xref: /openbmc/linux/include/net/sock.h (revision 75f25bd3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/module.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 
58 #include <linux/filter.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 
62 #include <linux/atomic.h>
63 #include <net/dst.h>
64 #include <net/checksum.h>
65 
66 /*
67  * This structure really needs to be cleaned up.
68  * Most of it is for TCP, and not used by any of
69  * the other protocols.
70  */
71 
72 /* Define this to get the SOCK_DBG debugging facility. */
73 #define SOCK_DEBUGGING
74 #ifdef SOCK_DEBUGGING
75 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
76 					printk(KERN_DEBUG msg); } while (0)
77 #else
78 /* Validate arguments and do nothing */
79 static inline void __attribute__ ((format (printf, 2, 3)))
80 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
81 {
82 }
83 #endif
84 
85 /* This is the per-socket lock.  The spinlock provides a synchronization
86  * between user contexts and software interrupt processing, whereas the
87  * mini-semaphore synchronizes multiple users amongst themselves.
88  */
89 typedef struct {
90 	spinlock_t		slock;
91 	int			owned;
92 	wait_queue_head_t	wq;
93 	/*
94 	 * We express the mutex-alike socket_lock semantics
95 	 * to the lock validator by explicitly managing
96 	 * the slock as a lock variant (in addition to
97 	 * the slock itself):
98 	 */
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 	struct lockdep_map dep_map;
101 #endif
102 } socket_lock_t;
103 
104 struct sock;
105 struct proto;
106 struct net;
107 
108 /**
109  *	struct sock_common - minimal network layer representation of sockets
110  *	@skc_daddr: Foreign IPv4 addr
111  *	@skc_rcv_saddr: Bound local IPv4 addr
112  *	@skc_hash: hash value used with various protocol lookup tables
113  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
114  *	@skc_family: network address family
115  *	@skc_state: Connection state
116  *	@skc_reuse: %SO_REUSEADDR setting
117  *	@skc_bound_dev_if: bound device index if != 0
118  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
119  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120  *	@skc_prot: protocol handlers inside a network family
121  *	@skc_net: reference to the network namespace of this socket
122  *	@skc_node: main hash linkage for various protocol lookup tables
123  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
124  *	@skc_tx_queue_mapping: tx queue number for this connection
125  *	@skc_refcnt: reference count
126  *
127  *	This is the minimal network layer representation of sockets, the header
128  *	for struct sock and struct inet_timewait_sock.
129  */
130 struct sock_common {
131 	/* skc_daddr and skc_rcv_saddr must be grouped :
132 	 * cf INET_MATCH() and INET_TW_MATCH()
133 	 */
134 	__be32			skc_daddr;
135 	__be32			skc_rcv_saddr;
136 
137 	union  {
138 		unsigned int	skc_hash;
139 		__u16		skc_u16hashes[2];
140 	};
141 	unsigned short		skc_family;
142 	volatile unsigned char	skc_state;
143 	unsigned char		skc_reuse;
144 	int			skc_bound_dev_if;
145 	union {
146 		struct hlist_node	skc_bind_node;
147 		struct hlist_nulls_node skc_portaddr_node;
148 	};
149 	struct proto		*skc_prot;
150 #ifdef CONFIG_NET_NS
151 	struct net	 	*skc_net;
152 #endif
153 	/*
154 	 * fields between dontcopy_begin/dontcopy_end
155 	 * are not copied in sock_copy()
156 	 */
157 	/* private: */
158 	int			skc_dontcopy_begin[0];
159 	/* public: */
160 	union {
161 		struct hlist_node	skc_node;
162 		struct hlist_nulls_node skc_nulls_node;
163 	};
164 	int			skc_tx_queue_mapping;
165 	atomic_t		skc_refcnt;
166 	/* private: */
167 	int                     skc_dontcopy_end[0];
168 	/* public: */
169 };
170 
171 /**
172   *	struct sock - network layer representation of sockets
173   *	@__sk_common: shared layout with inet_timewait_sock
174   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
175   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
176   *	@sk_lock:	synchronizer
177   *	@sk_rcvbuf: size of receive buffer in bytes
178   *	@sk_wq: sock wait queue and async head
179   *	@sk_dst_cache: destination cache
180   *	@sk_dst_lock: destination cache lock
181   *	@sk_policy: flow policy
182   *	@sk_receive_queue: incoming packets
183   *	@sk_wmem_alloc: transmit queue bytes committed
184   *	@sk_write_queue: Packet sending queue
185   *	@sk_async_wait_queue: DMA copied packets
186   *	@sk_omem_alloc: "o" is "option" or "other"
187   *	@sk_wmem_queued: persistent queue size
188   *	@sk_forward_alloc: space allocated forward
189   *	@sk_allocation: allocation mode
190   *	@sk_sndbuf: size of send buffer in bytes
191   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
192   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
193   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
194   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
195   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
196   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
197   *	@sk_gso_max_size: Maximum GSO segment size to build
198   *	@sk_lingertime: %SO_LINGER l_linger setting
199   *	@sk_backlog: always used with the per-socket spinlock held
200   *	@sk_callback_lock: used with the callbacks in the end of this struct
201   *	@sk_error_queue: rarely used
202   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
203   *			  IPV6_ADDRFORM for instance)
204   *	@sk_err: last error
205   *	@sk_err_soft: errors that don't cause failure but are the cause of a
206   *		      persistent failure not just 'timed out'
207   *	@sk_drops: raw/udp drops counter
208   *	@sk_ack_backlog: current listen backlog
209   *	@sk_max_ack_backlog: listen backlog set in listen()
210   *	@sk_priority: %SO_PRIORITY setting
211   *	@sk_type: socket type (%SOCK_STREAM, etc)
212   *	@sk_protocol: which protocol this socket belongs in this network family
213   *	@sk_peer_pid: &struct pid for this socket's peer
214   *	@sk_peer_cred: %SO_PEERCRED setting
215   *	@sk_rcvlowat: %SO_RCVLOWAT setting
216   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
217   *	@sk_sndtimeo: %SO_SNDTIMEO setting
218   *	@sk_rxhash: flow hash received from netif layer
219   *	@sk_filter: socket filtering instructions
220   *	@sk_protinfo: private area, net family specific, when not using slab
221   *	@sk_timer: sock cleanup timer
222   *	@sk_stamp: time stamp of last packet received
223   *	@sk_socket: Identd and reporting IO signals
224   *	@sk_user_data: RPC layer private data
225   *	@sk_sndmsg_page: cached page for sendmsg
226   *	@sk_sndmsg_off: cached offset for sendmsg
227   *	@sk_send_head: front of stuff to transmit
228   *	@sk_security: used by security modules
229   *	@sk_mark: generic packet mark
230   *	@sk_classid: this socket's cgroup classid
231   *	@sk_write_pending: a write to stream socket waits to start
232   *	@sk_state_change: callback to indicate change in the state of the sock
233   *	@sk_data_ready: callback to indicate there is data to be processed
234   *	@sk_write_space: callback to indicate there is bf sending space available
235   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
236   *	@sk_backlog_rcv: callback to process the backlog
237   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
238  */
239 struct sock {
240 	/*
241 	 * Now struct inet_timewait_sock also uses sock_common, so please just
242 	 * don't add nothing before this first member (__sk_common) --acme
243 	 */
244 	struct sock_common	__sk_common;
245 #define sk_node			__sk_common.skc_node
246 #define sk_nulls_node		__sk_common.skc_nulls_node
247 #define sk_refcnt		__sk_common.skc_refcnt
248 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
249 
250 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
251 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
252 #define sk_hash			__sk_common.skc_hash
253 #define sk_family		__sk_common.skc_family
254 #define sk_state		__sk_common.skc_state
255 #define sk_reuse		__sk_common.skc_reuse
256 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
257 #define sk_bind_node		__sk_common.skc_bind_node
258 #define sk_prot			__sk_common.skc_prot
259 #define sk_net			__sk_common.skc_net
260 	socket_lock_t		sk_lock;
261 	struct sk_buff_head	sk_receive_queue;
262 	/*
263 	 * The backlog queue is special, it is always used with
264 	 * the per-socket spinlock held and requires low latency
265 	 * access. Therefore we special case it's implementation.
266 	 * Note : rmem_alloc is in this structure to fill a hole
267 	 * on 64bit arches, not because its logically part of
268 	 * backlog.
269 	 */
270 	struct {
271 		atomic_t	rmem_alloc;
272 		int		len;
273 		struct sk_buff	*head;
274 		struct sk_buff	*tail;
275 	} sk_backlog;
276 #define sk_rmem_alloc sk_backlog.rmem_alloc
277 	int			sk_forward_alloc;
278 #ifdef CONFIG_RPS
279 	__u32			sk_rxhash;
280 #endif
281 	atomic_t		sk_drops;
282 	int			sk_rcvbuf;
283 
284 	struct sk_filter __rcu	*sk_filter;
285 	struct socket_wq __rcu	*sk_wq;
286 
287 #ifdef CONFIG_NET_DMA
288 	struct sk_buff_head	sk_async_wait_queue;
289 #endif
290 
291 #ifdef CONFIG_XFRM
292 	struct xfrm_policy	*sk_policy[2];
293 #endif
294 	unsigned long 		sk_flags;
295 	struct dst_entry	*sk_dst_cache;
296 	spinlock_t		sk_dst_lock;
297 	atomic_t		sk_wmem_alloc;
298 	atomic_t		sk_omem_alloc;
299 	int			sk_sndbuf;
300 	struct sk_buff_head	sk_write_queue;
301 	kmemcheck_bitfield_begin(flags);
302 	unsigned int		sk_shutdown  : 2,
303 				sk_no_check  : 2,
304 				sk_userlocks : 4,
305 				sk_protocol  : 8,
306 				sk_type      : 16;
307 	kmemcheck_bitfield_end(flags);
308 	int			sk_wmem_queued;
309 	gfp_t			sk_allocation;
310 	int			sk_route_caps;
311 	int			sk_route_nocaps;
312 	int			sk_gso_type;
313 	unsigned int		sk_gso_max_size;
314 	int			sk_rcvlowat;
315 	unsigned long	        sk_lingertime;
316 	struct sk_buff_head	sk_error_queue;
317 	struct proto		*sk_prot_creator;
318 	rwlock_t		sk_callback_lock;
319 	int			sk_err,
320 				sk_err_soft;
321 	unsigned short		sk_ack_backlog;
322 	unsigned short		sk_max_ack_backlog;
323 	__u32			sk_priority;
324 	struct pid		*sk_peer_pid;
325 	const struct cred	*sk_peer_cred;
326 	long			sk_rcvtimeo;
327 	long			sk_sndtimeo;
328 	void			*sk_protinfo;
329 	struct timer_list	sk_timer;
330 	ktime_t			sk_stamp;
331 	struct socket		*sk_socket;
332 	void			*sk_user_data;
333 	struct page		*sk_sndmsg_page;
334 	struct sk_buff		*sk_send_head;
335 	__u32			sk_sndmsg_off;
336 	int			sk_write_pending;
337 #ifdef CONFIG_SECURITY
338 	void			*sk_security;
339 #endif
340 	__u32			sk_mark;
341 	u32			sk_classid;
342 	void			(*sk_state_change)(struct sock *sk);
343 	void			(*sk_data_ready)(struct sock *sk, int bytes);
344 	void			(*sk_write_space)(struct sock *sk);
345 	void			(*sk_error_report)(struct sock *sk);
346   	int			(*sk_backlog_rcv)(struct sock *sk,
347 						  struct sk_buff *skb);
348 	void                    (*sk_destruct)(struct sock *sk);
349 };
350 
351 /*
352  * Hashed lists helper routines
353  */
354 static inline struct sock *sk_entry(const struct hlist_node *node)
355 {
356 	return hlist_entry(node, struct sock, sk_node);
357 }
358 
359 static inline struct sock *__sk_head(const struct hlist_head *head)
360 {
361 	return hlist_entry(head->first, struct sock, sk_node);
362 }
363 
364 static inline struct sock *sk_head(const struct hlist_head *head)
365 {
366 	return hlist_empty(head) ? NULL : __sk_head(head);
367 }
368 
369 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
370 {
371 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
372 }
373 
374 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
375 {
376 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
377 }
378 
379 static inline struct sock *sk_next(const struct sock *sk)
380 {
381 	return sk->sk_node.next ?
382 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
383 }
384 
385 static inline struct sock *sk_nulls_next(const struct sock *sk)
386 {
387 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
388 		hlist_nulls_entry(sk->sk_nulls_node.next,
389 				  struct sock, sk_nulls_node) :
390 		NULL;
391 }
392 
393 static inline int sk_unhashed(const struct sock *sk)
394 {
395 	return hlist_unhashed(&sk->sk_node);
396 }
397 
398 static inline int sk_hashed(const struct sock *sk)
399 {
400 	return !sk_unhashed(sk);
401 }
402 
403 static __inline__ void sk_node_init(struct hlist_node *node)
404 {
405 	node->pprev = NULL;
406 }
407 
408 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
409 {
410 	node->pprev = NULL;
411 }
412 
413 static __inline__ void __sk_del_node(struct sock *sk)
414 {
415 	__hlist_del(&sk->sk_node);
416 }
417 
418 /* NB: equivalent to hlist_del_init_rcu */
419 static __inline__ int __sk_del_node_init(struct sock *sk)
420 {
421 	if (sk_hashed(sk)) {
422 		__sk_del_node(sk);
423 		sk_node_init(&sk->sk_node);
424 		return 1;
425 	}
426 	return 0;
427 }
428 
429 /* Grab socket reference count. This operation is valid only
430    when sk is ALREADY grabbed f.e. it is found in hash table
431    or a list and the lookup is made under lock preventing hash table
432    modifications.
433  */
434 
435 static inline void sock_hold(struct sock *sk)
436 {
437 	atomic_inc(&sk->sk_refcnt);
438 }
439 
440 /* Ungrab socket in the context, which assumes that socket refcnt
441    cannot hit zero, f.e. it is true in context of any socketcall.
442  */
443 static inline void __sock_put(struct sock *sk)
444 {
445 	atomic_dec(&sk->sk_refcnt);
446 }
447 
448 static __inline__ int sk_del_node_init(struct sock *sk)
449 {
450 	int rc = __sk_del_node_init(sk);
451 
452 	if (rc) {
453 		/* paranoid for a while -acme */
454 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
455 		__sock_put(sk);
456 	}
457 	return rc;
458 }
459 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
460 
461 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
462 {
463 	if (sk_hashed(sk)) {
464 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
465 		return 1;
466 	}
467 	return 0;
468 }
469 
470 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
471 {
472 	int rc = __sk_nulls_del_node_init_rcu(sk);
473 
474 	if (rc) {
475 		/* paranoid for a while -acme */
476 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
477 		__sock_put(sk);
478 	}
479 	return rc;
480 }
481 
482 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
483 {
484 	hlist_add_head(&sk->sk_node, list);
485 }
486 
487 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
488 {
489 	sock_hold(sk);
490 	__sk_add_node(sk, list);
491 }
492 
493 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
494 {
495 	sock_hold(sk);
496 	hlist_add_head_rcu(&sk->sk_node, list);
497 }
498 
499 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
500 {
501 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
502 }
503 
504 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
505 {
506 	sock_hold(sk);
507 	__sk_nulls_add_node_rcu(sk, list);
508 }
509 
510 static __inline__ void __sk_del_bind_node(struct sock *sk)
511 {
512 	__hlist_del(&sk->sk_bind_node);
513 }
514 
515 static __inline__ void sk_add_bind_node(struct sock *sk,
516 					struct hlist_head *list)
517 {
518 	hlist_add_head(&sk->sk_bind_node, list);
519 }
520 
521 #define sk_for_each(__sk, node, list) \
522 	hlist_for_each_entry(__sk, node, list, sk_node)
523 #define sk_for_each_rcu(__sk, node, list) \
524 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
525 #define sk_nulls_for_each(__sk, node, list) \
526 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
527 #define sk_nulls_for_each_rcu(__sk, node, list) \
528 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
529 #define sk_for_each_from(__sk, node) \
530 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
531 		hlist_for_each_entry_from(__sk, node, sk_node)
532 #define sk_nulls_for_each_from(__sk, node) \
533 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
534 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
535 #define sk_for_each_safe(__sk, node, tmp, list) \
536 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
537 #define sk_for_each_bound(__sk, node, list) \
538 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
539 
540 /* Sock flags */
541 enum sock_flags {
542 	SOCK_DEAD,
543 	SOCK_DONE,
544 	SOCK_URGINLINE,
545 	SOCK_KEEPOPEN,
546 	SOCK_LINGER,
547 	SOCK_DESTROY,
548 	SOCK_BROADCAST,
549 	SOCK_TIMESTAMP,
550 	SOCK_ZAPPED,
551 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
552 	SOCK_DBG, /* %SO_DEBUG setting */
553 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
554 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
555 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
556 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
557 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
558 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
559 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
560 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
561 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
562 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
563 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
564 	SOCK_FASYNC, /* fasync() active */
565 	SOCK_RXQ_OVFL,
566 	SOCK_ZEROCOPY, /* buffers from userspace */
567 };
568 
569 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
570 {
571 	nsk->sk_flags = osk->sk_flags;
572 }
573 
574 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
575 {
576 	__set_bit(flag, &sk->sk_flags);
577 }
578 
579 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
580 {
581 	__clear_bit(flag, &sk->sk_flags);
582 }
583 
584 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
585 {
586 	return test_bit(flag, &sk->sk_flags);
587 }
588 
589 static inline void sk_acceptq_removed(struct sock *sk)
590 {
591 	sk->sk_ack_backlog--;
592 }
593 
594 static inline void sk_acceptq_added(struct sock *sk)
595 {
596 	sk->sk_ack_backlog++;
597 }
598 
599 static inline int sk_acceptq_is_full(struct sock *sk)
600 {
601 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
602 }
603 
604 /*
605  * Compute minimal free write space needed to queue new packets.
606  */
607 static inline int sk_stream_min_wspace(struct sock *sk)
608 {
609 	return sk->sk_wmem_queued >> 1;
610 }
611 
612 static inline int sk_stream_wspace(struct sock *sk)
613 {
614 	return sk->sk_sndbuf - sk->sk_wmem_queued;
615 }
616 
617 extern void sk_stream_write_space(struct sock *sk);
618 
619 static inline int sk_stream_memory_free(struct sock *sk)
620 {
621 	return sk->sk_wmem_queued < sk->sk_sndbuf;
622 }
623 
624 /* OOB backlog add */
625 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
626 {
627 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
628 	skb_dst_force(skb);
629 
630 	if (!sk->sk_backlog.tail)
631 		sk->sk_backlog.head = skb;
632 	else
633 		sk->sk_backlog.tail->next = skb;
634 
635 	sk->sk_backlog.tail = skb;
636 	skb->next = NULL;
637 }
638 
639 /*
640  * Take into account size of receive queue and backlog queue
641  */
642 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
643 {
644 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
645 
646 	return qsize + skb->truesize > sk->sk_rcvbuf;
647 }
648 
649 /* The per-socket spinlock must be held here. */
650 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
651 {
652 	if (sk_rcvqueues_full(sk, skb))
653 		return -ENOBUFS;
654 
655 	__sk_add_backlog(sk, skb);
656 	sk->sk_backlog.len += skb->truesize;
657 	return 0;
658 }
659 
660 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
661 {
662 	return sk->sk_backlog_rcv(sk, skb);
663 }
664 
665 static inline void sock_rps_record_flow(const struct sock *sk)
666 {
667 #ifdef CONFIG_RPS
668 	struct rps_sock_flow_table *sock_flow_table;
669 
670 	rcu_read_lock();
671 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
672 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
673 	rcu_read_unlock();
674 #endif
675 }
676 
677 static inline void sock_rps_reset_flow(const struct sock *sk)
678 {
679 #ifdef CONFIG_RPS
680 	struct rps_sock_flow_table *sock_flow_table;
681 
682 	rcu_read_lock();
683 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
684 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
685 	rcu_read_unlock();
686 #endif
687 }
688 
689 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
690 {
691 #ifdef CONFIG_RPS
692 	if (unlikely(sk->sk_rxhash != rxhash)) {
693 		sock_rps_reset_flow(sk);
694 		sk->sk_rxhash = rxhash;
695 	}
696 #endif
697 }
698 
699 #define sk_wait_event(__sk, __timeo, __condition)			\
700 	({	int __rc;						\
701 		release_sock(__sk);					\
702 		__rc = __condition;					\
703 		if (!__rc) {						\
704 			*(__timeo) = schedule_timeout(*(__timeo));	\
705 		}							\
706 		lock_sock(__sk);					\
707 		__rc = __condition;					\
708 		__rc;							\
709 	})
710 
711 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
712 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
713 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
714 extern int sk_stream_error(struct sock *sk, int flags, int err);
715 extern void sk_stream_kill_queues(struct sock *sk);
716 
717 extern int sk_wait_data(struct sock *sk, long *timeo);
718 
719 struct request_sock_ops;
720 struct timewait_sock_ops;
721 struct inet_hashinfo;
722 struct raw_hashinfo;
723 
724 /* Networking protocol blocks we attach to sockets.
725  * socket layer -> transport layer interface
726  * transport -> network interface is defined by struct inet_proto
727  */
728 struct proto {
729 	void			(*close)(struct sock *sk,
730 					long timeout);
731 	int			(*connect)(struct sock *sk,
732 				        struct sockaddr *uaddr,
733 					int addr_len);
734 	int			(*disconnect)(struct sock *sk, int flags);
735 
736 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
737 
738 	int			(*ioctl)(struct sock *sk, int cmd,
739 					 unsigned long arg);
740 	int			(*init)(struct sock *sk);
741 	void			(*destroy)(struct sock *sk);
742 	void			(*shutdown)(struct sock *sk, int how);
743 	int			(*setsockopt)(struct sock *sk, int level,
744 					int optname, char __user *optval,
745 					unsigned int optlen);
746 	int			(*getsockopt)(struct sock *sk, int level,
747 					int optname, char __user *optval,
748 					int __user *option);
749 #ifdef CONFIG_COMPAT
750 	int			(*compat_setsockopt)(struct sock *sk,
751 					int level,
752 					int optname, char __user *optval,
753 					unsigned int optlen);
754 	int			(*compat_getsockopt)(struct sock *sk,
755 					int level,
756 					int optname, char __user *optval,
757 					int __user *option);
758 	int			(*compat_ioctl)(struct sock *sk,
759 					unsigned int cmd, unsigned long arg);
760 #endif
761 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
762 					   struct msghdr *msg, size_t len);
763 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
764 					   struct msghdr *msg,
765 					size_t len, int noblock, int flags,
766 					int *addr_len);
767 	int			(*sendpage)(struct sock *sk, struct page *page,
768 					int offset, size_t size, int flags);
769 	int			(*bind)(struct sock *sk,
770 					struct sockaddr *uaddr, int addr_len);
771 
772 	int			(*backlog_rcv) (struct sock *sk,
773 						struct sk_buff *skb);
774 
775 	/* Keeping track of sk's, looking them up, and port selection methods. */
776 	void			(*hash)(struct sock *sk);
777 	void			(*unhash)(struct sock *sk);
778 	void			(*rehash)(struct sock *sk);
779 	int			(*get_port)(struct sock *sk, unsigned short snum);
780 	void			(*clear_sk)(struct sock *sk, int size);
781 
782 	/* Keeping track of sockets in use */
783 #ifdef CONFIG_PROC_FS
784 	unsigned int		inuse_idx;
785 #endif
786 
787 	/* Memory pressure */
788 	void			(*enter_memory_pressure)(struct sock *sk);
789 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
790 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
791 	/*
792 	 * Pressure flag: try to collapse.
793 	 * Technical note: it is used by multiple contexts non atomically.
794 	 * All the __sk_mem_schedule() is of this nature: accounting
795 	 * is strict, actions are advisory and have some latency.
796 	 */
797 	int			*memory_pressure;
798 	long			*sysctl_mem;
799 	int			*sysctl_wmem;
800 	int			*sysctl_rmem;
801 	int			max_header;
802 	bool			no_autobind;
803 
804 	struct kmem_cache	*slab;
805 	unsigned int		obj_size;
806 	int			slab_flags;
807 
808 	struct percpu_counter	*orphan_count;
809 
810 	struct request_sock_ops	*rsk_prot;
811 	struct timewait_sock_ops *twsk_prot;
812 
813 	union {
814 		struct inet_hashinfo	*hashinfo;
815 		struct udp_table	*udp_table;
816 		struct raw_hashinfo	*raw_hash;
817 	} h;
818 
819 	struct module		*owner;
820 
821 	char			name[32];
822 
823 	struct list_head	node;
824 #ifdef SOCK_REFCNT_DEBUG
825 	atomic_t		socks;
826 #endif
827 };
828 
829 extern int proto_register(struct proto *prot, int alloc_slab);
830 extern void proto_unregister(struct proto *prot);
831 
832 #ifdef SOCK_REFCNT_DEBUG
833 static inline void sk_refcnt_debug_inc(struct sock *sk)
834 {
835 	atomic_inc(&sk->sk_prot->socks);
836 }
837 
838 static inline void sk_refcnt_debug_dec(struct sock *sk)
839 {
840 	atomic_dec(&sk->sk_prot->socks);
841 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
842 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
843 }
844 
845 static inline void sk_refcnt_debug_release(const struct sock *sk)
846 {
847 	if (atomic_read(&sk->sk_refcnt) != 1)
848 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
849 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
850 }
851 #else /* SOCK_REFCNT_DEBUG */
852 #define sk_refcnt_debug_inc(sk) do { } while (0)
853 #define sk_refcnt_debug_dec(sk) do { } while (0)
854 #define sk_refcnt_debug_release(sk) do { } while (0)
855 #endif /* SOCK_REFCNT_DEBUG */
856 
857 
858 #ifdef CONFIG_PROC_FS
859 /* Called with local bh disabled */
860 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
861 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
862 #else
863 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
864 		int inc)
865 {
866 }
867 #endif
868 
869 
870 /* With per-bucket locks this operation is not-atomic, so that
871  * this version is not worse.
872  */
873 static inline void __sk_prot_rehash(struct sock *sk)
874 {
875 	sk->sk_prot->unhash(sk);
876 	sk->sk_prot->hash(sk);
877 }
878 
879 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
880 
881 /* About 10 seconds */
882 #define SOCK_DESTROY_TIME (10*HZ)
883 
884 /* Sockets 0-1023 can't be bound to unless you are superuser */
885 #define PROT_SOCK	1024
886 
887 #define SHUTDOWN_MASK	3
888 #define RCV_SHUTDOWN	1
889 #define SEND_SHUTDOWN	2
890 
891 #define SOCK_SNDBUF_LOCK	1
892 #define SOCK_RCVBUF_LOCK	2
893 #define SOCK_BINDADDR_LOCK	4
894 #define SOCK_BINDPORT_LOCK	8
895 
896 /* sock_iocb: used to kick off async processing of socket ios */
897 struct sock_iocb {
898 	struct list_head	list;
899 
900 	int			flags;
901 	int			size;
902 	struct socket		*sock;
903 	struct sock		*sk;
904 	struct scm_cookie	*scm;
905 	struct msghdr		*msg, async_msg;
906 	struct kiocb		*kiocb;
907 };
908 
909 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
910 {
911 	return (struct sock_iocb *)iocb->private;
912 }
913 
914 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
915 {
916 	return si->kiocb;
917 }
918 
919 struct socket_alloc {
920 	struct socket socket;
921 	struct inode vfs_inode;
922 };
923 
924 static inline struct socket *SOCKET_I(struct inode *inode)
925 {
926 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
927 }
928 
929 static inline struct inode *SOCK_INODE(struct socket *socket)
930 {
931 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
932 }
933 
934 /*
935  * Functions for memory accounting
936  */
937 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
938 extern void __sk_mem_reclaim(struct sock *sk);
939 
940 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
941 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
942 #define SK_MEM_SEND	0
943 #define SK_MEM_RECV	1
944 
945 static inline int sk_mem_pages(int amt)
946 {
947 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
948 }
949 
950 static inline int sk_has_account(struct sock *sk)
951 {
952 	/* return true if protocol supports memory accounting */
953 	return !!sk->sk_prot->memory_allocated;
954 }
955 
956 static inline int sk_wmem_schedule(struct sock *sk, int size)
957 {
958 	if (!sk_has_account(sk))
959 		return 1;
960 	return size <= sk->sk_forward_alloc ||
961 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
962 }
963 
964 static inline int sk_rmem_schedule(struct sock *sk, int size)
965 {
966 	if (!sk_has_account(sk))
967 		return 1;
968 	return size <= sk->sk_forward_alloc ||
969 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
970 }
971 
972 static inline void sk_mem_reclaim(struct sock *sk)
973 {
974 	if (!sk_has_account(sk))
975 		return;
976 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
977 		__sk_mem_reclaim(sk);
978 }
979 
980 static inline void sk_mem_reclaim_partial(struct sock *sk)
981 {
982 	if (!sk_has_account(sk))
983 		return;
984 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
985 		__sk_mem_reclaim(sk);
986 }
987 
988 static inline void sk_mem_charge(struct sock *sk, int size)
989 {
990 	if (!sk_has_account(sk))
991 		return;
992 	sk->sk_forward_alloc -= size;
993 }
994 
995 static inline void sk_mem_uncharge(struct sock *sk, int size)
996 {
997 	if (!sk_has_account(sk))
998 		return;
999 	sk->sk_forward_alloc += size;
1000 }
1001 
1002 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1003 {
1004 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1005 	sk->sk_wmem_queued -= skb->truesize;
1006 	sk_mem_uncharge(sk, skb->truesize);
1007 	__kfree_skb(skb);
1008 }
1009 
1010 /* Used by processes to "lock" a socket state, so that
1011  * interrupts and bottom half handlers won't change it
1012  * from under us. It essentially blocks any incoming
1013  * packets, so that we won't get any new data or any
1014  * packets that change the state of the socket.
1015  *
1016  * While locked, BH processing will add new packets to
1017  * the backlog queue.  This queue is processed by the
1018  * owner of the socket lock right before it is released.
1019  *
1020  * Since ~2.3.5 it is also exclusive sleep lock serializing
1021  * accesses from user process context.
1022  */
1023 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1024 
1025 /*
1026  * Macro so as to not evaluate some arguments when
1027  * lockdep is not enabled.
1028  *
1029  * Mark both the sk_lock and the sk_lock.slock as a
1030  * per-address-family lock class.
1031  */
1032 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1033 do {									\
1034 	sk->sk_lock.owned = 0;						\
1035 	init_waitqueue_head(&sk->sk_lock.wq);				\
1036 	spin_lock_init(&(sk)->sk_lock.slock);				\
1037 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1038 			sizeof((sk)->sk_lock));				\
1039 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1040 		       	(skey), (sname));				\
1041 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1042 } while (0)
1043 
1044 extern void lock_sock_nested(struct sock *sk, int subclass);
1045 
1046 static inline void lock_sock(struct sock *sk)
1047 {
1048 	lock_sock_nested(sk, 0);
1049 }
1050 
1051 extern void release_sock(struct sock *sk);
1052 
1053 /* BH context may only use the following locking interface. */
1054 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1055 #define bh_lock_sock_nested(__sk) \
1056 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1057 				SINGLE_DEPTH_NESTING)
1058 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1059 
1060 extern bool lock_sock_fast(struct sock *sk);
1061 /**
1062  * unlock_sock_fast - complement of lock_sock_fast
1063  * @sk: socket
1064  * @slow: slow mode
1065  *
1066  * fast unlock socket for user context.
1067  * If slow mode is on, we call regular release_sock()
1068  */
1069 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1070 {
1071 	if (slow)
1072 		release_sock(sk);
1073 	else
1074 		spin_unlock_bh(&sk->sk_lock.slock);
1075 }
1076 
1077 
1078 extern struct sock		*sk_alloc(struct net *net, int family,
1079 					  gfp_t priority,
1080 					  struct proto *prot);
1081 extern void			sk_free(struct sock *sk);
1082 extern void			sk_release_kernel(struct sock *sk);
1083 extern struct sock		*sk_clone(const struct sock *sk,
1084 					  const gfp_t priority);
1085 
1086 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1087 					      unsigned long size, int force,
1088 					      gfp_t priority);
1089 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1090 					      unsigned long size, int force,
1091 					      gfp_t priority);
1092 extern void			sock_wfree(struct sk_buff *skb);
1093 extern void			sock_rfree(struct sk_buff *skb);
1094 
1095 extern int			sock_setsockopt(struct socket *sock, int level,
1096 						int op, char __user *optval,
1097 						unsigned int optlen);
1098 
1099 extern int			sock_getsockopt(struct socket *sock, int level,
1100 						int op, char __user *optval,
1101 						int __user *optlen);
1102 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1103 						     unsigned long size,
1104 						     int noblock,
1105 						     int *errcode);
1106 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1107 						      unsigned long header_len,
1108 						      unsigned long data_len,
1109 						      int noblock,
1110 						      int *errcode);
1111 extern void *sock_kmalloc(struct sock *sk, int size,
1112 			  gfp_t priority);
1113 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1114 extern void sk_send_sigurg(struct sock *sk);
1115 
1116 #ifdef CONFIG_CGROUPS
1117 extern void sock_update_classid(struct sock *sk);
1118 #else
1119 static inline void sock_update_classid(struct sock *sk)
1120 {
1121 }
1122 #endif
1123 
1124 /*
1125  * Functions to fill in entries in struct proto_ops when a protocol
1126  * does not implement a particular function.
1127  */
1128 extern int                      sock_no_bind(struct socket *,
1129 					     struct sockaddr *, int);
1130 extern int                      sock_no_connect(struct socket *,
1131 						struct sockaddr *, int, int);
1132 extern int                      sock_no_socketpair(struct socket *,
1133 						   struct socket *);
1134 extern int                      sock_no_accept(struct socket *,
1135 					       struct socket *, int);
1136 extern int                      sock_no_getname(struct socket *,
1137 						struct sockaddr *, int *, int);
1138 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1139 					     struct poll_table_struct *);
1140 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1141 					      unsigned long);
1142 extern int			sock_no_listen(struct socket *, int);
1143 extern int                      sock_no_shutdown(struct socket *, int);
1144 extern int			sock_no_getsockopt(struct socket *, int , int,
1145 						   char __user *, int __user *);
1146 extern int			sock_no_setsockopt(struct socket *, int, int,
1147 						   char __user *, unsigned int);
1148 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1149 						struct msghdr *, size_t);
1150 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1151 						struct msghdr *, size_t, int);
1152 extern int			sock_no_mmap(struct file *file,
1153 					     struct socket *sock,
1154 					     struct vm_area_struct *vma);
1155 extern ssize_t			sock_no_sendpage(struct socket *sock,
1156 						struct page *page,
1157 						int offset, size_t size,
1158 						int flags);
1159 
1160 /*
1161  * Functions to fill in entries in struct proto_ops when a protocol
1162  * uses the inet style.
1163  */
1164 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1165 				  char __user *optval, int __user *optlen);
1166 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1167 			       struct msghdr *msg, size_t size, int flags);
1168 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1169 				  char __user *optval, unsigned int optlen);
1170 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1171 		int optname, char __user *optval, int __user *optlen);
1172 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1173 		int optname, char __user *optval, unsigned int optlen);
1174 
1175 extern void sk_common_release(struct sock *sk);
1176 
1177 /*
1178  *	Default socket callbacks and setup code
1179  */
1180 
1181 /* Initialise core socket variables */
1182 extern void sock_init_data(struct socket *sock, struct sock *sk);
1183 
1184 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1185 
1186 /**
1187  *	sk_filter_release - release a socket filter
1188  *	@fp: filter to remove
1189  *
1190  *	Remove a filter from a socket and release its resources.
1191  */
1192 
1193 static inline void sk_filter_release(struct sk_filter *fp)
1194 {
1195 	if (atomic_dec_and_test(&fp->refcnt))
1196 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1197 }
1198 
1199 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1200 {
1201 	unsigned int size = sk_filter_len(fp);
1202 
1203 	atomic_sub(size, &sk->sk_omem_alloc);
1204 	sk_filter_release(fp);
1205 }
1206 
1207 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1208 {
1209 	atomic_inc(&fp->refcnt);
1210 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1211 }
1212 
1213 /*
1214  * Socket reference counting postulates.
1215  *
1216  * * Each user of socket SHOULD hold a reference count.
1217  * * Each access point to socket (an hash table bucket, reference from a list,
1218  *   running timer, skb in flight MUST hold a reference count.
1219  * * When reference count hits 0, it means it will never increase back.
1220  * * When reference count hits 0, it means that no references from
1221  *   outside exist to this socket and current process on current CPU
1222  *   is last user and may/should destroy this socket.
1223  * * sk_free is called from any context: process, BH, IRQ. When
1224  *   it is called, socket has no references from outside -> sk_free
1225  *   may release descendant resources allocated by the socket, but
1226  *   to the time when it is called, socket is NOT referenced by any
1227  *   hash tables, lists etc.
1228  * * Packets, delivered from outside (from network or from another process)
1229  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1230  *   when they sit in queue. Otherwise, packets will leak to hole, when
1231  *   socket is looked up by one cpu and unhasing is made by another CPU.
1232  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1233  *   (leak to backlog). Packet socket does all the processing inside
1234  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1235  *   use separate SMP lock, so that they are prone too.
1236  */
1237 
1238 /* Ungrab socket and destroy it, if it was the last reference. */
1239 static inline void sock_put(struct sock *sk)
1240 {
1241 	if (atomic_dec_and_test(&sk->sk_refcnt))
1242 		sk_free(sk);
1243 }
1244 
1245 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1246 			  const int nested);
1247 
1248 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1249 {
1250 	sk->sk_tx_queue_mapping = tx_queue;
1251 }
1252 
1253 static inline void sk_tx_queue_clear(struct sock *sk)
1254 {
1255 	sk->sk_tx_queue_mapping = -1;
1256 }
1257 
1258 static inline int sk_tx_queue_get(const struct sock *sk)
1259 {
1260 	return sk ? sk->sk_tx_queue_mapping : -1;
1261 }
1262 
1263 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1264 {
1265 	sk_tx_queue_clear(sk);
1266 	sk->sk_socket = sock;
1267 }
1268 
1269 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1270 {
1271 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1272 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1273 }
1274 /* Detach socket from process context.
1275  * Announce socket dead, detach it from wait queue and inode.
1276  * Note that parent inode held reference count on this struct sock,
1277  * we do not release it in this function, because protocol
1278  * probably wants some additional cleanups or even continuing
1279  * to work with this socket (TCP).
1280  */
1281 static inline void sock_orphan(struct sock *sk)
1282 {
1283 	write_lock_bh(&sk->sk_callback_lock);
1284 	sock_set_flag(sk, SOCK_DEAD);
1285 	sk_set_socket(sk, NULL);
1286 	sk->sk_wq  = NULL;
1287 	write_unlock_bh(&sk->sk_callback_lock);
1288 }
1289 
1290 static inline void sock_graft(struct sock *sk, struct socket *parent)
1291 {
1292 	write_lock_bh(&sk->sk_callback_lock);
1293 	sk->sk_wq = parent->wq;
1294 	parent->sk = sk;
1295 	sk_set_socket(sk, parent);
1296 	security_sock_graft(sk, parent);
1297 	write_unlock_bh(&sk->sk_callback_lock);
1298 }
1299 
1300 extern int sock_i_uid(struct sock *sk);
1301 extern unsigned long sock_i_ino(struct sock *sk);
1302 
1303 static inline struct dst_entry *
1304 __sk_dst_get(struct sock *sk)
1305 {
1306 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1307 						       lockdep_is_held(&sk->sk_lock.slock));
1308 }
1309 
1310 static inline struct dst_entry *
1311 sk_dst_get(struct sock *sk)
1312 {
1313 	struct dst_entry *dst;
1314 
1315 	rcu_read_lock();
1316 	dst = rcu_dereference(sk->sk_dst_cache);
1317 	if (dst)
1318 		dst_hold(dst);
1319 	rcu_read_unlock();
1320 	return dst;
1321 }
1322 
1323 extern void sk_reset_txq(struct sock *sk);
1324 
1325 static inline void dst_negative_advice(struct sock *sk)
1326 {
1327 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1328 
1329 	if (dst && dst->ops->negative_advice) {
1330 		ndst = dst->ops->negative_advice(dst);
1331 
1332 		if (ndst != dst) {
1333 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1334 			sk_reset_txq(sk);
1335 		}
1336 	}
1337 }
1338 
1339 static inline void
1340 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1341 {
1342 	struct dst_entry *old_dst;
1343 
1344 	sk_tx_queue_clear(sk);
1345 	/*
1346 	 * This can be called while sk is owned by the caller only,
1347 	 * with no state that can be checked in a rcu_dereference_check() cond
1348 	 */
1349 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1350 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1351 	dst_release(old_dst);
1352 }
1353 
1354 static inline void
1355 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1356 {
1357 	spin_lock(&sk->sk_dst_lock);
1358 	__sk_dst_set(sk, dst);
1359 	spin_unlock(&sk->sk_dst_lock);
1360 }
1361 
1362 static inline void
1363 __sk_dst_reset(struct sock *sk)
1364 {
1365 	__sk_dst_set(sk, NULL);
1366 }
1367 
1368 static inline void
1369 sk_dst_reset(struct sock *sk)
1370 {
1371 	spin_lock(&sk->sk_dst_lock);
1372 	__sk_dst_reset(sk);
1373 	spin_unlock(&sk->sk_dst_lock);
1374 }
1375 
1376 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1377 
1378 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1379 
1380 static inline int sk_can_gso(const struct sock *sk)
1381 {
1382 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1383 }
1384 
1385 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1386 
1387 static inline void sk_nocaps_add(struct sock *sk, int flags)
1388 {
1389 	sk->sk_route_nocaps |= flags;
1390 	sk->sk_route_caps &= ~flags;
1391 }
1392 
1393 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1394 					   char __user *from, char *to,
1395 					   int copy, int offset)
1396 {
1397 	if (skb->ip_summed == CHECKSUM_NONE) {
1398 		int err = 0;
1399 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1400 		if (err)
1401 			return err;
1402 		skb->csum = csum_block_add(skb->csum, csum, offset);
1403 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1404 		if (!access_ok(VERIFY_READ, from, copy) ||
1405 		    __copy_from_user_nocache(to, from, copy))
1406 			return -EFAULT;
1407 	} else if (copy_from_user(to, from, copy))
1408 		return -EFAULT;
1409 
1410 	return 0;
1411 }
1412 
1413 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1414 				       char __user *from, int copy)
1415 {
1416 	int err, offset = skb->len;
1417 
1418 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1419 				       copy, offset);
1420 	if (err)
1421 		__skb_trim(skb, offset);
1422 
1423 	return err;
1424 }
1425 
1426 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1427 					   struct sk_buff *skb,
1428 					   struct page *page,
1429 					   int off, int copy)
1430 {
1431 	int err;
1432 
1433 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1434 				       copy, skb->len);
1435 	if (err)
1436 		return err;
1437 
1438 	skb->len	     += copy;
1439 	skb->data_len	     += copy;
1440 	skb->truesize	     += copy;
1441 	sk->sk_wmem_queued   += copy;
1442 	sk_mem_charge(sk, copy);
1443 	return 0;
1444 }
1445 
1446 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1447 				   struct sk_buff *skb, struct page *page,
1448 				   int off, int copy)
1449 {
1450 	if (skb->ip_summed == CHECKSUM_NONE) {
1451 		int err = 0;
1452 		__wsum csum = csum_and_copy_from_user(from,
1453 						     page_address(page) + off,
1454 							    copy, 0, &err);
1455 		if (err)
1456 			return err;
1457 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1458 	} else if (copy_from_user(page_address(page) + off, from, copy))
1459 		return -EFAULT;
1460 
1461 	skb->len	     += copy;
1462 	skb->data_len	     += copy;
1463 	skb->truesize	     += copy;
1464 	sk->sk_wmem_queued   += copy;
1465 	sk_mem_charge(sk, copy);
1466 	return 0;
1467 }
1468 
1469 /**
1470  * sk_wmem_alloc_get - returns write allocations
1471  * @sk: socket
1472  *
1473  * Returns sk_wmem_alloc minus initial offset of one
1474  */
1475 static inline int sk_wmem_alloc_get(const struct sock *sk)
1476 {
1477 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1478 }
1479 
1480 /**
1481  * sk_rmem_alloc_get - returns read allocations
1482  * @sk: socket
1483  *
1484  * Returns sk_rmem_alloc
1485  */
1486 static inline int sk_rmem_alloc_get(const struct sock *sk)
1487 {
1488 	return atomic_read(&sk->sk_rmem_alloc);
1489 }
1490 
1491 /**
1492  * sk_has_allocations - check if allocations are outstanding
1493  * @sk: socket
1494  *
1495  * Returns true if socket has write or read allocations
1496  */
1497 static inline int sk_has_allocations(const struct sock *sk)
1498 {
1499 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1500 }
1501 
1502 /**
1503  * wq_has_sleeper - check if there are any waiting processes
1504  * @wq: struct socket_wq
1505  *
1506  * Returns true if socket_wq has waiting processes
1507  *
1508  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1509  * barrier call. They were added due to the race found within the tcp code.
1510  *
1511  * Consider following tcp code paths:
1512  *
1513  * CPU1                  CPU2
1514  *
1515  * sys_select            receive packet
1516  *   ...                 ...
1517  *   __add_wait_queue    update tp->rcv_nxt
1518  *   ...                 ...
1519  *   tp->rcv_nxt check   sock_def_readable
1520  *   ...                 {
1521  *   schedule               rcu_read_lock();
1522  *                          wq = rcu_dereference(sk->sk_wq);
1523  *                          if (wq && waitqueue_active(&wq->wait))
1524  *                              wake_up_interruptible(&wq->wait)
1525  *                          ...
1526  *                       }
1527  *
1528  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1529  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1530  * could then endup calling schedule and sleep forever if there are no more
1531  * data on the socket.
1532  *
1533  */
1534 static inline bool wq_has_sleeper(struct socket_wq *wq)
1535 {
1536 
1537 	/*
1538 	 * We need to be sure we are in sync with the
1539 	 * add_wait_queue modifications to the wait queue.
1540 	 *
1541 	 * This memory barrier is paired in the sock_poll_wait.
1542 	 */
1543 	smp_mb();
1544 	return wq && waitqueue_active(&wq->wait);
1545 }
1546 
1547 /**
1548  * sock_poll_wait - place memory barrier behind the poll_wait call.
1549  * @filp:           file
1550  * @wait_address:   socket wait queue
1551  * @p:              poll_table
1552  *
1553  * See the comments in the wq_has_sleeper function.
1554  */
1555 static inline void sock_poll_wait(struct file *filp,
1556 		wait_queue_head_t *wait_address, poll_table *p)
1557 {
1558 	if (p && wait_address) {
1559 		poll_wait(filp, wait_address, p);
1560 		/*
1561 		 * We need to be sure we are in sync with the
1562 		 * socket flags modification.
1563 		 *
1564 		 * This memory barrier is paired in the wq_has_sleeper.
1565 		*/
1566 		smp_mb();
1567 	}
1568 }
1569 
1570 /*
1571  * 	Queue a received datagram if it will fit. Stream and sequenced
1572  *	protocols can't normally use this as they need to fit buffers in
1573  *	and play with them.
1574  *
1575  * 	Inlined as it's very short and called for pretty much every
1576  *	packet ever received.
1577  */
1578 
1579 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1580 {
1581 	skb_orphan(skb);
1582 	skb->sk = sk;
1583 	skb->destructor = sock_wfree;
1584 	/*
1585 	 * We used to take a refcount on sk, but following operation
1586 	 * is enough to guarantee sk_free() wont free this sock until
1587 	 * all in-flight packets are completed
1588 	 */
1589 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1590 }
1591 
1592 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1593 {
1594 	skb_orphan(skb);
1595 	skb->sk = sk;
1596 	skb->destructor = sock_rfree;
1597 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1598 	sk_mem_charge(sk, skb->truesize);
1599 }
1600 
1601 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1602 			   unsigned long expires);
1603 
1604 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1605 
1606 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1607 
1608 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1609 
1610 /*
1611  *	Recover an error report and clear atomically
1612  */
1613 
1614 static inline int sock_error(struct sock *sk)
1615 {
1616 	int err;
1617 	if (likely(!sk->sk_err))
1618 		return 0;
1619 	err = xchg(&sk->sk_err, 0);
1620 	return -err;
1621 }
1622 
1623 static inline unsigned long sock_wspace(struct sock *sk)
1624 {
1625 	int amt = 0;
1626 
1627 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1628 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1629 		if (amt < 0)
1630 			amt = 0;
1631 	}
1632 	return amt;
1633 }
1634 
1635 static inline void sk_wake_async(struct sock *sk, int how, int band)
1636 {
1637 	if (sock_flag(sk, SOCK_FASYNC))
1638 		sock_wake_async(sk->sk_socket, how, band);
1639 }
1640 
1641 #define SOCK_MIN_SNDBUF 2048
1642 /*
1643  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1644  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1645  */
1646 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1647 
1648 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1649 {
1650 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1651 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1652 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1653 	}
1654 }
1655 
1656 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1657 
1658 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1659 {
1660 	struct page *page = NULL;
1661 
1662 	page = alloc_pages(sk->sk_allocation, 0);
1663 	if (!page) {
1664 		sk->sk_prot->enter_memory_pressure(sk);
1665 		sk_stream_moderate_sndbuf(sk);
1666 	}
1667 	return page;
1668 }
1669 
1670 /*
1671  *	Default write policy as shown to user space via poll/select/SIGIO
1672  */
1673 static inline int sock_writeable(const struct sock *sk)
1674 {
1675 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1676 }
1677 
1678 static inline gfp_t gfp_any(void)
1679 {
1680 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1681 }
1682 
1683 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1684 {
1685 	return noblock ? 0 : sk->sk_rcvtimeo;
1686 }
1687 
1688 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1689 {
1690 	return noblock ? 0 : sk->sk_sndtimeo;
1691 }
1692 
1693 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1694 {
1695 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1696 }
1697 
1698 /* Alas, with timeout socket operations are not restartable.
1699  * Compare this to poll().
1700  */
1701 static inline int sock_intr_errno(long timeo)
1702 {
1703 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1704 }
1705 
1706 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1707 	struct sk_buff *skb);
1708 
1709 static __inline__ void
1710 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1711 {
1712 	ktime_t kt = skb->tstamp;
1713 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1714 
1715 	/*
1716 	 * generate control messages if
1717 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1718 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1719 	 * - software time stamp available and wanted
1720 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1721 	 * - hardware time stamps available and wanted
1722 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1723 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1724 	 */
1725 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1726 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1727 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1728 	    (hwtstamps->hwtstamp.tv64 &&
1729 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1730 	    (hwtstamps->syststamp.tv64 &&
1731 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1732 		__sock_recv_timestamp(msg, sk, skb);
1733 	else
1734 		sk->sk_stamp = kt;
1735 }
1736 
1737 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1738 				     struct sk_buff *skb);
1739 
1740 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1741 					  struct sk_buff *skb)
1742 {
1743 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1744 			   (1UL << SOCK_RCVTSTAMP)			| \
1745 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1746 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1747 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1748 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1749 
1750 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1751 		__sock_recv_ts_and_drops(msg, sk, skb);
1752 	else
1753 		sk->sk_stamp = skb->tstamp;
1754 }
1755 
1756 /**
1757  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1758  * @sk:		socket sending this packet
1759  * @tx_flags:	filled with instructions for time stamping
1760  *
1761  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1762  * parameters are invalid.
1763  */
1764 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1765 
1766 /**
1767  * sk_eat_skb - Release a skb if it is no longer needed
1768  * @sk: socket to eat this skb from
1769  * @skb: socket buffer to eat
1770  * @copied_early: flag indicating whether DMA operations copied this data early
1771  *
1772  * This routine must be called with interrupts disabled or with the socket
1773  * locked so that the sk_buff queue operation is ok.
1774 */
1775 #ifdef CONFIG_NET_DMA
1776 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1777 {
1778 	__skb_unlink(skb, &sk->sk_receive_queue);
1779 	if (!copied_early)
1780 		__kfree_skb(skb);
1781 	else
1782 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1783 }
1784 #else
1785 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1786 {
1787 	__skb_unlink(skb, &sk->sk_receive_queue);
1788 	__kfree_skb(skb);
1789 }
1790 #endif
1791 
1792 static inline
1793 struct net *sock_net(const struct sock *sk)
1794 {
1795 	return read_pnet(&sk->sk_net);
1796 }
1797 
1798 static inline
1799 void sock_net_set(struct sock *sk, struct net *net)
1800 {
1801 	write_pnet(&sk->sk_net, net);
1802 }
1803 
1804 /*
1805  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1806  * They should not hold a reference to a namespace in order to allow
1807  * to stop it.
1808  * Sockets after sk_change_net should be released using sk_release_kernel
1809  */
1810 static inline void sk_change_net(struct sock *sk, struct net *net)
1811 {
1812 	put_net(sock_net(sk));
1813 	sock_net_set(sk, hold_net(net));
1814 }
1815 
1816 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1817 {
1818 	if (unlikely(skb->sk)) {
1819 		struct sock *sk = skb->sk;
1820 
1821 		skb->destructor = NULL;
1822 		skb->sk = NULL;
1823 		return sk;
1824 	}
1825 	return NULL;
1826 }
1827 
1828 extern void sock_enable_timestamp(struct sock *sk, int flag);
1829 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1830 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1831 
1832 /*
1833  *	Enable debug/info messages
1834  */
1835 extern int net_msg_warn;
1836 #define NETDEBUG(fmt, args...) \
1837 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1838 
1839 #define LIMIT_NETDEBUG(fmt, args...) \
1840 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1841 
1842 extern __u32 sysctl_wmem_max;
1843 extern __u32 sysctl_rmem_max;
1844 
1845 extern void sk_init(void);
1846 
1847 extern int sysctl_optmem_max;
1848 
1849 extern __u32 sysctl_wmem_default;
1850 extern __u32 sysctl_rmem_default;
1851 
1852 #endif	/* _SOCK_H */
1853