xref: /openbmc/linux/include/net/sock.h (revision 73eb94a0)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56 #include <linux/memcontrol.h>
57 #include <linux/res_counter.h>
58 #include <linux/static_key.h>
59 #include <linux/aio.h>
60 #include <linux/sched.h>
61 
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65 
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 
70 struct cgroup;
71 struct cgroup_subsys;
72 #ifdef CONFIG_NET
73 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss);
74 void mem_cgroup_sockets_destroy(struct cgroup *cgrp);
75 #else
76 static inline
77 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
78 {
79 	return 0;
80 }
81 static inline
82 void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
83 {
84 }
85 #endif
86 /*
87  * This structure really needs to be cleaned up.
88  * Most of it is for TCP, and not used by any of
89  * the other protocols.
90  */
91 
92 /* Define this to get the SOCK_DBG debugging facility. */
93 #define SOCK_DEBUGGING
94 #ifdef SOCK_DEBUGGING
95 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
96 					printk(KERN_DEBUG msg); } while (0)
97 #else
98 /* Validate arguments and do nothing */
99 static inline __printf(2, 3)
100 void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
101 {
102 }
103 #endif
104 
105 /* This is the per-socket lock.  The spinlock provides a synchronization
106  * between user contexts and software interrupt processing, whereas the
107  * mini-semaphore synchronizes multiple users amongst themselves.
108  */
109 typedef struct {
110 	spinlock_t		slock;
111 	int			owned;
112 	wait_queue_head_t	wq;
113 	/*
114 	 * We express the mutex-alike socket_lock semantics
115 	 * to the lock validator by explicitly managing
116 	 * the slock as a lock variant (in addition to
117 	 * the slock itself):
118 	 */
119 #ifdef CONFIG_DEBUG_LOCK_ALLOC
120 	struct lockdep_map dep_map;
121 #endif
122 } socket_lock_t;
123 
124 struct sock;
125 struct proto;
126 struct net;
127 
128 /**
129  *	struct sock_common - minimal network layer representation of sockets
130  *	@skc_daddr: Foreign IPv4 addr
131  *	@skc_rcv_saddr: Bound local IPv4 addr
132  *	@skc_hash: hash value used with various protocol lookup tables
133  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
134  *	@skc_family: network address family
135  *	@skc_state: Connection state
136  *	@skc_reuse: %SO_REUSEADDR setting
137  *	@skc_bound_dev_if: bound device index if != 0
138  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
139  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
140  *	@skc_prot: protocol handlers inside a network family
141  *	@skc_net: reference to the network namespace of this socket
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	/* skc_daddr and skc_rcv_saddr must be grouped :
152 	 * cf INET_MATCH() and INET_TW_MATCH()
153 	 */
154 	__be32			skc_daddr;
155 	__be32			skc_rcv_saddr;
156 
157 	union  {
158 		unsigned int	skc_hash;
159 		__u16		skc_u16hashes[2];
160 	};
161 	unsigned short		skc_family;
162 	volatile unsigned char	skc_state;
163 	unsigned char		skc_reuse;
164 	int			skc_bound_dev_if;
165 	union {
166 		struct hlist_node	skc_bind_node;
167 		struct hlist_nulls_node skc_portaddr_node;
168 	};
169 	struct proto		*skc_prot;
170 #ifdef CONFIG_NET_NS
171 	struct net	 	*skc_net;
172 #endif
173 	/*
174 	 * fields between dontcopy_begin/dontcopy_end
175 	 * are not copied in sock_copy()
176 	 */
177 	/* private: */
178 	int			skc_dontcopy_begin[0];
179 	/* public: */
180 	union {
181 		struct hlist_node	skc_node;
182 		struct hlist_nulls_node skc_nulls_node;
183 	};
184 	int			skc_tx_queue_mapping;
185 	atomic_t		skc_refcnt;
186 	/* private: */
187 	int                     skc_dontcopy_end[0];
188 	/* public: */
189 };
190 
191 struct cg_proto;
192 /**
193   *	struct sock - network layer representation of sockets
194   *	@__sk_common: shared layout with inet_timewait_sock
195   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
196   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
197   *	@sk_lock:	synchronizer
198   *	@sk_rcvbuf: size of receive buffer in bytes
199   *	@sk_wq: sock wait queue and async head
200   *	@sk_dst_cache: destination cache
201   *	@sk_dst_lock: destination cache lock
202   *	@sk_policy: flow policy
203   *	@sk_receive_queue: incoming packets
204   *	@sk_wmem_alloc: transmit queue bytes committed
205   *	@sk_write_queue: Packet sending queue
206   *	@sk_async_wait_queue: DMA copied packets
207   *	@sk_omem_alloc: "o" is "option" or "other"
208   *	@sk_wmem_queued: persistent queue size
209   *	@sk_forward_alloc: space allocated forward
210   *	@sk_allocation: allocation mode
211   *	@sk_sndbuf: size of send buffer in bytes
212   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
213   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
214   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
215   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
216   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
217   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
218   *	@sk_gso_max_size: Maximum GSO segment size to build
219   *	@sk_lingertime: %SO_LINGER l_linger setting
220   *	@sk_backlog: always used with the per-socket spinlock held
221   *	@sk_callback_lock: used with the callbacks in the end of this struct
222   *	@sk_error_queue: rarely used
223   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
224   *			  IPV6_ADDRFORM for instance)
225   *	@sk_err: last error
226   *	@sk_err_soft: errors that don't cause failure but are the cause of a
227   *		      persistent failure not just 'timed out'
228   *	@sk_drops: raw/udp drops counter
229   *	@sk_ack_backlog: current listen backlog
230   *	@sk_max_ack_backlog: listen backlog set in listen()
231   *	@sk_priority: %SO_PRIORITY setting
232   *	@sk_cgrp_prioidx: socket group's priority map index
233   *	@sk_type: socket type (%SOCK_STREAM, etc)
234   *	@sk_protocol: which protocol this socket belongs in this network family
235   *	@sk_peer_pid: &struct pid for this socket's peer
236   *	@sk_peer_cred: %SO_PEERCRED setting
237   *	@sk_rcvlowat: %SO_RCVLOWAT setting
238   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
239   *	@sk_sndtimeo: %SO_SNDTIMEO setting
240   *	@sk_rxhash: flow hash received from netif layer
241   *	@sk_filter: socket filtering instructions
242   *	@sk_protinfo: private area, net family specific, when not using slab
243   *	@sk_timer: sock cleanup timer
244   *	@sk_stamp: time stamp of last packet received
245   *	@sk_socket: Identd and reporting IO signals
246   *	@sk_user_data: RPC layer private data
247   *	@sk_sndmsg_page: cached page for sendmsg
248   *	@sk_sndmsg_off: cached offset for sendmsg
249   *	@sk_send_head: front of stuff to transmit
250   *	@sk_security: used by security modules
251   *	@sk_mark: generic packet mark
252   *	@sk_classid: this socket's cgroup classid
253   *	@sk_cgrp: this socket's cgroup-specific proto data
254   *	@sk_write_pending: a write to stream socket waits to start
255   *	@sk_state_change: callback to indicate change in the state of the sock
256   *	@sk_data_ready: callback to indicate there is data to be processed
257   *	@sk_write_space: callback to indicate there is bf sending space available
258   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
259   *	@sk_backlog_rcv: callback to process the backlog
260   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
261  */
262 struct sock {
263 	/*
264 	 * Now struct inet_timewait_sock also uses sock_common, so please just
265 	 * don't add nothing before this first member (__sk_common) --acme
266 	 */
267 	struct sock_common	__sk_common;
268 #define sk_node			__sk_common.skc_node
269 #define sk_nulls_node		__sk_common.skc_nulls_node
270 #define sk_refcnt		__sk_common.skc_refcnt
271 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
272 
273 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
274 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
275 #define sk_hash			__sk_common.skc_hash
276 #define sk_family		__sk_common.skc_family
277 #define sk_state		__sk_common.skc_state
278 #define sk_reuse		__sk_common.skc_reuse
279 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
280 #define sk_bind_node		__sk_common.skc_bind_node
281 #define sk_prot			__sk_common.skc_prot
282 #define sk_net			__sk_common.skc_net
283 	socket_lock_t		sk_lock;
284 	struct sk_buff_head	sk_receive_queue;
285 	/*
286 	 * The backlog queue is special, it is always used with
287 	 * the per-socket spinlock held and requires low latency
288 	 * access. Therefore we special case it's implementation.
289 	 * Note : rmem_alloc is in this structure to fill a hole
290 	 * on 64bit arches, not because its logically part of
291 	 * backlog.
292 	 */
293 	struct {
294 		atomic_t	rmem_alloc;
295 		int		len;
296 		struct sk_buff	*head;
297 		struct sk_buff	*tail;
298 	} sk_backlog;
299 #define sk_rmem_alloc sk_backlog.rmem_alloc
300 	int			sk_forward_alloc;
301 #ifdef CONFIG_RPS
302 	__u32			sk_rxhash;
303 #endif
304 	atomic_t		sk_drops;
305 	int			sk_rcvbuf;
306 
307 	struct sk_filter __rcu	*sk_filter;
308 	struct socket_wq __rcu	*sk_wq;
309 
310 #ifdef CONFIG_NET_DMA
311 	struct sk_buff_head	sk_async_wait_queue;
312 #endif
313 
314 #ifdef CONFIG_XFRM
315 	struct xfrm_policy	*sk_policy[2];
316 #endif
317 	unsigned long 		sk_flags;
318 	struct dst_entry	*sk_dst_cache;
319 	spinlock_t		sk_dst_lock;
320 	atomic_t		sk_wmem_alloc;
321 	atomic_t		sk_omem_alloc;
322 	int			sk_sndbuf;
323 	struct sk_buff_head	sk_write_queue;
324 	kmemcheck_bitfield_begin(flags);
325 	unsigned int		sk_shutdown  : 2,
326 				sk_no_check  : 2,
327 				sk_userlocks : 4,
328 				sk_protocol  : 8,
329 				sk_type      : 16;
330 	kmemcheck_bitfield_end(flags);
331 	int			sk_wmem_queued;
332 	gfp_t			sk_allocation;
333 	netdev_features_t	sk_route_caps;
334 	netdev_features_t	sk_route_nocaps;
335 	int			sk_gso_type;
336 	unsigned int		sk_gso_max_size;
337 	int			sk_rcvlowat;
338 	unsigned long	        sk_lingertime;
339 	struct sk_buff_head	sk_error_queue;
340 	struct proto		*sk_prot_creator;
341 	rwlock_t		sk_callback_lock;
342 	int			sk_err,
343 				sk_err_soft;
344 	unsigned short		sk_ack_backlog;
345 	unsigned short		sk_max_ack_backlog;
346 	__u32			sk_priority;
347 #ifdef CONFIG_CGROUPS
348 	__u32			sk_cgrp_prioidx;
349 #endif
350 	struct pid		*sk_peer_pid;
351 	const struct cred	*sk_peer_cred;
352 	long			sk_rcvtimeo;
353 	long			sk_sndtimeo;
354 	void			*sk_protinfo;
355 	struct timer_list	sk_timer;
356 	ktime_t			sk_stamp;
357 	struct socket		*sk_socket;
358 	void			*sk_user_data;
359 	struct page		*sk_sndmsg_page;
360 	struct sk_buff		*sk_send_head;
361 	__u32			sk_sndmsg_off;
362 	__s32			sk_peek_off;
363 	int			sk_write_pending;
364 #ifdef CONFIG_SECURITY
365 	void			*sk_security;
366 #endif
367 	__u32			sk_mark;
368 	u32			sk_classid;
369 	struct cg_proto		*sk_cgrp;
370 	void			(*sk_state_change)(struct sock *sk);
371 	void			(*sk_data_ready)(struct sock *sk, int bytes);
372 	void			(*sk_write_space)(struct sock *sk);
373 	void			(*sk_error_report)(struct sock *sk);
374   	int			(*sk_backlog_rcv)(struct sock *sk,
375 						  struct sk_buff *skb);
376 	void                    (*sk_destruct)(struct sock *sk);
377 };
378 
379 static inline int sk_peek_offset(struct sock *sk, int flags)
380 {
381 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
382 		return sk->sk_peek_off;
383 	else
384 		return 0;
385 }
386 
387 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
388 {
389 	if (sk->sk_peek_off >= 0) {
390 		if (sk->sk_peek_off >= val)
391 			sk->sk_peek_off -= val;
392 		else
393 			sk->sk_peek_off = 0;
394 	}
395 }
396 
397 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
398 {
399 	if (sk->sk_peek_off >= 0)
400 		sk->sk_peek_off += val;
401 }
402 
403 /*
404  * Hashed lists helper routines
405  */
406 static inline struct sock *sk_entry(const struct hlist_node *node)
407 {
408 	return hlist_entry(node, struct sock, sk_node);
409 }
410 
411 static inline struct sock *__sk_head(const struct hlist_head *head)
412 {
413 	return hlist_entry(head->first, struct sock, sk_node);
414 }
415 
416 static inline struct sock *sk_head(const struct hlist_head *head)
417 {
418 	return hlist_empty(head) ? NULL : __sk_head(head);
419 }
420 
421 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
422 {
423 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
424 }
425 
426 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
427 {
428 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
429 }
430 
431 static inline struct sock *sk_next(const struct sock *sk)
432 {
433 	return sk->sk_node.next ?
434 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
435 }
436 
437 static inline struct sock *sk_nulls_next(const struct sock *sk)
438 {
439 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
440 		hlist_nulls_entry(sk->sk_nulls_node.next,
441 				  struct sock, sk_nulls_node) :
442 		NULL;
443 }
444 
445 static inline int sk_unhashed(const struct sock *sk)
446 {
447 	return hlist_unhashed(&sk->sk_node);
448 }
449 
450 static inline int sk_hashed(const struct sock *sk)
451 {
452 	return !sk_unhashed(sk);
453 }
454 
455 static __inline__ void sk_node_init(struct hlist_node *node)
456 {
457 	node->pprev = NULL;
458 }
459 
460 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
461 {
462 	node->pprev = NULL;
463 }
464 
465 static __inline__ void __sk_del_node(struct sock *sk)
466 {
467 	__hlist_del(&sk->sk_node);
468 }
469 
470 /* NB: equivalent to hlist_del_init_rcu */
471 static __inline__ int __sk_del_node_init(struct sock *sk)
472 {
473 	if (sk_hashed(sk)) {
474 		__sk_del_node(sk);
475 		sk_node_init(&sk->sk_node);
476 		return 1;
477 	}
478 	return 0;
479 }
480 
481 /* Grab socket reference count. This operation is valid only
482    when sk is ALREADY grabbed f.e. it is found in hash table
483    or a list and the lookup is made under lock preventing hash table
484    modifications.
485  */
486 
487 static inline void sock_hold(struct sock *sk)
488 {
489 	atomic_inc(&sk->sk_refcnt);
490 }
491 
492 /* Ungrab socket in the context, which assumes that socket refcnt
493    cannot hit zero, f.e. it is true in context of any socketcall.
494  */
495 static inline void __sock_put(struct sock *sk)
496 {
497 	atomic_dec(&sk->sk_refcnt);
498 }
499 
500 static __inline__ int sk_del_node_init(struct sock *sk)
501 {
502 	int rc = __sk_del_node_init(sk);
503 
504 	if (rc) {
505 		/* paranoid for a while -acme */
506 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
507 		__sock_put(sk);
508 	}
509 	return rc;
510 }
511 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
512 
513 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
514 {
515 	if (sk_hashed(sk)) {
516 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
517 		return 1;
518 	}
519 	return 0;
520 }
521 
522 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
523 {
524 	int rc = __sk_nulls_del_node_init_rcu(sk);
525 
526 	if (rc) {
527 		/* paranoid for a while -acme */
528 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
529 		__sock_put(sk);
530 	}
531 	return rc;
532 }
533 
534 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
535 {
536 	hlist_add_head(&sk->sk_node, list);
537 }
538 
539 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
540 {
541 	sock_hold(sk);
542 	__sk_add_node(sk, list);
543 }
544 
545 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
546 {
547 	sock_hold(sk);
548 	hlist_add_head_rcu(&sk->sk_node, list);
549 }
550 
551 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
552 {
553 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
554 }
555 
556 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
557 {
558 	sock_hold(sk);
559 	__sk_nulls_add_node_rcu(sk, list);
560 }
561 
562 static __inline__ void __sk_del_bind_node(struct sock *sk)
563 {
564 	__hlist_del(&sk->sk_bind_node);
565 }
566 
567 static __inline__ void sk_add_bind_node(struct sock *sk,
568 					struct hlist_head *list)
569 {
570 	hlist_add_head(&sk->sk_bind_node, list);
571 }
572 
573 #define sk_for_each(__sk, node, list) \
574 	hlist_for_each_entry(__sk, node, list, sk_node)
575 #define sk_for_each_rcu(__sk, node, list) \
576 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
577 #define sk_nulls_for_each(__sk, node, list) \
578 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
579 #define sk_nulls_for_each_rcu(__sk, node, list) \
580 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
581 #define sk_for_each_from(__sk, node) \
582 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
583 		hlist_for_each_entry_from(__sk, node, sk_node)
584 #define sk_nulls_for_each_from(__sk, node) \
585 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
586 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
587 #define sk_for_each_safe(__sk, node, tmp, list) \
588 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
589 #define sk_for_each_bound(__sk, node, list) \
590 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
591 
592 /* Sock flags */
593 enum sock_flags {
594 	SOCK_DEAD,
595 	SOCK_DONE,
596 	SOCK_URGINLINE,
597 	SOCK_KEEPOPEN,
598 	SOCK_LINGER,
599 	SOCK_DESTROY,
600 	SOCK_BROADCAST,
601 	SOCK_TIMESTAMP,
602 	SOCK_ZAPPED,
603 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
604 	SOCK_DBG, /* %SO_DEBUG setting */
605 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
606 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
607 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
608 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
609 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
610 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
611 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
612 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
613 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
614 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
615 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
616 	SOCK_FASYNC, /* fasync() active */
617 	SOCK_RXQ_OVFL,
618 	SOCK_ZEROCOPY, /* buffers from userspace */
619 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
620 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
621 		     * Will use last 4 bytes of packet sent from
622 		     * user-space instead.
623 		     */
624 };
625 
626 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
627 {
628 	nsk->sk_flags = osk->sk_flags;
629 }
630 
631 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
632 {
633 	__set_bit(flag, &sk->sk_flags);
634 }
635 
636 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
637 {
638 	__clear_bit(flag, &sk->sk_flags);
639 }
640 
641 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
642 {
643 	return test_bit(flag, &sk->sk_flags);
644 }
645 
646 static inline void sk_acceptq_removed(struct sock *sk)
647 {
648 	sk->sk_ack_backlog--;
649 }
650 
651 static inline void sk_acceptq_added(struct sock *sk)
652 {
653 	sk->sk_ack_backlog++;
654 }
655 
656 static inline int sk_acceptq_is_full(struct sock *sk)
657 {
658 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
659 }
660 
661 /*
662  * Compute minimal free write space needed to queue new packets.
663  */
664 static inline int sk_stream_min_wspace(struct sock *sk)
665 {
666 	return sk->sk_wmem_queued >> 1;
667 }
668 
669 static inline int sk_stream_wspace(struct sock *sk)
670 {
671 	return sk->sk_sndbuf - sk->sk_wmem_queued;
672 }
673 
674 extern void sk_stream_write_space(struct sock *sk);
675 
676 static inline int sk_stream_memory_free(struct sock *sk)
677 {
678 	return sk->sk_wmem_queued < sk->sk_sndbuf;
679 }
680 
681 /* OOB backlog add */
682 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
683 {
684 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
685 	skb_dst_force(skb);
686 
687 	if (!sk->sk_backlog.tail)
688 		sk->sk_backlog.head = skb;
689 	else
690 		sk->sk_backlog.tail->next = skb;
691 
692 	sk->sk_backlog.tail = skb;
693 	skb->next = NULL;
694 }
695 
696 /*
697  * Take into account size of receive queue and backlog queue
698  * Do not take into account this skb truesize,
699  * to allow even a single big packet to come.
700  */
701 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
702 {
703 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
704 
705 	return qsize > sk->sk_rcvbuf;
706 }
707 
708 /* The per-socket spinlock must be held here. */
709 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
710 {
711 	if (sk_rcvqueues_full(sk, skb))
712 		return -ENOBUFS;
713 
714 	__sk_add_backlog(sk, skb);
715 	sk->sk_backlog.len += skb->truesize;
716 	return 0;
717 }
718 
719 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
720 {
721 	return sk->sk_backlog_rcv(sk, skb);
722 }
723 
724 static inline void sock_rps_record_flow(const struct sock *sk)
725 {
726 #ifdef CONFIG_RPS
727 	struct rps_sock_flow_table *sock_flow_table;
728 
729 	rcu_read_lock();
730 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
731 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
732 	rcu_read_unlock();
733 #endif
734 }
735 
736 static inline void sock_rps_reset_flow(const struct sock *sk)
737 {
738 #ifdef CONFIG_RPS
739 	struct rps_sock_flow_table *sock_flow_table;
740 
741 	rcu_read_lock();
742 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
743 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
744 	rcu_read_unlock();
745 #endif
746 }
747 
748 static inline void sock_rps_save_rxhash(struct sock *sk,
749 					const struct sk_buff *skb)
750 {
751 #ifdef CONFIG_RPS
752 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
753 		sock_rps_reset_flow(sk);
754 		sk->sk_rxhash = skb->rxhash;
755 	}
756 #endif
757 }
758 
759 static inline void sock_rps_reset_rxhash(struct sock *sk)
760 {
761 #ifdef CONFIG_RPS
762 	sock_rps_reset_flow(sk);
763 	sk->sk_rxhash = 0;
764 #endif
765 }
766 
767 #define sk_wait_event(__sk, __timeo, __condition)			\
768 	({	int __rc;						\
769 		release_sock(__sk);					\
770 		__rc = __condition;					\
771 		if (!__rc) {						\
772 			*(__timeo) = schedule_timeout(*(__timeo));	\
773 		}							\
774 		lock_sock(__sk);					\
775 		__rc = __condition;					\
776 		__rc;							\
777 	})
778 
779 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
780 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
781 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
782 extern int sk_stream_error(struct sock *sk, int flags, int err);
783 extern void sk_stream_kill_queues(struct sock *sk);
784 
785 extern int sk_wait_data(struct sock *sk, long *timeo);
786 
787 struct request_sock_ops;
788 struct timewait_sock_ops;
789 struct inet_hashinfo;
790 struct raw_hashinfo;
791 struct module;
792 
793 /* Networking protocol blocks we attach to sockets.
794  * socket layer -> transport layer interface
795  * transport -> network interface is defined by struct inet_proto
796  */
797 struct proto {
798 	void			(*close)(struct sock *sk,
799 					long timeout);
800 	int			(*connect)(struct sock *sk,
801 				        struct sockaddr *uaddr,
802 					int addr_len);
803 	int			(*disconnect)(struct sock *sk, int flags);
804 
805 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
806 
807 	int			(*ioctl)(struct sock *sk, int cmd,
808 					 unsigned long arg);
809 	int			(*init)(struct sock *sk);
810 	void			(*destroy)(struct sock *sk);
811 	void			(*shutdown)(struct sock *sk, int how);
812 	int			(*setsockopt)(struct sock *sk, int level,
813 					int optname, char __user *optval,
814 					unsigned int optlen);
815 	int			(*getsockopt)(struct sock *sk, int level,
816 					int optname, char __user *optval,
817 					int __user *option);
818 #ifdef CONFIG_COMPAT
819 	int			(*compat_setsockopt)(struct sock *sk,
820 					int level,
821 					int optname, char __user *optval,
822 					unsigned int optlen);
823 	int			(*compat_getsockopt)(struct sock *sk,
824 					int level,
825 					int optname, char __user *optval,
826 					int __user *option);
827 	int			(*compat_ioctl)(struct sock *sk,
828 					unsigned int cmd, unsigned long arg);
829 #endif
830 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
831 					   struct msghdr *msg, size_t len);
832 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
833 					   struct msghdr *msg,
834 					size_t len, int noblock, int flags,
835 					int *addr_len);
836 	int			(*sendpage)(struct sock *sk, struct page *page,
837 					int offset, size_t size, int flags);
838 	int			(*bind)(struct sock *sk,
839 					struct sockaddr *uaddr, int addr_len);
840 
841 	int			(*backlog_rcv) (struct sock *sk,
842 						struct sk_buff *skb);
843 
844 	/* Keeping track of sk's, looking them up, and port selection methods. */
845 	void			(*hash)(struct sock *sk);
846 	void			(*unhash)(struct sock *sk);
847 	void			(*rehash)(struct sock *sk);
848 	int			(*get_port)(struct sock *sk, unsigned short snum);
849 	void			(*clear_sk)(struct sock *sk, int size);
850 
851 	/* Keeping track of sockets in use */
852 #ifdef CONFIG_PROC_FS
853 	unsigned int		inuse_idx;
854 #endif
855 
856 	/* Memory pressure */
857 	void			(*enter_memory_pressure)(struct sock *sk);
858 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
859 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
860 	/*
861 	 * Pressure flag: try to collapse.
862 	 * Technical note: it is used by multiple contexts non atomically.
863 	 * All the __sk_mem_schedule() is of this nature: accounting
864 	 * is strict, actions are advisory and have some latency.
865 	 */
866 	int			*memory_pressure;
867 	long			*sysctl_mem;
868 	int			*sysctl_wmem;
869 	int			*sysctl_rmem;
870 	int			max_header;
871 	bool			no_autobind;
872 
873 	struct kmem_cache	*slab;
874 	unsigned int		obj_size;
875 	int			slab_flags;
876 
877 	struct percpu_counter	*orphan_count;
878 
879 	struct request_sock_ops	*rsk_prot;
880 	struct timewait_sock_ops *twsk_prot;
881 
882 	union {
883 		struct inet_hashinfo	*hashinfo;
884 		struct udp_table	*udp_table;
885 		struct raw_hashinfo	*raw_hash;
886 	} h;
887 
888 	struct module		*owner;
889 
890 	char			name[32];
891 
892 	struct list_head	node;
893 #ifdef SOCK_REFCNT_DEBUG
894 	atomic_t		socks;
895 #endif
896 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
897 	/*
898 	 * cgroup specific init/deinit functions. Called once for all
899 	 * protocols that implement it, from cgroups populate function.
900 	 * This function has to setup any files the protocol want to
901 	 * appear in the kmem cgroup filesystem.
902 	 */
903 	int			(*init_cgroup)(struct cgroup *cgrp,
904 					       struct cgroup_subsys *ss);
905 	void			(*destroy_cgroup)(struct cgroup *cgrp);
906 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
907 #endif
908 };
909 
910 struct cg_proto {
911 	void			(*enter_memory_pressure)(struct sock *sk);
912 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
913 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
914 	int			*memory_pressure;
915 	long			*sysctl_mem;
916 	/*
917 	 * memcg field is used to find which memcg we belong directly
918 	 * Each memcg struct can hold more than one cg_proto, so container_of
919 	 * won't really cut.
920 	 *
921 	 * The elegant solution would be having an inverse function to
922 	 * proto_cgroup in struct proto, but that means polluting the structure
923 	 * for everybody, instead of just for memcg users.
924 	 */
925 	struct mem_cgroup	*memcg;
926 };
927 
928 extern int proto_register(struct proto *prot, int alloc_slab);
929 extern void proto_unregister(struct proto *prot);
930 
931 #ifdef SOCK_REFCNT_DEBUG
932 static inline void sk_refcnt_debug_inc(struct sock *sk)
933 {
934 	atomic_inc(&sk->sk_prot->socks);
935 }
936 
937 static inline void sk_refcnt_debug_dec(struct sock *sk)
938 {
939 	atomic_dec(&sk->sk_prot->socks);
940 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
941 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
942 }
943 
944 inline void sk_refcnt_debug_release(const struct sock *sk)
945 {
946 	if (atomic_read(&sk->sk_refcnt) != 1)
947 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
948 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
949 }
950 #else /* SOCK_REFCNT_DEBUG */
951 #define sk_refcnt_debug_inc(sk) do { } while (0)
952 #define sk_refcnt_debug_dec(sk) do { } while (0)
953 #define sk_refcnt_debug_release(sk) do { } while (0)
954 #endif /* SOCK_REFCNT_DEBUG */
955 
956 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
957 extern struct static_key memcg_socket_limit_enabled;
958 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
959 					       struct cg_proto *cg_proto)
960 {
961 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
962 }
963 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
964 #else
965 #define mem_cgroup_sockets_enabled 0
966 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
967 					       struct cg_proto *cg_proto)
968 {
969 	return NULL;
970 }
971 #endif
972 
973 
974 static inline bool sk_has_memory_pressure(const struct sock *sk)
975 {
976 	return sk->sk_prot->memory_pressure != NULL;
977 }
978 
979 static inline bool sk_under_memory_pressure(const struct sock *sk)
980 {
981 	if (!sk->sk_prot->memory_pressure)
982 		return false;
983 
984 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
985 		return !!*sk->sk_cgrp->memory_pressure;
986 
987 	return !!*sk->sk_prot->memory_pressure;
988 }
989 
990 static inline void sk_leave_memory_pressure(struct sock *sk)
991 {
992 	int *memory_pressure = sk->sk_prot->memory_pressure;
993 
994 	if (!memory_pressure)
995 		return;
996 
997 	if (*memory_pressure)
998 		*memory_pressure = 0;
999 
1000 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1001 		struct cg_proto *cg_proto = sk->sk_cgrp;
1002 		struct proto *prot = sk->sk_prot;
1003 
1004 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1005 			if (*cg_proto->memory_pressure)
1006 				*cg_proto->memory_pressure = 0;
1007 	}
1008 
1009 }
1010 
1011 static inline void sk_enter_memory_pressure(struct sock *sk)
1012 {
1013 	if (!sk->sk_prot->enter_memory_pressure)
1014 		return;
1015 
1016 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1017 		struct cg_proto *cg_proto = sk->sk_cgrp;
1018 		struct proto *prot = sk->sk_prot;
1019 
1020 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1021 			cg_proto->enter_memory_pressure(sk);
1022 	}
1023 
1024 	sk->sk_prot->enter_memory_pressure(sk);
1025 }
1026 
1027 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1028 {
1029 	long *prot = sk->sk_prot->sysctl_mem;
1030 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1031 		prot = sk->sk_cgrp->sysctl_mem;
1032 	return prot[index];
1033 }
1034 
1035 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1036 					      unsigned long amt,
1037 					      int *parent_status)
1038 {
1039 	struct res_counter *fail;
1040 	int ret;
1041 
1042 	ret = res_counter_charge_nofail(prot->memory_allocated,
1043 					amt << PAGE_SHIFT, &fail);
1044 	if (ret < 0)
1045 		*parent_status = OVER_LIMIT;
1046 }
1047 
1048 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1049 					      unsigned long amt)
1050 {
1051 	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1052 }
1053 
1054 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1055 {
1056 	u64 ret;
1057 	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1058 	return ret >> PAGE_SHIFT;
1059 }
1060 
1061 static inline long
1062 sk_memory_allocated(const struct sock *sk)
1063 {
1064 	struct proto *prot = sk->sk_prot;
1065 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1066 		return memcg_memory_allocated_read(sk->sk_cgrp);
1067 
1068 	return atomic_long_read(prot->memory_allocated);
1069 }
1070 
1071 static inline long
1072 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1073 {
1074 	struct proto *prot = sk->sk_prot;
1075 
1076 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1077 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1078 		/* update the root cgroup regardless */
1079 		atomic_long_add_return(amt, prot->memory_allocated);
1080 		return memcg_memory_allocated_read(sk->sk_cgrp);
1081 	}
1082 
1083 	return atomic_long_add_return(amt, prot->memory_allocated);
1084 }
1085 
1086 static inline void
1087 sk_memory_allocated_sub(struct sock *sk, int amt)
1088 {
1089 	struct proto *prot = sk->sk_prot;
1090 
1091 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1092 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1093 
1094 	atomic_long_sub(amt, prot->memory_allocated);
1095 }
1096 
1097 static inline void sk_sockets_allocated_dec(struct sock *sk)
1098 {
1099 	struct proto *prot = sk->sk_prot;
1100 
1101 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1102 		struct cg_proto *cg_proto = sk->sk_cgrp;
1103 
1104 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1105 			percpu_counter_dec(cg_proto->sockets_allocated);
1106 	}
1107 
1108 	percpu_counter_dec(prot->sockets_allocated);
1109 }
1110 
1111 static inline void sk_sockets_allocated_inc(struct sock *sk)
1112 {
1113 	struct proto *prot = sk->sk_prot;
1114 
1115 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1116 		struct cg_proto *cg_proto = sk->sk_cgrp;
1117 
1118 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1119 			percpu_counter_inc(cg_proto->sockets_allocated);
1120 	}
1121 
1122 	percpu_counter_inc(prot->sockets_allocated);
1123 }
1124 
1125 static inline int
1126 sk_sockets_allocated_read_positive(struct sock *sk)
1127 {
1128 	struct proto *prot = sk->sk_prot;
1129 
1130 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1131 		return percpu_counter_sum_positive(sk->sk_cgrp->sockets_allocated);
1132 
1133 	return percpu_counter_sum_positive(prot->sockets_allocated);
1134 }
1135 
1136 static inline int
1137 proto_sockets_allocated_sum_positive(struct proto *prot)
1138 {
1139 	return percpu_counter_sum_positive(prot->sockets_allocated);
1140 }
1141 
1142 static inline long
1143 proto_memory_allocated(struct proto *prot)
1144 {
1145 	return atomic_long_read(prot->memory_allocated);
1146 }
1147 
1148 static inline bool
1149 proto_memory_pressure(struct proto *prot)
1150 {
1151 	if (!prot->memory_pressure)
1152 		return false;
1153 	return !!*prot->memory_pressure;
1154 }
1155 
1156 
1157 #ifdef CONFIG_PROC_FS
1158 /* Called with local bh disabled */
1159 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1160 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1161 #else
1162 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
1163 		int inc)
1164 {
1165 }
1166 #endif
1167 
1168 
1169 /* With per-bucket locks this operation is not-atomic, so that
1170  * this version is not worse.
1171  */
1172 static inline void __sk_prot_rehash(struct sock *sk)
1173 {
1174 	sk->sk_prot->unhash(sk);
1175 	sk->sk_prot->hash(sk);
1176 }
1177 
1178 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1179 
1180 /* About 10 seconds */
1181 #define SOCK_DESTROY_TIME (10*HZ)
1182 
1183 /* Sockets 0-1023 can't be bound to unless you are superuser */
1184 #define PROT_SOCK	1024
1185 
1186 #define SHUTDOWN_MASK	3
1187 #define RCV_SHUTDOWN	1
1188 #define SEND_SHUTDOWN	2
1189 
1190 #define SOCK_SNDBUF_LOCK	1
1191 #define SOCK_RCVBUF_LOCK	2
1192 #define SOCK_BINDADDR_LOCK	4
1193 #define SOCK_BINDPORT_LOCK	8
1194 
1195 /* sock_iocb: used to kick off async processing of socket ios */
1196 struct sock_iocb {
1197 	struct list_head	list;
1198 
1199 	int			flags;
1200 	int			size;
1201 	struct socket		*sock;
1202 	struct sock		*sk;
1203 	struct scm_cookie	*scm;
1204 	struct msghdr		*msg, async_msg;
1205 	struct kiocb		*kiocb;
1206 };
1207 
1208 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1209 {
1210 	return (struct sock_iocb *)iocb->private;
1211 }
1212 
1213 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1214 {
1215 	return si->kiocb;
1216 }
1217 
1218 struct socket_alloc {
1219 	struct socket socket;
1220 	struct inode vfs_inode;
1221 };
1222 
1223 static inline struct socket *SOCKET_I(struct inode *inode)
1224 {
1225 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1226 }
1227 
1228 static inline struct inode *SOCK_INODE(struct socket *socket)
1229 {
1230 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1231 }
1232 
1233 /*
1234  * Functions for memory accounting
1235  */
1236 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1237 extern void __sk_mem_reclaim(struct sock *sk);
1238 
1239 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1240 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1241 #define SK_MEM_SEND	0
1242 #define SK_MEM_RECV	1
1243 
1244 static inline int sk_mem_pages(int amt)
1245 {
1246 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1247 }
1248 
1249 static inline int sk_has_account(struct sock *sk)
1250 {
1251 	/* return true if protocol supports memory accounting */
1252 	return !!sk->sk_prot->memory_allocated;
1253 }
1254 
1255 static inline int sk_wmem_schedule(struct sock *sk, int size)
1256 {
1257 	if (!sk_has_account(sk))
1258 		return 1;
1259 	return size <= sk->sk_forward_alloc ||
1260 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1261 }
1262 
1263 static inline int sk_rmem_schedule(struct sock *sk, int size)
1264 {
1265 	if (!sk_has_account(sk))
1266 		return 1;
1267 	return size <= sk->sk_forward_alloc ||
1268 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
1269 }
1270 
1271 static inline void sk_mem_reclaim(struct sock *sk)
1272 {
1273 	if (!sk_has_account(sk))
1274 		return;
1275 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1276 		__sk_mem_reclaim(sk);
1277 }
1278 
1279 static inline void sk_mem_reclaim_partial(struct sock *sk)
1280 {
1281 	if (!sk_has_account(sk))
1282 		return;
1283 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1284 		__sk_mem_reclaim(sk);
1285 }
1286 
1287 static inline void sk_mem_charge(struct sock *sk, int size)
1288 {
1289 	if (!sk_has_account(sk))
1290 		return;
1291 	sk->sk_forward_alloc -= size;
1292 }
1293 
1294 static inline void sk_mem_uncharge(struct sock *sk, int size)
1295 {
1296 	if (!sk_has_account(sk))
1297 		return;
1298 	sk->sk_forward_alloc += size;
1299 }
1300 
1301 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1302 {
1303 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1304 	sk->sk_wmem_queued -= skb->truesize;
1305 	sk_mem_uncharge(sk, skb->truesize);
1306 	__kfree_skb(skb);
1307 }
1308 
1309 /* Used by processes to "lock" a socket state, so that
1310  * interrupts and bottom half handlers won't change it
1311  * from under us. It essentially blocks any incoming
1312  * packets, so that we won't get any new data or any
1313  * packets that change the state of the socket.
1314  *
1315  * While locked, BH processing will add new packets to
1316  * the backlog queue.  This queue is processed by the
1317  * owner of the socket lock right before it is released.
1318  *
1319  * Since ~2.3.5 it is also exclusive sleep lock serializing
1320  * accesses from user process context.
1321  */
1322 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1323 
1324 /*
1325  * Macro so as to not evaluate some arguments when
1326  * lockdep is not enabled.
1327  *
1328  * Mark both the sk_lock and the sk_lock.slock as a
1329  * per-address-family lock class.
1330  */
1331 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1332 do {									\
1333 	sk->sk_lock.owned = 0;						\
1334 	init_waitqueue_head(&sk->sk_lock.wq);				\
1335 	spin_lock_init(&(sk)->sk_lock.slock);				\
1336 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1337 			sizeof((sk)->sk_lock));				\
1338 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1339 		       	(skey), (sname));				\
1340 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1341 } while (0)
1342 
1343 extern void lock_sock_nested(struct sock *sk, int subclass);
1344 
1345 static inline void lock_sock(struct sock *sk)
1346 {
1347 	lock_sock_nested(sk, 0);
1348 }
1349 
1350 extern void release_sock(struct sock *sk);
1351 
1352 /* BH context may only use the following locking interface. */
1353 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1354 #define bh_lock_sock_nested(__sk) \
1355 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1356 				SINGLE_DEPTH_NESTING)
1357 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1358 
1359 extern bool lock_sock_fast(struct sock *sk);
1360 /**
1361  * unlock_sock_fast - complement of lock_sock_fast
1362  * @sk: socket
1363  * @slow: slow mode
1364  *
1365  * fast unlock socket for user context.
1366  * If slow mode is on, we call regular release_sock()
1367  */
1368 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1369 {
1370 	if (slow)
1371 		release_sock(sk);
1372 	else
1373 		spin_unlock_bh(&sk->sk_lock.slock);
1374 }
1375 
1376 
1377 extern struct sock		*sk_alloc(struct net *net, int family,
1378 					  gfp_t priority,
1379 					  struct proto *prot);
1380 extern void			sk_free(struct sock *sk);
1381 extern void			sk_release_kernel(struct sock *sk);
1382 extern struct sock		*sk_clone_lock(const struct sock *sk,
1383 					       const gfp_t priority);
1384 
1385 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1386 					      unsigned long size, int force,
1387 					      gfp_t priority);
1388 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1389 					      unsigned long size, int force,
1390 					      gfp_t priority);
1391 extern void			sock_wfree(struct sk_buff *skb);
1392 extern void			sock_rfree(struct sk_buff *skb);
1393 
1394 extern int			sock_setsockopt(struct socket *sock, int level,
1395 						int op, char __user *optval,
1396 						unsigned int optlen);
1397 
1398 extern int			sock_getsockopt(struct socket *sock, int level,
1399 						int op, char __user *optval,
1400 						int __user *optlen);
1401 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1402 						     unsigned long size,
1403 						     int noblock,
1404 						     int *errcode);
1405 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1406 						      unsigned long header_len,
1407 						      unsigned long data_len,
1408 						      int noblock,
1409 						      int *errcode);
1410 extern void *sock_kmalloc(struct sock *sk, int size,
1411 			  gfp_t priority);
1412 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1413 extern void sk_send_sigurg(struct sock *sk);
1414 
1415 #ifdef CONFIG_CGROUPS
1416 extern void sock_update_classid(struct sock *sk);
1417 #else
1418 static inline void sock_update_classid(struct sock *sk)
1419 {
1420 }
1421 #endif
1422 
1423 /*
1424  * Functions to fill in entries in struct proto_ops when a protocol
1425  * does not implement a particular function.
1426  */
1427 extern int                      sock_no_bind(struct socket *,
1428 					     struct sockaddr *, int);
1429 extern int                      sock_no_connect(struct socket *,
1430 						struct sockaddr *, int, int);
1431 extern int                      sock_no_socketpair(struct socket *,
1432 						   struct socket *);
1433 extern int                      sock_no_accept(struct socket *,
1434 					       struct socket *, int);
1435 extern int                      sock_no_getname(struct socket *,
1436 						struct sockaddr *, int *, int);
1437 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1438 					     struct poll_table_struct *);
1439 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1440 					      unsigned long);
1441 extern int			sock_no_listen(struct socket *, int);
1442 extern int                      sock_no_shutdown(struct socket *, int);
1443 extern int			sock_no_getsockopt(struct socket *, int , int,
1444 						   char __user *, int __user *);
1445 extern int			sock_no_setsockopt(struct socket *, int, int,
1446 						   char __user *, unsigned int);
1447 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1448 						struct msghdr *, size_t);
1449 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1450 						struct msghdr *, size_t, int);
1451 extern int			sock_no_mmap(struct file *file,
1452 					     struct socket *sock,
1453 					     struct vm_area_struct *vma);
1454 extern ssize_t			sock_no_sendpage(struct socket *sock,
1455 						struct page *page,
1456 						int offset, size_t size,
1457 						int flags);
1458 
1459 /*
1460  * Functions to fill in entries in struct proto_ops when a protocol
1461  * uses the inet style.
1462  */
1463 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1464 				  char __user *optval, int __user *optlen);
1465 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1466 			       struct msghdr *msg, size_t size, int flags);
1467 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1468 				  char __user *optval, unsigned int optlen);
1469 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1470 		int optname, char __user *optval, int __user *optlen);
1471 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1472 		int optname, char __user *optval, unsigned int optlen);
1473 
1474 extern void sk_common_release(struct sock *sk);
1475 
1476 /*
1477  *	Default socket callbacks and setup code
1478  */
1479 
1480 /* Initialise core socket variables */
1481 extern void sock_init_data(struct socket *sock, struct sock *sk);
1482 
1483 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1484 
1485 /**
1486  *	sk_filter_release - release a socket filter
1487  *	@fp: filter to remove
1488  *
1489  *	Remove a filter from a socket and release its resources.
1490  */
1491 
1492 static inline void sk_filter_release(struct sk_filter *fp)
1493 {
1494 	if (atomic_dec_and_test(&fp->refcnt))
1495 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1496 }
1497 
1498 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1499 {
1500 	unsigned int size = sk_filter_len(fp);
1501 
1502 	atomic_sub(size, &sk->sk_omem_alloc);
1503 	sk_filter_release(fp);
1504 }
1505 
1506 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1507 {
1508 	atomic_inc(&fp->refcnt);
1509 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1510 }
1511 
1512 /*
1513  * Socket reference counting postulates.
1514  *
1515  * * Each user of socket SHOULD hold a reference count.
1516  * * Each access point to socket (an hash table bucket, reference from a list,
1517  *   running timer, skb in flight MUST hold a reference count.
1518  * * When reference count hits 0, it means it will never increase back.
1519  * * When reference count hits 0, it means that no references from
1520  *   outside exist to this socket and current process on current CPU
1521  *   is last user and may/should destroy this socket.
1522  * * sk_free is called from any context: process, BH, IRQ. When
1523  *   it is called, socket has no references from outside -> sk_free
1524  *   may release descendant resources allocated by the socket, but
1525  *   to the time when it is called, socket is NOT referenced by any
1526  *   hash tables, lists etc.
1527  * * Packets, delivered from outside (from network or from another process)
1528  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1529  *   when they sit in queue. Otherwise, packets will leak to hole, when
1530  *   socket is looked up by one cpu and unhasing is made by another CPU.
1531  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1532  *   (leak to backlog). Packet socket does all the processing inside
1533  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1534  *   use separate SMP lock, so that they are prone too.
1535  */
1536 
1537 /* Ungrab socket and destroy it, if it was the last reference. */
1538 static inline void sock_put(struct sock *sk)
1539 {
1540 	if (atomic_dec_and_test(&sk->sk_refcnt))
1541 		sk_free(sk);
1542 }
1543 
1544 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1545 			  const int nested);
1546 
1547 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1548 {
1549 	sk->sk_tx_queue_mapping = tx_queue;
1550 }
1551 
1552 static inline void sk_tx_queue_clear(struct sock *sk)
1553 {
1554 	sk->sk_tx_queue_mapping = -1;
1555 }
1556 
1557 static inline int sk_tx_queue_get(const struct sock *sk)
1558 {
1559 	return sk ? sk->sk_tx_queue_mapping : -1;
1560 }
1561 
1562 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1563 {
1564 	sk_tx_queue_clear(sk);
1565 	sk->sk_socket = sock;
1566 }
1567 
1568 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1569 {
1570 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1571 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1572 }
1573 /* Detach socket from process context.
1574  * Announce socket dead, detach it from wait queue and inode.
1575  * Note that parent inode held reference count on this struct sock,
1576  * we do not release it in this function, because protocol
1577  * probably wants some additional cleanups or even continuing
1578  * to work with this socket (TCP).
1579  */
1580 static inline void sock_orphan(struct sock *sk)
1581 {
1582 	write_lock_bh(&sk->sk_callback_lock);
1583 	sock_set_flag(sk, SOCK_DEAD);
1584 	sk_set_socket(sk, NULL);
1585 	sk->sk_wq  = NULL;
1586 	write_unlock_bh(&sk->sk_callback_lock);
1587 }
1588 
1589 static inline void sock_graft(struct sock *sk, struct socket *parent)
1590 {
1591 	write_lock_bh(&sk->sk_callback_lock);
1592 	sk->sk_wq = parent->wq;
1593 	parent->sk = sk;
1594 	sk_set_socket(sk, parent);
1595 	security_sock_graft(sk, parent);
1596 	write_unlock_bh(&sk->sk_callback_lock);
1597 }
1598 
1599 extern int sock_i_uid(struct sock *sk);
1600 extern unsigned long sock_i_ino(struct sock *sk);
1601 
1602 static inline struct dst_entry *
1603 __sk_dst_get(struct sock *sk)
1604 {
1605 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1606 						       lockdep_is_held(&sk->sk_lock.slock));
1607 }
1608 
1609 static inline struct dst_entry *
1610 sk_dst_get(struct sock *sk)
1611 {
1612 	struct dst_entry *dst;
1613 
1614 	rcu_read_lock();
1615 	dst = rcu_dereference(sk->sk_dst_cache);
1616 	if (dst)
1617 		dst_hold(dst);
1618 	rcu_read_unlock();
1619 	return dst;
1620 }
1621 
1622 extern void sk_reset_txq(struct sock *sk);
1623 
1624 static inline void dst_negative_advice(struct sock *sk)
1625 {
1626 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1627 
1628 	if (dst && dst->ops->negative_advice) {
1629 		ndst = dst->ops->negative_advice(dst);
1630 
1631 		if (ndst != dst) {
1632 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1633 			sk_reset_txq(sk);
1634 		}
1635 	}
1636 }
1637 
1638 static inline void
1639 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1640 {
1641 	struct dst_entry *old_dst;
1642 
1643 	sk_tx_queue_clear(sk);
1644 	/*
1645 	 * This can be called while sk is owned by the caller only,
1646 	 * with no state that can be checked in a rcu_dereference_check() cond
1647 	 */
1648 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1649 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1650 	dst_release(old_dst);
1651 }
1652 
1653 static inline void
1654 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1655 {
1656 	spin_lock(&sk->sk_dst_lock);
1657 	__sk_dst_set(sk, dst);
1658 	spin_unlock(&sk->sk_dst_lock);
1659 }
1660 
1661 static inline void
1662 __sk_dst_reset(struct sock *sk)
1663 {
1664 	__sk_dst_set(sk, NULL);
1665 }
1666 
1667 static inline void
1668 sk_dst_reset(struct sock *sk)
1669 {
1670 	spin_lock(&sk->sk_dst_lock);
1671 	__sk_dst_reset(sk);
1672 	spin_unlock(&sk->sk_dst_lock);
1673 }
1674 
1675 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1676 
1677 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1678 
1679 static inline int sk_can_gso(const struct sock *sk)
1680 {
1681 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1682 }
1683 
1684 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1685 
1686 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1687 {
1688 	sk->sk_route_nocaps |= flags;
1689 	sk->sk_route_caps &= ~flags;
1690 }
1691 
1692 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1693 					   char __user *from, char *to,
1694 					   int copy, int offset)
1695 {
1696 	if (skb->ip_summed == CHECKSUM_NONE) {
1697 		int err = 0;
1698 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1699 		if (err)
1700 			return err;
1701 		skb->csum = csum_block_add(skb->csum, csum, offset);
1702 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1703 		if (!access_ok(VERIFY_READ, from, copy) ||
1704 		    __copy_from_user_nocache(to, from, copy))
1705 			return -EFAULT;
1706 	} else if (copy_from_user(to, from, copy))
1707 		return -EFAULT;
1708 
1709 	return 0;
1710 }
1711 
1712 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1713 				       char __user *from, int copy)
1714 {
1715 	int err, offset = skb->len;
1716 
1717 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1718 				       copy, offset);
1719 	if (err)
1720 		__skb_trim(skb, offset);
1721 
1722 	return err;
1723 }
1724 
1725 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1726 					   struct sk_buff *skb,
1727 					   struct page *page,
1728 					   int off, int copy)
1729 {
1730 	int err;
1731 
1732 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1733 				       copy, skb->len);
1734 	if (err)
1735 		return err;
1736 
1737 	skb->len	     += copy;
1738 	skb->data_len	     += copy;
1739 	skb->truesize	     += copy;
1740 	sk->sk_wmem_queued   += copy;
1741 	sk_mem_charge(sk, copy);
1742 	return 0;
1743 }
1744 
1745 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1746 				   struct sk_buff *skb, struct page *page,
1747 				   int off, int copy)
1748 {
1749 	if (skb->ip_summed == CHECKSUM_NONE) {
1750 		int err = 0;
1751 		__wsum csum = csum_and_copy_from_user(from,
1752 						     page_address(page) + off,
1753 							    copy, 0, &err);
1754 		if (err)
1755 			return err;
1756 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1757 	} else if (copy_from_user(page_address(page) + off, from, copy))
1758 		return -EFAULT;
1759 
1760 	skb->len	     += copy;
1761 	skb->data_len	     += copy;
1762 	skb->truesize	     += copy;
1763 	sk->sk_wmem_queued   += copy;
1764 	sk_mem_charge(sk, copy);
1765 	return 0;
1766 }
1767 
1768 /**
1769  * sk_wmem_alloc_get - returns write allocations
1770  * @sk: socket
1771  *
1772  * Returns sk_wmem_alloc minus initial offset of one
1773  */
1774 static inline int sk_wmem_alloc_get(const struct sock *sk)
1775 {
1776 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1777 }
1778 
1779 /**
1780  * sk_rmem_alloc_get - returns read allocations
1781  * @sk: socket
1782  *
1783  * Returns sk_rmem_alloc
1784  */
1785 static inline int sk_rmem_alloc_get(const struct sock *sk)
1786 {
1787 	return atomic_read(&sk->sk_rmem_alloc);
1788 }
1789 
1790 /**
1791  * sk_has_allocations - check if allocations are outstanding
1792  * @sk: socket
1793  *
1794  * Returns true if socket has write or read allocations
1795  */
1796 static inline int sk_has_allocations(const struct sock *sk)
1797 {
1798 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1799 }
1800 
1801 /**
1802  * wq_has_sleeper - check if there are any waiting processes
1803  * @wq: struct socket_wq
1804  *
1805  * Returns true if socket_wq has waiting processes
1806  *
1807  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1808  * barrier call. They were added due to the race found within the tcp code.
1809  *
1810  * Consider following tcp code paths:
1811  *
1812  * CPU1                  CPU2
1813  *
1814  * sys_select            receive packet
1815  *   ...                 ...
1816  *   __add_wait_queue    update tp->rcv_nxt
1817  *   ...                 ...
1818  *   tp->rcv_nxt check   sock_def_readable
1819  *   ...                 {
1820  *   schedule               rcu_read_lock();
1821  *                          wq = rcu_dereference(sk->sk_wq);
1822  *                          if (wq && waitqueue_active(&wq->wait))
1823  *                              wake_up_interruptible(&wq->wait)
1824  *                          ...
1825  *                       }
1826  *
1827  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1828  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1829  * could then endup calling schedule and sleep forever if there are no more
1830  * data on the socket.
1831  *
1832  */
1833 static inline bool wq_has_sleeper(struct socket_wq *wq)
1834 {
1835 
1836 	/*
1837 	 * We need to be sure we are in sync with the
1838 	 * add_wait_queue modifications to the wait queue.
1839 	 *
1840 	 * This memory barrier is paired in the sock_poll_wait.
1841 	 */
1842 	smp_mb();
1843 	return wq && waitqueue_active(&wq->wait);
1844 }
1845 
1846 /**
1847  * sock_poll_wait - place memory barrier behind the poll_wait call.
1848  * @filp:           file
1849  * @wait_address:   socket wait queue
1850  * @p:              poll_table
1851  *
1852  * See the comments in the wq_has_sleeper function.
1853  */
1854 static inline void sock_poll_wait(struct file *filp,
1855 		wait_queue_head_t *wait_address, poll_table *p)
1856 {
1857 	if (!poll_does_not_wait(p) && wait_address) {
1858 		poll_wait(filp, wait_address, p);
1859 		/*
1860 		 * We need to be sure we are in sync with the
1861 		 * socket flags modification.
1862 		 *
1863 		 * This memory barrier is paired in the wq_has_sleeper.
1864 		*/
1865 		smp_mb();
1866 	}
1867 }
1868 
1869 /*
1870  * 	Queue a received datagram if it will fit. Stream and sequenced
1871  *	protocols can't normally use this as they need to fit buffers in
1872  *	and play with them.
1873  *
1874  * 	Inlined as it's very short and called for pretty much every
1875  *	packet ever received.
1876  */
1877 
1878 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1879 {
1880 	skb_orphan(skb);
1881 	skb->sk = sk;
1882 	skb->destructor = sock_wfree;
1883 	/*
1884 	 * We used to take a refcount on sk, but following operation
1885 	 * is enough to guarantee sk_free() wont free this sock until
1886 	 * all in-flight packets are completed
1887 	 */
1888 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1889 }
1890 
1891 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1892 {
1893 	skb_orphan(skb);
1894 	skb->sk = sk;
1895 	skb->destructor = sock_rfree;
1896 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1897 	sk_mem_charge(sk, skb->truesize);
1898 }
1899 
1900 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1901 			   unsigned long expires);
1902 
1903 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1904 
1905 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1906 
1907 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1908 
1909 /*
1910  *	Recover an error report and clear atomically
1911  */
1912 
1913 static inline int sock_error(struct sock *sk)
1914 {
1915 	int err;
1916 	if (likely(!sk->sk_err))
1917 		return 0;
1918 	err = xchg(&sk->sk_err, 0);
1919 	return -err;
1920 }
1921 
1922 static inline unsigned long sock_wspace(struct sock *sk)
1923 {
1924 	int amt = 0;
1925 
1926 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1927 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1928 		if (amt < 0)
1929 			amt = 0;
1930 	}
1931 	return amt;
1932 }
1933 
1934 static inline void sk_wake_async(struct sock *sk, int how, int band)
1935 {
1936 	if (sock_flag(sk, SOCK_FASYNC))
1937 		sock_wake_async(sk->sk_socket, how, band);
1938 }
1939 
1940 #define SOCK_MIN_SNDBUF 2048
1941 /*
1942  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1943  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1944  */
1945 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1946 
1947 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1948 {
1949 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1950 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1951 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1952 	}
1953 }
1954 
1955 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1956 
1957 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1958 {
1959 	struct page *page = NULL;
1960 
1961 	page = alloc_pages(sk->sk_allocation, 0);
1962 	if (!page) {
1963 		sk_enter_memory_pressure(sk);
1964 		sk_stream_moderate_sndbuf(sk);
1965 	}
1966 	return page;
1967 }
1968 
1969 /*
1970  *	Default write policy as shown to user space via poll/select/SIGIO
1971  */
1972 static inline int sock_writeable(const struct sock *sk)
1973 {
1974 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1975 }
1976 
1977 static inline gfp_t gfp_any(void)
1978 {
1979 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1980 }
1981 
1982 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1983 {
1984 	return noblock ? 0 : sk->sk_rcvtimeo;
1985 }
1986 
1987 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1988 {
1989 	return noblock ? 0 : sk->sk_sndtimeo;
1990 }
1991 
1992 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1993 {
1994 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1995 }
1996 
1997 /* Alas, with timeout socket operations are not restartable.
1998  * Compare this to poll().
1999  */
2000 static inline int sock_intr_errno(long timeo)
2001 {
2002 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2003 }
2004 
2005 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2006 	struct sk_buff *skb);
2007 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2008 	struct sk_buff *skb);
2009 
2010 static __inline__ void
2011 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2012 {
2013 	ktime_t kt = skb->tstamp;
2014 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2015 
2016 	/*
2017 	 * generate control messages if
2018 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2019 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2020 	 * - software time stamp available and wanted
2021 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2022 	 * - hardware time stamps available and wanted
2023 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2024 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2025 	 */
2026 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2027 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2028 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2029 	    (hwtstamps->hwtstamp.tv64 &&
2030 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2031 	    (hwtstamps->syststamp.tv64 &&
2032 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2033 		__sock_recv_timestamp(msg, sk, skb);
2034 	else
2035 		sk->sk_stamp = kt;
2036 
2037 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2038 		__sock_recv_wifi_status(msg, sk, skb);
2039 }
2040 
2041 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2042 				     struct sk_buff *skb);
2043 
2044 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2045 					  struct sk_buff *skb)
2046 {
2047 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2048 			   (1UL << SOCK_RCVTSTAMP)			| \
2049 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2050 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2051 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
2052 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2053 
2054 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2055 		__sock_recv_ts_and_drops(msg, sk, skb);
2056 	else
2057 		sk->sk_stamp = skb->tstamp;
2058 }
2059 
2060 /**
2061  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2062  * @sk:		socket sending this packet
2063  * @tx_flags:	filled with instructions for time stamping
2064  *
2065  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2066  * parameters are invalid.
2067  */
2068 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2069 
2070 /**
2071  * sk_eat_skb - Release a skb if it is no longer needed
2072  * @sk: socket to eat this skb from
2073  * @skb: socket buffer to eat
2074  * @copied_early: flag indicating whether DMA operations copied this data early
2075  *
2076  * This routine must be called with interrupts disabled or with the socket
2077  * locked so that the sk_buff queue operation is ok.
2078 */
2079 #ifdef CONFIG_NET_DMA
2080 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2081 {
2082 	__skb_unlink(skb, &sk->sk_receive_queue);
2083 	if (!copied_early)
2084 		__kfree_skb(skb);
2085 	else
2086 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2087 }
2088 #else
2089 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2090 {
2091 	__skb_unlink(skb, &sk->sk_receive_queue);
2092 	__kfree_skb(skb);
2093 }
2094 #endif
2095 
2096 static inline
2097 struct net *sock_net(const struct sock *sk)
2098 {
2099 	return read_pnet(&sk->sk_net);
2100 }
2101 
2102 static inline
2103 void sock_net_set(struct sock *sk, struct net *net)
2104 {
2105 	write_pnet(&sk->sk_net, net);
2106 }
2107 
2108 /*
2109  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2110  * They should not hold a reference to a namespace in order to allow
2111  * to stop it.
2112  * Sockets after sk_change_net should be released using sk_release_kernel
2113  */
2114 static inline void sk_change_net(struct sock *sk, struct net *net)
2115 {
2116 	put_net(sock_net(sk));
2117 	sock_net_set(sk, hold_net(net));
2118 }
2119 
2120 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2121 {
2122 	if (unlikely(skb->sk)) {
2123 		struct sock *sk = skb->sk;
2124 
2125 		skb->destructor = NULL;
2126 		skb->sk = NULL;
2127 		return sk;
2128 	}
2129 	return NULL;
2130 }
2131 
2132 extern void sock_enable_timestamp(struct sock *sk, int flag);
2133 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2134 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2135 
2136 /*
2137  *	Enable debug/info messages
2138  */
2139 extern int net_msg_warn;
2140 #define NETDEBUG(fmt, args...) \
2141 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2142 
2143 #define LIMIT_NETDEBUG(fmt, args...) \
2144 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2145 
2146 extern __u32 sysctl_wmem_max;
2147 extern __u32 sysctl_rmem_max;
2148 
2149 extern void sk_init(void);
2150 
2151 extern int sysctl_optmem_max;
2152 
2153 extern __u32 sysctl_wmem_default;
2154 extern __u32 sysctl_rmem_default;
2155 
2156 #endif	/* _SOCK_H */
2157