)) 1665 sk_free(sk); 1666 } 1667 /* Generic version of sock_put(), dealing with all sockets 1668 * (TCP_TIMEWAIT, ESTABLISHED...) 1669 */ 1670 void sock_gen_put(struct sock *sk); 1671 1672 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1673 1674 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1675 { 1676 sk->sk_tx_queue_mapping = tx_queue; 1677 } 1678 1679 static inline void sk_tx_queue_clear(struct sock *sk) 1680 { 1681 sk->sk_tx_queue_mapping = -1; 1682 } 1683 1684 static inline int sk_tx_queue_get(const struct sock *sk) 1685 { 1686 return sk ? sk->sk_tx_queue_mapping : -1; 1687 } 1688 1689 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1690 { 1691 sk_tx_queue_clear(sk); 1692 sk->sk_socket = sock; 1693 } 1694 1695 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1696 { 1697 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1698 return &rcu_dereference_raw(sk->sk_wq)->wait; 1699 } 1700 /* Detach socket from process context. 1701 * Announce socket dead, detach it from wait queue and inode. 1702 * Note that parent inode held reference count on this struct sock, 1703 * we do not release it in this function, because protocol 1704 * probably wants some additional cleanups or even continuing 1705 * to work with this socket (TCP). 1706 */ 1707 static inline void sock_orphan(struct sock *sk) 1708 { 1709 write_lock_bh(&sk->sk_callback_lock); 1710 sock_set_flag(sk, SOCK_DEAD); 1711 sk_set_socket(sk, NULL); 1712 sk->sk_wq = NULL; 1713 write_unlock_bh(&sk->sk_callback_lock); 1714 } 1715 1716 static inline void sock_graft(struct sock *sk, struct socket *parent) 1717 { 1718 write_lock_bh(&sk->sk_callback_lock); 1719 sk->sk_wq = parent->wq; 1720 parent->sk = sk; 1721 sk_set_socket(sk, parent); 1722 security_sock_graft(sk, parent); 1723 write_unlock_bh(&sk->sk_callback_lock); 1724 } 1725 1726 kuid_t sock_i_uid(struct sock *sk); 1727 unsigned long sock_i_ino(struct sock *sk); 1728 1729 static inline struct dst_entry * 1730 __sk_dst_get(struct sock *sk) 1731 { 1732 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1733 lockdep_is_held(&sk->sk_lock.slock)); 1734 } 1735 1736 static inline struct dst_entry * 1737 sk_dst_get(struct sock *sk) 1738 { 1739 struct dst_entry *dst; 1740 1741 rcu_read_lock(); 1742 dst = rcu_dereference(sk->sk_dst_cache); 1743 if (dst) 1744 dst_hold(dst); 1745 rcu_read_unlock(); 1746 return dst; 1747 } 1748 1749 static inline void dst_negative_advice(struct sock *sk) 1750 { 1751 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1752 1753 if (dst && dst->ops->negative_advice) { 1754 ndst = dst->ops->negative_advice(dst); 1755 1756 if (ndst != dst) { 1757 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1758 sk_tx_queue_clear(sk); 1759 } 1760 } 1761 } 1762 1763 static inline void 1764 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1765 { 1766 struct dst_entry *old_dst; 1767 1768 sk_tx_queue_clear(sk); 1769 /* 1770 * This can be called while sk is owned by the caller only, 1771 * with no state that can be checked in a rcu_dereference_check() cond 1772 */ 1773 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1774 rcu_assign_pointer(sk->sk_dst_cache, dst); 1775 dst_release(old_dst); 1776 } 1777 1778 static inline void 1779 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1780 { 1781 spin_lock(&sk->sk_dst_lock); 1782 __sk_dst_set(sk, dst); 1783 spin_unlock(&sk->sk_dst_lock); 1784 } 1785 1786 static inline void 1787 __sk_dst_reset(struct sock *sk) 1788 { 1789 __sk_dst_set(sk, NULL); 1790 } 1791 1792 static inline void 1793 sk_dst_reset(struct sock *sk) 1794 { 1795 spin_lock(&sk->sk_dst_lock); 1796 __sk_dst_reset(sk); 1797 spin_unlock(&sk->sk_dst_lock); 1798 } 1799 1800 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1801 1802 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1803 1804 static inline bool sk_can_gso(const struct sock *sk) 1805 { 1806 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1807 } 1808 1809 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1810 1811 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1812 { 1813 sk->sk_route_nocaps |= flags; 1814 sk->sk_route_caps &= ~flags; 1815 } 1816 1817 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1818 char __user *from, char *to, 1819 int copy, int offset) 1820 { 1821 if (skb->ip_summed == CHECKSUM_NONE) { 1822 int err = 0; 1823 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1824 if (err) 1825 return err; 1826 skb->csum = csum_block_add(skb->csum, csum, offset); 1827 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1828 if (!access_ok(VERIFY_READ, from, copy) || 1829 __copy_from_user_nocache(to, from, copy)) 1830 return -EFAULT; 1831 } else if (copy_from_user(to, from, copy)) 1832 return -EFAULT; 1833 1834 return 0; 1835 } 1836 1837 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1838 char __user *from, int copy) 1839 { 1840 int err, offset = skb->len; 1841 1842 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1843 copy, offset); 1844 if (err) 1845 __skb_trim(skb, offset); 1846 1847 return err; 1848 } 1849 1850 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1851 struct sk_buff *skb, 1852 struct page *page, 1853 int off, int copy) 1854 { 1855 int err; 1856 1857 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1858 copy, skb->len); 1859 if (err) 1860 return err; 1861 1862 skb->len += copy; 1863 skb->data_len += copy; 1864 skb->truesize += copy; 1865 sk->sk_wmem_queued += copy; 1866 sk_mem_charge(sk, copy); 1867 return 0; 1868 } 1869 1870 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1871 struct sk_buff *skb, struct page *page, 1872 int off, int copy) 1873 { 1874 if (skb->ip_summed == CHECKSUM_NONE) { 1875 int err = 0; 1876 __wsum csum = csum_and_copy_from_user(from, 1877 page_address(page) + off, 1878 copy, 0, &err); 1879 if (err) 1880 return err; 1881 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1882 } else if (copy_from_user(page_address(page) + off, from, copy)) 1883 return -EFAULT; 1884 1885 skb->len += copy; 1886 skb->data_len += copy; 1887 skb->truesize += copy; 1888 sk->sk_wmem_queued += copy; 1889 sk_mem_charge(sk, copy); 1890 return 0; 1891 } 1892 1893 /** 1894 * sk_wmem_alloc_get - returns write allocations 1895 * @sk: socket 1896 * 1897 * Returns sk_wmem_alloc minus initial offset of one 1898 */ 1899 static inline int sk_wmem_alloc_get(const struct sock *sk) 1900 { 1901 return atomic_read(&sk->sk_wmem_alloc) - 1; 1902 } 1903 1904 /** 1905 * sk_rmem_alloc_get - returns read allocations 1906 * @sk: socket 1907 * 1908 * Returns sk_rmem_alloc 1909 */ 1910 static inline int sk_rmem_alloc_get(const struct sock *sk) 1911 { 1912 return atomic_read(&sk->sk_rmem_alloc); 1913 } 1914 1915 /** 1916 * sk_has_allocations - check if allocations are outstanding 1917 * @sk: socket 1918 * 1919 * Returns true if socket has write or read allocations 1920 */ 1921 static inline bool sk_has_allocations(const struct sock *sk) 1922 { 1923 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1924 } 1925 1926 /** 1927 * wq_has_sleeper - check if there are any waiting processes 1928 * @wq: struct socket_wq 1929 * 1930 * Returns true if socket_wq has waiting processes 1931 * 1932 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1933 * barrier call. They were added due to the race found within the tcp code. 1934 * 1935 * Consider following tcp code paths: 1936 * 1937 * CPU1 CPU2 1938 * 1939 * sys_select receive packet 1940 * ... ... 1941 * __add_wait_queue update tp->rcv_nxt 1942 * ... ... 1943 * tp->rcv_nxt check sock_def_readable 1944 * ... { 1945 * schedule rcu_read_lock(); 1946 * wq = rcu_dereference(sk->sk_wq); 1947 * if (wq && waitqueue_active(&wq->wait)) 1948 * wake_up_interruptible(&wq->wait) 1949 * ... 1950 * } 1951 * 1952 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1953 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1954 * could then endup calling schedule and sleep forever if there are no more 1955 * data on the socket. 1956 * 1957 */ 1958 static inline bool wq_has_sleeper(struct socket_wq *wq) 1959 { 1960 /* We need to be sure we are in sync with the 1961 * add_wait_queue modifications to the wait queue. 1962 * 1963 * This memory barrier is paired in the sock_poll_wait. 1964 */ 1965 smp_mb(); 1966 return wq && waitqueue_active(&wq->wait); 1967 } 1968 1969 /** 1970 * sock_poll_wait - place memory barrier behind the poll_wait call. 1971 * @filp: file 1972 * @wait_address: socket wait queue 1973 * @p: poll_table 1974 * 1975 * See the comments in the wq_has_sleeper function. 1976 */ 1977 static inline void sock_poll_wait(struct file *filp, 1978 wait_queue_head_t *wait_address, poll_table *p) 1979 { 1980 if (!poll_does_not_wait(p) && wait_address) { 1981 poll_wait(filp, wait_address, p); 1982 /* We need to be sure we are in sync with the 1983 * socket flags modification. 1984 * 1985 * This memory barrier is paired in the wq_has_sleeper. 1986 */ 1987 smp_mb(); 1988 } 1989 } 1990 1991 /* 1992 * Queue a received datagram if it will fit. Stream and sequenced 1993 * protocols can't normally use this as they need to fit buffers in 1994 * and play with them. 1995 * 1996 * Inlined as it's very short and called for pretty much every 1997 * packet ever received. 1998 */ 1999 2000 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2001 { 2002 skb_orphan(skb); 2003 skb->sk = sk; 2004 skb->destructor = sock_wfree; 2005 /* 2006 * We used to take a refcount on sk, but following operation 2007 * is enough to guarantee sk_free() wont free this sock until 2008 * all in-flight packets are completed 2009 */ 2010 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 2011 } 2012 2013 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2014 { 2015 skb_orphan(skb); 2016 skb->sk = sk; 2017 skb->destructor = sock_rfree; 2018 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2019 sk_mem_charge(sk, skb->truesize); 2020 } 2021 2022 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2023 unsigned long expires); 2024 2025 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2026 2027 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2028 2029 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2030 2031 /* 2032 * Recover an error report and clear atomically 2033 */ 2034 2035 static inline int sock_error(struct sock *sk) 2036 { 2037 int err; 2038 if (likely(!sk->sk_err)) 2039 return 0; 2040 err = xchg(&sk->sk_err, 0); 2041 return -err; 2042 } 2043 2044 static inline unsigned long sock_wspace(struct sock *sk) 2045 { 2046 int amt = 0; 2047 2048 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2049 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2050 if (amt < 0) 2051 amt = 0; 2052 } 2053 return amt; 2054 } 2055 2056 static inline void sk_wake_async(struct sock *sk, int how, int band) 2057 { 2058 if (sock_flag(sk, SOCK_FASYNC)) 2059 sock_wake_async(sk->sk_socket, how, band); 2060 } 2061 2062 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2063 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2064 * Note: for send buffers, TCP works better if we can build two skbs at 2065 * minimum. 2066 */ 2067 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2068 2069 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2070 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2071 2072 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2073 { 2074 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2075 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2076 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2077 } 2078 } 2079 2080 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2081 2082 /** 2083 * sk_page_frag - return an appropriate page_frag 2084 * @sk: socket 2085 * 2086 * If socket allocation mode allows current thread to sleep, it means its 2087 * safe to use the per task page_frag instead of the per socket one. 2088 */ 2089 static inline struct page_frag *sk_page_frag(struct sock *sk) 2090 { 2091 if (sk->sk_allocation & __GFP_WAIT) 2092 return ¤t->task_frag; 2093 2094 return &sk->sk_frag; 2095 } 2096 2097 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2098 2099 /* 2100 * Default write policy as shown to user space via poll/select/SIGIO 2101 */ 2102 static inline bool sock_writeable(const struct sock *sk) 2103 { 2104 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2105 } 2106 2107 static inline gfp_t gfp_any(void) 2108 { 2109 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2110 } 2111 2112 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2113 { 2114 return noblock ? 0 : sk->sk_rcvtimeo; 2115 } 2116 2117 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2118 { 2119 return noblock ? 0 : sk->sk_sndtimeo; 2120 } 2121 2122 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2123 { 2124 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2125 } 2126 2127 /* Alas, with timeout socket operations are not restartable. 2128 * Compare this to poll(). 2129 */ 2130 static inline int sock_intr_errno(long timeo) 2131 { 2132 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2133 } 2134 2135 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2136 struct sk_buff *skb); 2137 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2138 struct sk_buff *skb); 2139 2140 static inline void 2141 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2142 { 2143 ktime_t kt = skb->tstamp; 2144 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2145 2146 /* 2147 * generate control messages if 2148 * - receive time stamping in software requested (SOCK_RCVTSTAMP 2149 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 2150 * - software time stamp available and wanted 2151 * (SOCK_TIMESTAMPING_SOFTWARE) 2152 * - hardware time stamps available and wanted 2153 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 2154 * SOCK_TIMESTAMPING_RAW_HARDWARE) 2155 */ 2156 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2157 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 2158 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 2159 (hwtstamps->hwtstamp.tv64 && 2160 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 2161 (hwtstamps->syststamp.tv64 && 2162 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 2163 __sock_recv_timestamp(msg, sk, skb); 2164 else 2165 sk->sk_stamp = kt; 2166 2167 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2168 __sock_recv_wifi_status(msg, sk, skb); 2169 } 2170 2171 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2172 struct sk_buff *skb); 2173 2174 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2175 struct sk_buff *skb) 2176 { 2177 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2178 (1UL << SOCK_RCVTSTAMP) | \ 2179 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 2180 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 2181 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 2182 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 2183 2184 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 2185 __sock_recv_ts_and_drops(msg, sk, skb); 2186 else 2187 sk->sk_stamp = skb->tstamp; 2188 } 2189 2190 /** 2191 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2192 * @sk: socket sending this packet 2193 * @tx_flags: filled with instructions for time stamping 2194 * 2195 * Currently only depends on SOCK_TIMESTAMPING* flags. 2196 */ 2197 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2198 2199 /** 2200 * sk_eat_skb - Release a skb if it is no longer needed 2201 * @sk: socket to eat this skb from 2202 * @skb: socket buffer to eat 2203 * @copied_early: flag indicating whether DMA operations copied this data early 2204 * 2205 * This routine must be called with interrupts disabled or with the socket 2206 * locked so that the sk_buff queue operation is ok. 2207 */ 2208 #ifdef CONFIG_NET_DMA 2209 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2210 { 2211 __skb_unlink(skb, &sk->sk_receive_queue); 2212 if (!copied_early) 2213 __kfree_skb(skb); 2214 else 2215 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2216 } 2217 #else 2218 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2219 { 2220 __skb_unlink(skb, &sk->sk_receive_queue); 2221 __kfree_skb(skb); 2222 } 2223 #endif 2224 2225 static inline 2226 struct net *sock_net(const struct sock *sk) 2227 { 2228 return read_pnet(&sk->sk_net); 2229 } 2230 2231 static inline 2232 void sock_net_set(struct sock *sk, struct net *net) 2233 { 2234 write_pnet(&sk->sk_net, net); 2235 } 2236 2237 /* 2238 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2239 * They should not hold a reference to a namespace in order to allow 2240 * to stop it. 2241 * Sockets after sk_change_net should be released using sk_release_kernel 2242 */ 2243 static inline void sk_change_net(struct sock *sk, struct net *net) 2244 { 2245 put_net(sock_net(sk)); 2246 sock_net_set(sk, hold_net(net)); 2247 } 2248 2249 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2250 { 2251 if (skb->sk) { 2252 struct sock *sk = skb->sk; 2253 2254 skb->destructor = NULL; 2255 skb->sk = NULL; 2256 return sk; 2257 } 2258 return NULL; 2259 } 2260 2261 void sock_enable_timestamp(struct sock *sk, int flag); 2262 int sock_get_timestamp(struct sock *, struct timeval __user *); 2263 int sock_get_timestampns(struct sock *, struct timespec __user *); 2264 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2265 int type); 2266 2267 /* 2268 * Enable debug/info messages 2269 */ 2270 extern int net_msg_warn; 2271 #define NETDEBUG(fmt, args...) \ 2272 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2273 2274 #define LIMIT_NETDEBUG(fmt, args...) \ 2275 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2276 2277 extern __u32 sysctl_wmem_max; 2278 extern __u32 sysctl_rmem_max; 2279 2280 extern int sysctl_optmem_max; 2281 2282 extern __u32 sysctl_wmem_default; 2283 extern __u32 sysctl_rmem_default; 2284 2285 #endif /* _SOCK_H */ 2286