1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 63 #include <linux/atomic.h> 64 #include <linux/refcount.h> 65 #include <net/dst.h> 66 #include <net/checksum.h> 67 #include <net/tcp_states.h> 68 #include <linux/net_tstamp.h> 69 #include <net/l3mdev.h> 70 71 /* 72 * This structure really needs to be cleaned up. 73 * Most of it is for TCP, and not used by any of 74 * the other protocols. 75 */ 76 77 /* Define this to get the SOCK_DBG debugging facility. */ 78 #define SOCK_DEBUGGING 79 #ifdef SOCK_DEBUGGING 80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 81 printk(KERN_DEBUG msg); } while (0) 82 #else 83 /* Validate arguments and do nothing */ 84 static inline __printf(2, 3) 85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 86 { 87 } 88 #endif 89 90 /* This is the per-socket lock. The spinlock provides a synchronization 91 * between user contexts and software interrupt processing, whereas the 92 * mini-semaphore synchronizes multiple users amongst themselves. 93 */ 94 typedef struct { 95 spinlock_t slock; 96 int owned; 97 wait_queue_head_t wq; 98 /* 99 * We express the mutex-alike socket_lock semantics 100 * to the lock validator by explicitly managing 101 * the slock as a lock variant (in addition to 102 * the slock itself): 103 */ 104 #ifdef CONFIG_DEBUG_LOCK_ALLOC 105 struct lockdep_map dep_map; 106 #endif 107 } socket_lock_t; 108 109 struct sock; 110 struct proto; 111 struct net; 112 113 typedef __u32 __bitwise __portpair; 114 typedef __u64 __bitwise __addrpair; 115 116 /** 117 * struct sock_common - minimal network layer representation of sockets 118 * @skc_daddr: Foreign IPv4 addr 119 * @skc_rcv_saddr: Bound local IPv4 addr 120 * @skc_hash: hash value used with various protocol lookup tables 121 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 122 * @skc_dport: placeholder for inet_dport/tw_dport 123 * @skc_num: placeholder for inet_num/tw_num 124 * @skc_family: network address family 125 * @skc_state: Connection state 126 * @skc_reuse: %SO_REUSEADDR setting 127 * @skc_reuseport: %SO_REUSEPORT setting 128 * @skc_bound_dev_if: bound device index if != 0 129 * @skc_bind_node: bind hash linkage for various protocol lookup tables 130 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 131 * @skc_prot: protocol handlers inside a network family 132 * @skc_net: reference to the network namespace of this socket 133 * @skc_node: main hash linkage for various protocol lookup tables 134 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 135 * @skc_tx_queue_mapping: tx queue number for this connection 136 * @skc_rx_queue_mapping: rx queue number for this connection 137 * @skc_flags: place holder for sk_flags 138 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 139 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 140 * @skc_incoming_cpu: record/match cpu processing incoming packets 141 * @skc_refcnt: reference count 142 * 143 * This is the minimal network layer representation of sockets, the header 144 * for struct sock and struct inet_timewait_sock. 145 */ 146 struct sock_common { 147 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 148 * address on 64bit arches : cf INET_MATCH() 149 */ 150 union { 151 __addrpair skc_addrpair; 152 struct { 153 __be32 skc_daddr; 154 __be32 skc_rcv_saddr; 155 }; 156 }; 157 union { 158 unsigned int skc_hash; 159 __u16 skc_u16hashes[2]; 160 }; 161 /* skc_dport && skc_num must be grouped as well */ 162 union { 163 __portpair skc_portpair; 164 struct { 165 __be16 skc_dport; 166 __u16 skc_num; 167 }; 168 }; 169 170 unsigned short skc_family; 171 volatile unsigned char skc_state; 172 unsigned char skc_reuse:4; 173 unsigned char skc_reuseport:1; 174 unsigned char skc_ipv6only:1; 175 unsigned char skc_net_refcnt:1; 176 int skc_bound_dev_if; 177 union { 178 struct hlist_node skc_bind_node; 179 struct hlist_node skc_portaddr_node; 180 }; 181 struct proto *skc_prot; 182 possible_net_t skc_net; 183 184 #if IS_ENABLED(CONFIG_IPV6) 185 struct in6_addr skc_v6_daddr; 186 struct in6_addr skc_v6_rcv_saddr; 187 #endif 188 189 atomic64_t skc_cookie; 190 191 /* following fields are padding to force 192 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 193 * assuming IPV6 is enabled. We use this padding differently 194 * for different kind of 'sockets' 195 */ 196 union { 197 unsigned long skc_flags; 198 struct sock *skc_listener; /* request_sock */ 199 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 200 }; 201 /* 202 * fields between dontcopy_begin/dontcopy_end 203 * are not copied in sock_copy() 204 */ 205 /* private: */ 206 int skc_dontcopy_begin[0]; 207 /* public: */ 208 union { 209 struct hlist_node skc_node; 210 struct hlist_nulls_node skc_nulls_node; 211 }; 212 unsigned short skc_tx_queue_mapping; 213 #ifdef CONFIG_XPS 214 unsigned short skc_rx_queue_mapping; 215 #endif 216 union { 217 int skc_incoming_cpu; 218 u32 skc_rcv_wnd; 219 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 220 }; 221 222 refcount_t skc_refcnt; 223 /* private: */ 224 int skc_dontcopy_end[0]; 225 union { 226 u32 skc_rxhash; 227 u32 skc_window_clamp; 228 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 229 }; 230 /* public: */ 231 }; 232 233 struct bpf_sk_storage; 234 235 /** 236 * struct sock - network layer representation of sockets 237 * @__sk_common: shared layout with inet_timewait_sock 238 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 239 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 240 * @sk_lock: synchronizer 241 * @sk_kern_sock: True if sock is using kernel lock classes 242 * @sk_rcvbuf: size of receive buffer in bytes 243 * @sk_wq: sock wait queue and async head 244 * @sk_rx_dst: receive input route used by early demux 245 * @sk_dst_cache: destination cache 246 * @sk_dst_pending_confirm: need to confirm neighbour 247 * @sk_policy: flow policy 248 * @sk_receive_queue: incoming packets 249 * @sk_wmem_alloc: transmit queue bytes committed 250 * @sk_tsq_flags: TCP Small Queues flags 251 * @sk_write_queue: Packet sending queue 252 * @sk_omem_alloc: "o" is "option" or "other" 253 * @sk_wmem_queued: persistent queue size 254 * @sk_forward_alloc: space allocated forward 255 * @sk_napi_id: id of the last napi context to receive data for sk 256 * @sk_ll_usec: usecs to busypoll when there is no data 257 * @sk_allocation: allocation mode 258 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 259 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 260 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 261 * @sk_sndbuf: size of send buffer in bytes 262 * @__sk_flags_offset: empty field used to determine location of bitfield 263 * @sk_padding: unused element for alignment 264 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 265 * @sk_no_check_rx: allow zero checksum in RX packets 266 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 267 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 268 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 269 * @sk_gso_max_size: Maximum GSO segment size to build 270 * @sk_gso_max_segs: Maximum number of GSO segments 271 * @sk_pacing_shift: scaling factor for TCP Small Queues 272 * @sk_lingertime: %SO_LINGER l_linger setting 273 * @sk_backlog: always used with the per-socket spinlock held 274 * @sk_callback_lock: used with the callbacks in the end of this struct 275 * @sk_error_queue: rarely used 276 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 277 * IPV6_ADDRFORM for instance) 278 * @sk_err: last error 279 * @sk_err_soft: errors that don't cause failure but are the cause of a 280 * persistent failure not just 'timed out' 281 * @sk_drops: raw/udp drops counter 282 * @sk_ack_backlog: current listen backlog 283 * @sk_max_ack_backlog: listen backlog set in listen() 284 * @sk_uid: user id of owner 285 * @sk_priority: %SO_PRIORITY setting 286 * @sk_type: socket type (%SOCK_STREAM, etc) 287 * @sk_protocol: which protocol this socket belongs in this network family 288 * @sk_peer_pid: &struct pid for this socket's peer 289 * @sk_peer_cred: %SO_PEERCRED setting 290 * @sk_rcvlowat: %SO_RCVLOWAT setting 291 * @sk_rcvtimeo: %SO_RCVTIMEO setting 292 * @sk_sndtimeo: %SO_SNDTIMEO setting 293 * @sk_txhash: computed flow hash for use on transmit 294 * @sk_filter: socket filtering instructions 295 * @sk_timer: sock cleanup timer 296 * @sk_stamp: time stamp of last packet received 297 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 298 * @sk_tsflags: SO_TIMESTAMPING socket options 299 * @sk_tskey: counter to disambiguate concurrent tstamp requests 300 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 301 * @sk_socket: Identd and reporting IO signals 302 * @sk_user_data: RPC layer private data 303 * @sk_frag: cached page frag 304 * @sk_peek_off: current peek_offset value 305 * @sk_send_head: front of stuff to transmit 306 * @sk_security: used by security modules 307 * @sk_mark: generic packet mark 308 * @sk_cgrp_data: cgroup data for this cgroup 309 * @sk_memcg: this socket's memory cgroup association 310 * @sk_write_pending: a write to stream socket waits to start 311 * @sk_state_change: callback to indicate change in the state of the sock 312 * @sk_data_ready: callback to indicate there is data to be processed 313 * @sk_write_space: callback to indicate there is bf sending space available 314 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 315 * @sk_backlog_rcv: callback to process the backlog 316 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 317 * @sk_reuseport_cb: reuseport group container 318 * @sk_rcu: used during RCU grace period 319 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 320 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 321 * @sk_txtime_unused: unused txtime flags 322 */ 323 struct sock { 324 /* 325 * Now struct inet_timewait_sock also uses sock_common, so please just 326 * don't add nothing before this first member (__sk_common) --acme 327 */ 328 struct sock_common __sk_common; 329 #define sk_node __sk_common.skc_node 330 #define sk_nulls_node __sk_common.skc_nulls_node 331 #define sk_refcnt __sk_common.skc_refcnt 332 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 333 #ifdef CONFIG_XPS 334 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 335 #endif 336 337 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 338 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 339 #define sk_hash __sk_common.skc_hash 340 #define sk_portpair __sk_common.skc_portpair 341 #define sk_num __sk_common.skc_num 342 #define sk_dport __sk_common.skc_dport 343 #define sk_addrpair __sk_common.skc_addrpair 344 #define sk_daddr __sk_common.skc_daddr 345 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 346 #define sk_family __sk_common.skc_family 347 #define sk_state __sk_common.skc_state 348 #define sk_reuse __sk_common.skc_reuse 349 #define sk_reuseport __sk_common.skc_reuseport 350 #define sk_ipv6only __sk_common.skc_ipv6only 351 #define sk_net_refcnt __sk_common.skc_net_refcnt 352 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 353 #define sk_bind_node __sk_common.skc_bind_node 354 #define sk_prot __sk_common.skc_prot 355 #define sk_net __sk_common.skc_net 356 #define sk_v6_daddr __sk_common.skc_v6_daddr 357 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 358 #define sk_cookie __sk_common.skc_cookie 359 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 360 #define sk_flags __sk_common.skc_flags 361 #define sk_rxhash __sk_common.skc_rxhash 362 363 socket_lock_t sk_lock; 364 atomic_t sk_drops; 365 int sk_rcvlowat; 366 struct sk_buff_head sk_error_queue; 367 struct sk_buff *sk_rx_skb_cache; 368 struct sk_buff_head sk_receive_queue; 369 /* 370 * The backlog queue is special, it is always used with 371 * the per-socket spinlock held and requires low latency 372 * access. Therefore we special case it's implementation. 373 * Note : rmem_alloc is in this structure to fill a hole 374 * on 64bit arches, not because its logically part of 375 * backlog. 376 */ 377 struct { 378 atomic_t rmem_alloc; 379 int len; 380 struct sk_buff *head; 381 struct sk_buff *tail; 382 } sk_backlog; 383 #define sk_rmem_alloc sk_backlog.rmem_alloc 384 385 int sk_forward_alloc; 386 #ifdef CONFIG_NET_RX_BUSY_POLL 387 unsigned int sk_ll_usec; 388 /* ===== mostly read cache line ===== */ 389 unsigned int sk_napi_id; 390 #endif 391 int sk_rcvbuf; 392 393 struct sk_filter __rcu *sk_filter; 394 union { 395 struct socket_wq __rcu *sk_wq; 396 struct socket_wq *sk_wq_raw; 397 }; 398 #ifdef CONFIG_XFRM 399 struct xfrm_policy __rcu *sk_policy[2]; 400 #endif 401 struct dst_entry *sk_rx_dst; 402 struct dst_entry __rcu *sk_dst_cache; 403 atomic_t sk_omem_alloc; 404 int sk_sndbuf; 405 406 /* ===== cache line for TX ===== */ 407 int sk_wmem_queued; 408 refcount_t sk_wmem_alloc; 409 unsigned long sk_tsq_flags; 410 union { 411 struct sk_buff *sk_send_head; 412 struct rb_root tcp_rtx_queue; 413 }; 414 struct sk_buff *sk_tx_skb_cache; 415 struct sk_buff_head sk_write_queue; 416 __s32 sk_peek_off; 417 int sk_write_pending; 418 __u32 sk_dst_pending_confirm; 419 u32 sk_pacing_status; /* see enum sk_pacing */ 420 long sk_sndtimeo; 421 struct timer_list sk_timer; 422 __u32 sk_priority; 423 __u32 sk_mark; 424 unsigned long sk_pacing_rate; /* bytes per second */ 425 unsigned long sk_max_pacing_rate; 426 struct page_frag sk_frag; 427 netdev_features_t sk_route_caps; 428 netdev_features_t sk_route_nocaps; 429 netdev_features_t sk_route_forced_caps; 430 int sk_gso_type; 431 unsigned int sk_gso_max_size; 432 gfp_t sk_allocation; 433 __u32 sk_txhash; 434 435 /* 436 * Because of non atomicity rules, all 437 * changes are protected by socket lock. 438 */ 439 u8 sk_padding : 1, 440 sk_kern_sock : 1, 441 sk_no_check_tx : 1, 442 sk_no_check_rx : 1, 443 sk_userlocks : 4; 444 u8 sk_pacing_shift; 445 u16 sk_type; 446 u16 sk_protocol; 447 u16 sk_gso_max_segs; 448 unsigned long sk_lingertime; 449 struct proto *sk_prot_creator; 450 rwlock_t sk_callback_lock; 451 int sk_err, 452 sk_err_soft; 453 u32 sk_ack_backlog; 454 u32 sk_max_ack_backlog; 455 kuid_t sk_uid; 456 struct pid *sk_peer_pid; 457 const struct cred *sk_peer_cred; 458 long sk_rcvtimeo; 459 ktime_t sk_stamp; 460 #if BITS_PER_LONG==32 461 seqlock_t sk_stamp_seq; 462 #endif 463 u16 sk_tsflags; 464 u8 sk_shutdown; 465 u32 sk_tskey; 466 atomic_t sk_zckey; 467 468 u8 sk_clockid; 469 u8 sk_txtime_deadline_mode : 1, 470 sk_txtime_report_errors : 1, 471 sk_txtime_unused : 6; 472 473 struct socket *sk_socket; 474 void *sk_user_data; 475 #ifdef CONFIG_SECURITY 476 void *sk_security; 477 #endif 478 struct sock_cgroup_data sk_cgrp_data; 479 struct mem_cgroup *sk_memcg; 480 void (*sk_state_change)(struct sock *sk); 481 void (*sk_data_ready)(struct sock *sk); 482 void (*sk_write_space)(struct sock *sk); 483 void (*sk_error_report)(struct sock *sk); 484 int (*sk_backlog_rcv)(struct sock *sk, 485 struct sk_buff *skb); 486 #ifdef CONFIG_SOCK_VALIDATE_XMIT 487 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 488 struct net_device *dev, 489 struct sk_buff *skb); 490 #endif 491 void (*sk_destruct)(struct sock *sk); 492 struct sock_reuseport __rcu *sk_reuseport_cb; 493 #ifdef CONFIG_BPF_SYSCALL 494 struct bpf_sk_storage __rcu *sk_bpf_storage; 495 #endif 496 struct rcu_head sk_rcu; 497 }; 498 499 enum sk_pacing { 500 SK_PACING_NONE = 0, 501 SK_PACING_NEEDED = 1, 502 SK_PACING_FQ = 2, 503 }; 504 505 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 506 507 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 508 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 509 510 /* 511 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 512 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 513 * on a socket means that the socket will reuse everybody else's port 514 * without looking at the other's sk_reuse value. 515 */ 516 517 #define SK_NO_REUSE 0 518 #define SK_CAN_REUSE 1 519 #define SK_FORCE_REUSE 2 520 521 int sk_set_peek_off(struct sock *sk, int val); 522 523 static inline int sk_peek_offset(struct sock *sk, int flags) 524 { 525 if (unlikely(flags & MSG_PEEK)) { 526 return READ_ONCE(sk->sk_peek_off); 527 } 528 529 return 0; 530 } 531 532 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 533 { 534 s32 off = READ_ONCE(sk->sk_peek_off); 535 536 if (unlikely(off >= 0)) { 537 off = max_t(s32, off - val, 0); 538 WRITE_ONCE(sk->sk_peek_off, off); 539 } 540 } 541 542 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 543 { 544 sk_peek_offset_bwd(sk, -val); 545 } 546 547 /* 548 * Hashed lists helper routines 549 */ 550 static inline struct sock *sk_entry(const struct hlist_node *node) 551 { 552 return hlist_entry(node, struct sock, sk_node); 553 } 554 555 static inline struct sock *__sk_head(const struct hlist_head *head) 556 { 557 return hlist_entry(head->first, struct sock, sk_node); 558 } 559 560 static inline struct sock *sk_head(const struct hlist_head *head) 561 { 562 return hlist_empty(head) ? NULL : __sk_head(head); 563 } 564 565 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 566 { 567 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 568 } 569 570 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 571 { 572 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 573 } 574 575 static inline struct sock *sk_next(const struct sock *sk) 576 { 577 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 578 } 579 580 static inline struct sock *sk_nulls_next(const struct sock *sk) 581 { 582 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 583 hlist_nulls_entry(sk->sk_nulls_node.next, 584 struct sock, sk_nulls_node) : 585 NULL; 586 } 587 588 static inline bool sk_unhashed(const struct sock *sk) 589 { 590 return hlist_unhashed(&sk->sk_node); 591 } 592 593 static inline bool sk_hashed(const struct sock *sk) 594 { 595 return !sk_unhashed(sk); 596 } 597 598 static inline void sk_node_init(struct hlist_node *node) 599 { 600 node->pprev = NULL; 601 } 602 603 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 604 { 605 node->pprev = NULL; 606 } 607 608 static inline void __sk_del_node(struct sock *sk) 609 { 610 __hlist_del(&sk->sk_node); 611 } 612 613 /* NB: equivalent to hlist_del_init_rcu */ 614 static inline bool __sk_del_node_init(struct sock *sk) 615 { 616 if (sk_hashed(sk)) { 617 __sk_del_node(sk); 618 sk_node_init(&sk->sk_node); 619 return true; 620 } 621 return false; 622 } 623 624 /* Grab socket reference count. This operation is valid only 625 when sk is ALREADY grabbed f.e. it is found in hash table 626 or a list and the lookup is made under lock preventing hash table 627 modifications. 628 */ 629 630 static __always_inline void sock_hold(struct sock *sk) 631 { 632 refcount_inc(&sk->sk_refcnt); 633 } 634 635 /* Ungrab socket in the context, which assumes that socket refcnt 636 cannot hit zero, f.e. it is true in context of any socketcall. 637 */ 638 static __always_inline void __sock_put(struct sock *sk) 639 { 640 refcount_dec(&sk->sk_refcnt); 641 } 642 643 static inline bool sk_del_node_init(struct sock *sk) 644 { 645 bool rc = __sk_del_node_init(sk); 646 647 if (rc) { 648 /* paranoid for a while -acme */ 649 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 650 __sock_put(sk); 651 } 652 return rc; 653 } 654 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 655 656 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 657 { 658 if (sk_hashed(sk)) { 659 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 660 return true; 661 } 662 return false; 663 } 664 665 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 666 { 667 bool rc = __sk_nulls_del_node_init_rcu(sk); 668 669 if (rc) { 670 /* paranoid for a while -acme */ 671 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 672 __sock_put(sk); 673 } 674 return rc; 675 } 676 677 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 678 { 679 hlist_add_head(&sk->sk_node, list); 680 } 681 682 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 683 { 684 sock_hold(sk); 685 __sk_add_node(sk, list); 686 } 687 688 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 689 { 690 sock_hold(sk); 691 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 692 sk->sk_family == AF_INET6) 693 hlist_add_tail_rcu(&sk->sk_node, list); 694 else 695 hlist_add_head_rcu(&sk->sk_node, list); 696 } 697 698 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 699 { 700 sock_hold(sk); 701 hlist_add_tail_rcu(&sk->sk_node, list); 702 } 703 704 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 705 { 706 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 707 } 708 709 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 710 { 711 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 712 } 713 714 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 715 { 716 sock_hold(sk); 717 __sk_nulls_add_node_rcu(sk, list); 718 } 719 720 static inline void __sk_del_bind_node(struct sock *sk) 721 { 722 __hlist_del(&sk->sk_bind_node); 723 } 724 725 static inline void sk_add_bind_node(struct sock *sk, 726 struct hlist_head *list) 727 { 728 hlist_add_head(&sk->sk_bind_node, list); 729 } 730 731 #define sk_for_each(__sk, list) \ 732 hlist_for_each_entry(__sk, list, sk_node) 733 #define sk_for_each_rcu(__sk, list) \ 734 hlist_for_each_entry_rcu(__sk, list, sk_node) 735 #define sk_nulls_for_each(__sk, node, list) \ 736 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 737 #define sk_nulls_for_each_rcu(__sk, node, list) \ 738 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 739 #define sk_for_each_from(__sk) \ 740 hlist_for_each_entry_from(__sk, sk_node) 741 #define sk_nulls_for_each_from(__sk, node) \ 742 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 743 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 744 #define sk_for_each_safe(__sk, tmp, list) \ 745 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 746 #define sk_for_each_bound(__sk, list) \ 747 hlist_for_each_entry(__sk, list, sk_bind_node) 748 749 /** 750 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 751 * @tpos: the type * to use as a loop cursor. 752 * @pos: the &struct hlist_node to use as a loop cursor. 753 * @head: the head for your list. 754 * @offset: offset of hlist_node within the struct. 755 * 756 */ 757 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 758 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 759 pos != NULL && \ 760 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 761 pos = rcu_dereference(hlist_next_rcu(pos))) 762 763 static inline struct user_namespace *sk_user_ns(struct sock *sk) 764 { 765 /* Careful only use this in a context where these parameters 766 * can not change and must all be valid, such as recvmsg from 767 * userspace. 768 */ 769 return sk->sk_socket->file->f_cred->user_ns; 770 } 771 772 /* Sock flags */ 773 enum sock_flags { 774 SOCK_DEAD, 775 SOCK_DONE, 776 SOCK_URGINLINE, 777 SOCK_KEEPOPEN, 778 SOCK_LINGER, 779 SOCK_DESTROY, 780 SOCK_BROADCAST, 781 SOCK_TIMESTAMP, 782 SOCK_ZAPPED, 783 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 784 SOCK_DBG, /* %SO_DEBUG setting */ 785 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 786 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 787 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 788 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 789 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 790 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 791 SOCK_FASYNC, /* fasync() active */ 792 SOCK_RXQ_OVFL, 793 SOCK_ZEROCOPY, /* buffers from userspace */ 794 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 795 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 796 * Will use last 4 bytes of packet sent from 797 * user-space instead. 798 */ 799 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 800 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 801 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 802 SOCK_TXTIME, 803 SOCK_XDP, /* XDP is attached */ 804 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 805 }; 806 807 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 808 809 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 810 { 811 nsk->sk_flags = osk->sk_flags; 812 } 813 814 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 815 { 816 __set_bit(flag, &sk->sk_flags); 817 } 818 819 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 820 { 821 __clear_bit(flag, &sk->sk_flags); 822 } 823 824 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 825 { 826 return test_bit(flag, &sk->sk_flags); 827 } 828 829 #ifdef CONFIG_NET 830 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 831 static inline int sk_memalloc_socks(void) 832 { 833 return static_branch_unlikely(&memalloc_socks_key); 834 } 835 #else 836 837 static inline int sk_memalloc_socks(void) 838 { 839 return 0; 840 } 841 842 #endif 843 844 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 845 { 846 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 847 } 848 849 static inline void sk_acceptq_removed(struct sock *sk) 850 { 851 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 852 } 853 854 static inline void sk_acceptq_added(struct sock *sk) 855 { 856 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 857 } 858 859 static inline bool sk_acceptq_is_full(const struct sock *sk) 860 { 861 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 862 } 863 864 /* 865 * Compute minimal free write space needed to queue new packets. 866 */ 867 static inline int sk_stream_min_wspace(const struct sock *sk) 868 { 869 return READ_ONCE(sk->sk_wmem_queued) >> 1; 870 } 871 872 static inline int sk_stream_wspace(const struct sock *sk) 873 { 874 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 875 } 876 877 static inline void sk_wmem_queued_add(struct sock *sk, int val) 878 { 879 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 880 } 881 882 void sk_stream_write_space(struct sock *sk); 883 884 /* OOB backlog add */ 885 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 886 { 887 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 888 skb_dst_force(skb); 889 890 if (!sk->sk_backlog.tail) 891 WRITE_ONCE(sk->sk_backlog.head, skb); 892 else 893 sk->sk_backlog.tail->next = skb; 894 895 WRITE_ONCE(sk->sk_backlog.tail, skb); 896 skb->next = NULL; 897 } 898 899 /* 900 * Take into account size of receive queue and backlog queue 901 * Do not take into account this skb truesize, 902 * to allow even a single big packet to come. 903 */ 904 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 905 { 906 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 907 908 return qsize > limit; 909 } 910 911 /* The per-socket spinlock must be held here. */ 912 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 913 unsigned int limit) 914 { 915 if (sk_rcvqueues_full(sk, limit)) 916 return -ENOBUFS; 917 918 /* 919 * If the skb was allocated from pfmemalloc reserves, only 920 * allow SOCK_MEMALLOC sockets to use it as this socket is 921 * helping free memory 922 */ 923 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 924 return -ENOMEM; 925 926 __sk_add_backlog(sk, skb); 927 sk->sk_backlog.len += skb->truesize; 928 return 0; 929 } 930 931 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 932 933 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 934 { 935 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 936 return __sk_backlog_rcv(sk, skb); 937 938 return sk->sk_backlog_rcv(sk, skb); 939 } 940 941 static inline void sk_incoming_cpu_update(struct sock *sk) 942 { 943 int cpu = raw_smp_processor_id(); 944 945 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 946 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 947 } 948 949 static inline void sock_rps_record_flow_hash(__u32 hash) 950 { 951 #ifdef CONFIG_RPS 952 struct rps_sock_flow_table *sock_flow_table; 953 954 rcu_read_lock(); 955 sock_flow_table = rcu_dereference(rps_sock_flow_table); 956 rps_record_sock_flow(sock_flow_table, hash); 957 rcu_read_unlock(); 958 #endif 959 } 960 961 static inline void sock_rps_record_flow(const struct sock *sk) 962 { 963 #ifdef CONFIG_RPS 964 if (static_branch_unlikely(&rfs_needed)) { 965 /* Reading sk->sk_rxhash might incur an expensive cache line 966 * miss. 967 * 968 * TCP_ESTABLISHED does cover almost all states where RFS 969 * might be useful, and is cheaper [1] than testing : 970 * IPv4: inet_sk(sk)->inet_daddr 971 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 972 * OR an additional socket flag 973 * [1] : sk_state and sk_prot are in the same cache line. 974 */ 975 if (sk->sk_state == TCP_ESTABLISHED) 976 sock_rps_record_flow_hash(sk->sk_rxhash); 977 } 978 #endif 979 } 980 981 static inline void sock_rps_save_rxhash(struct sock *sk, 982 const struct sk_buff *skb) 983 { 984 #ifdef CONFIG_RPS 985 if (unlikely(sk->sk_rxhash != skb->hash)) 986 sk->sk_rxhash = skb->hash; 987 #endif 988 } 989 990 static inline void sock_rps_reset_rxhash(struct sock *sk) 991 { 992 #ifdef CONFIG_RPS 993 sk->sk_rxhash = 0; 994 #endif 995 } 996 997 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 998 ({ int __rc; \ 999 release_sock(__sk); \ 1000 __rc = __condition; \ 1001 if (!__rc) { \ 1002 *(__timeo) = wait_woken(__wait, \ 1003 TASK_INTERRUPTIBLE, \ 1004 *(__timeo)); \ 1005 } \ 1006 sched_annotate_sleep(); \ 1007 lock_sock(__sk); \ 1008 __rc = __condition; \ 1009 __rc; \ 1010 }) 1011 1012 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1013 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1014 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1015 int sk_stream_error(struct sock *sk, int flags, int err); 1016 void sk_stream_kill_queues(struct sock *sk); 1017 void sk_set_memalloc(struct sock *sk); 1018 void sk_clear_memalloc(struct sock *sk); 1019 1020 void __sk_flush_backlog(struct sock *sk); 1021 1022 static inline bool sk_flush_backlog(struct sock *sk) 1023 { 1024 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1025 __sk_flush_backlog(sk); 1026 return true; 1027 } 1028 return false; 1029 } 1030 1031 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1032 1033 struct request_sock_ops; 1034 struct timewait_sock_ops; 1035 struct inet_hashinfo; 1036 struct raw_hashinfo; 1037 struct smc_hashinfo; 1038 struct module; 1039 1040 /* 1041 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1042 * un-modified. Special care is taken when initializing object to zero. 1043 */ 1044 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1045 { 1046 if (offsetof(struct sock, sk_node.next) != 0) 1047 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1048 memset(&sk->sk_node.pprev, 0, 1049 size - offsetof(struct sock, sk_node.pprev)); 1050 } 1051 1052 /* Networking protocol blocks we attach to sockets. 1053 * socket layer -> transport layer interface 1054 */ 1055 struct proto { 1056 void (*close)(struct sock *sk, 1057 long timeout); 1058 int (*pre_connect)(struct sock *sk, 1059 struct sockaddr *uaddr, 1060 int addr_len); 1061 int (*connect)(struct sock *sk, 1062 struct sockaddr *uaddr, 1063 int addr_len); 1064 int (*disconnect)(struct sock *sk, int flags); 1065 1066 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1067 bool kern); 1068 1069 int (*ioctl)(struct sock *sk, int cmd, 1070 unsigned long arg); 1071 int (*init)(struct sock *sk); 1072 void (*destroy)(struct sock *sk); 1073 void (*shutdown)(struct sock *sk, int how); 1074 int (*setsockopt)(struct sock *sk, int level, 1075 int optname, char __user *optval, 1076 unsigned int optlen); 1077 int (*getsockopt)(struct sock *sk, int level, 1078 int optname, char __user *optval, 1079 int __user *option); 1080 void (*keepalive)(struct sock *sk, int valbool); 1081 #ifdef CONFIG_COMPAT 1082 int (*compat_setsockopt)(struct sock *sk, 1083 int level, 1084 int optname, char __user *optval, 1085 unsigned int optlen); 1086 int (*compat_getsockopt)(struct sock *sk, 1087 int level, 1088 int optname, char __user *optval, 1089 int __user *option); 1090 int (*compat_ioctl)(struct sock *sk, 1091 unsigned int cmd, unsigned long arg); 1092 #endif 1093 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1094 size_t len); 1095 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1096 size_t len, int noblock, int flags, 1097 int *addr_len); 1098 int (*sendpage)(struct sock *sk, struct page *page, 1099 int offset, size_t size, int flags); 1100 int (*bind)(struct sock *sk, 1101 struct sockaddr *uaddr, int addr_len); 1102 1103 int (*backlog_rcv) (struct sock *sk, 1104 struct sk_buff *skb); 1105 1106 void (*release_cb)(struct sock *sk); 1107 1108 /* Keeping track of sk's, looking them up, and port selection methods. */ 1109 int (*hash)(struct sock *sk); 1110 void (*unhash)(struct sock *sk); 1111 void (*rehash)(struct sock *sk); 1112 int (*get_port)(struct sock *sk, unsigned short snum); 1113 1114 /* Keeping track of sockets in use */ 1115 #ifdef CONFIG_PROC_FS 1116 unsigned int inuse_idx; 1117 #endif 1118 1119 bool (*stream_memory_free)(const struct sock *sk, int wake); 1120 bool (*stream_memory_read)(const struct sock *sk); 1121 /* Memory pressure */ 1122 void (*enter_memory_pressure)(struct sock *sk); 1123 void (*leave_memory_pressure)(struct sock *sk); 1124 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1125 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1126 /* 1127 * Pressure flag: try to collapse. 1128 * Technical note: it is used by multiple contexts non atomically. 1129 * All the __sk_mem_schedule() is of this nature: accounting 1130 * is strict, actions are advisory and have some latency. 1131 */ 1132 unsigned long *memory_pressure; 1133 long *sysctl_mem; 1134 1135 int *sysctl_wmem; 1136 int *sysctl_rmem; 1137 u32 sysctl_wmem_offset; 1138 u32 sysctl_rmem_offset; 1139 1140 int max_header; 1141 bool no_autobind; 1142 1143 struct kmem_cache *slab; 1144 unsigned int obj_size; 1145 slab_flags_t slab_flags; 1146 unsigned int useroffset; /* Usercopy region offset */ 1147 unsigned int usersize; /* Usercopy region size */ 1148 1149 struct percpu_counter *orphan_count; 1150 1151 struct request_sock_ops *rsk_prot; 1152 struct timewait_sock_ops *twsk_prot; 1153 1154 union { 1155 struct inet_hashinfo *hashinfo; 1156 struct udp_table *udp_table; 1157 struct raw_hashinfo *raw_hash; 1158 struct smc_hashinfo *smc_hash; 1159 } h; 1160 1161 struct module *owner; 1162 1163 char name[32]; 1164 1165 struct list_head node; 1166 #ifdef SOCK_REFCNT_DEBUG 1167 atomic_t socks; 1168 #endif 1169 int (*diag_destroy)(struct sock *sk, int err); 1170 } __randomize_layout; 1171 1172 int proto_register(struct proto *prot, int alloc_slab); 1173 void proto_unregister(struct proto *prot); 1174 int sock_load_diag_module(int family, int protocol); 1175 1176 #ifdef SOCK_REFCNT_DEBUG 1177 static inline void sk_refcnt_debug_inc(struct sock *sk) 1178 { 1179 atomic_inc(&sk->sk_prot->socks); 1180 } 1181 1182 static inline void sk_refcnt_debug_dec(struct sock *sk) 1183 { 1184 atomic_dec(&sk->sk_prot->socks); 1185 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1186 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1187 } 1188 1189 static inline void sk_refcnt_debug_release(const struct sock *sk) 1190 { 1191 if (refcount_read(&sk->sk_refcnt) != 1) 1192 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1193 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1194 } 1195 #else /* SOCK_REFCNT_DEBUG */ 1196 #define sk_refcnt_debug_inc(sk) do { } while (0) 1197 #define sk_refcnt_debug_dec(sk) do { } while (0) 1198 #define sk_refcnt_debug_release(sk) do { } while (0) 1199 #endif /* SOCK_REFCNT_DEBUG */ 1200 1201 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1202 { 1203 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1204 return false; 1205 1206 return sk->sk_prot->stream_memory_free ? 1207 sk->sk_prot->stream_memory_free(sk, wake) : true; 1208 } 1209 1210 static inline bool sk_stream_memory_free(const struct sock *sk) 1211 { 1212 return __sk_stream_memory_free(sk, 0); 1213 } 1214 1215 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1216 { 1217 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1218 __sk_stream_memory_free(sk, wake); 1219 } 1220 1221 static inline bool sk_stream_is_writeable(const struct sock *sk) 1222 { 1223 return __sk_stream_is_writeable(sk, 0); 1224 } 1225 1226 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1227 struct cgroup *ancestor) 1228 { 1229 #ifdef CONFIG_SOCK_CGROUP_DATA 1230 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1231 ancestor); 1232 #else 1233 return -ENOTSUPP; 1234 #endif 1235 } 1236 1237 static inline bool sk_has_memory_pressure(const struct sock *sk) 1238 { 1239 return sk->sk_prot->memory_pressure != NULL; 1240 } 1241 1242 static inline bool sk_under_memory_pressure(const struct sock *sk) 1243 { 1244 if (!sk->sk_prot->memory_pressure) 1245 return false; 1246 1247 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1248 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1249 return true; 1250 1251 return !!*sk->sk_prot->memory_pressure; 1252 } 1253 1254 static inline long 1255 sk_memory_allocated(const struct sock *sk) 1256 { 1257 return atomic_long_read(sk->sk_prot->memory_allocated); 1258 } 1259 1260 static inline long 1261 sk_memory_allocated_add(struct sock *sk, int amt) 1262 { 1263 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1264 } 1265 1266 static inline void 1267 sk_memory_allocated_sub(struct sock *sk, int amt) 1268 { 1269 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1270 } 1271 1272 static inline void sk_sockets_allocated_dec(struct sock *sk) 1273 { 1274 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1275 } 1276 1277 static inline void sk_sockets_allocated_inc(struct sock *sk) 1278 { 1279 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1280 } 1281 1282 static inline u64 1283 sk_sockets_allocated_read_positive(struct sock *sk) 1284 { 1285 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1286 } 1287 1288 static inline int 1289 proto_sockets_allocated_sum_positive(struct proto *prot) 1290 { 1291 return percpu_counter_sum_positive(prot->sockets_allocated); 1292 } 1293 1294 static inline long 1295 proto_memory_allocated(struct proto *prot) 1296 { 1297 return atomic_long_read(prot->memory_allocated); 1298 } 1299 1300 static inline bool 1301 proto_memory_pressure(struct proto *prot) 1302 { 1303 if (!prot->memory_pressure) 1304 return false; 1305 return !!*prot->memory_pressure; 1306 } 1307 1308 1309 #ifdef CONFIG_PROC_FS 1310 /* Called with local bh disabled */ 1311 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1312 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1313 int sock_inuse_get(struct net *net); 1314 #else 1315 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1316 int inc) 1317 { 1318 } 1319 #endif 1320 1321 1322 /* With per-bucket locks this operation is not-atomic, so that 1323 * this version is not worse. 1324 */ 1325 static inline int __sk_prot_rehash(struct sock *sk) 1326 { 1327 sk->sk_prot->unhash(sk); 1328 return sk->sk_prot->hash(sk); 1329 } 1330 1331 /* About 10 seconds */ 1332 #define SOCK_DESTROY_TIME (10*HZ) 1333 1334 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1335 #define PROT_SOCK 1024 1336 1337 #define SHUTDOWN_MASK 3 1338 #define RCV_SHUTDOWN 1 1339 #define SEND_SHUTDOWN 2 1340 1341 #define SOCK_SNDBUF_LOCK 1 1342 #define SOCK_RCVBUF_LOCK 2 1343 #define SOCK_BINDADDR_LOCK 4 1344 #define SOCK_BINDPORT_LOCK 8 1345 1346 struct socket_alloc { 1347 struct socket socket; 1348 struct inode vfs_inode; 1349 }; 1350 1351 static inline struct socket *SOCKET_I(struct inode *inode) 1352 { 1353 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1354 } 1355 1356 static inline struct inode *SOCK_INODE(struct socket *socket) 1357 { 1358 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1359 } 1360 1361 /* 1362 * Functions for memory accounting 1363 */ 1364 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1365 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1366 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1367 void __sk_mem_reclaim(struct sock *sk, int amount); 1368 1369 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1370 * do not necessarily have 16x time more memory than 4KB ones. 1371 */ 1372 #define SK_MEM_QUANTUM 4096 1373 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1374 #define SK_MEM_SEND 0 1375 #define SK_MEM_RECV 1 1376 1377 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1378 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1379 { 1380 long val = sk->sk_prot->sysctl_mem[index]; 1381 1382 #if PAGE_SIZE > SK_MEM_QUANTUM 1383 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1384 #elif PAGE_SIZE < SK_MEM_QUANTUM 1385 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1386 #endif 1387 return val; 1388 } 1389 1390 static inline int sk_mem_pages(int amt) 1391 { 1392 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1393 } 1394 1395 static inline bool sk_has_account(struct sock *sk) 1396 { 1397 /* return true if protocol supports memory accounting */ 1398 return !!sk->sk_prot->memory_allocated; 1399 } 1400 1401 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1402 { 1403 if (!sk_has_account(sk)) 1404 return true; 1405 return size <= sk->sk_forward_alloc || 1406 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1407 } 1408 1409 static inline bool 1410 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1411 { 1412 if (!sk_has_account(sk)) 1413 return true; 1414 return size<= sk->sk_forward_alloc || 1415 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1416 skb_pfmemalloc(skb); 1417 } 1418 1419 static inline void sk_mem_reclaim(struct sock *sk) 1420 { 1421 if (!sk_has_account(sk)) 1422 return; 1423 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1424 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1425 } 1426 1427 static inline void sk_mem_reclaim_partial(struct sock *sk) 1428 { 1429 if (!sk_has_account(sk)) 1430 return; 1431 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1432 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1433 } 1434 1435 static inline void sk_mem_charge(struct sock *sk, int size) 1436 { 1437 if (!sk_has_account(sk)) 1438 return; 1439 sk->sk_forward_alloc -= size; 1440 } 1441 1442 static inline void sk_mem_uncharge(struct sock *sk, int size) 1443 { 1444 if (!sk_has_account(sk)) 1445 return; 1446 sk->sk_forward_alloc += size; 1447 1448 /* Avoid a possible overflow. 1449 * TCP send queues can make this happen, if sk_mem_reclaim() 1450 * is not called and more than 2 GBytes are released at once. 1451 * 1452 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1453 * no need to hold that much forward allocation anyway. 1454 */ 1455 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1456 __sk_mem_reclaim(sk, 1 << 20); 1457 } 1458 1459 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 1460 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1461 { 1462 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1463 sk_wmem_queued_add(sk, -skb->truesize); 1464 sk_mem_uncharge(sk, skb->truesize); 1465 if (static_branch_unlikely(&tcp_tx_skb_cache_key) && 1466 !sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1467 skb_ext_reset(skb); 1468 skb_zcopy_clear(skb, true); 1469 sk->sk_tx_skb_cache = skb; 1470 return; 1471 } 1472 __kfree_skb(skb); 1473 } 1474 1475 static inline void sock_release_ownership(struct sock *sk) 1476 { 1477 if (sk->sk_lock.owned) { 1478 sk->sk_lock.owned = 0; 1479 1480 /* The sk_lock has mutex_unlock() semantics: */ 1481 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1482 } 1483 } 1484 1485 /* 1486 * Macro so as to not evaluate some arguments when 1487 * lockdep is not enabled. 1488 * 1489 * Mark both the sk_lock and the sk_lock.slock as a 1490 * per-address-family lock class. 1491 */ 1492 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1493 do { \ 1494 sk->sk_lock.owned = 0; \ 1495 init_waitqueue_head(&sk->sk_lock.wq); \ 1496 spin_lock_init(&(sk)->sk_lock.slock); \ 1497 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1498 sizeof((sk)->sk_lock)); \ 1499 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1500 (skey), (sname)); \ 1501 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1502 } while (0) 1503 1504 #ifdef CONFIG_LOCKDEP 1505 static inline bool lockdep_sock_is_held(const struct sock *sk) 1506 { 1507 return lockdep_is_held(&sk->sk_lock) || 1508 lockdep_is_held(&sk->sk_lock.slock); 1509 } 1510 #endif 1511 1512 void lock_sock_nested(struct sock *sk, int subclass); 1513 1514 static inline void lock_sock(struct sock *sk) 1515 { 1516 lock_sock_nested(sk, 0); 1517 } 1518 1519 void __release_sock(struct sock *sk); 1520 void release_sock(struct sock *sk); 1521 1522 /* BH context may only use the following locking interface. */ 1523 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1524 #define bh_lock_sock_nested(__sk) \ 1525 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1526 SINGLE_DEPTH_NESTING) 1527 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1528 1529 bool lock_sock_fast(struct sock *sk); 1530 /** 1531 * unlock_sock_fast - complement of lock_sock_fast 1532 * @sk: socket 1533 * @slow: slow mode 1534 * 1535 * fast unlock socket for user context. 1536 * If slow mode is on, we call regular release_sock() 1537 */ 1538 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1539 { 1540 if (slow) 1541 release_sock(sk); 1542 else 1543 spin_unlock_bh(&sk->sk_lock.slock); 1544 } 1545 1546 /* Used by processes to "lock" a socket state, so that 1547 * interrupts and bottom half handlers won't change it 1548 * from under us. It essentially blocks any incoming 1549 * packets, so that we won't get any new data or any 1550 * packets that change the state of the socket. 1551 * 1552 * While locked, BH processing will add new packets to 1553 * the backlog queue. This queue is processed by the 1554 * owner of the socket lock right before it is released. 1555 * 1556 * Since ~2.3.5 it is also exclusive sleep lock serializing 1557 * accesses from user process context. 1558 */ 1559 1560 static inline void sock_owned_by_me(const struct sock *sk) 1561 { 1562 #ifdef CONFIG_LOCKDEP 1563 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1564 #endif 1565 } 1566 1567 static inline bool sock_owned_by_user(const struct sock *sk) 1568 { 1569 sock_owned_by_me(sk); 1570 return sk->sk_lock.owned; 1571 } 1572 1573 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1574 { 1575 return sk->sk_lock.owned; 1576 } 1577 1578 /* no reclassification while locks are held */ 1579 static inline bool sock_allow_reclassification(const struct sock *csk) 1580 { 1581 struct sock *sk = (struct sock *)csk; 1582 1583 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1584 } 1585 1586 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1587 struct proto *prot, int kern); 1588 void sk_free(struct sock *sk); 1589 void sk_destruct(struct sock *sk); 1590 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1591 void sk_free_unlock_clone(struct sock *sk); 1592 1593 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1594 gfp_t priority); 1595 void __sock_wfree(struct sk_buff *skb); 1596 void sock_wfree(struct sk_buff *skb); 1597 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1598 gfp_t priority); 1599 void skb_orphan_partial(struct sk_buff *skb); 1600 void sock_rfree(struct sk_buff *skb); 1601 void sock_efree(struct sk_buff *skb); 1602 #ifdef CONFIG_INET 1603 void sock_edemux(struct sk_buff *skb); 1604 #else 1605 #define sock_edemux sock_efree 1606 #endif 1607 1608 int sock_setsockopt(struct socket *sock, int level, int op, 1609 char __user *optval, unsigned int optlen); 1610 1611 int sock_getsockopt(struct socket *sock, int level, int op, 1612 char __user *optval, int __user *optlen); 1613 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1614 bool timeval, bool time32); 1615 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1616 int noblock, int *errcode); 1617 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1618 unsigned long data_len, int noblock, 1619 int *errcode, int max_page_order); 1620 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1621 void sock_kfree_s(struct sock *sk, void *mem, int size); 1622 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1623 void sk_send_sigurg(struct sock *sk); 1624 1625 struct sockcm_cookie { 1626 u64 transmit_time; 1627 u32 mark; 1628 u16 tsflags; 1629 }; 1630 1631 static inline void sockcm_init(struct sockcm_cookie *sockc, 1632 const struct sock *sk) 1633 { 1634 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1635 } 1636 1637 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1638 struct sockcm_cookie *sockc); 1639 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1640 struct sockcm_cookie *sockc); 1641 1642 /* 1643 * Functions to fill in entries in struct proto_ops when a protocol 1644 * does not implement a particular function. 1645 */ 1646 int sock_no_bind(struct socket *, struct sockaddr *, int); 1647 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1648 int sock_no_socketpair(struct socket *, struct socket *); 1649 int sock_no_accept(struct socket *, struct socket *, int, bool); 1650 int sock_no_getname(struct socket *, struct sockaddr *, int); 1651 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1652 int sock_no_listen(struct socket *, int); 1653 int sock_no_shutdown(struct socket *, int); 1654 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1655 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1656 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1657 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1658 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1659 int sock_no_mmap(struct file *file, struct socket *sock, 1660 struct vm_area_struct *vma); 1661 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1662 size_t size, int flags); 1663 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1664 int offset, size_t size, int flags); 1665 1666 /* 1667 * Functions to fill in entries in struct proto_ops when a protocol 1668 * uses the inet style. 1669 */ 1670 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1671 char __user *optval, int __user *optlen); 1672 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1673 int flags); 1674 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1675 char __user *optval, unsigned int optlen); 1676 int compat_sock_common_getsockopt(struct socket *sock, int level, 1677 int optname, char __user *optval, int __user *optlen); 1678 int compat_sock_common_setsockopt(struct socket *sock, int level, 1679 int optname, char __user *optval, unsigned int optlen); 1680 1681 void sk_common_release(struct sock *sk); 1682 1683 /* 1684 * Default socket callbacks and setup code 1685 */ 1686 1687 /* Initialise core socket variables */ 1688 void sock_init_data(struct socket *sock, struct sock *sk); 1689 1690 /* 1691 * Socket reference counting postulates. 1692 * 1693 * * Each user of socket SHOULD hold a reference count. 1694 * * Each access point to socket (an hash table bucket, reference from a list, 1695 * running timer, skb in flight MUST hold a reference count. 1696 * * When reference count hits 0, it means it will never increase back. 1697 * * When reference count hits 0, it means that no references from 1698 * outside exist to this socket and current process on current CPU 1699 * is last user and may/should destroy this socket. 1700 * * sk_free is called from any context: process, BH, IRQ. When 1701 * it is called, socket has no references from outside -> sk_free 1702 * may release descendant resources allocated by the socket, but 1703 * to the time when it is called, socket is NOT referenced by any 1704 * hash tables, lists etc. 1705 * * Packets, delivered from outside (from network or from another process) 1706 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1707 * when they sit in queue. Otherwise, packets will leak to hole, when 1708 * socket is looked up by one cpu and unhasing is made by another CPU. 1709 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1710 * (leak to backlog). Packet socket does all the processing inside 1711 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1712 * use separate SMP lock, so that they are prone too. 1713 */ 1714 1715 /* Ungrab socket and destroy it, if it was the last reference. */ 1716 static inline void sock_put(struct sock *sk) 1717 { 1718 if (refcount_dec_and_test(&sk->sk_refcnt)) 1719 sk_free(sk); 1720 } 1721 /* Generic version of sock_put(), dealing with all sockets 1722 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1723 */ 1724 void sock_gen_put(struct sock *sk); 1725 1726 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1727 unsigned int trim_cap, bool refcounted); 1728 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1729 const int nested) 1730 { 1731 return __sk_receive_skb(sk, skb, nested, 1, true); 1732 } 1733 1734 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1735 { 1736 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1737 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1738 return; 1739 sk->sk_tx_queue_mapping = tx_queue; 1740 } 1741 1742 #define NO_QUEUE_MAPPING USHRT_MAX 1743 1744 static inline void sk_tx_queue_clear(struct sock *sk) 1745 { 1746 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1747 } 1748 1749 static inline int sk_tx_queue_get(const struct sock *sk) 1750 { 1751 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1752 return sk->sk_tx_queue_mapping; 1753 1754 return -1; 1755 } 1756 1757 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1758 { 1759 #ifdef CONFIG_XPS 1760 if (skb_rx_queue_recorded(skb)) { 1761 u16 rx_queue = skb_get_rx_queue(skb); 1762 1763 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1764 return; 1765 1766 sk->sk_rx_queue_mapping = rx_queue; 1767 } 1768 #endif 1769 } 1770 1771 static inline void sk_rx_queue_clear(struct sock *sk) 1772 { 1773 #ifdef CONFIG_XPS 1774 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1775 #endif 1776 } 1777 1778 #ifdef CONFIG_XPS 1779 static inline int sk_rx_queue_get(const struct sock *sk) 1780 { 1781 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1782 return sk->sk_rx_queue_mapping; 1783 1784 return -1; 1785 } 1786 #endif 1787 1788 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1789 { 1790 sk_tx_queue_clear(sk); 1791 sk->sk_socket = sock; 1792 } 1793 1794 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1795 { 1796 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1797 return &rcu_dereference_raw(sk->sk_wq)->wait; 1798 } 1799 /* Detach socket from process context. 1800 * Announce socket dead, detach it from wait queue and inode. 1801 * Note that parent inode held reference count on this struct sock, 1802 * we do not release it in this function, because protocol 1803 * probably wants some additional cleanups or even continuing 1804 * to work with this socket (TCP). 1805 */ 1806 static inline void sock_orphan(struct sock *sk) 1807 { 1808 write_lock_bh(&sk->sk_callback_lock); 1809 sock_set_flag(sk, SOCK_DEAD); 1810 sk_set_socket(sk, NULL); 1811 sk->sk_wq = NULL; 1812 write_unlock_bh(&sk->sk_callback_lock); 1813 } 1814 1815 static inline void sock_graft(struct sock *sk, struct socket *parent) 1816 { 1817 WARN_ON(parent->sk); 1818 write_lock_bh(&sk->sk_callback_lock); 1819 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1820 parent->sk = sk; 1821 sk_set_socket(sk, parent); 1822 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1823 security_sock_graft(sk, parent); 1824 write_unlock_bh(&sk->sk_callback_lock); 1825 } 1826 1827 kuid_t sock_i_uid(struct sock *sk); 1828 unsigned long sock_i_ino(struct sock *sk); 1829 1830 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1831 { 1832 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1833 } 1834 1835 static inline u32 net_tx_rndhash(void) 1836 { 1837 u32 v = prandom_u32(); 1838 1839 return v ?: 1; 1840 } 1841 1842 static inline void sk_set_txhash(struct sock *sk) 1843 { 1844 sk->sk_txhash = net_tx_rndhash(); 1845 } 1846 1847 static inline void sk_rethink_txhash(struct sock *sk) 1848 { 1849 if (sk->sk_txhash) 1850 sk_set_txhash(sk); 1851 } 1852 1853 static inline struct dst_entry * 1854 __sk_dst_get(struct sock *sk) 1855 { 1856 return rcu_dereference_check(sk->sk_dst_cache, 1857 lockdep_sock_is_held(sk)); 1858 } 1859 1860 static inline struct dst_entry * 1861 sk_dst_get(struct sock *sk) 1862 { 1863 struct dst_entry *dst; 1864 1865 rcu_read_lock(); 1866 dst = rcu_dereference(sk->sk_dst_cache); 1867 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1868 dst = NULL; 1869 rcu_read_unlock(); 1870 return dst; 1871 } 1872 1873 static inline void dst_negative_advice(struct sock *sk) 1874 { 1875 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1876 1877 sk_rethink_txhash(sk); 1878 1879 if (dst && dst->ops->negative_advice) { 1880 ndst = dst->ops->negative_advice(dst); 1881 1882 if (ndst != dst) { 1883 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1884 sk_tx_queue_clear(sk); 1885 sk->sk_dst_pending_confirm = 0; 1886 } 1887 } 1888 } 1889 1890 static inline void 1891 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1892 { 1893 struct dst_entry *old_dst; 1894 1895 sk_tx_queue_clear(sk); 1896 sk->sk_dst_pending_confirm = 0; 1897 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1898 lockdep_sock_is_held(sk)); 1899 rcu_assign_pointer(sk->sk_dst_cache, dst); 1900 dst_release(old_dst); 1901 } 1902 1903 static inline void 1904 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1905 { 1906 struct dst_entry *old_dst; 1907 1908 sk_tx_queue_clear(sk); 1909 sk->sk_dst_pending_confirm = 0; 1910 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1911 dst_release(old_dst); 1912 } 1913 1914 static inline void 1915 __sk_dst_reset(struct sock *sk) 1916 { 1917 __sk_dst_set(sk, NULL); 1918 } 1919 1920 static inline void 1921 sk_dst_reset(struct sock *sk) 1922 { 1923 sk_dst_set(sk, NULL); 1924 } 1925 1926 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1927 1928 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1929 1930 static inline void sk_dst_confirm(struct sock *sk) 1931 { 1932 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 1933 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 1934 } 1935 1936 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1937 { 1938 if (skb_get_dst_pending_confirm(skb)) { 1939 struct sock *sk = skb->sk; 1940 unsigned long now = jiffies; 1941 1942 /* avoid dirtying neighbour */ 1943 if (READ_ONCE(n->confirmed) != now) 1944 WRITE_ONCE(n->confirmed, now); 1945 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 1946 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 1947 } 1948 } 1949 1950 bool sk_mc_loop(struct sock *sk); 1951 1952 static inline bool sk_can_gso(const struct sock *sk) 1953 { 1954 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1955 } 1956 1957 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1958 1959 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1960 { 1961 sk->sk_route_nocaps |= flags; 1962 sk->sk_route_caps &= ~flags; 1963 } 1964 1965 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1966 struct iov_iter *from, char *to, 1967 int copy, int offset) 1968 { 1969 if (skb->ip_summed == CHECKSUM_NONE) { 1970 __wsum csum = 0; 1971 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 1972 return -EFAULT; 1973 skb->csum = csum_block_add(skb->csum, csum, offset); 1974 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1975 if (!copy_from_iter_full_nocache(to, copy, from)) 1976 return -EFAULT; 1977 } else if (!copy_from_iter_full(to, copy, from)) 1978 return -EFAULT; 1979 1980 return 0; 1981 } 1982 1983 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1984 struct iov_iter *from, int copy) 1985 { 1986 int err, offset = skb->len; 1987 1988 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1989 copy, offset); 1990 if (err) 1991 __skb_trim(skb, offset); 1992 1993 return err; 1994 } 1995 1996 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1997 struct sk_buff *skb, 1998 struct page *page, 1999 int off, int copy) 2000 { 2001 int err; 2002 2003 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2004 copy, skb->len); 2005 if (err) 2006 return err; 2007 2008 skb->len += copy; 2009 skb->data_len += copy; 2010 skb->truesize += copy; 2011 sk_wmem_queued_add(sk, copy); 2012 sk_mem_charge(sk, copy); 2013 return 0; 2014 } 2015 2016 /** 2017 * sk_wmem_alloc_get - returns write allocations 2018 * @sk: socket 2019 * 2020 * Returns sk_wmem_alloc minus initial offset of one 2021 */ 2022 static inline int sk_wmem_alloc_get(const struct sock *sk) 2023 { 2024 return refcount_read(&sk->sk_wmem_alloc) - 1; 2025 } 2026 2027 /** 2028 * sk_rmem_alloc_get - returns read allocations 2029 * @sk: socket 2030 * 2031 * Returns sk_rmem_alloc 2032 */ 2033 static inline int sk_rmem_alloc_get(const struct sock *sk) 2034 { 2035 return atomic_read(&sk->sk_rmem_alloc); 2036 } 2037 2038 /** 2039 * sk_has_allocations - check if allocations are outstanding 2040 * @sk: socket 2041 * 2042 * Returns true if socket has write or read allocations 2043 */ 2044 static inline bool sk_has_allocations(const struct sock *sk) 2045 { 2046 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2047 } 2048 2049 /** 2050 * skwq_has_sleeper - check if there are any waiting processes 2051 * @wq: struct socket_wq 2052 * 2053 * Returns true if socket_wq has waiting processes 2054 * 2055 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2056 * barrier call. They were added due to the race found within the tcp code. 2057 * 2058 * Consider following tcp code paths:: 2059 * 2060 * CPU1 CPU2 2061 * sys_select receive packet 2062 * ... ... 2063 * __add_wait_queue update tp->rcv_nxt 2064 * ... ... 2065 * tp->rcv_nxt check sock_def_readable 2066 * ... { 2067 * schedule rcu_read_lock(); 2068 * wq = rcu_dereference(sk->sk_wq); 2069 * if (wq && waitqueue_active(&wq->wait)) 2070 * wake_up_interruptible(&wq->wait) 2071 * ... 2072 * } 2073 * 2074 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2075 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2076 * could then endup calling schedule and sleep forever if there are no more 2077 * data on the socket. 2078 * 2079 */ 2080 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2081 { 2082 return wq && wq_has_sleeper(&wq->wait); 2083 } 2084 2085 /** 2086 * sock_poll_wait - place memory barrier behind the poll_wait call. 2087 * @filp: file 2088 * @sock: socket to wait on 2089 * @p: poll_table 2090 * 2091 * See the comments in the wq_has_sleeper function. 2092 */ 2093 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2094 poll_table *p) 2095 { 2096 if (!poll_does_not_wait(p)) { 2097 poll_wait(filp, &sock->wq.wait, p); 2098 /* We need to be sure we are in sync with the 2099 * socket flags modification. 2100 * 2101 * This memory barrier is paired in the wq_has_sleeper. 2102 */ 2103 smp_mb(); 2104 } 2105 } 2106 2107 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2108 { 2109 if (sk->sk_txhash) { 2110 skb->l4_hash = 1; 2111 skb->hash = sk->sk_txhash; 2112 } 2113 } 2114 2115 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2116 2117 /* 2118 * Queue a received datagram if it will fit. Stream and sequenced 2119 * protocols can't normally use this as they need to fit buffers in 2120 * and play with them. 2121 * 2122 * Inlined as it's very short and called for pretty much every 2123 * packet ever received. 2124 */ 2125 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2126 { 2127 skb_orphan(skb); 2128 skb->sk = sk; 2129 skb->destructor = sock_rfree; 2130 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2131 sk_mem_charge(sk, skb->truesize); 2132 } 2133 2134 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2135 unsigned long expires); 2136 2137 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2138 2139 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2140 struct sk_buff *skb, unsigned int flags, 2141 void (*destructor)(struct sock *sk, 2142 struct sk_buff *skb)); 2143 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2144 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2145 2146 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2147 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2148 2149 /* 2150 * Recover an error report and clear atomically 2151 */ 2152 2153 static inline int sock_error(struct sock *sk) 2154 { 2155 int err; 2156 if (likely(!sk->sk_err)) 2157 return 0; 2158 err = xchg(&sk->sk_err, 0); 2159 return -err; 2160 } 2161 2162 static inline unsigned long sock_wspace(struct sock *sk) 2163 { 2164 int amt = 0; 2165 2166 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2167 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2168 if (amt < 0) 2169 amt = 0; 2170 } 2171 return amt; 2172 } 2173 2174 /* Note: 2175 * We use sk->sk_wq_raw, from contexts knowing this 2176 * pointer is not NULL and cannot disappear/change. 2177 */ 2178 static inline void sk_set_bit(int nr, struct sock *sk) 2179 { 2180 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2181 !sock_flag(sk, SOCK_FASYNC)) 2182 return; 2183 2184 set_bit(nr, &sk->sk_wq_raw->flags); 2185 } 2186 2187 static inline void sk_clear_bit(int nr, struct sock *sk) 2188 { 2189 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2190 !sock_flag(sk, SOCK_FASYNC)) 2191 return; 2192 2193 clear_bit(nr, &sk->sk_wq_raw->flags); 2194 } 2195 2196 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2197 { 2198 if (sock_flag(sk, SOCK_FASYNC)) { 2199 rcu_read_lock(); 2200 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2201 rcu_read_unlock(); 2202 } 2203 } 2204 2205 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2206 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2207 * Note: for send buffers, TCP works better if we can build two skbs at 2208 * minimum. 2209 */ 2210 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2211 2212 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2213 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2214 2215 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2216 { 2217 u32 val; 2218 2219 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2220 return; 2221 2222 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2223 2224 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2225 } 2226 2227 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2228 bool force_schedule); 2229 2230 /** 2231 * sk_page_frag - return an appropriate page_frag 2232 * @sk: socket 2233 * 2234 * Use the per task page_frag instead of the per socket one for 2235 * optimization when we know that we're in the normal context and owns 2236 * everything that's associated with %current. 2237 * 2238 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2239 * inside other socket operations and end up recursing into sk_page_frag() 2240 * while it's already in use. 2241 */ 2242 static inline struct page_frag *sk_page_frag(struct sock *sk) 2243 { 2244 if (gfpflags_normal_context(sk->sk_allocation)) 2245 return ¤t->task_frag; 2246 2247 return &sk->sk_frag; 2248 } 2249 2250 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2251 2252 /* 2253 * Default write policy as shown to user space via poll/select/SIGIO 2254 */ 2255 static inline bool sock_writeable(const struct sock *sk) 2256 { 2257 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2258 } 2259 2260 static inline gfp_t gfp_any(void) 2261 { 2262 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2263 } 2264 2265 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2266 { 2267 return noblock ? 0 : sk->sk_rcvtimeo; 2268 } 2269 2270 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2271 { 2272 return noblock ? 0 : sk->sk_sndtimeo; 2273 } 2274 2275 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2276 { 2277 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2278 2279 return v ?: 1; 2280 } 2281 2282 /* Alas, with timeout socket operations are not restartable. 2283 * Compare this to poll(). 2284 */ 2285 static inline int sock_intr_errno(long timeo) 2286 { 2287 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2288 } 2289 2290 struct sock_skb_cb { 2291 u32 dropcount; 2292 }; 2293 2294 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2295 * using skb->cb[] would keep using it directly and utilize its 2296 * alignement guarantee. 2297 */ 2298 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2299 sizeof(struct sock_skb_cb))) 2300 2301 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2302 SOCK_SKB_CB_OFFSET)) 2303 2304 #define sock_skb_cb_check_size(size) \ 2305 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2306 2307 static inline void 2308 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2309 { 2310 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2311 atomic_read(&sk->sk_drops) : 0; 2312 } 2313 2314 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2315 { 2316 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2317 2318 atomic_add(segs, &sk->sk_drops); 2319 } 2320 2321 static inline ktime_t sock_read_timestamp(struct sock *sk) 2322 { 2323 #if BITS_PER_LONG==32 2324 unsigned int seq; 2325 ktime_t kt; 2326 2327 do { 2328 seq = read_seqbegin(&sk->sk_stamp_seq); 2329 kt = sk->sk_stamp; 2330 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2331 2332 return kt; 2333 #else 2334 return READ_ONCE(sk->sk_stamp); 2335 #endif 2336 } 2337 2338 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2339 { 2340 #if BITS_PER_LONG==32 2341 write_seqlock(&sk->sk_stamp_seq); 2342 sk->sk_stamp = kt; 2343 write_sequnlock(&sk->sk_stamp_seq); 2344 #else 2345 WRITE_ONCE(sk->sk_stamp, kt); 2346 #endif 2347 } 2348 2349 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2350 struct sk_buff *skb); 2351 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2352 struct sk_buff *skb); 2353 2354 static inline void 2355 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2356 { 2357 ktime_t kt = skb->tstamp; 2358 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2359 2360 /* 2361 * generate control messages if 2362 * - receive time stamping in software requested 2363 * - software time stamp available and wanted 2364 * - hardware time stamps available and wanted 2365 */ 2366 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2367 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2368 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2369 (hwtstamps->hwtstamp && 2370 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2371 __sock_recv_timestamp(msg, sk, skb); 2372 else 2373 sock_write_timestamp(sk, kt); 2374 2375 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2376 __sock_recv_wifi_status(msg, sk, skb); 2377 } 2378 2379 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2380 struct sk_buff *skb); 2381 2382 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2383 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2384 struct sk_buff *skb) 2385 { 2386 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2387 (1UL << SOCK_RCVTSTAMP)) 2388 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2389 SOF_TIMESTAMPING_RAW_HARDWARE) 2390 2391 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2392 __sock_recv_ts_and_drops(msg, sk, skb); 2393 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2394 sock_write_timestamp(sk, skb->tstamp); 2395 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2396 sock_write_timestamp(sk, 0); 2397 } 2398 2399 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2400 2401 /** 2402 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2403 * @sk: socket sending this packet 2404 * @tsflags: timestamping flags to use 2405 * @tx_flags: completed with instructions for time stamping 2406 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2407 * 2408 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2409 */ 2410 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2411 __u8 *tx_flags, __u32 *tskey) 2412 { 2413 if (unlikely(tsflags)) { 2414 __sock_tx_timestamp(tsflags, tx_flags); 2415 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2416 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2417 *tskey = sk->sk_tskey++; 2418 } 2419 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2420 *tx_flags |= SKBTX_WIFI_STATUS; 2421 } 2422 2423 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2424 __u8 *tx_flags) 2425 { 2426 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2427 } 2428 2429 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2430 { 2431 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2432 &skb_shinfo(skb)->tskey); 2433 } 2434 2435 /** 2436 * sk_eat_skb - Release a skb if it is no longer needed 2437 * @sk: socket to eat this skb from 2438 * @skb: socket buffer to eat 2439 * 2440 * This routine must be called with interrupts disabled or with the socket 2441 * locked so that the sk_buff queue operation is ok. 2442 */ 2443 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 2444 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2445 { 2446 __skb_unlink(skb, &sk->sk_receive_queue); 2447 if (static_branch_unlikely(&tcp_rx_skb_cache_key) && 2448 !sk->sk_rx_skb_cache) { 2449 sk->sk_rx_skb_cache = skb; 2450 skb_orphan(skb); 2451 return; 2452 } 2453 __kfree_skb(skb); 2454 } 2455 2456 static inline 2457 struct net *sock_net(const struct sock *sk) 2458 { 2459 return read_pnet(&sk->sk_net); 2460 } 2461 2462 static inline 2463 void sock_net_set(struct sock *sk, struct net *net) 2464 { 2465 write_pnet(&sk->sk_net, net); 2466 } 2467 2468 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2469 { 2470 if (skb->sk) { 2471 struct sock *sk = skb->sk; 2472 2473 skb->destructor = NULL; 2474 skb->sk = NULL; 2475 return sk; 2476 } 2477 return NULL; 2478 } 2479 2480 /* This helper checks if a socket is a full socket, 2481 * ie _not_ a timewait or request socket. 2482 */ 2483 static inline bool sk_fullsock(const struct sock *sk) 2484 { 2485 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2486 } 2487 2488 /* Checks if this SKB belongs to an HW offloaded socket 2489 * and whether any SW fallbacks are required based on dev. 2490 * Check decrypted mark in case skb_orphan() cleared socket. 2491 */ 2492 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2493 struct net_device *dev) 2494 { 2495 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2496 struct sock *sk = skb->sk; 2497 2498 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2499 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2500 #ifdef CONFIG_TLS_DEVICE 2501 } else if (unlikely(skb->decrypted)) { 2502 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2503 kfree_skb(skb); 2504 skb = NULL; 2505 #endif 2506 } 2507 #endif 2508 2509 return skb; 2510 } 2511 2512 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2513 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2514 */ 2515 static inline bool sk_listener(const struct sock *sk) 2516 { 2517 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2518 } 2519 2520 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2521 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2522 int type); 2523 2524 bool sk_ns_capable(const struct sock *sk, 2525 struct user_namespace *user_ns, int cap); 2526 bool sk_capable(const struct sock *sk, int cap); 2527 bool sk_net_capable(const struct sock *sk, int cap); 2528 2529 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2530 2531 /* Take into consideration the size of the struct sk_buff overhead in the 2532 * determination of these values, since that is non-constant across 2533 * platforms. This makes socket queueing behavior and performance 2534 * not depend upon such differences. 2535 */ 2536 #define _SK_MEM_PACKETS 256 2537 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2538 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2539 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2540 2541 extern __u32 sysctl_wmem_max; 2542 extern __u32 sysctl_rmem_max; 2543 2544 extern int sysctl_tstamp_allow_data; 2545 extern int sysctl_optmem_max; 2546 2547 extern __u32 sysctl_wmem_default; 2548 extern __u32 sysctl_rmem_default; 2549 2550 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2551 2552 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2553 { 2554 /* Does this proto have per netns sysctl_wmem ? */ 2555 if (proto->sysctl_wmem_offset) 2556 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2557 2558 return *proto->sysctl_wmem; 2559 } 2560 2561 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2562 { 2563 /* Does this proto have per netns sysctl_rmem ? */ 2564 if (proto->sysctl_rmem_offset) 2565 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2566 2567 return *proto->sysctl_rmem; 2568 } 2569 2570 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2571 * Some wifi drivers need to tweak it to get more chunks. 2572 * They can use this helper from their ndo_start_xmit() 2573 */ 2574 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2575 { 2576 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2577 return; 2578 WRITE_ONCE(sk->sk_pacing_shift, val); 2579 } 2580 2581 /* if a socket is bound to a device, check that the given device 2582 * index is either the same or that the socket is bound to an L3 2583 * master device and the given device index is also enslaved to 2584 * that L3 master 2585 */ 2586 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2587 { 2588 int mdif; 2589 2590 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2591 return true; 2592 2593 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2594 if (mdif && mdif == sk->sk_bound_dev_if) 2595 return true; 2596 2597 return false; 2598 } 2599 2600 void sock_def_readable(struct sock *sk); 2601 2602 #endif /* _SOCK_H */ 2603