xref: /openbmc/linux/include/net/sock.h (revision 7587eb18)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 
74 /*
75  * This structure really needs to be cleaned up.
76  * Most of it is for TCP, and not used by any of
77  * the other protocols.
78  */
79 
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 					printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92 
93 /* This is the per-socket lock.  The spinlock provides a synchronization
94  * between user contexts and software interrupt processing, whereas the
95  * mini-semaphore synchronizes multiple users amongst themselves.
96  */
97 typedef struct {
98 	spinlock_t		slock;
99 	int			owned;
100 	wait_queue_head_t	wq;
101 	/*
102 	 * We express the mutex-alike socket_lock semantics
103 	 * to the lock validator by explicitly managing
104 	 * the slock as a lock variant (in addition to
105 	 * the slock itself):
106 	 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111 
112 struct sock;
113 struct proto;
114 struct net;
115 
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118 
119 /**
120  *	struct sock_common - minimal network layer representation of sockets
121  *	@skc_daddr: Foreign IPv4 addr
122  *	@skc_rcv_saddr: Bound local IPv4 addr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_family: network address family
128  *	@skc_state: Connection state
129  *	@skc_reuse: %SO_REUSEADDR setting
130  *	@skc_reuseport: %SO_REUSEPORT setting
131  *	@skc_bound_dev_if: bound device index if != 0
132  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
133  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134  *	@skc_prot: protocol handlers inside a network family
135  *	@skc_net: reference to the network namespace of this socket
136  *	@skc_node: main hash linkage for various protocol lookup tables
137  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138  *	@skc_tx_queue_mapping: tx queue number for this connection
139  *	@skc_flags: place holder for sk_flags
140  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142  *	@skc_incoming_cpu: record/match cpu processing incoming packets
143  *	@skc_refcnt: reference count
144  *
145  *	This is the minimal network layer representation of sockets, the header
146  *	for struct sock and struct inet_timewait_sock.
147  */
148 struct sock_common {
149 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 	 * address on 64bit arches : cf INET_MATCH()
151 	 */
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	int			skc_bound_dev_if;
179 	union {
180 		struct hlist_node	skc_bind_node;
181 		struct hlist_node	skc_portaddr_node;
182 	};
183 	struct proto		*skc_prot;
184 	possible_net_t		skc_net;
185 
186 #if IS_ENABLED(CONFIG_IPV6)
187 	struct in6_addr		skc_v6_daddr;
188 	struct in6_addr		skc_v6_rcv_saddr;
189 #endif
190 
191 	atomic64_t		skc_cookie;
192 
193 	/* following fields are padding to force
194 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 	 * assuming IPV6 is enabled. We use this padding differently
196 	 * for different kind of 'sockets'
197 	 */
198 	union {
199 		unsigned long	skc_flags;
200 		struct sock	*skc_listener; /* request_sock */
201 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 	};
203 	/*
204 	 * fields between dontcopy_begin/dontcopy_end
205 	 * are not copied in sock_copy()
206 	 */
207 	/* private: */
208 	int			skc_dontcopy_begin[0];
209 	/* public: */
210 	union {
211 		struct hlist_node	skc_node;
212 		struct hlist_nulls_node skc_nulls_node;
213 	};
214 	int			skc_tx_queue_mapping;
215 	union {
216 		int		skc_incoming_cpu;
217 		u32		skc_rcv_wnd;
218 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
219 	};
220 
221 	atomic_t		skc_refcnt;
222 	/* private: */
223 	int                     skc_dontcopy_end[0];
224 	union {
225 		u32		skc_rxhash;
226 		u32		skc_window_clamp;
227 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 	};
229 	/* public: */
230 };
231 
232 /**
233   *	struct sock - network layer representation of sockets
234   *	@__sk_common: shared layout with inet_timewait_sock
235   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237   *	@sk_lock:	synchronizer
238   *	@sk_rcvbuf: size of receive buffer in bytes
239   *	@sk_wq: sock wait queue and async head
240   *	@sk_rx_dst: receive input route used by early demux
241   *	@sk_dst_cache: destination cache
242   *	@sk_policy: flow policy
243   *	@sk_receive_queue: incoming packets
244   *	@sk_wmem_alloc: transmit queue bytes committed
245   *	@sk_write_queue: Packet sending queue
246   *	@sk_omem_alloc: "o" is "option" or "other"
247   *	@sk_wmem_queued: persistent queue size
248   *	@sk_forward_alloc: space allocated forward
249   *	@sk_napi_id: id of the last napi context to receive data for sk
250   *	@sk_ll_usec: usecs to busypoll when there is no data
251   *	@sk_allocation: allocation mode
252   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254   *	@sk_sndbuf: size of send buffer in bytes
255   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
256   *	@sk_no_check_rx: allow zero checksum in RX packets
257   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
258   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
259   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
260   *	@sk_gso_max_size: Maximum GSO segment size to build
261   *	@sk_gso_max_segs: Maximum number of GSO segments
262   *	@sk_lingertime: %SO_LINGER l_linger setting
263   *	@sk_backlog: always used with the per-socket spinlock held
264   *	@sk_callback_lock: used with the callbacks in the end of this struct
265   *	@sk_error_queue: rarely used
266   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
267   *			  IPV6_ADDRFORM for instance)
268   *	@sk_err: last error
269   *	@sk_err_soft: errors that don't cause failure but are the cause of a
270   *		      persistent failure not just 'timed out'
271   *	@sk_drops: raw/udp drops counter
272   *	@sk_ack_backlog: current listen backlog
273   *	@sk_max_ack_backlog: listen backlog set in listen()
274   *	@sk_priority: %SO_PRIORITY setting
275   *	@sk_type: socket type (%SOCK_STREAM, etc)
276   *	@sk_protocol: which protocol this socket belongs in this network family
277   *	@sk_peer_pid: &struct pid for this socket's peer
278   *	@sk_peer_cred: %SO_PEERCRED setting
279   *	@sk_rcvlowat: %SO_RCVLOWAT setting
280   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
281   *	@sk_sndtimeo: %SO_SNDTIMEO setting
282   *	@sk_txhash: computed flow hash for use on transmit
283   *	@sk_filter: socket filtering instructions
284   *	@sk_timer: sock cleanup timer
285   *	@sk_stamp: time stamp of last packet received
286   *	@sk_tsflags: SO_TIMESTAMPING socket options
287   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
288   *	@sk_socket: Identd and reporting IO signals
289   *	@sk_user_data: RPC layer private data
290   *	@sk_frag: cached page frag
291   *	@sk_peek_off: current peek_offset value
292   *	@sk_send_head: front of stuff to transmit
293   *	@sk_security: used by security modules
294   *	@sk_mark: generic packet mark
295   *	@sk_cgrp_data: cgroup data for this cgroup
296   *	@sk_memcg: this socket's memory cgroup association
297   *	@sk_write_pending: a write to stream socket waits to start
298   *	@sk_state_change: callback to indicate change in the state of the sock
299   *	@sk_data_ready: callback to indicate there is data to be processed
300   *	@sk_write_space: callback to indicate there is bf sending space available
301   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
302   *	@sk_backlog_rcv: callback to process the backlog
303   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
304   *	@sk_reuseport_cb: reuseport group container
305  */
306 struct sock {
307 	/*
308 	 * Now struct inet_timewait_sock also uses sock_common, so please just
309 	 * don't add nothing before this first member (__sk_common) --acme
310 	 */
311 	struct sock_common	__sk_common;
312 #define sk_node			__sk_common.skc_node
313 #define sk_nulls_node		__sk_common.skc_nulls_node
314 #define sk_refcnt		__sk_common.skc_refcnt
315 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
316 
317 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
318 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
319 #define sk_hash			__sk_common.skc_hash
320 #define sk_portpair		__sk_common.skc_portpair
321 #define sk_num			__sk_common.skc_num
322 #define sk_dport		__sk_common.skc_dport
323 #define sk_addrpair		__sk_common.skc_addrpair
324 #define sk_daddr		__sk_common.skc_daddr
325 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
326 #define sk_family		__sk_common.skc_family
327 #define sk_state		__sk_common.skc_state
328 #define sk_reuse		__sk_common.skc_reuse
329 #define sk_reuseport		__sk_common.skc_reuseport
330 #define sk_ipv6only		__sk_common.skc_ipv6only
331 #define sk_net_refcnt		__sk_common.skc_net_refcnt
332 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
333 #define sk_bind_node		__sk_common.skc_bind_node
334 #define sk_prot			__sk_common.skc_prot
335 #define sk_net			__sk_common.skc_net
336 #define sk_v6_daddr		__sk_common.skc_v6_daddr
337 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
338 #define sk_cookie		__sk_common.skc_cookie
339 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
340 #define sk_flags		__sk_common.skc_flags
341 #define sk_rxhash		__sk_common.skc_rxhash
342 
343 	socket_lock_t		sk_lock;
344 	struct sk_buff_head	sk_receive_queue;
345 	/*
346 	 * The backlog queue is special, it is always used with
347 	 * the per-socket spinlock held and requires low latency
348 	 * access. Therefore we special case it's implementation.
349 	 * Note : rmem_alloc is in this structure to fill a hole
350 	 * on 64bit arches, not because its logically part of
351 	 * backlog.
352 	 */
353 	struct {
354 		atomic_t	rmem_alloc;
355 		int		len;
356 		struct sk_buff	*head;
357 		struct sk_buff	*tail;
358 	} sk_backlog;
359 #define sk_rmem_alloc sk_backlog.rmem_alloc
360 	int			sk_forward_alloc;
361 
362 	__u32			sk_txhash;
363 #ifdef CONFIG_NET_RX_BUSY_POLL
364 	unsigned int		sk_napi_id;
365 	unsigned int		sk_ll_usec;
366 #endif
367 	atomic_t		sk_drops;
368 	int			sk_rcvbuf;
369 
370 	struct sk_filter __rcu	*sk_filter;
371 	union {
372 		struct socket_wq __rcu	*sk_wq;
373 		struct socket_wq	*sk_wq_raw;
374 	};
375 #ifdef CONFIG_XFRM
376 	struct xfrm_policy __rcu *sk_policy[2];
377 #endif
378 	struct dst_entry	*sk_rx_dst;
379 	struct dst_entry __rcu	*sk_dst_cache;
380 	/* Note: 32bit hole on 64bit arches */
381 	atomic_t		sk_wmem_alloc;
382 	atomic_t		sk_omem_alloc;
383 	int			sk_sndbuf;
384 	struct sk_buff_head	sk_write_queue;
385 
386 	/*
387 	 * Because of non atomicity rules, all
388 	 * changes are protected by socket lock.
389 	 */
390 	kmemcheck_bitfield_begin(flags);
391 	unsigned int		sk_padding : 2,
392 				sk_no_check_tx : 1,
393 				sk_no_check_rx : 1,
394 				sk_userlocks : 4,
395 				sk_protocol  : 8,
396 				sk_type      : 16;
397 #define SK_PROTOCOL_MAX U8_MAX
398 	kmemcheck_bitfield_end(flags);
399 
400 	int			sk_wmem_queued;
401 	gfp_t			sk_allocation;
402 	u32			sk_pacing_rate; /* bytes per second */
403 	u32			sk_max_pacing_rate;
404 	netdev_features_t	sk_route_caps;
405 	netdev_features_t	sk_route_nocaps;
406 	int			sk_gso_type;
407 	unsigned int		sk_gso_max_size;
408 	u16			sk_gso_max_segs;
409 	int			sk_rcvlowat;
410 	unsigned long	        sk_lingertime;
411 	struct sk_buff_head	sk_error_queue;
412 	struct proto		*sk_prot_creator;
413 	rwlock_t		sk_callback_lock;
414 	int			sk_err,
415 				sk_err_soft;
416 	u32			sk_ack_backlog;
417 	u32			sk_max_ack_backlog;
418 	__u32			sk_priority;
419 	__u32			sk_mark;
420 	struct pid		*sk_peer_pid;
421 	const struct cred	*sk_peer_cred;
422 	long			sk_rcvtimeo;
423 	long			sk_sndtimeo;
424 	struct timer_list	sk_timer;
425 	ktime_t			sk_stamp;
426 	u16			sk_tsflags;
427 	u8			sk_shutdown;
428 	u32			sk_tskey;
429 	struct socket		*sk_socket;
430 	void			*sk_user_data;
431 	struct page_frag	sk_frag;
432 	struct sk_buff		*sk_send_head;
433 	__s32			sk_peek_off;
434 	int			sk_write_pending;
435 #ifdef CONFIG_SECURITY
436 	void			*sk_security;
437 #endif
438 	struct sock_cgroup_data	sk_cgrp_data;
439 	struct mem_cgroup	*sk_memcg;
440 	void			(*sk_state_change)(struct sock *sk);
441 	void			(*sk_data_ready)(struct sock *sk);
442 	void			(*sk_write_space)(struct sock *sk);
443 	void			(*sk_error_report)(struct sock *sk);
444 	int			(*sk_backlog_rcv)(struct sock *sk,
445 						  struct sk_buff *skb);
446 	void                    (*sk_destruct)(struct sock *sk);
447 	struct sock_reuseport __rcu	*sk_reuseport_cb;
448 	struct rcu_head		sk_rcu;
449 };
450 
451 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
452 
453 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
454 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
455 
456 /*
457  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
458  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
459  * on a socket means that the socket will reuse everybody else's port
460  * without looking at the other's sk_reuse value.
461  */
462 
463 #define SK_NO_REUSE	0
464 #define SK_CAN_REUSE	1
465 #define SK_FORCE_REUSE	2
466 
467 int sk_set_peek_off(struct sock *sk, int val);
468 
469 static inline int sk_peek_offset(struct sock *sk, int flags)
470 {
471 	if (unlikely(flags & MSG_PEEK)) {
472 		s32 off = READ_ONCE(sk->sk_peek_off);
473 		if (off >= 0)
474 			return off;
475 	}
476 
477 	return 0;
478 }
479 
480 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
481 {
482 	s32 off = READ_ONCE(sk->sk_peek_off);
483 
484 	if (unlikely(off >= 0)) {
485 		off = max_t(s32, off - val, 0);
486 		WRITE_ONCE(sk->sk_peek_off, off);
487 	}
488 }
489 
490 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
491 {
492 	sk_peek_offset_bwd(sk, -val);
493 }
494 
495 /*
496  * Hashed lists helper routines
497  */
498 static inline struct sock *sk_entry(const struct hlist_node *node)
499 {
500 	return hlist_entry(node, struct sock, sk_node);
501 }
502 
503 static inline struct sock *__sk_head(const struct hlist_head *head)
504 {
505 	return hlist_entry(head->first, struct sock, sk_node);
506 }
507 
508 static inline struct sock *sk_head(const struct hlist_head *head)
509 {
510 	return hlist_empty(head) ? NULL : __sk_head(head);
511 }
512 
513 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
514 {
515 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
516 }
517 
518 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
519 {
520 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
521 }
522 
523 static inline struct sock *sk_next(const struct sock *sk)
524 {
525 	return sk->sk_node.next ?
526 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
527 }
528 
529 static inline struct sock *sk_nulls_next(const struct sock *sk)
530 {
531 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
532 		hlist_nulls_entry(sk->sk_nulls_node.next,
533 				  struct sock, sk_nulls_node) :
534 		NULL;
535 }
536 
537 static inline bool sk_unhashed(const struct sock *sk)
538 {
539 	return hlist_unhashed(&sk->sk_node);
540 }
541 
542 static inline bool sk_hashed(const struct sock *sk)
543 {
544 	return !sk_unhashed(sk);
545 }
546 
547 static inline void sk_node_init(struct hlist_node *node)
548 {
549 	node->pprev = NULL;
550 }
551 
552 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
553 {
554 	node->pprev = NULL;
555 }
556 
557 static inline void __sk_del_node(struct sock *sk)
558 {
559 	__hlist_del(&sk->sk_node);
560 }
561 
562 /* NB: equivalent to hlist_del_init_rcu */
563 static inline bool __sk_del_node_init(struct sock *sk)
564 {
565 	if (sk_hashed(sk)) {
566 		__sk_del_node(sk);
567 		sk_node_init(&sk->sk_node);
568 		return true;
569 	}
570 	return false;
571 }
572 
573 /* Grab socket reference count. This operation is valid only
574    when sk is ALREADY grabbed f.e. it is found in hash table
575    or a list and the lookup is made under lock preventing hash table
576    modifications.
577  */
578 
579 static __always_inline void sock_hold(struct sock *sk)
580 {
581 	atomic_inc(&sk->sk_refcnt);
582 }
583 
584 /* Ungrab socket in the context, which assumes that socket refcnt
585    cannot hit zero, f.e. it is true in context of any socketcall.
586  */
587 static __always_inline void __sock_put(struct sock *sk)
588 {
589 	atomic_dec(&sk->sk_refcnt);
590 }
591 
592 static inline bool sk_del_node_init(struct sock *sk)
593 {
594 	bool rc = __sk_del_node_init(sk);
595 
596 	if (rc) {
597 		/* paranoid for a while -acme */
598 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
599 		__sock_put(sk);
600 	}
601 	return rc;
602 }
603 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
604 
605 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
606 {
607 	if (sk_hashed(sk)) {
608 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
609 		return true;
610 	}
611 	return false;
612 }
613 
614 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
615 {
616 	bool rc = __sk_nulls_del_node_init_rcu(sk);
617 
618 	if (rc) {
619 		/* paranoid for a while -acme */
620 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
621 		__sock_put(sk);
622 	}
623 	return rc;
624 }
625 
626 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
627 {
628 	hlist_add_head(&sk->sk_node, list);
629 }
630 
631 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
632 {
633 	sock_hold(sk);
634 	__sk_add_node(sk, list);
635 }
636 
637 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
638 {
639 	sock_hold(sk);
640 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
641 	    sk->sk_family == AF_INET6)
642 		hlist_add_tail_rcu(&sk->sk_node, list);
643 	else
644 		hlist_add_head_rcu(&sk->sk_node, list);
645 }
646 
647 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
648 {
649 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
650 	    sk->sk_family == AF_INET6)
651 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
652 	else
653 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
654 }
655 
656 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
657 {
658 	sock_hold(sk);
659 	__sk_nulls_add_node_rcu(sk, list);
660 }
661 
662 static inline void __sk_del_bind_node(struct sock *sk)
663 {
664 	__hlist_del(&sk->sk_bind_node);
665 }
666 
667 static inline void sk_add_bind_node(struct sock *sk,
668 					struct hlist_head *list)
669 {
670 	hlist_add_head(&sk->sk_bind_node, list);
671 }
672 
673 #define sk_for_each(__sk, list) \
674 	hlist_for_each_entry(__sk, list, sk_node)
675 #define sk_for_each_rcu(__sk, list) \
676 	hlist_for_each_entry_rcu(__sk, list, sk_node)
677 #define sk_nulls_for_each(__sk, node, list) \
678 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
679 #define sk_nulls_for_each_rcu(__sk, node, list) \
680 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
681 #define sk_for_each_from(__sk) \
682 	hlist_for_each_entry_from(__sk, sk_node)
683 #define sk_nulls_for_each_from(__sk, node) \
684 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
685 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
686 #define sk_for_each_safe(__sk, tmp, list) \
687 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
688 #define sk_for_each_bound(__sk, list) \
689 	hlist_for_each_entry(__sk, list, sk_bind_node)
690 
691 /**
692  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
693  * @tpos:	the type * to use as a loop cursor.
694  * @pos:	the &struct hlist_node to use as a loop cursor.
695  * @head:	the head for your list.
696  * @offset:	offset of hlist_node within the struct.
697  *
698  */
699 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
700 	for (pos = rcu_dereference((head)->first);			       \
701 	     pos != NULL &&						       \
702 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
703 	     pos = rcu_dereference(pos->next))
704 
705 static inline struct user_namespace *sk_user_ns(struct sock *sk)
706 {
707 	/* Careful only use this in a context where these parameters
708 	 * can not change and must all be valid, such as recvmsg from
709 	 * userspace.
710 	 */
711 	return sk->sk_socket->file->f_cred->user_ns;
712 }
713 
714 /* Sock flags */
715 enum sock_flags {
716 	SOCK_DEAD,
717 	SOCK_DONE,
718 	SOCK_URGINLINE,
719 	SOCK_KEEPOPEN,
720 	SOCK_LINGER,
721 	SOCK_DESTROY,
722 	SOCK_BROADCAST,
723 	SOCK_TIMESTAMP,
724 	SOCK_ZAPPED,
725 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
726 	SOCK_DBG, /* %SO_DEBUG setting */
727 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
728 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
729 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
730 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
731 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
732 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
733 	SOCK_FASYNC, /* fasync() active */
734 	SOCK_RXQ_OVFL,
735 	SOCK_ZEROCOPY, /* buffers from userspace */
736 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
737 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
738 		     * Will use last 4 bytes of packet sent from
739 		     * user-space instead.
740 		     */
741 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
742 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
743 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
744 };
745 
746 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
747 
748 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
749 {
750 	nsk->sk_flags = osk->sk_flags;
751 }
752 
753 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
754 {
755 	__set_bit(flag, &sk->sk_flags);
756 }
757 
758 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
759 {
760 	__clear_bit(flag, &sk->sk_flags);
761 }
762 
763 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
764 {
765 	return test_bit(flag, &sk->sk_flags);
766 }
767 
768 #ifdef CONFIG_NET
769 extern struct static_key memalloc_socks;
770 static inline int sk_memalloc_socks(void)
771 {
772 	return static_key_false(&memalloc_socks);
773 }
774 #else
775 
776 static inline int sk_memalloc_socks(void)
777 {
778 	return 0;
779 }
780 
781 #endif
782 
783 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
784 {
785 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
786 }
787 
788 static inline void sk_acceptq_removed(struct sock *sk)
789 {
790 	sk->sk_ack_backlog--;
791 }
792 
793 static inline void sk_acceptq_added(struct sock *sk)
794 {
795 	sk->sk_ack_backlog++;
796 }
797 
798 static inline bool sk_acceptq_is_full(const struct sock *sk)
799 {
800 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
801 }
802 
803 /*
804  * Compute minimal free write space needed to queue new packets.
805  */
806 static inline int sk_stream_min_wspace(const struct sock *sk)
807 {
808 	return sk->sk_wmem_queued >> 1;
809 }
810 
811 static inline int sk_stream_wspace(const struct sock *sk)
812 {
813 	return sk->sk_sndbuf - sk->sk_wmem_queued;
814 }
815 
816 void sk_stream_write_space(struct sock *sk);
817 
818 /* OOB backlog add */
819 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
820 {
821 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
822 	skb_dst_force_safe(skb);
823 
824 	if (!sk->sk_backlog.tail)
825 		sk->sk_backlog.head = skb;
826 	else
827 		sk->sk_backlog.tail->next = skb;
828 
829 	sk->sk_backlog.tail = skb;
830 	skb->next = NULL;
831 }
832 
833 /*
834  * Take into account size of receive queue and backlog queue
835  * Do not take into account this skb truesize,
836  * to allow even a single big packet to come.
837  */
838 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
839 {
840 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
841 
842 	return qsize > limit;
843 }
844 
845 /* The per-socket spinlock must be held here. */
846 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
847 					      unsigned int limit)
848 {
849 	if (sk_rcvqueues_full(sk, limit))
850 		return -ENOBUFS;
851 
852 	/*
853 	 * If the skb was allocated from pfmemalloc reserves, only
854 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
855 	 * helping free memory
856 	 */
857 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
858 		return -ENOMEM;
859 
860 	__sk_add_backlog(sk, skb);
861 	sk->sk_backlog.len += skb->truesize;
862 	return 0;
863 }
864 
865 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
866 
867 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
868 {
869 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
870 		return __sk_backlog_rcv(sk, skb);
871 
872 	return sk->sk_backlog_rcv(sk, skb);
873 }
874 
875 static inline void sk_incoming_cpu_update(struct sock *sk)
876 {
877 	sk->sk_incoming_cpu = raw_smp_processor_id();
878 }
879 
880 static inline void sock_rps_record_flow_hash(__u32 hash)
881 {
882 #ifdef CONFIG_RPS
883 	struct rps_sock_flow_table *sock_flow_table;
884 
885 	rcu_read_lock();
886 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
887 	rps_record_sock_flow(sock_flow_table, hash);
888 	rcu_read_unlock();
889 #endif
890 }
891 
892 static inline void sock_rps_record_flow(const struct sock *sk)
893 {
894 #ifdef CONFIG_RPS
895 	sock_rps_record_flow_hash(sk->sk_rxhash);
896 #endif
897 }
898 
899 static inline void sock_rps_save_rxhash(struct sock *sk,
900 					const struct sk_buff *skb)
901 {
902 #ifdef CONFIG_RPS
903 	if (unlikely(sk->sk_rxhash != skb->hash))
904 		sk->sk_rxhash = skb->hash;
905 #endif
906 }
907 
908 static inline void sock_rps_reset_rxhash(struct sock *sk)
909 {
910 #ifdef CONFIG_RPS
911 	sk->sk_rxhash = 0;
912 #endif
913 }
914 
915 #define sk_wait_event(__sk, __timeo, __condition)			\
916 	({	int __rc;						\
917 		release_sock(__sk);					\
918 		__rc = __condition;					\
919 		if (!__rc) {						\
920 			*(__timeo) = schedule_timeout(*(__timeo));	\
921 		}							\
922 		sched_annotate_sleep();						\
923 		lock_sock(__sk);					\
924 		__rc = __condition;					\
925 		__rc;							\
926 	})
927 
928 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
929 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
930 void sk_stream_wait_close(struct sock *sk, long timeo_p);
931 int sk_stream_error(struct sock *sk, int flags, int err);
932 void sk_stream_kill_queues(struct sock *sk);
933 void sk_set_memalloc(struct sock *sk);
934 void sk_clear_memalloc(struct sock *sk);
935 
936 void __sk_flush_backlog(struct sock *sk);
937 
938 static inline bool sk_flush_backlog(struct sock *sk)
939 {
940 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
941 		__sk_flush_backlog(sk);
942 		return true;
943 	}
944 	return false;
945 }
946 
947 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
948 
949 struct request_sock_ops;
950 struct timewait_sock_ops;
951 struct inet_hashinfo;
952 struct raw_hashinfo;
953 struct module;
954 
955 /*
956  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
957  * un-modified. Special care is taken when initializing object to zero.
958  */
959 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
960 {
961 	if (offsetof(struct sock, sk_node.next) != 0)
962 		memset(sk, 0, offsetof(struct sock, sk_node.next));
963 	memset(&sk->sk_node.pprev, 0,
964 	       size - offsetof(struct sock, sk_node.pprev));
965 }
966 
967 /* Networking protocol blocks we attach to sockets.
968  * socket layer -> transport layer interface
969  */
970 struct proto {
971 	void			(*close)(struct sock *sk,
972 					long timeout);
973 	int			(*connect)(struct sock *sk,
974 					struct sockaddr *uaddr,
975 					int addr_len);
976 	int			(*disconnect)(struct sock *sk, int flags);
977 
978 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
979 
980 	int			(*ioctl)(struct sock *sk, int cmd,
981 					 unsigned long arg);
982 	int			(*init)(struct sock *sk);
983 	void			(*destroy)(struct sock *sk);
984 	void			(*shutdown)(struct sock *sk, int how);
985 	int			(*setsockopt)(struct sock *sk, int level,
986 					int optname, char __user *optval,
987 					unsigned int optlen);
988 	int			(*getsockopt)(struct sock *sk, int level,
989 					int optname, char __user *optval,
990 					int __user *option);
991 #ifdef CONFIG_COMPAT
992 	int			(*compat_setsockopt)(struct sock *sk,
993 					int level,
994 					int optname, char __user *optval,
995 					unsigned int optlen);
996 	int			(*compat_getsockopt)(struct sock *sk,
997 					int level,
998 					int optname, char __user *optval,
999 					int __user *option);
1000 	int			(*compat_ioctl)(struct sock *sk,
1001 					unsigned int cmd, unsigned long arg);
1002 #endif
1003 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1004 					   size_t len);
1005 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1006 					   size_t len, int noblock, int flags,
1007 					   int *addr_len);
1008 	int			(*sendpage)(struct sock *sk, struct page *page,
1009 					int offset, size_t size, int flags);
1010 	int			(*bind)(struct sock *sk,
1011 					struct sockaddr *uaddr, int addr_len);
1012 
1013 	int			(*backlog_rcv) (struct sock *sk,
1014 						struct sk_buff *skb);
1015 
1016 	void		(*release_cb)(struct sock *sk);
1017 
1018 	/* Keeping track of sk's, looking them up, and port selection methods. */
1019 	int			(*hash)(struct sock *sk);
1020 	void			(*unhash)(struct sock *sk);
1021 	void			(*rehash)(struct sock *sk);
1022 	int			(*get_port)(struct sock *sk, unsigned short snum);
1023 	void			(*clear_sk)(struct sock *sk, int size);
1024 
1025 	/* Keeping track of sockets in use */
1026 #ifdef CONFIG_PROC_FS
1027 	unsigned int		inuse_idx;
1028 #endif
1029 
1030 	bool			(*stream_memory_free)(const struct sock *sk);
1031 	/* Memory pressure */
1032 	void			(*enter_memory_pressure)(struct sock *sk);
1033 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1034 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1035 	/*
1036 	 * Pressure flag: try to collapse.
1037 	 * Technical note: it is used by multiple contexts non atomically.
1038 	 * All the __sk_mem_schedule() is of this nature: accounting
1039 	 * is strict, actions are advisory and have some latency.
1040 	 */
1041 	int			*memory_pressure;
1042 	long			*sysctl_mem;
1043 	int			*sysctl_wmem;
1044 	int			*sysctl_rmem;
1045 	int			max_header;
1046 	bool			no_autobind;
1047 
1048 	struct kmem_cache	*slab;
1049 	unsigned int		obj_size;
1050 	int			slab_flags;
1051 
1052 	struct percpu_counter	*orphan_count;
1053 
1054 	struct request_sock_ops	*rsk_prot;
1055 	struct timewait_sock_ops *twsk_prot;
1056 
1057 	union {
1058 		struct inet_hashinfo	*hashinfo;
1059 		struct udp_table	*udp_table;
1060 		struct raw_hashinfo	*raw_hash;
1061 	} h;
1062 
1063 	struct module		*owner;
1064 
1065 	char			name[32];
1066 
1067 	struct list_head	node;
1068 #ifdef SOCK_REFCNT_DEBUG
1069 	atomic_t		socks;
1070 #endif
1071 	int			(*diag_destroy)(struct sock *sk, int err);
1072 };
1073 
1074 int proto_register(struct proto *prot, int alloc_slab);
1075 void proto_unregister(struct proto *prot);
1076 
1077 #ifdef SOCK_REFCNT_DEBUG
1078 static inline void sk_refcnt_debug_inc(struct sock *sk)
1079 {
1080 	atomic_inc(&sk->sk_prot->socks);
1081 }
1082 
1083 static inline void sk_refcnt_debug_dec(struct sock *sk)
1084 {
1085 	atomic_dec(&sk->sk_prot->socks);
1086 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1087 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1088 }
1089 
1090 static inline void sk_refcnt_debug_release(const struct sock *sk)
1091 {
1092 	if (atomic_read(&sk->sk_refcnt) != 1)
1093 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1094 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1095 }
1096 #else /* SOCK_REFCNT_DEBUG */
1097 #define sk_refcnt_debug_inc(sk) do { } while (0)
1098 #define sk_refcnt_debug_dec(sk) do { } while (0)
1099 #define sk_refcnt_debug_release(sk) do { } while (0)
1100 #endif /* SOCK_REFCNT_DEBUG */
1101 
1102 static inline bool sk_stream_memory_free(const struct sock *sk)
1103 {
1104 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1105 		return false;
1106 
1107 	return sk->sk_prot->stream_memory_free ?
1108 		sk->sk_prot->stream_memory_free(sk) : true;
1109 }
1110 
1111 static inline bool sk_stream_is_writeable(const struct sock *sk)
1112 {
1113 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1114 	       sk_stream_memory_free(sk);
1115 }
1116 
1117 
1118 static inline bool sk_has_memory_pressure(const struct sock *sk)
1119 {
1120 	return sk->sk_prot->memory_pressure != NULL;
1121 }
1122 
1123 static inline bool sk_under_memory_pressure(const struct sock *sk)
1124 {
1125 	if (!sk->sk_prot->memory_pressure)
1126 		return false;
1127 
1128 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1129 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1130 		return true;
1131 
1132 	return !!*sk->sk_prot->memory_pressure;
1133 }
1134 
1135 static inline void sk_leave_memory_pressure(struct sock *sk)
1136 {
1137 	int *memory_pressure = sk->sk_prot->memory_pressure;
1138 
1139 	if (!memory_pressure)
1140 		return;
1141 
1142 	if (*memory_pressure)
1143 		*memory_pressure = 0;
1144 }
1145 
1146 static inline void sk_enter_memory_pressure(struct sock *sk)
1147 {
1148 	if (!sk->sk_prot->enter_memory_pressure)
1149 		return;
1150 
1151 	sk->sk_prot->enter_memory_pressure(sk);
1152 }
1153 
1154 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1155 {
1156 	return sk->sk_prot->sysctl_mem[index];
1157 }
1158 
1159 static inline long
1160 sk_memory_allocated(const struct sock *sk)
1161 {
1162 	return atomic_long_read(sk->sk_prot->memory_allocated);
1163 }
1164 
1165 static inline long
1166 sk_memory_allocated_add(struct sock *sk, int amt)
1167 {
1168 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1169 }
1170 
1171 static inline void
1172 sk_memory_allocated_sub(struct sock *sk, int amt)
1173 {
1174 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1175 }
1176 
1177 static inline void sk_sockets_allocated_dec(struct sock *sk)
1178 {
1179 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1180 }
1181 
1182 static inline void sk_sockets_allocated_inc(struct sock *sk)
1183 {
1184 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1185 }
1186 
1187 static inline int
1188 sk_sockets_allocated_read_positive(struct sock *sk)
1189 {
1190 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1191 }
1192 
1193 static inline int
1194 proto_sockets_allocated_sum_positive(struct proto *prot)
1195 {
1196 	return percpu_counter_sum_positive(prot->sockets_allocated);
1197 }
1198 
1199 static inline long
1200 proto_memory_allocated(struct proto *prot)
1201 {
1202 	return atomic_long_read(prot->memory_allocated);
1203 }
1204 
1205 static inline bool
1206 proto_memory_pressure(struct proto *prot)
1207 {
1208 	if (!prot->memory_pressure)
1209 		return false;
1210 	return !!*prot->memory_pressure;
1211 }
1212 
1213 
1214 #ifdef CONFIG_PROC_FS
1215 /* Called with local bh disabled */
1216 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1217 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1218 #else
1219 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1220 		int inc)
1221 {
1222 }
1223 #endif
1224 
1225 
1226 /* With per-bucket locks this operation is not-atomic, so that
1227  * this version is not worse.
1228  */
1229 static inline int __sk_prot_rehash(struct sock *sk)
1230 {
1231 	sk->sk_prot->unhash(sk);
1232 	return sk->sk_prot->hash(sk);
1233 }
1234 
1235 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1236 
1237 /* About 10 seconds */
1238 #define SOCK_DESTROY_TIME (10*HZ)
1239 
1240 /* Sockets 0-1023 can't be bound to unless you are superuser */
1241 #define PROT_SOCK	1024
1242 
1243 #define SHUTDOWN_MASK	3
1244 #define RCV_SHUTDOWN	1
1245 #define SEND_SHUTDOWN	2
1246 
1247 #define SOCK_SNDBUF_LOCK	1
1248 #define SOCK_RCVBUF_LOCK	2
1249 #define SOCK_BINDADDR_LOCK	4
1250 #define SOCK_BINDPORT_LOCK	8
1251 
1252 struct socket_alloc {
1253 	struct socket socket;
1254 	struct inode vfs_inode;
1255 };
1256 
1257 static inline struct socket *SOCKET_I(struct inode *inode)
1258 {
1259 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1260 }
1261 
1262 static inline struct inode *SOCK_INODE(struct socket *socket)
1263 {
1264 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1265 }
1266 
1267 /*
1268  * Functions for memory accounting
1269  */
1270 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1271 void __sk_mem_reclaim(struct sock *sk, int amount);
1272 
1273 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1274 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1275 #define SK_MEM_SEND	0
1276 #define SK_MEM_RECV	1
1277 
1278 static inline int sk_mem_pages(int amt)
1279 {
1280 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1281 }
1282 
1283 static inline bool sk_has_account(struct sock *sk)
1284 {
1285 	/* return true if protocol supports memory accounting */
1286 	return !!sk->sk_prot->memory_allocated;
1287 }
1288 
1289 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1290 {
1291 	if (!sk_has_account(sk))
1292 		return true;
1293 	return size <= sk->sk_forward_alloc ||
1294 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1295 }
1296 
1297 static inline bool
1298 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1299 {
1300 	if (!sk_has_account(sk))
1301 		return true;
1302 	return size<= sk->sk_forward_alloc ||
1303 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1304 		skb_pfmemalloc(skb);
1305 }
1306 
1307 static inline void sk_mem_reclaim(struct sock *sk)
1308 {
1309 	if (!sk_has_account(sk))
1310 		return;
1311 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1312 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1313 }
1314 
1315 static inline void sk_mem_reclaim_partial(struct sock *sk)
1316 {
1317 	if (!sk_has_account(sk))
1318 		return;
1319 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1320 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1321 }
1322 
1323 static inline void sk_mem_charge(struct sock *sk, int size)
1324 {
1325 	if (!sk_has_account(sk))
1326 		return;
1327 	sk->sk_forward_alloc -= size;
1328 }
1329 
1330 static inline void sk_mem_uncharge(struct sock *sk, int size)
1331 {
1332 	if (!sk_has_account(sk))
1333 		return;
1334 	sk->sk_forward_alloc += size;
1335 }
1336 
1337 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1338 {
1339 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1340 	sk->sk_wmem_queued -= skb->truesize;
1341 	sk_mem_uncharge(sk, skb->truesize);
1342 	__kfree_skb(skb);
1343 }
1344 
1345 static inline void sock_release_ownership(struct sock *sk)
1346 {
1347 	if (sk->sk_lock.owned) {
1348 		sk->sk_lock.owned = 0;
1349 
1350 		/* The sk_lock has mutex_unlock() semantics: */
1351 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1352 	}
1353 }
1354 
1355 /*
1356  * Macro so as to not evaluate some arguments when
1357  * lockdep is not enabled.
1358  *
1359  * Mark both the sk_lock and the sk_lock.slock as a
1360  * per-address-family lock class.
1361  */
1362 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1363 do {									\
1364 	sk->sk_lock.owned = 0;						\
1365 	init_waitqueue_head(&sk->sk_lock.wq);				\
1366 	spin_lock_init(&(sk)->sk_lock.slock);				\
1367 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1368 			sizeof((sk)->sk_lock));				\
1369 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1370 				(skey), (sname));				\
1371 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1372 } while (0)
1373 
1374 #ifdef CONFIG_LOCKDEP
1375 static inline bool lockdep_sock_is_held(const struct sock *csk)
1376 {
1377 	struct sock *sk = (struct sock *)csk;
1378 
1379 	return lockdep_is_held(&sk->sk_lock) ||
1380 	       lockdep_is_held(&sk->sk_lock.slock);
1381 }
1382 #endif
1383 
1384 void lock_sock_nested(struct sock *sk, int subclass);
1385 
1386 static inline void lock_sock(struct sock *sk)
1387 {
1388 	lock_sock_nested(sk, 0);
1389 }
1390 
1391 void release_sock(struct sock *sk);
1392 
1393 /* BH context may only use the following locking interface. */
1394 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1395 #define bh_lock_sock_nested(__sk) \
1396 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1397 				SINGLE_DEPTH_NESTING)
1398 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1399 
1400 bool lock_sock_fast(struct sock *sk);
1401 /**
1402  * unlock_sock_fast - complement of lock_sock_fast
1403  * @sk: socket
1404  * @slow: slow mode
1405  *
1406  * fast unlock socket for user context.
1407  * If slow mode is on, we call regular release_sock()
1408  */
1409 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1410 {
1411 	if (slow)
1412 		release_sock(sk);
1413 	else
1414 		spin_unlock_bh(&sk->sk_lock.slock);
1415 }
1416 
1417 /* Used by processes to "lock" a socket state, so that
1418  * interrupts and bottom half handlers won't change it
1419  * from under us. It essentially blocks any incoming
1420  * packets, so that we won't get any new data or any
1421  * packets that change the state of the socket.
1422  *
1423  * While locked, BH processing will add new packets to
1424  * the backlog queue.  This queue is processed by the
1425  * owner of the socket lock right before it is released.
1426  *
1427  * Since ~2.3.5 it is also exclusive sleep lock serializing
1428  * accesses from user process context.
1429  */
1430 
1431 static inline void sock_owned_by_me(const struct sock *sk)
1432 {
1433 #ifdef CONFIG_LOCKDEP
1434 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1435 #endif
1436 }
1437 
1438 static inline bool sock_owned_by_user(const struct sock *sk)
1439 {
1440 	sock_owned_by_me(sk);
1441 	return sk->sk_lock.owned;
1442 }
1443 
1444 /* no reclassification while locks are held */
1445 static inline bool sock_allow_reclassification(const struct sock *csk)
1446 {
1447 	struct sock *sk = (struct sock *)csk;
1448 
1449 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1450 }
1451 
1452 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1453 		      struct proto *prot, int kern);
1454 void sk_free(struct sock *sk);
1455 void sk_destruct(struct sock *sk);
1456 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1457 
1458 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1459 			     gfp_t priority);
1460 void __sock_wfree(struct sk_buff *skb);
1461 void sock_wfree(struct sk_buff *skb);
1462 void skb_orphan_partial(struct sk_buff *skb);
1463 void sock_rfree(struct sk_buff *skb);
1464 void sock_efree(struct sk_buff *skb);
1465 #ifdef CONFIG_INET
1466 void sock_edemux(struct sk_buff *skb);
1467 #else
1468 #define sock_edemux(skb) sock_efree(skb)
1469 #endif
1470 
1471 int sock_setsockopt(struct socket *sock, int level, int op,
1472 		    char __user *optval, unsigned int optlen);
1473 
1474 int sock_getsockopt(struct socket *sock, int level, int op,
1475 		    char __user *optval, int __user *optlen);
1476 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1477 				    int noblock, int *errcode);
1478 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1479 				     unsigned long data_len, int noblock,
1480 				     int *errcode, int max_page_order);
1481 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1482 void sock_kfree_s(struct sock *sk, void *mem, int size);
1483 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1484 void sk_send_sigurg(struct sock *sk);
1485 
1486 struct sockcm_cookie {
1487 	u32 mark;
1488 	u16 tsflags;
1489 };
1490 
1491 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1492 		     struct sockcm_cookie *sockc);
1493 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1494 		   struct sockcm_cookie *sockc);
1495 
1496 /*
1497  * Functions to fill in entries in struct proto_ops when a protocol
1498  * does not implement a particular function.
1499  */
1500 int sock_no_bind(struct socket *, struct sockaddr *, int);
1501 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1502 int sock_no_socketpair(struct socket *, struct socket *);
1503 int sock_no_accept(struct socket *, struct socket *, int);
1504 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1505 unsigned int sock_no_poll(struct file *, struct socket *,
1506 			  struct poll_table_struct *);
1507 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1508 int sock_no_listen(struct socket *, int);
1509 int sock_no_shutdown(struct socket *, int);
1510 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1511 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1512 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1513 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1514 int sock_no_mmap(struct file *file, struct socket *sock,
1515 		 struct vm_area_struct *vma);
1516 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1517 			 size_t size, int flags);
1518 
1519 /*
1520  * Functions to fill in entries in struct proto_ops when a protocol
1521  * uses the inet style.
1522  */
1523 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1524 				  char __user *optval, int __user *optlen);
1525 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1526 			int flags);
1527 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1528 				  char __user *optval, unsigned int optlen);
1529 int compat_sock_common_getsockopt(struct socket *sock, int level,
1530 		int optname, char __user *optval, int __user *optlen);
1531 int compat_sock_common_setsockopt(struct socket *sock, int level,
1532 		int optname, char __user *optval, unsigned int optlen);
1533 
1534 void sk_common_release(struct sock *sk);
1535 
1536 /*
1537  *	Default socket callbacks and setup code
1538  */
1539 
1540 /* Initialise core socket variables */
1541 void sock_init_data(struct socket *sock, struct sock *sk);
1542 
1543 /*
1544  * Socket reference counting postulates.
1545  *
1546  * * Each user of socket SHOULD hold a reference count.
1547  * * Each access point to socket (an hash table bucket, reference from a list,
1548  *   running timer, skb in flight MUST hold a reference count.
1549  * * When reference count hits 0, it means it will never increase back.
1550  * * When reference count hits 0, it means that no references from
1551  *   outside exist to this socket and current process on current CPU
1552  *   is last user and may/should destroy this socket.
1553  * * sk_free is called from any context: process, BH, IRQ. When
1554  *   it is called, socket has no references from outside -> sk_free
1555  *   may release descendant resources allocated by the socket, but
1556  *   to the time when it is called, socket is NOT referenced by any
1557  *   hash tables, lists etc.
1558  * * Packets, delivered from outside (from network or from another process)
1559  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1560  *   when they sit in queue. Otherwise, packets will leak to hole, when
1561  *   socket is looked up by one cpu and unhasing is made by another CPU.
1562  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1563  *   (leak to backlog). Packet socket does all the processing inside
1564  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1565  *   use separate SMP lock, so that they are prone too.
1566  */
1567 
1568 /* Ungrab socket and destroy it, if it was the last reference. */
1569 static inline void sock_put(struct sock *sk)
1570 {
1571 	if (atomic_dec_and_test(&sk->sk_refcnt))
1572 		sk_free(sk);
1573 }
1574 /* Generic version of sock_put(), dealing with all sockets
1575  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1576  */
1577 void sock_gen_put(struct sock *sk);
1578 
1579 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1580 
1581 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1582 {
1583 	sk->sk_tx_queue_mapping = tx_queue;
1584 }
1585 
1586 static inline void sk_tx_queue_clear(struct sock *sk)
1587 {
1588 	sk->sk_tx_queue_mapping = -1;
1589 }
1590 
1591 static inline int sk_tx_queue_get(const struct sock *sk)
1592 {
1593 	return sk ? sk->sk_tx_queue_mapping : -1;
1594 }
1595 
1596 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1597 {
1598 	sk_tx_queue_clear(sk);
1599 	sk->sk_socket = sock;
1600 }
1601 
1602 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1603 {
1604 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1605 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1606 }
1607 /* Detach socket from process context.
1608  * Announce socket dead, detach it from wait queue and inode.
1609  * Note that parent inode held reference count on this struct sock,
1610  * we do not release it in this function, because protocol
1611  * probably wants some additional cleanups or even continuing
1612  * to work with this socket (TCP).
1613  */
1614 static inline void sock_orphan(struct sock *sk)
1615 {
1616 	write_lock_bh(&sk->sk_callback_lock);
1617 	sock_set_flag(sk, SOCK_DEAD);
1618 	sk_set_socket(sk, NULL);
1619 	sk->sk_wq  = NULL;
1620 	write_unlock_bh(&sk->sk_callback_lock);
1621 }
1622 
1623 static inline void sock_graft(struct sock *sk, struct socket *parent)
1624 {
1625 	write_lock_bh(&sk->sk_callback_lock);
1626 	sk->sk_wq = parent->wq;
1627 	parent->sk = sk;
1628 	sk_set_socket(sk, parent);
1629 	security_sock_graft(sk, parent);
1630 	write_unlock_bh(&sk->sk_callback_lock);
1631 }
1632 
1633 kuid_t sock_i_uid(struct sock *sk);
1634 unsigned long sock_i_ino(struct sock *sk);
1635 
1636 static inline u32 net_tx_rndhash(void)
1637 {
1638 	u32 v = prandom_u32();
1639 
1640 	return v ?: 1;
1641 }
1642 
1643 static inline void sk_set_txhash(struct sock *sk)
1644 {
1645 	sk->sk_txhash = net_tx_rndhash();
1646 }
1647 
1648 static inline void sk_rethink_txhash(struct sock *sk)
1649 {
1650 	if (sk->sk_txhash)
1651 		sk_set_txhash(sk);
1652 }
1653 
1654 static inline struct dst_entry *
1655 __sk_dst_get(struct sock *sk)
1656 {
1657 	return rcu_dereference_check(sk->sk_dst_cache,
1658 				     lockdep_sock_is_held(sk));
1659 }
1660 
1661 static inline struct dst_entry *
1662 sk_dst_get(struct sock *sk)
1663 {
1664 	struct dst_entry *dst;
1665 
1666 	rcu_read_lock();
1667 	dst = rcu_dereference(sk->sk_dst_cache);
1668 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1669 		dst = NULL;
1670 	rcu_read_unlock();
1671 	return dst;
1672 }
1673 
1674 static inline void dst_negative_advice(struct sock *sk)
1675 {
1676 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1677 
1678 	sk_rethink_txhash(sk);
1679 
1680 	if (dst && dst->ops->negative_advice) {
1681 		ndst = dst->ops->negative_advice(dst);
1682 
1683 		if (ndst != dst) {
1684 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1685 			sk_tx_queue_clear(sk);
1686 		}
1687 	}
1688 }
1689 
1690 static inline void
1691 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1692 {
1693 	struct dst_entry *old_dst;
1694 
1695 	sk_tx_queue_clear(sk);
1696 	/*
1697 	 * This can be called while sk is owned by the caller only,
1698 	 * with no state that can be checked in a rcu_dereference_check() cond
1699 	 */
1700 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1701 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1702 	dst_release(old_dst);
1703 }
1704 
1705 static inline void
1706 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1707 {
1708 	struct dst_entry *old_dst;
1709 
1710 	sk_tx_queue_clear(sk);
1711 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1712 	dst_release(old_dst);
1713 }
1714 
1715 static inline void
1716 __sk_dst_reset(struct sock *sk)
1717 {
1718 	__sk_dst_set(sk, NULL);
1719 }
1720 
1721 static inline void
1722 sk_dst_reset(struct sock *sk)
1723 {
1724 	sk_dst_set(sk, NULL);
1725 }
1726 
1727 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1728 
1729 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1730 
1731 bool sk_mc_loop(struct sock *sk);
1732 
1733 static inline bool sk_can_gso(const struct sock *sk)
1734 {
1735 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1736 }
1737 
1738 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1739 
1740 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1741 {
1742 	sk->sk_route_nocaps |= flags;
1743 	sk->sk_route_caps &= ~flags;
1744 }
1745 
1746 static inline bool sk_check_csum_caps(struct sock *sk)
1747 {
1748 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1749 	       (sk->sk_family == PF_INET &&
1750 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1751 	       (sk->sk_family == PF_INET6 &&
1752 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1753 }
1754 
1755 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1756 					   struct iov_iter *from, char *to,
1757 					   int copy, int offset)
1758 {
1759 	if (skb->ip_summed == CHECKSUM_NONE) {
1760 		__wsum csum = 0;
1761 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1762 			return -EFAULT;
1763 		skb->csum = csum_block_add(skb->csum, csum, offset);
1764 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1765 		if (copy_from_iter_nocache(to, copy, from) != copy)
1766 			return -EFAULT;
1767 	} else if (copy_from_iter(to, copy, from) != copy)
1768 		return -EFAULT;
1769 
1770 	return 0;
1771 }
1772 
1773 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1774 				       struct iov_iter *from, int copy)
1775 {
1776 	int err, offset = skb->len;
1777 
1778 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1779 				       copy, offset);
1780 	if (err)
1781 		__skb_trim(skb, offset);
1782 
1783 	return err;
1784 }
1785 
1786 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1787 					   struct sk_buff *skb,
1788 					   struct page *page,
1789 					   int off, int copy)
1790 {
1791 	int err;
1792 
1793 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1794 				       copy, skb->len);
1795 	if (err)
1796 		return err;
1797 
1798 	skb->len	     += copy;
1799 	skb->data_len	     += copy;
1800 	skb->truesize	     += copy;
1801 	sk->sk_wmem_queued   += copy;
1802 	sk_mem_charge(sk, copy);
1803 	return 0;
1804 }
1805 
1806 /**
1807  * sk_wmem_alloc_get - returns write allocations
1808  * @sk: socket
1809  *
1810  * Returns sk_wmem_alloc minus initial offset of one
1811  */
1812 static inline int sk_wmem_alloc_get(const struct sock *sk)
1813 {
1814 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1815 }
1816 
1817 /**
1818  * sk_rmem_alloc_get - returns read allocations
1819  * @sk: socket
1820  *
1821  * Returns sk_rmem_alloc
1822  */
1823 static inline int sk_rmem_alloc_get(const struct sock *sk)
1824 {
1825 	return atomic_read(&sk->sk_rmem_alloc);
1826 }
1827 
1828 /**
1829  * sk_has_allocations - check if allocations are outstanding
1830  * @sk: socket
1831  *
1832  * Returns true if socket has write or read allocations
1833  */
1834 static inline bool sk_has_allocations(const struct sock *sk)
1835 {
1836 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1837 }
1838 
1839 /**
1840  * skwq_has_sleeper - check if there are any waiting processes
1841  * @wq: struct socket_wq
1842  *
1843  * Returns true if socket_wq has waiting processes
1844  *
1845  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1846  * barrier call. They were added due to the race found within the tcp code.
1847  *
1848  * Consider following tcp code paths:
1849  *
1850  * CPU1                  CPU2
1851  *
1852  * sys_select            receive packet
1853  *   ...                 ...
1854  *   __add_wait_queue    update tp->rcv_nxt
1855  *   ...                 ...
1856  *   tp->rcv_nxt check   sock_def_readable
1857  *   ...                 {
1858  *   schedule               rcu_read_lock();
1859  *                          wq = rcu_dereference(sk->sk_wq);
1860  *                          if (wq && waitqueue_active(&wq->wait))
1861  *                              wake_up_interruptible(&wq->wait)
1862  *                          ...
1863  *                       }
1864  *
1865  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1866  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1867  * could then endup calling schedule and sleep forever if there are no more
1868  * data on the socket.
1869  *
1870  */
1871 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1872 {
1873 	return wq && wq_has_sleeper(&wq->wait);
1874 }
1875 
1876 /**
1877  * sock_poll_wait - place memory barrier behind the poll_wait call.
1878  * @filp:           file
1879  * @wait_address:   socket wait queue
1880  * @p:              poll_table
1881  *
1882  * See the comments in the wq_has_sleeper function.
1883  */
1884 static inline void sock_poll_wait(struct file *filp,
1885 		wait_queue_head_t *wait_address, poll_table *p)
1886 {
1887 	if (!poll_does_not_wait(p) && wait_address) {
1888 		poll_wait(filp, wait_address, p);
1889 		/* We need to be sure we are in sync with the
1890 		 * socket flags modification.
1891 		 *
1892 		 * This memory barrier is paired in the wq_has_sleeper.
1893 		 */
1894 		smp_mb();
1895 	}
1896 }
1897 
1898 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1899 {
1900 	if (sk->sk_txhash) {
1901 		skb->l4_hash = 1;
1902 		skb->hash = sk->sk_txhash;
1903 	}
1904 }
1905 
1906 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1907 
1908 /*
1909  *	Queue a received datagram if it will fit. Stream and sequenced
1910  *	protocols can't normally use this as they need to fit buffers in
1911  *	and play with them.
1912  *
1913  *	Inlined as it's very short and called for pretty much every
1914  *	packet ever received.
1915  */
1916 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1917 {
1918 	skb_orphan(skb);
1919 	skb->sk = sk;
1920 	skb->destructor = sock_rfree;
1921 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1922 	sk_mem_charge(sk, skb->truesize);
1923 }
1924 
1925 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1926 		    unsigned long expires);
1927 
1928 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1929 
1930 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1931 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1932 
1933 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1934 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1935 
1936 /*
1937  *	Recover an error report and clear atomically
1938  */
1939 
1940 static inline int sock_error(struct sock *sk)
1941 {
1942 	int err;
1943 	if (likely(!sk->sk_err))
1944 		return 0;
1945 	err = xchg(&sk->sk_err, 0);
1946 	return -err;
1947 }
1948 
1949 static inline unsigned long sock_wspace(struct sock *sk)
1950 {
1951 	int amt = 0;
1952 
1953 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1954 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1955 		if (amt < 0)
1956 			amt = 0;
1957 	}
1958 	return amt;
1959 }
1960 
1961 /* Note:
1962  *  We use sk->sk_wq_raw, from contexts knowing this
1963  *  pointer is not NULL and cannot disappear/change.
1964  */
1965 static inline void sk_set_bit(int nr, struct sock *sk)
1966 {
1967 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1968 	    !sock_flag(sk, SOCK_FASYNC))
1969 		return;
1970 
1971 	set_bit(nr, &sk->sk_wq_raw->flags);
1972 }
1973 
1974 static inline void sk_clear_bit(int nr, struct sock *sk)
1975 {
1976 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1977 	    !sock_flag(sk, SOCK_FASYNC))
1978 		return;
1979 
1980 	clear_bit(nr, &sk->sk_wq_raw->flags);
1981 }
1982 
1983 static inline void sk_wake_async(const struct sock *sk, int how, int band)
1984 {
1985 	if (sock_flag(sk, SOCK_FASYNC)) {
1986 		rcu_read_lock();
1987 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
1988 		rcu_read_unlock();
1989 	}
1990 }
1991 
1992 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
1993  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
1994  * Note: for send buffers, TCP works better if we can build two skbs at
1995  * minimum.
1996  */
1997 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
1998 
1999 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2000 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2001 
2002 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2003 {
2004 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2005 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2006 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2007 	}
2008 }
2009 
2010 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2011 				    bool force_schedule);
2012 
2013 /**
2014  * sk_page_frag - return an appropriate page_frag
2015  * @sk: socket
2016  *
2017  * If socket allocation mode allows current thread to sleep, it means its
2018  * safe to use the per task page_frag instead of the per socket one.
2019  */
2020 static inline struct page_frag *sk_page_frag(struct sock *sk)
2021 {
2022 	if (gfpflags_allow_blocking(sk->sk_allocation))
2023 		return &current->task_frag;
2024 
2025 	return &sk->sk_frag;
2026 }
2027 
2028 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2029 
2030 /*
2031  *	Default write policy as shown to user space via poll/select/SIGIO
2032  */
2033 static inline bool sock_writeable(const struct sock *sk)
2034 {
2035 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2036 }
2037 
2038 static inline gfp_t gfp_any(void)
2039 {
2040 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2041 }
2042 
2043 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2044 {
2045 	return noblock ? 0 : sk->sk_rcvtimeo;
2046 }
2047 
2048 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2049 {
2050 	return noblock ? 0 : sk->sk_sndtimeo;
2051 }
2052 
2053 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2054 {
2055 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2056 }
2057 
2058 /* Alas, with timeout socket operations are not restartable.
2059  * Compare this to poll().
2060  */
2061 static inline int sock_intr_errno(long timeo)
2062 {
2063 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2064 }
2065 
2066 struct sock_skb_cb {
2067 	u32 dropcount;
2068 };
2069 
2070 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2071  * using skb->cb[] would keep using it directly and utilize its
2072  * alignement guarantee.
2073  */
2074 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2075 			    sizeof(struct sock_skb_cb)))
2076 
2077 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2078 			    SOCK_SKB_CB_OFFSET))
2079 
2080 #define sock_skb_cb_check_size(size) \
2081 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2082 
2083 static inline void
2084 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2085 {
2086 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2087 }
2088 
2089 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2090 {
2091 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2092 
2093 	atomic_add(segs, &sk->sk_drops);
2094 }
2095 
2096 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2097 			   struct sk_buff *skb);
2098 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2099 			     struct sk_buff *skb);
2100 
2101 static inline void
2102 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2103 {
2104 	ktime_t kt = skb->tstamp;
2105 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2106 
2107 	/*
2108 	 * generate control messages if
2109 	 * - receive time stamping in software requested
2110 	 * - software time stamp available and wanted
2111 	 * - hardware time stamps available and wanted
2112 	 */
2113 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2114 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2115 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2116 	    (hwtstamps->hwtstamp.tv64 &&
2117 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2118 		__sock_recv_timestamp(msg, sk, skb);
2119 	else
2120 		sk->sk_stamp = kt;
2121 
2122 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2123 		__sock_recv_wifi_status(msg, sk, skb);
2124 }
2125 
2126 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2127 			      struct sk_buff *skb);
2128 
2129 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2130 					  struct sk_buff *skb)
2131 {
2132 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2133 			   (1UL << SOCK_RCVTSTAMP))
2134 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2135 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2136 
2137 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2138 		__sock_recv_ts_and_drops(msg, sk, skb);
2139 	else
2140 		sk->sk_stamp = skb->tstamp;
2141 }
2142 
2143 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2144 
2145 /**
2146  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2147  * @sk:		socket sending this packet
2148  * @tsflags:	timestamping flags to use
2149  * @tx_flags:	completed with instructions for time stamping
2150  *
2151  * Note : callers should take care of initial *tx_flags value (usually 0)
2152  */
2153 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2154 				     __u8 *tx_flags)
2155 {
2156 	if (unlikely(tsflags))
2157 		__sock_tx_timestamp(tsflags, tx_flags);
2158 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2159 		*tx_flags |= SKBTX_WIFI_STATUS;
2160 }
2161 
2162 /**
2163  * sk_eat_skb - Release a skb if it is no longer needed
2164  * @sk: socket to eat this skb from
2165  * @skb: socket buffer to eat
2166  *
2167  * This routine must be called with interrupts disabled or with the socket
2168  * locked so that the sk_buff queue operation is ok.
2169 */
2170 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2171 {
2172 	__skb_unlink(skb, &sk->sk_receive_queue);
2173 	__kfree_skb(skb);
2174 }
2175 
2176 static inline
2177 struct net *sock_net(const struct sock *sk)
2178 {
2179 	return read_pnet(&sk->sk_net);
2180 }
2181 
2182 static inline
2183 void sock_net_set(struct sock *sk, struct net *net)
2184 {
2185 	write_pnet(&sk->sk_net, net);
2186 }
2187 
2188 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2189 {
2190 	if (skb->sk) {
2191 		struct sock *sk = skb->sk;
2192 
2193 		skb->destructor = NULL;
2194 		skb->sk = NULL;
2195 		return sk;
2196 	}
2197 	return NULL;
2198 }
2199 
2200 /* This helper checks if a socket is a full socket,
2201  * ie _not_ a timewait or request socket.
2202  */
2203 static inline bool sk_fullsock(const struct sock *sk)
2204 {
2205 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2206 }
2207 
2208 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2209  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2210  */
2211 static inline bool sk_listener(const struct sock *sk)
2212 {
2213 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2214 }
2215 
2216 /**
2217  * sk_state_load - read sk->sk_state for lockless contexts
2218  * @sk: socket pointer
2219  *
2220  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2221  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2222  */
2223 static inline int sk_state_load(const struct sock *sk)
2224 {
2225 	return smp_load_acquire(&sk->sk_state);
2226 }
2227 
2228 /**
2229  * sk_state_store - update sk->sk_state
2230  * @sk: socket pointer
2231  * @newstate: new state
2232  *
2233  * Paired with sk_state_load(). Should be used in contexts where
2234  * state change might impact lockless readers.
2235  */
2236 static inline void sk_state_store(struct sock *sk, int newstate)
2237 {
2238 	smp_store_release(&sk->sk_state, newstate);
2239 }
2240 
2241 void sock_enable_timestamp(struct sock *sk, int flag);
2242 int sock_get_timestamp(struct sock *, struct timeval __user *);
2243 int sock_get_timestampns(struct sock *, struct timespec __user *);
2244 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2245 		       int type);
2246 
2247 bool sk_ns_capable(const struct sock *sk,
2248 		   struct user_namespace *user_ns, int cap);
2249 bool sk_capable(const struct sock *sk, int cap);
2250 bool sk_net_capable(const struct sock *sk, int cap);
2251 
2252 extern __u32 sysctl_wmem_max;
2253 extern __u32 sysctl_rmem_max;
2254 
2255 extern int sysctl_tstamp_allow_data;
2256 extern int sysctl_optmem_max;
2257 
2258 extern __u32 sysctl_wmem_default;
2259 extern __u32 sysctl_rmem_default;
2260 
2261 #endif	/* _SOCK_H */
2262