1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/lockdep.h> 50 #include <linux/netdevice.h> 51 #include <linux/skbuff.h> /* struct sk_buff */ 52 #include <linux/mm.h> 53 #include <linux/security.h> 54 #include <linux/slab.h> 55 #include <linux/uaccess.h> 56 #include <linux/memcontrol.h> 57 #include <linux/res_counter.h> 58 #include <linux/static_key.h> 59 #include <linux/aio.h> 60 #include <linux/sched.h> 61 62 #include <linux/filter.h> 63 #include <linux/rculist_nulls.h> 64 #include <linux/poll.h> 65 66 #include <linux/atomic.h> 67 #include <net/dst.h> 68 #include <net/checksum.h> 69 70 struct cgroup; 71 struct cgroup_subsys; 72 #ifdef CONFIG_NET 73 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss); 74 void mem_cgroup_sockets_destroy(struct cgroup *cgrp); 75 #else 76 static inline 77 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss) 78 { 79 return 0; 80 } 81 static inline 82 void mem_cgroup_sockets_destroy(struct cgroup *cgrp) 83 { 84 } 85 #endif 86 /* 87 * This structure really needs to be cleaned up. 88 * Most of it is for TCP, and not used by any of 89 * the other protocols. 90 */ 91 92 /* Define this to get the SOCK_DBG debugging facility. */ 93 #define SOCK_DEBUGGING 94 #ifdef SOCK_DEBUGGING 95 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 96 printk(KERN_DEBUG msg); } while (0) 97 #else 98 /* Validate arguments and do nothing */ 99 static inline __printf(2, 3) 100 void SOCK_DEBUG(struct sock *sk, const char *msg, ...) 101 { 102 } 103 #endif 104 105 /* This is the per-socket lock. The spinlock provides a synchronization 106 * between user contexts and software interrupt processing, whereas the 107 * mini-semaphore synchronizes multiple users amongst themselves. 108 */ 109 typedef struct { 110 spinlock_t slock; 111 int owned; 112 wait_queue_head_t wq; 113 /* 114 * We express the mutex-alike socket_lock semantics 115 * to the lock validator by explicitly managing 116 * the slock as a lock variant (in addition to 117 * the slock itself): 118 */ 119 #ifdef CONFIG_DEBUG_LOCK_ALLOC 120 struct lockdep_map dep_map; 121 #endif 122 } socket_lock_t; 123 124 struct sock; 125 struct proto; 126 struct net; 127 128 /** 129 * struct sock_common - minimal network layer representation of sockets 130 * @skc_daddr: Foreign IPv4 addr 131 * @skc_rcv_saddr: Bound local IPv4 addr 132 * @skc_hash: hash value used with various protocol lookup tables 133 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 134 * @skc_family: network address family 135 * @skc_state: Connection state 136 * @skc_reuse: %SO_REUSEADDR setting 137 * @skc_bound_dev_if: bound device index if != 0 138 * @skc_bind_node: bind hash linkage for various protocol lookup tables 139 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 140 * @skc_prot: protocol handlers inside a network family 141 * @skc_net: reference to the network namespace of this socket 142 * @skc_node: main hash linkage for various protocol lookup tables 143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 144 * @skc_tx_queue_mapping: tx queue number for this connection 145 * @skc_refcnt: reference count 146 * 147 * This is the minimal network layer representation of sockets, the header 148 * for struct sock and struct inet_timewait_sock. 149 */ 150 struct sock_common { 151 /* skc_daddr and skc_rcv_saddr must be grouped : 152 * cf INET_MATCH() and INET_TW_MATCH() 153 */ 154 __be32 skc_daddr; 155 __be32 skc_rcv_saddr; 156 157 union { 158 unsigned int skc_hash; 159 __u16 skc_u16hashes[2]; 160 }; 161 unsigned short skc_family; 162 volatile unsigned char skc_state; 163 unsigned char skc_reuse; 164 int skc_bound_dev_if; 165 union { 166 struct hlist_node skc_bind_node; 167 struct hlist_nulls_node skc_portaddr_node; 168 }; 169 struct proto *skc_prot; 170 #ifdef CONFIG_NET_NS 171 struct net *skc_net; 172 #endif 173 /* 174 * fields between dontcopy_begin/dontcopy_end 175 * are not copied in sock_copy() 176 */ 177 /* private: */ 178 int skc_dontcopy_begin[0]; 179 /* public: */ 180 union { 181 struct hlist_node skc_node; 182 struct hlist_nulls_node skc_nulls_node; 183 }; 184 int skc_tx_queue_mapping; 185 atomic_t skc_refcnt; 186 /* private: */ 187 int skc_dontcopy_end[0]; 188 /* public: */ 189 }; 190 191 struct cg_proto; 192 /** 193 * struct sock - network layer representation of sockets 194 * @__sk_common: shared layout with inet_timewait_sock 195 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 196 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 197 * @sk_lock: synchronizer 198 * @sk_rcvbuf: size of receive buffer in bytes 199 * @sk_wq: sock wait queue and async head 200 * @sk_dst_cache: destination cache 201 * @sk_dst_lock: destination cache lock 202 * @sk_policy: flow policy 203 * @sk_receive_queue: incoming packets 204 * @sk_wmem_alloc: transmit queue bytes committed 205 * @sk_write_queue: Packet sending queue 206 * @sk_async_wait_queue: DMA copied packets 207 * @sk_omem_alloc: "o" is "option" or "other" 208 * @sk_wmem_queued: persistent queue size 209 * @sk_forward_alloc: space allocated forward 210 * @sk_allocation: allocation mode 211 * @sk_sndbuf: size of send buffer in bytes 212 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 213 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 214 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 215 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 216 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 217 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 218 * @sk_gso_max_size: Maximum GSO segment size to build 219 * @sk_lingertime: %SO_LINGER l_linger setting 220 * @sk_backlog: always used with the per-socket spinlock held 221 * @sk_callback_lock: used with the callbacks in the end of this struct 222 * @sk_error_queue: rarely used 223 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 224 * IPV6_ADDRFORM for instance) 225 * @sk_err: last error 226 * @sk_err_soft: errors that don't cause failure but are the cause of a 227 * persistent failure not just 'timed out' 228 * @sk_drops: raw/udp drops counter 229 * @sk_ack_backlog: current listen backlog 230 * @sk_max_ack_backlog: listen backlog set in listen() 231 * @sk_priority: %SO_PRIORITY setting 232 * @sk_cgrp_prioidx: socket group's priority map index 233 * @sk_type: socket type (%SOCK_STREAM, etc) 234 * @sk_protocol: which protocol this socket belongs in this network family 235 * @sk_peer_pid: &struct pid for this socket's peer 236 * @sk_peer_cred: %SO_PEERCRED setting 237 * @sk_rcvlowat: %SO_RCVLOWAT setting 238 * @sk_rcvtimeo: %SO_RCVTIMEO setting 239 * @sk_sndtimeo: %SO_SNDTIMEO setting 240 * @sk_rxhash: flow hash received from netif layer 241 * @sk_filter: socket filtering instructions 242 * @sk_protinfo: private area, net family specific, when not using slab 243 * @sk_timer: sock cleanup timer 244 * @sk_stamp: time stamp of last packet received 245 * @sk_socket: Identd and reporting IO signals 246 * @sk_user_data: RPC layer private data 247 * @sk_sndmsg_page: cached page for sendmsg 248 * @sk_sndmsg_off: cached offset for sendmsg 249 * @sk_send_head: front of stuff to transmit 250 * @sk_security: used by security modules 251 * @sk_mark: generic packet mark 252 * @sk_classid: this socket's cgroup classid 253 * @sk_cgrp: this socket's cgroup-specific proto data 254 * @sk_write_pending: a write to stream socket waits to start 255 * @sk_state_change: callback to indicate change in the state of the sock 256 * @sk_data_ready: callback to indicate there is data to be processed 257 * @sk_write_space: callback to indicate there is bf sending space available 258 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 259 * @sk_backlog_rcv: callback to process the backlog 260 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 261 */ 262 struct sock { 263 /* 264 * Now struct inet_timewait_sock also uses sock_common, so please just 265 * don't add nothing before this first member (__sk_common) --acme 266 */ 267 struct sock_common __sk_common; 268 #define sk_node __sk_common.skc_node 269 #define sk_nulls_node __sk_common.skc_nulls_node 270 #define sk_refcnt __sk_common.skc_refcnt 271 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 272 273 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 274 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 275 #define sk_hash __sk_common.skc_hash 276 #define sk_family __sk_common.skc_family 277 #define sk_state __sk_common.skc_state 278 #define sk_reuse __sk_common.skc_reuse 279 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 280 #define sk_bind_node __sk_common.skc_bind_node 281 #define sk_prot __sk_common.skc_prot 282 #define sk_net __sk_common.skc_net 283 socket_lock_t sk_lock; 284 struct sk_buff_head sk_receive_queue; 285 /* 286 * The backlog queue is special, it is always used with 287 * the per-socket spinlock held and requires low latency 288 * access. Therefore we special case it's implementation. 289 * Note : rmem_alloc is in this structure to fill a hole 290 * on 64bit arches, not because its logically part of 291 * backlog. 292 */ 293 struct { 294 atomic_t rmem_alloc; 295 int len; 296 struct sk_buff *head; 297 struct sk_buff *tail; 298 } sk_backlog; 299 #define sk_rmem_alloc sk_backlog.rmem_alloc 300 int sk_forward_alloc; 301 #ifdef CONFIG_RPS 302 __u32 sk_rxhash; 303 #endif 304 atomic_t sk_drops; 305 int sk_rcvbuf; 306 307 struct sk_filter __rcu *sk_filter; 308 struct socket_wq __rcu *sk_wq; 309 310 #ifdef CONFIG_NET_DMA 311 struct sk_buff_head sk_async_wait_queue; 312 #endif 313 314 #ifdef CONFIG_XFRM 315 struct xfrm_policy *sk_policy[2]; 316 #endif 317 unsigned long sk_flags; 318 struct dst_entry *sk_dst_cache; 319 spinlock_t sk_dst_lock; 320 atomic_t sk_wmem_alloc; 321 atomic_t sk_omem_alloc; 322 int sk_sndbuf; 323 struct sk_buff_head sk_write_queue; 324 kmemcheck_bitfield_begin(flags); 325 unsigned int sk_shutdown : 2, 326 sk_no_check : 2, 327 sk_userlocks : 4, 328 sk_protocol : 8, 329 sk_type : 16; 330 kmemcheck_bitfield_end(flags); 331 int sk_wmem_queued; 332 gfp_t sk_allocation; 333 netdev_features_t sk_route_caps; 334 netdev_features_t sk_route_nocaps; 335 int sk_gso_type; 336 unsigned int sk_gso_max_size; 337 int sk_rcvlowat; 338 unsigned long sk_lingertime; 339 struct sk_buff_head sk_error_queue; 340 struct proto *sk_prot_creator; 341 rwlock_t sk_callback_lock; 342 int sk_err, 343 sk_err_soft; 344 unsigned short sk_ack_backlog; 345 unsigned short sk_max_ack_backlog; 346 __u32 sk_priority; 347 #ifdef CONFIG_CGROUPS 348 __u32 sk_cgrp_prioidx; 349 #endif 350 struct pid *sk_peer_pid; 351 const struct cred *sk_peer_cred; 352 long sk_rcvtimeo; 353 long sk_sndtimeo; 354 void *sk_protinfo; 355 struct timer_list sk_timer; 356 ktime_t sk_stamp; 357 struct socket *sk_socket; 358 void *sk_user_data; 359 struct page *sk_sndmsg_page; 360 struct sk_buff *sk_send_head; 361 __u32 sk_sndmsg_off; 362 __s32 sk_peek_off; 363 int sk_write_pending; 364 #ifdef CONFIG_SECURITY 365 void *sk_security; 366 #endif 367 __u32 sk_mark; 368 u32 sk_classid; 369 struct cg_proto *sk_cgrp; 370 void (*sk_state_change)(struct sock *sk); 371 void (*sk_data_ready)(struct sock *sk, int bytes); 372 void (*sk_write_space)(struct sock *sk); 373 void (*sk_error_report)(struct sock *sk); 374 int (*sk_backlog_rcv)(struct sock *sk, 375 struct sk_buff *skb); 376 void (*sk_destruct)(struct sock *sk); 377 }; 378 379 static inline int sk_peek_offset(struct sock *sk, int flags) 380 { 381 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 382 return sk->sk_peek_off; 383 else 384 return 0; 385 } 386 387 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 388 { 389 if (sk->sk_peek_off >= 0) { 390 if (sk->sk_peek_off >= val) 391 sk->sk_peek_off -= val; 392 else 393 sk->sk_peek_off = 0; 394 } 395 } 396 397 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 398 { 399 if (sk->sk_peek_off >= 0) 400 sk->sk_peek_off += val; 401 } 402 403 /* 404 * Hashed lists helper routines 405 */ 406 static inline struct sock *sk_entry(const struct hlist_node *node) 407 { 408 return hlist_entry(node, struct sock, sk_node); 409 } 410 411 static inline struct sock *__sk_head(const struct hlist_head *head) 412 { 413 return hlist_entry(head->first, struct sock, sk_node); 414 } 415 416 static inline struct sock *sk_head(const struct hlist_head *head) 417 { 418 return hlist_empty(head) ? NULL : __sk_head(head); 419 } 420 421 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 422 { 423 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 424 } 425 426 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 427 { 428 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 429 } 430 431 static inline struct sock *sk_next(const struct sock *sk) 432 { 433 return sk->sk_node.next ? 434 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 435 } 436 437 static inline struct sock *sk_nulls_next(const struct sock *sk) 438 { 439 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 440 hlist_nulls_entry(sk->sk_nulls_node.next, 441 struct sock, sk_nulls_node) : 442 NULL; 443 } 444 445 static inline int sk_unhashed(const struct sock *sk) 446 { 447 return hlist_unhashed(&sk->sk_node); 448 } 449 450 static inline int sk_hashed(const struct sock *sk) 451 { 452 return !sk_unhashed(sk); 453 } 454 455 static __inline__ void sk_node_init(struct hlist_node *node) 456 { 457 node->pprev = NULL; 458 } 459 460 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node) 461 { 462 node->pprev = NULL; 463 } 464 465 static __inline__ void __sk_del_node(struct sock *sk) 466 { 467 __hlist_del(&sk->sk_node); 468 } 469 470 /* NB: equivalent to hlist_del_init_rcu */ 471 static __inline__ int __sk_del_node_init(struct sock *sk) 472 { 473 if (sk_hashed(sk)) { 474 __sk_del_node(sk); 475 sk_node_init(&sk->sk_node); 476 return 1; 477 } 478 return 0; 479 } 480 481 /* Grab socket reference count. This operation is valid only 482 when sk is ALREADY grabbed f.e. it is found in hash table 483 or a list and the lookup is made under lock preventing hash table 484 modifications. 485 */ 486 487 static inline void sock_hold(struct sock *sk) 488 { 489 atomic_inc(&sk->sk_refcnt); 490 } 491 492 /* Ungrab socket in the context, which assumes that socket refcnt 493 cannot hit zero, f.e. it is true in context of any socketcall. 494 */ 495 static inline void __sock_put(struct sock *sk) 496 { 497 atomic_dec(&sk->sk_refcnt); 498 } 499 500 static __inline__ int sk_del_node_init(struct sock *sk) 501 { 502 int rc = __sk_del_node_init(sk); 503 504 if (rc) { 505 /* paranoid for a while -acme */ 506 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 507 __sock_put(sk); 508 } 509 return rc; 510 } 511 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 512 513 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk) 514 { 515 if (sk_hashed(sk)) { 516 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 517 return 1; 518 } 519 return 0; 520 } 521 522 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk) 523 { 524 int rc = __sk_nulls_del_node_init_rcu(sk); 525 526 if (rc) { 527 /* paranoid for a while -acme */ 528 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 529 __sock_put(sk); 530 } 531 return rc; 532 } 533 534 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 535 { 536 hlist_add_head(&sk->sk_node, list); 537 } 538 539 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 540 { 541 sock_hold(sk); 542 __sk_add_node(sk, list); 543 } 544 545 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 546 { 547 sock_hold(sk); 548 hlist_add_head_rcu(&sk->sk_node, list); 549 } 550 551 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 552 { 553 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 554 } 555 556 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 557 { 558 sock_hold(sk); 559 __sk_nulls_add_node_rcu(sk, list); 560 } 561 562 static __inline__ void __sk_del_bind_node(struct sock *sk) 563 { 564 __hlist_del(&sk->sk_bind_node); 565 } 566 567 static __inline__ void sk_add_bind_node(struct sock *sk, 568 struct hlist_head *list) 569 { 570 hlist_add_head(&sk->sk_bind_node, list); 571 } 572 573 #define sk_for_each(__sk, node, list) \ 574 hlist_for_each_entry(__sk, node, list, sk_node) 575 #define sk_for_each_rcu(__sk, node, list) \ 576 hlist_for_each_entry_rcu(__sk, node, list, sk_node) 577 #define sk_nulls_for_each(__sk, node, list) \ 578 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 579 #define sk_nulls_for_each_rcu(__sk, node, list) \ 580 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 581 #define sk_for_each_from(__sk, node) \ 582 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 583 hlist_for_each_entry_from(__sk, node, sk_node) 584 #define sk_nulls_for_each_from(__sk, node) \ 585 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 586 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 587 #define sk_for_each_safe(__sk, node, tmp, list) \ 588 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 589 #define sk_for_each_bound(__sk, node, list) \ 590 hlist_for_each_entry(__sk, node, list, sk_bind_node) 591 592 /* Sock flags */ 593 enum sock_flags { 594 SOCK_DEAD, 595 SOCK_DONE, 596 SOCK_URGINLINE, 597 SOCK_KEEPOPEN, 598 SOCK_LINGER, 599 SOCK_DESTROY, 600 SOCK_BROADCAST, 601 SOCK_TIMESTAMP, 602 SOCK_ZAPPED, 603 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 604 SOCK_DBG, /* %SO_DEBUG setting */ 605 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 606 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 607 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 608 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 609 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 610 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 611 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 612 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 613 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 614 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 615 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 616 SOCK_FASYNC, /* fasync() active */ 617 SOCK_RXQ_OVFL, 618 SOCK_ZEROCOPY, /* buffers from userspace */ 619 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 620 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 621 * Will use last 4 bytes of packet sent from 622 * user-space instead. 623 */ 624 }; 625 626 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 627 { 628 nsk->sk_flags = osk->sk_flags; 629 } 630 631 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 632 { 633 __set_bit(flag, &sk->sk_flags); 634 } 635 636 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 637 { 638 __clear_bit(flag, &sk->sk_flags); 639 } 640 641 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 642 { 643 return test_bit(flag, &sk->sk_flags); 644 } 645 646 static inline void sk_acceptq_removed(struct sock *sk) 647 { 648 sk->sk_ack_backlog--; 649 } 650 651 static inline void sk_acceptq_added(struct sock *sk) 652 { 653 sk->sk_ack_backlog++; 654 } 655 656 static inline int sk_acceptq_is_full(struct sock *sk) 657 { 658 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 659 } 660 661 /* 662 * Compute minimal free write space needed to queue new packets. 663 */ 664 static inline int sk_stream_min_wspace(struct sock *sk) 665 { 666 return sk->sk_wmem_queued >> 1; 667 } 668 669 static inline int sk_stream_wspace(struct sock *sk) 670 { 671 return sk->sk_sndbuf - sk->sk_wmem_queued; 672 } 673 674 extern void sk_stream_write_space(struct sock *sk); 675 676 static inline int sk_stream_memory_free(struct sock *sk) 677 { 678 return sk->sk_wmem_queued < sk->sk_sndbuf; 679 } 680 681 /* OOB backlog add */ 682 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 683 { 684 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 685 skb_dst_force(skb); 686 687 if (!sk->sk_backlog.tail) 688 sk->sk_backlog.head = skb; 689 else 690 sk->sk_backlog.tail->next = skb; 691 692 sk->sk_backlog.tail = skb; 693 skb->next = NULL; 694 } 695 696 /* 697 * Take into account size of receive queue and backlog queue 698 * Do not take into account this skb truesize, 699 * to allow even a single big packet to come. 700 */ 701 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb) 702 { 703 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 704 705 return qsize > sk->sk_rcvbuf; 706 } 707 708 /* The per-socket spinlock must be held here. */ 709 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb) 710 { 711 if (sk_rcvqueues_full(sk, skb)) 712 return -ENOBUFS; 713 714 __sk_add_backlog(sk, skb); 715 sk->sk_backlog.len += skb->truesize; 716 return 0; 717 } 718 719 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 720 { 721 return sk->sk_backlog_rcv(sk, skb); 722 } 723 724 static inline void sock_rps_record_flow(const struct sock *sk) 725 { 726 #ifdef CONFIG_RPS 727 struct rps_sock_flow_table *sock_flow_table; 728 729 rcu_read_lock(); 730 sock_flow_table = rcu_dereference(rps_sock_flow_table); 731 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash); 732 rcu_read_unlock(); 733 #endif 734 } 735 736 static inline void sock_rps_reset_flow(const struct sock *sk) 737 { 738 #ifdef CONFIG_RPS 739 struct rps_sock_flow_table *sock_flow_table; 740 741 rcu_read_lock(); 742 sock_flow_table = rcu_dereference(rps_sock_flow_table); 743 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash); 744 rcu_read_unlock(); 745 #endif 746 } 747 748 static inline void sock_rps_save_rxhash(struct sock *sk, 749 const struct sk_buff *skb) 750 { 751 #ifdef CONFIG_RPS 752 if (unlikely(sk->sk_rxhash != skb->rxhash)) { 753 sock_rps_reset_flow(sk); 754 sk->sk_rxhash = skb->rxhash; 755 } 756 #endif 757 } 758 759 static inline void sock_rps_reset_rxhash(struct sock *sk) 760 { 761 #ifdef CONFIG_RPS 762 sock_rps_reset_flow(sk); 763 sk->sk_rxhash = 0; 764 #endif 765 } 766 767 #define sk_wait_event(__sk, __timeo, __condition) \ 768 ({ int __rc; \ 769 release_sock(__sk); \ 770 __rc = __condition; \ 771 if (!__rc) { \ 772 *(__timeo) = schedule_timeout(*(__timeo)); \ 773 } \ 774 lock_sock(__sk); \ 775 __rc = __condition; \ 776 __rc; \ 777 }) 778 779 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 780 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 781 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 782 extern int sk_stream_error(struct sock *sk, int flags, int err); 783 extern void sk_stream_kill_queues(struct sock *sk); 784 785 extern int sk_wait_data(struct sock *sk, long *timeo); 786 787 struct request_sock_ops; 788 struct timewait_sock_ops; 789 struct inet_hashinfo; 790 struct raw_hashinfo; 791 struct module; 792 793 /* Networking protocol blocks we attach to sockets. 794 * socket layer -> transport layer interface 795 * transport -> network interface is defined by struct inet_proto 796 */ 797 struct proto { 798 void (*close)(struct sock *sk, 799 long timeout); 800 int (*connect)(struct sock *sk, 801 struct sockaddr *uaddr, 802 int addr_len); 803 int (*disconnect)(struct sock *sk, int flags); 804 805 struct sock * (*accept) (struct sock *sk, int flags, int *err); 806 807 int (*ioctl)(struct sock *sk, int cmd, 808 unsigned long arg); 809 int (*init)(struct sock *sk); 810 void (*destroy)(struct sock *sk); 811 void (*shutdown)(struct sock *sk, int how); 812 int (*setsockopt)(struct sock *sk, int level, 813 int optname, char __user *optval, 814 unsigned int optlen); 815 int (*getsockopt)(struct sock *sk, int level, 816 int optname, char __user *optval, 817 int __user *option); 818 #ifdef CONFIG_COMPAT 819 int (*compat_setsockopt)(struct sock *sk, 820 int level, 821 int optname, char __user *optval, 822 unsigned int optlen); 823 int (*compat_getsockopt)(struct sock *sk, 824 int level, 825 int optname, char __user *optval, 826 int __user *option); 827 int (*compat_ioctl)(struct sock *sk, 828 unsigned int cmd, unsigned long arg); 829 #endif 830 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 831 struct msghdr *msg, size_t len); 832 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 833 struct msghdr *msg, 834 size_t len, int noblock, int flags, 835 int *addr_len); 836 int (*sendpage)(struct sock *sk, struct page *page, 837 int offset, size_t size, int flags); 838 int (*bind)(struct sock *sk, 839 struct sockaddr *uaddr, int addr_len); 840 841 int (*backlog_rcv) (struct sock *sk, 842 struct sk_buff *skb); 843 844 /* Keeping track of sk's, looking them up, and port selection methods. */ 845 void (*hash)(struct sock *sk); 846 void (*unhash)(struct sock *sk); 847 void (*rehash)(struct sock *sk); 848 int (*get_port)(struct sock *sk, unsigned short snum); 849 void (*clear_sk)(struct sock *sk, int size); 850 851 /* Keeping track of sockets in use */ 852 #ifdef CONFIG_PROC_FS 853 unsigned int inuse_idx; 854 #endif 855 856 /* Memory pressure */ 857 void (*enter_memory_pressure)(struct sock *sk); 858 atomic_long_t *memory_allocated; /* Current allocated memory. */ 859 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 860 /* 861 * Pressure flag: try to collapse. 862 * Technical note: it is used by multiple contexts non atomically. 863 * All the __sk_mem_schedule() is of this nature: accounting 864 * is strict, actions are advisory and have some latency. 865 */ 866 int *memory_pressure; 867 long *sysctl_mem; 868 int *sysctl_wmem; 869 int *sysctl_rmem; 870 int max_header; 871 bool no_autobind; 872 873 struct kmem_cache *slab; 874 unsigned int obj_size; 875 int slab_flags; 876 877 struct percpu_counter *orphan_count; 878 879 struct request_sock_ops *rsk_prot; 880 struct timewait_sock_ops *twsk_prot; 881 882 union { 883 struct inet_hashinfo *hashinfo; 884 struct udp_table *udp_table; 885 struct raw_hashinfo *raw_hash; 886 } h; 887 888 struct module *owner; 889 890 char name[32]; 891 892 struct list_head node; 893 #ifdef SOCK_REFCNT_DEBUG 894 atomic_t socks; 895 #endif 896 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 897 /* 898 * cgroup specific init/deinit functions. Called once for all 899 * protocols that implement it, from cgroups populate function. 900 * This function has to setup any files the protocol want to 901 * appear in the kmem cgroup filesystem. 902 */ 903 int (*init_cgroup)(struct cgroup *cgrp, 904 struct cgroup_subsys *ss); 905 void (*destroy_cgroup)(struct cgroup *cgrp); 906 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 907 #endif 908 }; 909 910 struct cg_proto { 911 void (*enter_memory_pressure)(struct sock *sk); 912 struct res_counter *memory_allocated; /* Current allocated memory. */ 913 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 914 int *memory_pressure; 915 long *sysctl_mem; 916 /* 917 * memcg field is used to find which memcg we belong directly 918 * Each memcg struct can hold more than one cg_proto, so container_of 919 * won't really cut. 920 * 921 * The elegant solution would be having an inverse function to 922 * proto_cgroup in struct proto, but that means polluting the structure 923 * for everybody, instead of just for memcg users. 924 */ 925 struct mem_cgroup *memcg; 926 }; 927 928 extern int proto_register(struct proto *prot, int alloc_slab); 929 extern void proto_unregister(struct proto *prot); 930 931 #ifdef SOCK_REFCNT_DEBUG 932 static inline void sk_refcnt_debug_inc(struct sock *sk) 933 { 934 atomic_inc(&sk->sk_prot->socks); 935 } 936 937 static inline void sk_refcnt_debug_dec(struct sock *sk) 938 { 939 atomic_dec(&sk->sk_prot->socks); 940 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 941 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 942 } 943 944 inline void sk_refcnt_debug_release(const struct sock *sk) 945 { 946 if (atomic_read(&sk->sk_refcnt) != 1) 947 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 948 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 949 } 950 #else /* SOCK_REFCNT_DEBUG */ 951 #define sk_refcnt_debug_inc(sk) do { } while (0) 952 #define sk_refcnt_debug_dec(sk) do { } while (0) 953 #define sk_refcnt_debug_release(sk) do { } while (0) 954 #endif /* SOCK_REFCNT_DEBUG */ 955 956 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET) 957 extern struct static_key memcg_socket_limit_enabled; 958 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 959 struct cg_proto *cg_proto) 960 { 961 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 962 } 963 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 964 #else 965 #define mem_cgroup_sockets_enabled 0 966 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 967 struct cg_proto *cg_proto) 968 { 969 return NULL; 970 } 971 #endif 972 973 974 static inline bool sk_has_memory_pressure(const struct sock *sk) 975 { 976 return sk->sk_prot->memory_pressure != NULL; 977 } 978 979 static inline bool sk_under_memory_pressure(const struct sock *sk) 980 { 981 if (!sk->sk_prot->memory_pressure) 982 return false; 983 984 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 985 return !!*sk->sk_cgrp->memory_pressure; 986 987 return !!*sk->sk_prot->memory_pressure; 988 } 989 990 static inline void sk_leave_memory_pressure(struct sock *sk) 991 { 992 int *memory_pressure = sk->sk_prot->memory_pressure; 993 994 if (!memory_pressure) 995 return; 996 997 if (*memory_pressure) 998 *memory_pressure = 0; 999 1000 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1001 struct cg_proto *cg_proto = sk->sk_cgrp; 1002 struct proto *prot = sk->sk_prot; 1003 1004 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1005 if (*cg_proto->memory_pressure) 1006 *cg_proto->memory_pressure = 0; 1007 } 1008 1009 } 1010 1011 static inline void sk_enter_memory_pressure(struct sock *sk) 1012 { 1013 if (!sk->sk_prot->enter_memory_pressure) 1014 return; 1015 1016 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1017 struct cg_proto *cg_proto = sk->sk_cgrp; 1018 struct proto *prot = sk->sk_prot; 1019 1020 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1021 cg_proto->enter_memory_pressure(sk); 1022 } 1023 1024 sk->sk_prot->enter_memory_pressure(sk); 1025 } 1026 1027 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1028 { 1029 long *prot = sk->sk_prot->sysctl_mem; 1030 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1031 prot = sk->sk_cgrp->sysctl_mem; 1032 return prot[index]; 1033 } 1034 1035 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1036 unsigned long amt, 1037 int *parent_status) 1038 { 1039 struct res_counter *fail; 1040 int ret; 1041 1042 ret = res_counter_charge_nofail(prot->memory_allocated, 1043 amt << PAGE_SHIFT, &fail); 1044 if (ret < 0) 1045 *parent_status = OVER_LIMIT; 1046 } 1047 1048 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1049 unsigned long amt) 1050 { 1051 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT); 1052 } 1053 1054 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1055 { 1056 u64 ret; 1057 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE); 1058 return ret >> PAGE_SHIFT; 1059 } 1060 1061 static inline long 1062 sk_memory_allocated(const struct sock *sk) 1063 { 1064 struct proto *prot = sk->sk_prot; 1065 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1066 return memcg_memory_allocated_read(sk->sk_cgrp); 1067 1068 return atomic_long_read(prot->memory_allocated); 1069 } 1070 1071 static inline long 1072 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1073 { 1074 struct proto *prot = sk->sk_prot; 1075 1076 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1077 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1078 /* update the root cgroup regardless */ 1079 atomic_long_add_return(amt, prot->memory_allocated); 1080 return memcg_memory_allocated_read(sk->sk_cgrp); 1081 } 1082 1083 return atomic_long_add_return(amt, prot->memory_allocated); 1084 } 1085 1086 static inline void 1087 sk_memory_allocated_sub(struct sock *sk, int amt) 1088 { 1089 struct proto *prot = sk->sk_prot; 1090 1091 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1092 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1093 1094 atomic_long_sub(amt, prot->memory_allocated); 1095 } 1096 1097 static inline void sk_sockets_allocated_dec(struct sock *sk) 1098 { 1099 struct proto *prot = sk->sk_prot; 1100 1101 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1102 struct cg_proto *cg_proto = sk->sk_cgrp; 1103 1104 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1105 percpu_counter_dec(cg_proto->sockets_allocated); 1106 } 1107 1108 percpu_counter_dec(prot->sockets_allocated); 1109 } 1110 1111 static inline void sk_sockets_allocated_inc(struct sock *sk) 1112 { 1113 struct proto *prot = sk->sk_prot; 1114 1115 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1116 struct cg_proto *cg_proto = sk->sk_cgrp; 1117 1118 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1119 percpu_counter_inc(cg_proto->sockets_allocated); 1120 } 1121 1122 percpu_counter_inc(prot->sockets_allocated); 1123 } 1124 1125 static inline int 1126 sk_sockets_allocated_read_positive(struct sock *sk) 1127 { 1128 struct proto *prot = sk->sk_prot; 1129 1130 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1131 return percpu_counter_sum_positive(sk->sk_cgrp->sockets_allocated); 1132 1133 return percpu_counter_sum_positive(prot->sockets_allocated); 1134 } 1135 1136 static inline int 1137 proto_sockets_allocated_sum_positive(struct proto *prot) 1138 { 1139 return percpu_counter_sum_positive(prot->sockets_allocated); 1140 } 1141 1142 static inline long 1143 proto_memory_allocated(struct proto *prot) 1144 { 1145 return atomic_long_read(prot->memory_allocated); 1146 } 1147 1148 static inline bool 1149 proto_memory_pressure(struct proto *prot) 1150 { 1151 if (!prot->memory_pressure) 1152 return false; 1153 return !!*prot->memory_pressure; 1154 } 1155 1156 1157 #ifdef CONFIG_PROC_FS 1158 /* Called with local bh disabled */ 1159 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1160 extern int sock_prot_inuse_get(struct net *net, struct proto *proto); 1161 #else 1162 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot, 1163 int inc) 1164 { 1165 } 1166 #endif 1167 1168 1169 /* With per-bucket locks this operation is not-atomic, so that 1170 * this version is not worse. 1171 */ 1172 static inline void __sk_prot_rehash(struct sock *sk) 1173 { 1174 sk->sk_prot->unhash(sk); 1175 sk->sk_prot->hash(sk); 1176 } 1177 1178 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1179 1180 /* About 10 seconds */ 1181 #define SOCK_DESTROY_TIME (10*HZ) 1182 1183 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1184 #define PROT_SOCK 1024 1185 1186 #define SHUTDOWN_MASK 3 1187 #define RCV_SHUTDOWN 1 1188 #define SEND_SHUTDOWN 2 1189 1190 #define SOCK_SNDBUF_LOCK 1 1191 #define SOCK_RCVBUF_LOCK 2 1192 #define SOCK_BINDADDR_LOCK 4 1193 #define SOCK_BINDPORT_LOCK 8 1194 1195 /* sock_iocb: used to kick off async processing of socket ios */ 1196 struct sock_iocb { 1197 struct list_head list; 1198 1199 int flags; 1200 int size; 1201 struct socket *sock; 1202 struct sock *sk; 1203 struct scm_cookie *scm; 1204 struct msghdr *msg, async_msg; 1205 struct kiocb *kiocb; 1206 }; 1207 1208 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1209 { 1210 return (struct sock_iocb *)iocb->private; 1211 } 1212 1213 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1214 { 1215 return si->kiocb; 1216 } 1217 1218 struct socket_alloc { 1219 struct socket socket; 1220 struct inode vfs_inode; 1221 }; 1222 1223 static inline struct socket *SOCKET_I(struct inode *inode) 1224 { 1225 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1226 } 1227 1228 static inline struct inode *SOCK_INODE(struct socket *socket) 1229 { 1230 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1231 } 1232 1233 /* 1234 * Functions for memory accounting 1235 */ 1236 extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 1237 extern void __sk_mem_reclaim(struct sock *sk); 1238 1239 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1240 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1241 #define SK_MEM_SEND 0 1242 #define SK_MEM_RECV 1 1243 1244 static inline int sk_mem_pages(int amt) 1245 { 1246 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1247 } 1248 1249 static inline int sk_has_account(struct sock *sk) 1250 { 1251 /* return true if protocol supports memory accounting */ 1252 return !!sk->sk_prot->memory_allocated; 1253 } 1254 1255 static inline int sk_wmem_schedule(struct sock *sk, int size) 1256 { 1257 if (!sk_has_account(sk)) 1258 return 1; 1259 return size <= sk->sk_forward_alloc || 1260 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1261 } 1262 1263 static inline int sk_rmem_schedule(struct sock *sk, int size) 1264 { 1265 if (!sk_has_account(sk)) 1266 return 1; 1267 return size <= sk->sk_forward_alloc || 1268 __sk_mem_schedule(sk, size, SK_MEM_RECV); 1269 } 1270 1271 static inline void sk_mem_reclaim(struct sock *sk) 1272 { 1273 if (!sk_has_account(sk)) 1274 return; 1275 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1276 __sk_mem_reclaim(sk); 1277 } 1278 1279 static inline void sk_mem_reclaim_partial(struct sock *sk) 1280 { 1281 if (!sk_has_account(sk)) 1282 return; 1283 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1284 __sk_mem_reclaim(sk); 1285 } 1286 1287 static inline void sk_mem_charge(struct sock *sk, int size) 1288 { 1289 if (!sk_has_account(sk)) 1290 return; 1291 sk->sk_forward_alloc -= size; 1292 } 1293 1294 static inline void sk_mem_uncharge(struct sock *sk, int size) 1295 { 1296 if (!sk_has_account(sk)) 1297 return; 1298 sk->sk_forward_alloc += size; 1299 } 1300 1301 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1302 { 1303 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1304 sk->sk_wmem_queued -= skb->truesize; 1305 sk_mem_uncharge(sk, skb->truesize); 1306 __kfree_skb(skb); 1307 } 1308 1309 /* Used by processes to "lock" a socket state, so that 1310 * interrupts and bottom half handlers won't change it 1311 * from under us. It essentially blocks any incoming 1312 * packets, so that we won't get any new data or any 1313 * packets that change the state of the socket. 1314 * 1315 * While locked, BH processing will add new packets to 1316 * the backlog queue. This queue is processed by the 1317 * owner of the socket lock right before it is released. 1318 * 1319 * Since ~2.3.5 it is also exclusive sleep lock serializing 1320 * accesses from user process context. 1321 */ 1322 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1323 1324 /* 1325 * Macro so as to not evaluate some arguments when 1326 * lockdep is not enabled. 1327 * 1328 * Mark both the sk_lock and the sk_lock.slock as a 1329 * per-address-family lock class. 1330 */ 1331 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1332 do { \ 1333 sk->sk_lock.owned = 0; \ 1334 init_waitqueue_head(&sk->sk_lock.wq); \ 1335 spin_lock_init(&(sk)->sk_lock.slock); \ 1336 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1337 sizeof((sk)->sk_lock)); \ 1338 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1339 (skey), (sname)); \ 1340 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1341 } while (0) 1342 1343 extern void lock_sock_nested(struct sock *sk, int subclass); 1344 1345 static inline void lock_sock(struct sock *sk) 1346 { 1347 lock_sock_nested(sk, 0); 1348 } 1349 1350 extern void release_sock(struct sock *sk); 1351 1352 /* BH context may only use the following locking interface. */ 1353 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1354 #define bh_lock_sock_nested(__sk) \ 1355 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1356 SINGLE_DEPTH_NESTING) 1357 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1358 1359 extern bool lock_sock_fast(struct sock *sk); 1360 /** 1361 * unlock_sock_fast - complement of lock_sock_fast 1362 * @sk: socket 1363 * @slow: slow mode 1364 * 1365 * fast unlock socket for user context. 1366 * If slow mode is on, we call regular release_sock() 1367 */ 1368 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1369 { 1370 if (slow) 1371 release_sock(sk); 1372 else 1373 spin_unlock_bh(&sk->sk_lock.slock); 1374 } 1375 1376 1377 extern struct sock *sk_alloc(struct net *net, int family, 1378 gfp_t priority, 1379 struct proto *prot); 1380 extern void sk_free(struct sock *sk); 1381 extern void sk_release_kernel(struct sock *sk); 1382 extern struct sock *sk_clone_lock(const struct sock *sk, 1383 const gfp_t priority); 1384 1385 extern struct sk_buff *sock_wmalloc(struct sock *sk, 1386 unsigned long size, int force, 1387 gfp_t priority); 1388 extern struct sk_buff *sock_rmalloc(struct sock *sk, 1389 unsigned long size, int force, 1390 gfp_t priority); 1391 extern void sock_wfree(struct sk_buff *skb); 1392 extern void sock_rfree(struct sk_buff *skb); 1393 1394 extern int sock_setsockopt(struct socket *sock, int level, 1395 int op, char __user *optval, 1396 unsigned int optlen); 1397 1398 extern int sock_getsockopt(struct socket *sock, int level, 1399 int op, char __user *optval, 1400 int __user *optlen); 1401 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1402 unsigned long size, 1403 int noblock, 1404 int *errcode); 1405 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 1406 unsigned long header_len, 1407 unsigned long data_len, 1408 int noblock, 1409 int *errcode); 1410 extern void *sock_kmalloc(struct sock *sk, int size, 1411 gfp_t priority); 1412 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 1413 extern void sk_send_sigurg(struct sock *sk); 1414 1415 #ifdef CONFIG_CGROUPS 1416 extern void sock_update_classid(struct sock *sk); 1417 #else 1418 static inline void sock_update_classid(struct sock *sk) 1419 { 1420 } 1421 #endif 1422 1423 /* 1424 * Functions to fill in entries in struct proto_ops when a protocol 1425 * does not implement a particular function. 1426 */ 1427 extern int sock_no_bind(struct socket *, 1428 struct sockaddr *, int); 1429 extern int sock_no_connect(struct socket *, 1430 struct sockaddr *, int, int); 1431 extern int sock_no_socketpair(struct socket *, 1432 struct socket *); 1433 extern int sock_no_accept(struct socket *, 1434 struct socket *, int); 1435 extern int sock_no_getname(struct socket *, 1436 struct sockaddr *, int *, int); 1437 extern unsigned int sock_no_poll(struct file *, struct socket *, 1438 struct poll_table_struct *); 1439 extern int sock_no_ioctl(struct socket *, unsigned int, 1440 unsigned long); 1441 extern int sock_no_listen(struct socket *, int); 1442 extern int sock_no_shutdown(struct socket *, int); 1443 extern int sock_no_getsockopt(struct socket *, int , int, 1444 char __user *, int __user *); 1445 extern int sock_no_setsockopt(struct socket *, int, int, 1446 char __user *, unsigned int); 1447 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 1448 struct msghdr *, size_t); 1449 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 1450 struct msghdr *, size_t, int); 1451 extern int sock_no_mmap(struct file *file, 1452 struct socket *sock, 1453 struct vm_area_struct *vma); 1454 extern ssize_t sock_no_sendpage(struct socket *sock, 1455 struct page *page, 1456 int offset, size_t size, 1457 int flags); 1458 1459 /* 1460 * Functions to fill in entries in struct proto_ops when a protocol 1461 * uses the inet style. 1462 */ 1463 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 1464 char __user *optval, int __user *optlen); 1465 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1466 struct msghdr *msg, size_t size, int flags); 1467 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 1468 char __user *optval, unsigned int optlen); 1469 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 1470 int optname, char __user *optval, int __user *optlen); 1471 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 1472 int optname, char __user *optval, unsigned int optlen); 1473 1474 extern void sk_common_release(struct sock *sk); 1475 1476 /* 1477 * Default socket callbacks and setup code 1478 */ 1479 1480 /* Initialise core socket variables */ 1481 extern void sock_init_data(struct socket *sock, struct sock *sk); 1482 1483 extern void sk_filter_release_rcu(struct rcu_head *rcu); 1484 1485 /** 1486 * sk_filter_release - release a socket filter 1487 * @fp: filter to remove 1488 * 1489 * Remove a filter from a socket and release its resources. 1490 */ 1491 1492 static inline void sk_filter_release(struct sk_filter *fp) 1493 { 1494 if (atomic_dec_and_test(&fp->refcnt)) 1495 call_rcu(&fp->rcu, sk_filter_release_rcu); 1496 } 1497 1498 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1499 { 1500 unsigned int size = sk_filter_len(fp); 1501 1502 atomic_sub(size, &sk->sk_omem_alloc); 1503 sk_filter_release(fp); 1504 } 1505 1506 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1507 { 1508 atomic_inc(&fp->refcnt); 1509 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 1510 } 1511 1512 /* 1513 * Socket reference counting postulates. 1514 * 1515 * * Each user of socket SHOULD hold a reference count. 1516 * * Each access point to socket (an hash table bucket, reference from a list, 1517 * running timer, skb in flight MUST hold a reference count. 1518 * * When reference count hits 0, it means it will never increase back. 1519 * * When reference count hits 0, it means that no references from 1520 * outside exist to this socket and current process on current CPU 1521 * is last user and may/should destroy this socket. 1522 * * sk_free is called from any context: process, BH, IRQ. When 1523 * it is called, socket has no references from outside -> sk_free 1524 * may release descendant resources allocated by the socket, but 1525 * to the time when it is called, socket is NOT referenced by any 1526 * hash tables, lists etc. 1527 * * Packets, delivered from outside (from network or from another process) 1528 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1529 * when they sit in queue. Otherwise, packets will leak to hole, when 1530 * socket is looked up by one cpu and unhasing is made by another CPU. 1531 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1532 * (leak to backlog). Packet socket does all the processing inside 1533 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1534 * use separate SMP lock, so that they are prone too. 1535 */ 1536 1537 /* Ungrab socket and destroy it, if it was the last reference. */ 1538 static inline void sock_put(struct sock *sk) 1539 { 1540 if (atomic_dec_and_test(&sk->sk_refcnt)) 1541 sk_free(sk); 1542 } 1543 1544 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1545 const int nested); 1546 1547 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1548 { 1549 sk->sk_tx_queue_mapping = tx_queue; 1550 } 1551 1552 static inline void sk_tx_queue_clear(struct sock *sk) 1553 { 1554 sk->sk_tx_queue_mapping = -1; 1555 } 1556 1557 static inline int sk_tx_queue_get(const struct sock *sk) 1558 { 1559 return sk ? sk->sk_tx_queue_mapping : -1; 1560 } 1561 1562 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1563 { 1564 sk_tx_queue_clear(sk); 1565 sk->sk_socket = sock; 1566 } 1567 1568 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1569 { 1570 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1571 return &rcu_dereference_raw(sk->sk_wq)->wait; 1572 } 1573 /* Detach socket from process context. 1574 * Announce socket dead, detach it from wait queue and inode. 1575 * Note that parent inode held reference count on this struct sock, 1576 * we do not release it in this function, because protocol 1577 * probably wants some additional cleanups or even continuing 1578 * to work with this socket (TCP). 1579 */ 1580 static inline void sock_orphan(struct sock *sk) 1581 { 1582 write_lock_bh(&sk->sk_callback_lock); 1583 sock_set_flag(sk, SOCK_DEAD); 1584 sk_set_socket(sk, NULL); 1585 sk->sk_wq = NULL; 1586 write_unlock_bh(&sk->sk_callback_lock); 1587 } 1588 1589 static inline void sock_graft(struct sock *sk, struct socket *parent) 1590 { 1591 write_lock_bh(&sk->sk_callback_lock); 1592 sk->sk_wq = parent->wq; 1593 parent->sk = sk; 1594 sk_set_socket(sk, parent); 1595 security_sock_graft(sk, parent); 1596 write_unlock_bh(&sk->sk_callback_lock); 1597 } 1598 1599 extern int sock_i_uid(struct sock *sk); 1600 extern unsigned long sock_i_ino(struct sock *sk); 1601 1602 static inline struct dst_entry * 1603 __sk_dst_get(struct sock *sk) 1604 { 1605 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1606 lockdep_is_held(&sk->sk_lock.slock)); 1607 } 1608 1609 static inline struct dst_entry * 1610 sk_dst_get(struct sock *sk) 1611 { 1612 struct dst_entry *dst; 1613 1614 rcu_read_lock(); 1615 dst = rcu_dereference(sk->sk_dst_cache); 1616 if (dst) 1617 dst_hold(dst); 1618 rcu_read_unlock(); 1619 return dst; 1620 } 1621 1622 extern void sk_reset_txq(struct sock *sk); 1623 1624 static inline void dst_negative_advice(struct sock *sk) 1625 { 1626 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1627 1628 if (dst && dst->ops->negative_advice) { 1629 ndst = dst->ops->negative_advice(dst); 1630 1631 if (ndst != dst) { 1632 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1633 sk_reset_txq(sk); 1634 } 1635 } 1636 } 1637 1638 static inline void 1639 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1640 { 1641 struct dst_entry *old_dst; 1642 1643 sk_tx_queue_clear(sk); 1644 /* 1645 * This can be called while sk is owned by the caller only, 1646 * with no state that can be checked in a rcu_dereference_check() cond 1647 */ 1648 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1649 rcu_assign_pointer(sk->sk_dst_cache, dst); 1650 dst_release(old_dst); 1651 } 1652 1653 static inline void 1654 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1655 { 1656 spin_lock(&sk->sk_dst_lock); 1657 __sk_dst_set(sk, dst); 1658 spin_unlock(&sk->sk_dst_lock); 1659 } 1660 1661 static inline void 1662 __sk_dst_reset(struct sock *sk) 1663 { 1664 __sk_dst_set(sk, NULL); 1665 } 1666 1667 static inline void 1668 sk_dst_reset(struct sock *sk) 1669 { 1670 spin_lock(&sk->sk_dst_lock); 1671 __sk_dst_reset(sk); 1672 spin_unlock(&sk->sk_dst_lock); 1673 } 1674 1675 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1676 1677 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1678 1679 static inline int sk_can_gso(const struct sock *sk) 1680 { 1681 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1682 } 1683 1684 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1685 1686 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1687 { 1688 sk->sk_route_nocaps |= flags; 1689 sk->sk_route_caps &= ~flags; 1690 } 1691 1692 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1693 char __user *from, char *to, 1694 int copy, int offset) 1695 { 1696 if (skb->ip_summed == CHECKSUM_NONE) { 1697 int err = 0; 1698 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1699 if (err) 1700 return err; 1701 skb->csum = csum_block_add(skb->csum, csum, offset); 1702 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1703 if (!access_ok(VERIFY_READ, from, copy) || 1704 __copy_from_user_nocache(to, from, copy)) 1705 return -EFAULT; 1706 } else if (copy_from_user(to, from, copy)) 1707 return -EFAULT; 1708 1709 return 0; 1710 } 1711 1712 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1713 char __user *from, int copy) 1714 { 1715 int err, offset = skb->len; 1716 1717 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1718 copy, offset); 1719 if (err) 1720 __skb_trim(skb, offset); 1721 1722 return err; 1723 } 1724 1725 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1726 struct sk_buff *skb, 1727 struct page *page, 1728 int off, int copy) 1729 { 1730 int err; 1731 1732 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1733 copy, skb->len); 1734 if (err) 1735 return err; 1736 1737 skb->len += copy; 1738 skb->data_len += copy; 1739 skb->truesize += copy; 1740 sk->sk_wmem_queued += copy; 1741 sk_mem_charge(sk, copy); 1742 return 0; 1743 } 1744 1745 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1746 struct sk_buff *skb, struct page *page, 1747 int off, int copy) 1748 { 1749 if (skb->ip_summed == CHECKSUM_NONE) { 1750 int err = 0; 1751 __wsum csum = csum_and_copy_from_user(from, 1752 page_address(page) + off, 1753 copy, 0, &err); 1754 if (err) 1755 return err; 1756 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1757 } else if (copy_from_user(page_address(page) + off, from, copy)) 1758 return -EFAULT; 1759 1760 skb->len += copy; 1761 skb->data_len += copy; 1762 skb->truesize += copy; 1763 sk->sk_wmem_queued += copy; 1764 sk_mem_charge(sk, copy); 1765 return 0; 1766 } 1767 1768 /** 1769 * sk_wmem_alloc_get - returns write allocations 1770 * @sk: socket 1771 * 1772 * Returns sk_wmem_alloc minus initial offset of one 1773 */ 1774 static inline int sk_wmem_alloc_get(const struct sock *sk) 1775 { 1776 return atomic_read(&sk->sk_wmem_alloc) - 1; 1777 } 1778 1779 /** 1780 * sk_rmem_alloc_get - returns read allocations 1781 * @sk: socket 1782 * 1783 * Returns sk_rmem_alloc 1784 */ 1785 static inline int sk_rmem_alloc_get(const struct sock *sk) 1786 { 1787 return atomic_read(&sk->sk_rmem_alloc); 1788 } 1789 1790 /** 1791 * sk_has_allocations - check if allocations are outstanding 1792 * @sk: socket 1793 * 1794 * Returns true if socket has write or read allocations 1795 */ 1796 static inline int sk_has_allocations(const struct sock *sk) 1797 { 1798 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1799 } 1800 1801 /** 1802 * wq_has_sleeper - check if there are any waiting processes 1803 * @wq: struct socket_wq 1804 * 1805 * Returns true if socket_wq has waiting processes 1806 * 1807 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1808 * barrier call. They were added due to the race found within the tcp code. 1809 * 1810 * Consider following tcp code paths: 1811 * 1812 * CPU1 CPU2 1813 * 1814 * sys_select receive packet 1815 * ... ... 1816 * __add_wait_queue update tp->rcv_nxt 1817 * ... ... 1818 * tp->rcv_nxt check sock_def_readable 1819 * ... { 1820 * schedule rcu_read_lock(); 1821 * wq = rcu_dereference(sk->sk_wq); 1822 * if (wq && waitqueue_active(&wq->wait)) 1823 * wake_up_interruptible(&wq->wait) 1824 * ... 1825 * } 1826 * 1827 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1828 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1829 * could then endup calling schedule and sleep forever if there are no more 1830 * data on the socket. 1831 * 1832 */ 1833 static inline bool wq_has_sleeper(struct socket_wq *wq) 1834 { 1835 1836 /* 1837 * We need to be sure we are in sync with the 1838 * add_wait_queue modifications to the wait queue. 1839 * 1840 * This memory barrier is paired in the sock_poll_wait. 1841 */ 1842 smp_mb(); 1843 return wq && waitqueue_active(&wq->wait); 1844 } 1845 1846 /** 1847 * sock_poll_wait - place memory barrier behind the poll_wait call. 1848 * @filp: file 1849 * @wait_address: socket wait queue 1850 * @p: poll_table 1851 * 1852 * See the comments in the wq_has_sleeper function. 1853 */ 1854 static inline void sock_poll_wait(struct file *filp, 1855 wait_queue_head_t *wait_address, poll_table *p) 1856 { 1857 if (!poll_does_not_wait(p) && wait_address) { 1858 poll_wait(filp, wait_address, p); 1859 /* 1860 * We need to be sure we are in sync with the 1861 * socket flags modification. 1862 * 1863 * This memory barrier is paired in the wq_has_sleeper. 1864 */ 1865 smp_mb(); 1866 } 1867 } 1868 1869 /* 1870 * Queue a received datagram if it will fit. Stream and sequenced 1871 * protocols can't normally use this as they need to fit buffers in 1872 * and play with them. 1873 * 1874 * Inlined as it's very short and called for pretty much every 1875 * packet ever received. 1876 */ 1877 1878 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1879 { 1880 skb_orphan(skb); 1881 skb->sk = sk; 1882 skb->destructor = sock_wfree; 1883 /* 1884 * We used to take a refcount on sk, but following operation 1885 * is enough to guarantee sk_free() wont free this sock until 1886 * all in-flight packets are completed 1887 */ 1888 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1889 } 1890 1891 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1892 { 1893 skb_orphan(skb); 1894 skb->sk = sk; 1895 skb->destructor = sock_rfree; 1896 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1897 sk_mem_charge(sk, skb->truesize); 1898 } 1899 1900 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1901 unsigned long expires); 1902 1903 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1904 1905 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1906 1907 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1908 1909 /* 1910 * Recover an error report and clear atomically 1911 */ 1912 1913 static inline int sock_error(struct sock *sk) 1914 { 1915 int err; 1916 if (likely(!sk->sk_err)) 1917 return 0; 1918 err = xchg(&sk->sk_err, 0); 1919 return -err; 1920 } 1921 1922 static inline unsigned long sock_wspace(struct sock *sk) 1923 { 1924 int amt = 0; 1925 1926 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1927 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1928 if (amt < 0) 1929 amt = 0; 1930 } 1931 return amt; 1932 } 1933 1934 static inline void sk_wake_async(struct sock *sk, int how, int band) 1935 { 1936 if (sock_flag(sk, SOCK_FASYNC)) 1937 sock_wake_async(sk->sk_socket, how, band); 1938 } 1939 1940 #define SOCK_MIN_SNDBUF 2048 1941 /* 1942 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need 1943 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak 1944 */ 1945 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff)) 1946 1947 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1948 { 1949 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1950 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 1951 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1952 } 1953 } 1954 1955 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 1956 1957 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1958 { 1959 struct page *page = NULL; 1960 1961 page = alloc_pages(sk->sk_allocation, 0); 1962 if (!page) { 1963 sk_enter_memory_pressure(sk); 1964 sk_stream_moderate_sndbuf(sk); 1965 } 1966 return page; 1967 } 1968 1969 /* 1970 * Default write policy as shown to user space via poll/select/SIGIO 1971 */ 1972 static inline int sock_writeable(const struct sock *sk) 1973 { 1974 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 1975 } 1976 1977 static inline gfp_t gfp_any(void) 1978 { 1979 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1980 } 1981 1982 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1983 { 1984 return noblock ? 0 : sk->sk_rcvtimeo; 1985 } 1986 1987 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1988 { 1989 return noblock ? 0 : sk->sk_sndtimeo; 1990 } 1991 1992 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1993 { 1994 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1995 } 1996 1997 /* Alas, with timeout socket operations are not restartable. 1998 * Compare this to poll(). 1999 */ 2000 static inline int sock_intr_errno(long timeo) 2001 { 2002 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2003 } 2004 2005 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2006 struct sk_buff *skb); 2007 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2008 struct sk_buff *skb); 2009 2010 static __inline__ void 2011 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2012 { 2013 ktime_t kt = skb->tstamp; 2014 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2015 2016 /* 2017 * generate control messages if 2018 * - receive time stamping in software requested (SOCK_RCVTSTAMP 2019 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 2020 * - software time stamp available and wanted 2021 * (SOCK_TIMESTAMPING_SOFTWARE) 2022 * - hardware time stamps available and wanted 2023 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 2024 * SOCK_TIMESTAMPING_RAW_HARDWARE) 2025 */ 2026 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2027 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 2028 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 2029 (hwtstamps->hwtstamp.tv64 && 2030 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 2031 (hwtstamps->syststamp.tv64 && 2032 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 2033 __sock_recv_timestamp(msg, sk, skb); 2034 else 2035 sk->sk_stamp = kt; 2036 2037 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2038 __sock_recv_wifi_status(msg, sk, skb); 2039 } 2040 2041 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2042 struct sk_buff *skb); 2043 2044 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2045 struct sk_buff *skb) 2046 { 2047 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2048 (1UL << SOCK_RCVTSTAMP) | \ 2049 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 2050 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 2051 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 2052 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 2053 2054 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 2055 __sock_recv_ts_and_drops(msg, sk, skb); 2056 else 2057 sk->sk_stamp = skb->tstamp; 2058 } 2059 2060 /** 2061 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2062 * @sk: socket sending this packet 2063 * @tx_flags: filled with instructions for time stamping 2064 * 2065 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if 2066 * parameters are invalid. 2067 */ 2068 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2069 2070 /** 2071 * sk_eat_skb - Release a skb if it is no longer needed 2072 * @sk: socket to eat this skb from 2073 * @skb: socket buffer to eat 2074 * @copied_early: flag indicating whether DMA operations copied this data early 2075 * 2076 * This routine must be called with interrupts disabled or with the socket 2077 * locked so that the sk_buff queue operation is ok. 2078 */ 2079 #ifdef CONFIG_NET_DMA 2080 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 2081 { 2082 __skb_unlink(skb, &sk->sk_receive_queue); 2083 if (!copied_early) 2084 __kfree_skb(skb); 2085 else 2086 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2087 } 2088 #else 2089 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 2090 { 2091 __skb_unlink(skb, &sk->sk_receive_queue); 2092 __kfree_skb(skb); 2093 } 2094 #endif 2095 2096 static inline 2097 struct net *sock_net(const struct sock *sk) 2098 { 2099 return read_pnet(&sk->sk_net); 2100 } 2101 2102 static inline 2103 void sock_net_set(struct sock *sk, struct net *net) 2104 { 2105 write_pnet(&sk->sk_net, net); 2106 } 2107 2108 /* 2109 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2110 * They should not hold a reference to a namespace in order to allow 2111 * to stop it. 2112 * Sockets after sk_change_net should be released using sk_release_kernel 2113 */ 2114 static inline void sk_change_net(struct sock *sk, struct net *net) 2115 { 2116 put_net(sock_net(sk)); 2117 sock_net_set(sk, hold_net(net)); 2118 } 2119 2120 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2121 { 2122 if (unlikely(skb->sk)) { 2123 struct sock *sk = skb->sk; 2124 2125 skb->destructor = NULL; 2126 skb->sk = NULL; 2127 return sk; 2128 } 2129 return NULL; 2130 } 2131 2132 extern void sock_enable_timestamp(struct sock *sk, int flag); 2133 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 2134 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 2135 2136 /* 2137 * Enable debug/info messages 2138 */ 2139 extern int net_msg_warn; 2140 #define NETDEBUG(fmt, args...) \ 2141 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2142 2143 #define LIMIT_NETDEBUG(fmt, args...) \ 2144 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2145 2146 extern __u32 sysctl_wmem_max; 2147 extern __u32 sysctl_rmem_max; 2148 2149 extern void sk_init(void); 2150 2151 extern int sysctl_optmem_max; 2152 2153 extern __u32 sysctl_wmem_default; 2154 extern __u32 sysctl_rmem_default; 2155 2156 #endif /* _SOCK_H */ 2157