xref: /openbmc/linux/include/net/sock.h (revision 6d04fe15)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 
72 /*
73  * This structure really needs to be cleaned up.
74  * Most of it is for TCP, and not used by any of
75  * the other protocols.
76  */
77 
78 /* Define this to get the SOCK_DBG debugging facility. */
79 #define SOCK_DEBUGGING
80 #ifdef SOCK_DEBUGGING
81 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 					printk(KERN_DEBUG msg); } while (0)
83 #else
84 /* Validate arguments and do nothing */
85 static inline __printf(2, 3)
86 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87 {
88 }
89 #endif
90 
91 /* This is the per-socket lock.  The spinlock provides a synchronization
92  * between user contexts and software interrupt processing, whereas the
93  * mini-semaphore synchronizes multiple users amongst themselves.
94  */
95 typedef struct {
96 	spinlock_t		slock;
97 	int			owned;
98 	wait_queue_head_t	wq;
99 	/*
100 	 * We express the mutex-alike socket_lock semantics
101 	 * to the lock validator by explicitly managing
102 	 * the slock as a lock variant (in addition to
103 	 * the slock itself):
104 	 */
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 	struct lockdep_map dep_map;
107 #endif
108 } socket_lock_t;
109 
110 struct sock;
111 struct proto;
112 struct net;
113 
114 typedef __u32 __bitwise __portpair;
115 typedef __u64 __bitwise __addrpair;
116 
117 /**
118  *	struct sock_common - minimal network layer representation of sockets
119  *	@skc_daddr: Foreign IPv4 addr
120  *	@skc_rcv_saddr: Bound local IPv4 addr
121  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
122  *	@skc_hash: hash value used with various protocol lookup tables
123  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
124  *	@skc_dport: placeholder for inet_dport/tw_dport
125  *	@skc_num: placeholder for inet_num/tw_num
126  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
127  *	@skc_family: network address family
128  *	@skc_state: Connection state
129  *	@skc_reuse: %SO_REUSEADDR setting
130  *	@skc_reuseport: %SO_REUSEPORT setting
131  *	@skc_ipv6only: socket is IPV6 only
132  *	@skc_net_refcnt: socket is using net ref counting
133  *	@skc_bound_dev_if: bound device index if != 0
134  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
135  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136  *	@skc_prot: protocol handlers inside a network family
137  *	@skc_net: reference to the network namespace of this socket
138  *	@skc_v6_daddr: IPV6 destination address
139  *	@skc_v6_rcv_saddr: IPV6 source address
140  *	@skc_cookie: socket's cookie value
141  *	@skc_node: main hash linkage for various protocol lookup tables
142  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
143  *	@skc_tx_queue_mapping: tx queue number for this connection
144  *	@skc_rx_queue_mapping: rx queue number for this connection
145  *	@skc_flags: place holder for sk_flags
146  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
147  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
148  *	@skc_listener: connection request listener socket (aka rsk_listener)
149  *		[union with @skc_flags]
150  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
151  *		[union with @skc_flags]
152  *	@skc_incoming_cpu: record/match cpu processing incoming packets
153  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
154  *		[union with @skc_incoming_cpu]
155  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
156  *		[union with @skc_incoming_cpu]
157  *	@skc_refcnt: reference count
158  *
159  *	This is the minimal network layer representation of sockets, the header
160  *	for struct sock and struct inet_timewait_sock.
161  */
162 struct sock_common {
163 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 	 * address on 64bit arches : cf INET_MATCH()
165 	 */
166 	union {
167 		__addrpair	skc_addrpair;
168 		struct {
169 			__be32	skc_daddr;
170 			__be32	skc_rcv_saddr;
171 		};
172 	};
173 	union  {
174 		unsigned int	skc_hash;
175 		__u16		skc_u16hashes[2];
176 	};
177 	/* skc_dport && skc_num must be grouped as well */
178 	union {
179 		__portpair	skc_portpair;
180 		struct {
181 			__be16	skc_dport;
182 			__u16	skc_num;
183 		};
184 	};
185 
186 	unsigned short		skc_family;
187 	volatile unsigned char	skc_state;
188 	unsigned char		skc_reuse:4;
189 	unsigned char		skc_reuseport:1;
190 	unsigned char		skc_ipv6only:1;
191 	unsigned char		skc_net_refcnt:1;
192 	int			skc_bound_dev_if;
193 	union {
194 		struct hlist_node	skc_bind_node;
195 		struct hlist_node	skc_portaddr_node;
196 	};
197 	struct proto		*skc_prot;
198 	possible_net_t		skc_net;
199 
200 #if IS_ENABLED(CONFIG_IPV6)
201 	struct in6_addr		skc_v6_daddr;
202 	struct in6_addr		skc_v6_rcv_saddr;
203 #endif
204 
205 	atomic64_t		skc_cookie;
206 
207 	/* following fields are padding to force
208 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 	 * assuming IPV6 is enabled. We use this padding differently
210 	 * for different kind of 'sockets'
211 	 */
212 	union {
213 		unsigned long	skc_flags;
214 		struct sock	*skc_listener; /* request_sock */
215 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 	};
217 	/*
218 	 * fields between dontcopy_begin/dontcopy_end
219 	 * are not copied in sock_copy()
220 	 */
221 	/* private: */
222 	int			skc_dontcopy_begin[0];
223 	/* public: */
224 	union {
225 		struct hlist_node	skc_node;
226 		struct hlist_nulls_node skc_nulls_node;
227 	};
228 	unsigned short		skc_tx_queue_mapping;
229 #ifdef CONFIG_XPS
230 	unsigned short		skc_rx_queue_mapping;
231 #endif
232 	union {
233 		int		skc_incoming_cpu;
234 		u32		skc_rcv_wnd;
235 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
236 	};
237 
238 	refcount_t		skc_refcnt;
239 	/* private: */
240 	int                     skc_dontcopy_end[0];
241 	union {
242 		u32		skc_rxhash;
243 		u32		skc_window_clamp;
244 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 	};
246 	/* public: */
247 };
248 
249 struct bpf_sk_storage;
250 
251 /**
252   *	struct sock - network layer representation of sockets
253   *	@__sk_common: shared layout with inet_timewait_sock
254   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
255   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
256   *	@sk_lock:	synchronizer
257   *	@sk_kern_sock: True if sock is using kernel lock classes
258   *	@sk_rcvbuf: size of receive buffer in bytes
259   *	@sk_wq: sock wait queue and async head
260   *	@sk_rx_dst: receive input route used by early demux
261   *	@sk_dst_cache: destination cache
262   *	@sk_dst_pending_confirm: need to confirm neighbour
263   *	@sk_policy: flow policy
264   *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
265   *	@sk_receive_queue: incoming packets
266   *	@sk_wmem_alloc: transmit queue bytes committed
267   *	@sk_tsq_flags: TCP Small Queues flags
268   *	@sk_write_queue: Packet sending queue
269   *	@sk_omem_alloc: "o" is "option" or "other"
270   *	@sk_wmem_queued: persistent queue size
271   *	@sk_forward_alloc: space allocated forward
272   *	@sk_napi_id: id of the last napi context to receive data for sk
273   *	@sk_ll_usec: usecs to busypoll when there is no data
274   *	@sk_allocation: allocation mode
275   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
276   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
277   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
278   *	@sk_sndbuf: size of send buffer in bytes
279   *	@__sk_flags_offset: empty field used to determine location of bitfield
280   *	@sk_padding: unused element for alignment
281   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
282   *	@sk_no_check_rx: allow zero checksum in RX packets
283   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
284   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
285   *	@sk_route_forced_caps: static, forced route capabilities
286   *		(set in tcp_init_sock())
287   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
288   *	@sk_gso_max_size: Maximum GSO segment size to build
289   *	@sk_gso_max_segs: Maximum number of GSO segments
290   *	@sk_pacing_shift: scaling factor for TCP Small Queues
291   *	@sk_lingertime: %SO_LINGER l_linger setting
292   *	@sk_backlog: always used with the per-socket spinlock held
293   *	@sk_callback_lock: used with the callbacks in the end of this struct
294   *	@sk_error_queue: rarely used
295   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
296   *			  IPV6_ADDRFORM for instance)
297   *	@sk_err: last error
298   *	@sk_err_soft: errors that don't cause failure but are the cause of a
299   *		      persistent failure not just 'timed out'
300   *	@sk_drops: raw/udp drops counter
301   *	@sk_ack_backlog: current listen backlog
302   *	@sk_max_ack_backlog: listen backlog set in listen()
303   *	@sk_uid: user id of owner
304   *	@sk_priority: %SO_PRIORITY setting
305   *	@sk_type: socket type (%SOCK_STREAM, etc)
306   *	@sk_protocol: which protocol this socket belongs in this network family
307   *	@sk_peer_pid: &struct pid for this socket's peer
308   *	@sk_peer_cred: %SO_PEERCRED setting
309   *	@sk_rcvlowat: %SO_RCVLOWAT setting
310   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
311   *	@sk_sndtimeo: %SO_SNDTIMEO setting
312   *	@sk_txhash: computed flow hash for use on transmit
313   *	@sk_filter: socket filtering instructions
314   *	@sk_timer: sock cleanup timer
315   *	@sk_stamp: time stamp of last packet received
316   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
317   *	@sk_tsflags: SO_TIMESTAMPING socket options
318   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
319   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
320   *	@sk_socket: Identd and reporting IO signals
321   *	@sk_user_data: RPC layer private data
322   *	@sk_frag: cached page frag
323   *	@sk_peek_off: current peek_offset value
324   *	@sk_send_head: front of stuff to transmit
325   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
326   *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
327   *	@sk_security: used by security modules
328   *	@sk_mark: generic packet mark
329   *	@sk_cgrp_data: cgroup data for this cgroup
330   *	@sk_memcg: this socket's memory cgroup association
331   *	@sk_write_pending: a write to stream socket waits to start
332   *	@sk_state_change: callback to indicate change in the state of the sock
333   *	@sk_data_ready: callback to indicate there is data to be processed
334   *	@sk_write_space: callback to indicate there is bf sending space available
335   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
336   *	@sk_backlog_rcv: callback to process the backlog
337   *	@sk_validate_xmit_skb: ptr to an optional validate function
338   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
339   *	@sk_reuseport_cb: reuseport group container
340   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
341   *	@sk_rcu: used during RCU grace period
342   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
343   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
344   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
345   *	@sk_txtime_unused: unused txtime flags
346   */
347 struct sock {
348 	/*
349 	 * Now struct inet_timewait_sock also uses sock_common, so please just
350 	 * don't add nothing before this first member (__sk_common) --acme
351 	 */
352 	struct sock_common	__sk_common;
353 #define sk_node			__sk_common.skc_node
354 #define sk_nulls_node		__sk_common.skc_nulls_node
355 #define sk_refcnt		__sk_common.skc_refcnt
356 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
357 #ifdef CONFIG_XPS
358 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
359 #endif
360 
361 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
362 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
363 #define sk_hash			__sk_common.skc_hash
364 #define sk_portpair		__sk_common.skc_portpair
365 #define sk_num			__sk_common.skc_num
366 #define sk_dport		__sk_common.skc_dport
367 #define sk_addrpair		__sk_common.skc_addrpair
368 #define sk_daddr		__sk_common.skc_daddr
369 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
370 #define sk_family		__sk_common.skc_family
371 #define sk_state		__sk_common.skc_state
372 #define sk_reuse		__sk_common.skc_reuse
373 #define sk_reuseport		__sk_common.skc_reuseport
374 #define sk_ipv6only		__sk_common.skc_ipv6only
375 #define sk_net_refcnt		__sk_common.skc_net_refcnt
376 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
377 #define sk_bind_node		__sk_common.skc_bind_node
378 #define sk_prot			__sk_common.skc_prot
379 #define sk_net			__sk_common.skc_net
380 #define sk_v6_daddr		__sk_common.skc_v6_daddr
381 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
382 #define sk_cookie		__sk_common.skc_cookie
383 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
384 #define sk_flags		__sk_common.skc_flags
385 #define sk_rxhash		__sk_common.skc_rxhash
386 
387 	socket_lock_t		sk_lock;
388 	atomic_t		sk_drops;
389 	int			sk_rcvlowat;
390 	struct sk_buff_head	sk_error_queue;
391 	struct sk_buff		*sk_rx_skb_cache;
392 	struct sk_buff_head	sk_receive_queue;
393 	/*
394 	 * The backlog queue is special, it is always used with
395 	 * the per-socket spinlock held and requires low latency
396 	 * access. Therefore we special case it's implementation.
397 	 * Note : rmem_alloc is in this structure to fill a hole
398 	 * on 64bit arches, not because its logically part of
399 	 * backlog.
400 	 */
401 	struct {
402 		atomic_t	rmem_alloc;
403 		int		len;
404 		struct sk_buff	*head;
405 		struct sk_buff	*tail;
406 	} sk_backlog;
407 #define sk_rmem_alloc sk_backlog.rmem_alloc
408 
409 	int			sk_forward_alloc;
410 #ifdef CONFIG_NET_RX_BUSY_POLL
411 	unsigned int		sk_ll_usec;
412 	/* ===== mostly read cache line ===== */
413 	unsigned int		sk_napi_id;
414 #endif
415 	int			sk_rcvbuf;
416 
417 	struct sk_filter __rcu	*sk_filter;
418 	union {
419 		struct socket_wq __rcu	*sk_wq;
420 		/* private: */
421 		struct socket_wq	*sk_wq_raw;
422 		/* public: */
423 	};
424 #ifdef CONFIG_XFRM
425 	struct xfrm_policy __rcu *sk_policy[2];
426 #endif
427 	struct dst_entry	*sk_rx_dst;
428 	struct dst_entry __rcu	*sk_dst_cache;
429 	atomic_t		sk_omem_alloc;
430 	int			sk_sndbuf;
431 
432 	/* ===== cache line for TX ===== */
433 	int			sk_wmem_queued;
434 	refcount_t		sk_wmem_alloc;
435 	unsigned long		sk_tsq_flags;
436 	union {
437 		struct sk_buff	*sk_send_head;
438 		struct rb_root	tcp_rtx_queue;
439 	};
440 	struct sk_buff		*sk_tx_skb_cache;
441 	struct sk_buff_head	sk_write_queue;
442 	__s32			sk_peek_off;
443 	int			sk_write_pending;
444 	__u32			sk_dst_pending_confirm;
445 	u32			sk_pacing_status; /* see enum sk_pacing */
446 	long			sk_sndtimeo;
447 	struct timer_list	sk_timer;
448 	__u32			sk_priority;
449 	__u32			sk_mark;
450 	unsigned long		sk_pacing_rate; /* bytes per second */
451 	unsigned long		sk_max_pacing_rate;
452 	struct page_frag	sk_frag;
453 	netdev_features_t	sk_route_caps;
454 	netdev_features_t	sk_route_nocaps;
455 	netdev_features_t	sk_route_forced_caps;
456 	int			sk_gso_type;
457 	unsigned int		sk_gso_max_size;
458 	gfp_t			sk_allocation;
459 	__u32			sk_txhash;
460 
461 	/*
462 	 * Because of non atomicity rules, all
463 	 * changes are protected by socket lock.
464 	 */
465 	u8			sk_padding : 1,
466 				sk_kern_sock : 1,
467 				sk_no_check_tx : 1,
468 				sk_no_check_rx : 1,
469 				sk_userlocks : 4;
470 	u8			sk_pacing_shift;
471 	u16			sk_type;
472 	u16			sk_protocol;
473 	u16			sk_gso_max_segs;
474 	unsigned long	        sk_lingertime;
475 	struct proto		*sk_prot_creator;
476 	rwlock_t		sk_callback_lock;
477 	int			sk_err,
478 				sk_err_soft;
479 	u32			sk_ack_backlog;
480 	u32			sk_max_ack_backlog;
481 	kuid_t			sk_uid;
482 	struct pid		*sk_peer_pid;
483 	const struct cred	*sk_peer_cred;
484 	long			sk_rcvtimeo;
485 	ktime_t			sk_stamp;
486 #if BITS_PER_LONG==32
487 	seqlock_t		sk_stamp_seq;
488 #endif
489 	u16			sk_tsflags;
490 	u8			sk_shutdown;
491 	u32			sk_tskey;
492 	atomic_t		sk_zckey;
493 
494 	u8			sk_clockid;
495 	u8			sk_txtime_deadline_mode : 1,
496 				sk_txtime_report_errors : 1,
497 				sk_txtime_unused : 6;
498 
499 	struct socket		*sk_socket;
500 	void			*sk_user_data;
501 #ifdef CONFIG_SECURITY
502 	void			*sk_security;
503 #endif
504 	struct sock_cgroup_data	sk_cgrp_data;
505 	struct mem_cgroup	*sk_memcg;
506 	void			(*sk_state_change)(struct sock *sk);
507 	void			(*sk_data_ready)(struct sock *sk);
508 	void			(*sk_write_space)(struct sock *sk);
509 	void			(*sk_error_report)(struct sock *sk);
510 	int			(*sk_backlog_rcv)(struct sock *sk,
511 						  struct sk_buff *skb);
512 #ifdef CONFIG_SOCK_VALIDATE_XMIT
513 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
514 							struct net_device *dev,
515 							struct sk_buff *skb);
516 #endif
517 	void                    (*sk_destruct)(struct sock *sk);
518 	struct sock_reuseport __rcu	*sk_reuseport_cb;
519 #ifdef CONFIG_BPF_SYSCALL
520 	struct bpf_sk_storage __rcu	*sk_bpf_storage;
521 #endif
522 	struct rcu_head		sk_rcu;
523 };
524 
525 enum sk_pacing {
526 	SK_PACING_NONE		= 0,
527 	SK_PACING_NEEDED	= 1,
528 	SK_PACING_FQ		= 2,
529 };
530 
531 /* Pointer stored in sk_user_data might not be suitable for copying
532  * when cloning the socket. For instance, it can point to a reference
533  * counted object. sk_user_data bottom bit is set if pointer must not
534  * be copied.
535  */
536 #define SK_USER_DATA_NOCOPY	1UL
537 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
538 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
539 
540 /**
541  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
542  * @sk: socket
543  */
544 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
545 {
546 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
547 }
548 
549 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
550 
551 #define rcu_dereference_sk_user_data(sk)				\
552 ({									\
553 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
554 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
555 })
556 #define rcu_assign_sk_user_data(sk, ptr)				\
557 ({									\
558 	uintptr_t __tmp = (uintptr_t)(ptr);				\
559 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
560 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
561 })
562 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
563 ({									\
564 	uintptr_t __tmp = (uintptr_t)(ptr);				\
565 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
566 	rcu_assign_pointer(__sk_user_data((sk)),			\
567 			   __tmp | SK_USER_DATA_NOCOPY);		\
568 })
569 
570 /*
571  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
572  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
573  * on a socket means that the socket will reuse everybody else's port
574  * without looking at the other's sk_reuse value.
575  */
576 
577 #define SK_NO_REUSE	0
578 #define SK_CAN_REUSE	1
579 #define SK_FORCE_REUSE	2
580 
581 int sk_set_peek_off(struct sock *sk, int val);
582 
583 static inline int sk_peek_offset(struct sock *sk, int flags)
584 {
585 	if (unlikely(flags & MSG_PEEK)) {
586 		return READ_ONCE(sk->sk_peek_off);
587 	}
588 
589 	return 0;
590 }
591 
592 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
593 {
594 	s32 off = READ_ONCE(sk->sk_peek_off);
595 
596 	if (unlikely(off >= 0)) {
597 		off = max_t(s32, off - val, 0);
598 		WRITE_ONCE(sk->sk_peek_off, off);
599 	}
600 }
601 
602 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
603 {
604 	sk_peek_offset_bwd(sk, -val);
605 }
606 
607 /*
608  * Hashed lists helper routines
609  */
610 static inline struct sock *sk_entry(const struct hlist_node *node)
611 {
612 	return hlist_entry(node, struct sock, sk_node);
613 }
614 
615 static inline struct sock *__sk_head(const struct hlist_head *head)
616 {
617 	return hlist_entry(head->first, struct sock, sk_node);
618 }
619 
620 static inline struct sock *sk_head(const struct hlist_head *head)
621 {
622 	return hlist_empty(head) ? NULL : __sk_head(head);
623 }
624 
625 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
626 {
627 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
628 }
629 
630 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
631 {
632 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
633 }
634 
635 static inline struct sock *sk_next(const struct sock *sk)
636 {
637 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
638 }
639 
640 static inline struct sock *sk_nulls_next(const struct sock *sk)
641 {
642 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
643 		hlist_nulls_entry(sk->sk_nulls_node.next,
644 				  struct sock, sk_nulls_node) :
645 		NULL;
646 }
647 
648 static inline bool sk_unhashed(const struct sock *sk)
649 {
650 	return hlist_unhashed(&sk->sk_node);
651 }
652 
653 static inline bool sk_hashed(const struct sock *sk)
654 {
655 	return !sk_unhashed(sk);
656 }
657 
658 static inline void sk_node_init(struct hlist_node *node)
659 {
660 	node->pprev = NULL;
661 }
662 
663 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
664 {
665 	node->pprev = NULL;
666 }
667 
668 static inline void __sk_del_node(struct sock *sk)
669 {
670 	__hlist_del(&sk->sk_node);
671 }
672 
673 /* NB: equivalent to hlist_del_init_rcu */
674 static inline bool __sk_del_node_init(struct sock *sk)
675 {
676 	if (sk_hashed(sk)) {
677 		__sk_del_node(sk);
678 		sk_node_init(&sk->sk_node);
679 		return true;
680 	}
681 	return false;
682 }
683 
684 /* Grab socket reference count. This operation is valid only
685    when sk is ALREADY grabbed f.e. it is found in hash table
686    or a list and the lookup is made under lock preventing hash table
687    modifications.
688  */
689 
690 static __always_inline void sock_hold(struct sock *sk)
691 {
692 	refcount_inc(&sk->sk_refcnt);
693 }
694 
695 /* Ungrab socket in the context, which assumes that socket refcnt
696    cannot hit zero, f.e. it is true in context of any socketcall.
697  */
698 static __always_inline void __sock_put(struct sock *sk)
699 {
700 	refcount_dec(&sk->sk_refcnt);
701 }
702 
703 static inline bool sk_del_node_init(struct sock *sk)
704 {
705 	bool rc = __sk_del_node_init(sk);
706 
707 	if (rc) {
708 		/* paranoid for a while -acme */
709 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
710 		__sock_put(sk);
711 	}
712 	return rc;
713 }
714 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
715 
716 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
717 {
718 	if (sk_hashed(sk)) {
719 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
720 		return true;
721 	}
722 	return false;
723 }
724 
725 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
726 {
727 	bool rc = __sk_nulls_del_node_init_rcu(sk);
728 
729 	if (rc) {
730 		/* paranoid for a while -acme */
731 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
732 		__sock_put(sk);
733 	}
734 	return rc;
735 }
736 
737 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
738 {
739 	hlist_add_head(&sk->sk_node, list);
740 }
741 
742 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
743 {
744 	sock_hold(sk);
745 	__sk_add_node(sk, list);
746 }
747 
748 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
749 {
750 	sock_hold(sk);
751 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
752 	    sk->sk_family == AF_INET6)
753 		hlist_add_tail_rcu(&sk->sk_node, list);
754 	else
755 		hlist_add_head_rcu(&sk->sk_node, list);
756 }
757 
758 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
759 {
760 	sock_hold(sk);
761 	hlist_add_tail_rcu(&sk->sk_node, list);
762 }
763 
764 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
765 {
766 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
767 }
768 
769 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
770 {
771 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
772 }
773 
774 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
775 {
776 	sock_hold(sk);
777 	__sk_nulls_add_node_rcu(sk, list);
778 }
779 
780 static inline void __sk_del_bind_node(struct sock *sk)
781 {
782 	__hlist_del(&sk->sk_bind_node);
783 }
784 
785 static inline void sk_add_bind_node(struct sock *sk,
786 					struct hlist_head *list)
787 {
788 	hlist_add_head(&sk->sk_bind_node, list);
789 }
790 
791 #define sk_for_each(__sk, list) \
792 	hlist_for_each_entry(__sk, list, sk_node)
793 #define sk_for_each_rcu(__sk, list) \
794 	hlist_for_each_entry_rcu(__sk, list, sk_node)
795 #define sk_nulls_for_each(__sk, node, list) \
796 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
797 #define sk_nulls_for_each_rcu(__sk, node, list) \
798 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
799 #define sk_for_each_from(__sk) \
800 	hlist_for_each_entry_from(__sk, sk_node)
801 #define sk_nulls_for_each_from(__sk, node) \
802 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
803 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
804 #define sk_for_each_safe(__sk, tmp, list) \
805 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
806 #define sk_for_each_bound(__sk, list) \
807 	hlist_for_each_entry(__sk, list, sk_bind_node)
808 
809 /**
810  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
811  * @tpos:	the type * to use as a loop cursor.
812  * @pos:	the &struct hlist_node to use as a loop cursor.
813  * @head:	the head for your list.
814  * @offset:	offset of hlist_node within the struct.
815  *
816  */
817 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
818 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
819 	     pos != NULL &&						       \
820 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
821 	     pos = rcu_dereference(hlist_next_rcu(pos)))
822 
823 static inline struct user_namespace *sk_user_ns(struct sock *sk)
824 {
825 	/* Careful only use this in a context where these parameters
826 	 * can not change and must all be valid, such as recvmsg from
827 	 * userspace.
828 	 */
829 	return sk->sk_socket->file->f_cred->user_ns;
830 }
831 
832 /* Sock flags */
833 enum sock_flags {
834 	SOCK_DEAD,
835 	SOCK_DONE,
836 	SOCK_URGINLINE,
837 	SOCK_KEEPOPEN,
838 	SOCK_LINGER,
839 	SOCK_DESTROY,
840 	SOCK_BROADCAST,
841 	SOCK_TIMESTAMP,
842 	SOCK_ZAPPED,
843 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
844 	SOCK_DBG, /* %SO_DEBUG setting */
845 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
846 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
847 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
848 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
849 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
850 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
851 	SOCK_FASYNC, /* fasync() active */
852 	SOCK_RXQ_OVFL,
853 	SOCK_ZEROCOPY, /* buffers from userspace */
854 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
855 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
856 		     * Will use last 4 bytes of packet sent from
857 		     * user-space instead.
858 		     */
859 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
860 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
861 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
862 	SOCK_TXTIME,
863 	SOCK_XDP, /* XDP is attached */
864 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
865 };
866 
867 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
868 
869 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
870 {
871 	nsk->sk_flags = osk->sk_flags;
872 }
873 
874 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
875 {
876 	__set_bit(flag, &sk->sk_flags);
877 }
878 
879 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
880 {
881 	__clear_bit(flag, &sk->sk_flags);
882 }
883 
884 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
885 				     int valbool)
886 {
887 	if (valbool)
888 		sock_set_flag(sk, bit);
889 	else
890 		sock_reset_flag(sk, bit);
891 }
892 
893 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
894 {
895 	return test_bit(flag, &sk->sk_flags);
896 }
897 
898 #ifdef CONFIG_NET
899 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
900 static inline int sk_memalloc_socks(void)
901 {
902 	return static_branch_unlikely(&memalloc_socks_key);
903 }
904 #else
905 
906 static inline int sk_memalloc_socks(void)
907 {
908 	return 0;
909 }
910 
911 #endif
912 
913 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
914 {
915 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
916 }
917 
918 static inline void sk_acceptq_removed(struct sock *sk)
919 {
920 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
921 }
922 
923 static inline void sk_acceptq_added(struct sock *sk)
924 {
925 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
926 }
927 
928 static inline bool sk_acceptq_is_full(const struct sock *sk)
929 {
930 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
931 }
932 
933 /*
934  * Compute minimal free write space needed to queue new packets.
935  */
936 static inline int sk_stream_min_wspace(const struct sock *sk)
937 {
938 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
939 }
940 
941 static inline int sk_stream_wspace(const struct sock *sk)
942 {
943 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
944 }
945 
946 static inline void sk_wmem_queued_add(struct sock *sk, int val)
947 {
948 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
949 }
950 
951 void sk_stream_write_space(struct sock *sk);
952 
953 /* OOB backlog add */
954 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
955 {
956 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
957 	skb_dst_force(skb);
958 
959 	if (!sk->sk_backlog.tail)
960 		WRITE_ONCE(sk->sk_backlog.head, skb);
961 	else
962 		sk->sk_backlog.tail->next = skb;
963 
964 	WRITE_ONCE(sk->sk_backlog.tail, skb);
965 	skb->next = NULL;
966 }
967 
968 /*
969  * Take into account size of receive queue and backlog queue
970  * Do not take into account this skb truesize,
971  * to allow even a single big packet to come.
972  */
973 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
974 {
975 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
976 
977 	return qsize > limit;
978 }
979 
980 /* The per-socket spinlock must be held here. */
981 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
982 					      unsigned int limit)
983 {
984 	if (sk_rcvqueues_full(sk, limit))
985 		return -ENOBUFS;
986 
987 	/*
988 	 * If the skb was allocated from pfmemalloc reserves, only
989 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
990 	 * helping free memory
991 	 */
992 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
993 		return -ENOMEM;
994 
995 	__sk_add_backlog(sk, skb);
996 	sk->sk_backlog.len += skb->truesize;
997 	return 0;
998 }
999 
1000 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1001 
1002 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1003 {
1004 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1005 		return __sk_backlog_rcv(sk, skb);
1006 
1007 	return sk->sk_backlog_rcv(sk, skb);
1008 }
1009 
1010 static inline void sk_incoming_cpu_update(struct sock *sk)
1011 {
1012 	int cpu = raw_smp_processor_id();
1013 
1014 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1015 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1016 }
1017 
1018 static inline void sock_rps_record_flow_hash(__u32 hash)
1019 {
1020 #ifdef CONFIG_RPS
1021 	struct rps_sock_flow_table *sock_flow_table;
1022 
1023 	rcu_read_lock();
1024 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1025 	rps_record_sock_flow(sock_flow_table, hash);
1026 	rcu_read_unlock();
1027 #endif
1028 }
1029 
1030 static inline void sock_rps_record_flow(const struct sock *sk)
1031 {
1032 #ifdef CONFIG_RPS
1033 	if (static_branch_unlikely(&rfs_needed)) {
1034 		/* Reading sk->sk_rxhash might incur an expensive cache line
1035 		 * miss.
1036 		 *
1037 		 * TCP_ESTABLISHED does cover almost all states where RFS
1038 		 * might be useful, and is cheaper [1] than testing :
1039 		 *	IPv4: inet_sk(sk)->inet_daddr
1040 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1041 		 * OR	an additional socket flag
1042 		 * [1] : sk_state and sk_prot are in the same cache line.
1043 		 */
1044 		if (sk->sk_state == TCP_ESTABLISHED)
1045 			sock_rps_record_flow_hash(sk->sk_rxhash);
1046 	}
1047 #endif
1048 }
1049 
1050 static inline void sock_rps_save_rxhash(struct sock *sk,
1051 					const struct sk_buff *skb)
1052 {
1053 #ifdef CONFIG_RPS
1054 	if (unlikely(sk->sk_rxhash != skb->hash))
1055 		sk->sk_rxhash = skb->hash;
1056 #endif
1057 }
1058 
1059 static inline void sock_rps_reset_rxhash(struct sock *sk)
1060 {
1061 #ifdef CONFIG_RPS
1062 	sk->sk_rxhash = 0;
1063 #endif
1064 }
1065 
1066 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1067 	({	int __rc;						\
1068 		release_sock(__sk);					\
1069 		__rc = __condition;					\
1070 		if (!__rc) {						\
1071 			*(__timeo) = wait_woken(__wait,			\
1072 						TASK_INTERRUPTIBLE,	\
1073 						*(__timeo));		\
1074 		}							\
1075 		sched_annotate_sleep();					\
1076 		lock_sock(__sk);					\
1077 		__rc = __condition;					\
1078 		__rc;							\
1079 	})
1080 
1081 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1082 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1083 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1084 int sk_stream_error(struct sock *sk, int flags, int err);
1085 void sk_stream_kill_queues(struct sock *sk);
1086 void sk_set_memalloc(struct sock *sk);
1087 void sk_clear_memalloc(struct sock *sk);
1088 
1089 void __sk_flush_backlog(struct sock *sk);
1090 
1091 static inline bool sk_flush_backlog(struct sock *sk)
1092 {
1093 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1094 		__sk_flush_backlog(sk);
1095 		return true;
1096 	}
1097 	return false;
1098 }
1099 
1100 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1101 
1102 struct request_sock_ops;
1103 struct timewait_sock_ops;
1104 struct inet_hashinfo;
1105 struct raw_hashinfo;
1106 struct smc_hashinfo;
1107 struct module;
1108 
1109 /*
1110  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1111  * un-modified. Special care is taken when initializing object to zero.
1112  */
1113 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1114 {
1115 	if (offsetof(struct sock, sk_node.next) != 0)
1116 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1117 	memset(&sk->sk_node.pprev, 0,
1118 	       size - offsetof(struct sock, sk_node.pprev));
1119 }
1120 
1121 /* Networking protocol blocks we attach to sockets.
1122  * socket layer -> transport layer interface
1123  */
1124 struct proto {
1125 	void			(*close)(struct sock *sk,
1126 					long timeout);
1127 	int			(*pre_connect)(struct sock *sk,
1128 					struct sockaddr *uaddr,
1129 					int addr_len);
1130 	int			(*connect)(struct sock *sk,
1131 					struct sockaddr *uaddr,
1132 					int addr_len);
1133 	int			(*disconnect)(struct sock *sk, int flags);
1134 
1135 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1136 					  bool kern);
1137 
1138 	int			(*ioctl)(struct sock *sk, int cmd,
1139 					 unsigned long arg);
1140 	int			(*init)(struct sock *sk);
1141 	void			(*destroy)(struct sock *sk);
1142 	void			(*shutdown)(struct sock *sk, int how);
1143 	int			(*setsockopt)(struct sock *sk, int level,
1144 					int optname, sockptr_t optval,
1145 					unsigned int optlen);
1146 	int			(*getsockopt)(struct sock *sk, int level,
1147 					int optname, char __user *optval,
1148 					int __user *option);
1149 	void			(*keepalive)(struct sock *sk, int valbool);
1150 #ifdef CONFIG_COMPAT
1151 	int			(*compat_ioctl)(struct sock *sk,
1152 					unsigned int cmd, unsigned long arg);
1153 #endif
1154 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1155 					   size_t len);
1156 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1157 					   size_t len, int noblock, int flags,
1158 					   int *addr_len);
1159 	int			(*sendpage)(struct sock *sk, struct page *page,
1160 					int offset, size_t size, int flags);
1161 	int			(*bind)(struct sock *sk,
1162 					struct sockaddr *addr, int addr_len);
1163 	int			(*bind_add)(struct sock *sk,
1164 					struct sockaddr *addr, int addr_len);
1165 
1166 	int			(*backlog_rcv) (struct sock *sk,
1167 						struct sk_buff *skb);
1168 
1169 	void		(*release_cb)(struct sock *sk);
1170 
1171 	/* Keeping track of sk's, looking them up, and port selection methods. */
1172 	int			(*hash)(struct sock *sk);
1173 	void			(*unhash)(struct sock *sk);
1174 	void			(*rehash)(struct sock *sk);
1175 	int			(*get_port)(struct sock *sk, unsigned short snum);
1176 
1177 	/* Keeping track of sockets in use */
1178 #ifdef CONFIG_PROC_FS
1179 	unsigned int		inuse_idx;
1180 #endif
1181 
1182 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1183 	bool			(*stream_memory_read)(const struct sock *sk);
1184 	/* Memory pressure */
1185 	void			(*enter_memory_pressure)(struct sock *sk);
1186 	void			(*leave_memory_pressure)(struct sock *sk);
1187 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1188 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1189 	/*
1190 	 * Pressure flag: try to collapse.
1191 	 * Technical note: it is used by multiple contexts non atomically.
1192 	 * All the __sk_mem_schedule() is of this nature: accounting
1193 	 * is strict, actions are advisory and have some latency.
1194 	 */
1195 	unsigned long		*memory_pressure;
1196 	long			*sysctl_mem;
1197 
1198 	int			*sysctl_wmem;
1199 	int			*sysctl_rmem;
1200 	u32			sysctl_wmem_offset;
1201 	u32			sysctl_rmem_offset;
1202 
1203 	int			max_header;
1204 	bool			no_autobind;
1205 
1206 	struct kmem_cache	*slab;
1207 	unsigned int		obj_size;
1208 	slab_flags_t		slab_flags;
1209 	unsigned int		useroffset;	/* Usercopy region offset */
1210 	unsigned int		usersize;	/* Usercopy region size */
1211 
1212 	struct percpu_counter	*orphan_count;
1213 
1214 	struct request_sock_ops	*rsk_prot;
1215 	struct timewait_sock_ops *twsk_prot;
1216 
1217 	union {
1218 		struct inet_hashinfo	*hashinfo;
1219 		struct udp_table	*udp_table;
1220 		struct raw_hashinfo	*raw_hash;
1221 		struct smc_hashinfo	*smc_hash;
1222 	} h;
1223 
1224 	struct module		*owner;
1225 
1226 	char			name[32];
1227 
1228 	struct list_head	node;
1229 #ifdef SOCK_REFCNT_DEBUG
1230 	atomic_t		socks;
1231 #endif
1232 	int			(*diag_destroy)(struct sock *sk, int err);
1233 } __randomize_layout;
1234 
1235 int proto_register(struct proto *prot, int alloc_slab);
1236 void proto_unregister(struct proto *prot);
1237 int sock_load_diag_module(int family, int protocol);
1238 
1239 #ifdef SOCK_REFCNT_DEBUG
1240 static inline void sk_refcnt_debug_inc(struct sock *sk)
1241 {
1242 	atomic_inc(&sk->sk_prot->socks);
1243 }
1244 
1245 static inline void sk_refcnt_debug_dec(struct sock *sk)
1246 {
1247 	atomic_dec(&sk->sk_prot->socks);
1248 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1249 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1250 }
1251 
1252 static inline void sk_refcnt_debug_release(const struct sock *sk)
1253 {
1254 	if (refcount_read(&sk->sk_refcnt) != 1)
1255 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1256 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1257 }
1258 #else /* SOCK_REFCNT_DEBUG */
1259 #define sk_refcnt_debug_inc(sk) do { } while (0)
1260 #define sk_refcnt_debug_dec(sk) do { } while (0)
1261 #define sk_refcnt_debug_release(sk) do { } while (0)
1262 #endif /* SOCK_REFCNT_DEBUG */
1263 
1264 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1265 {
1266 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1267 		return false;
1268 
1269 	return sk->sk_prot->stream_memory_free ?
1270 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1271 }
1272 
1273 static inline bool sk_stream_memory_free(const struct sock *sk)
1274 {
1275 	return __sk_stream_memory_free(sk, 0);
1276 }
1277 
1278 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1279 {
1280 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1281 	       __sk_stream_memory_free(sk, wake);
1282 }
1283 
1284 static inline bool sk_stream_is_writeable(const struct sock *sk)
1285 {
1286 	return __sk_stream_is_writeable(sk, 0);
1287 }
1288 
1289 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1290 					    struct cgroup *ancestor)
1291 {
1292 #ifdef CONFIG_SOCK_CGROUP_DATA
1293 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1294 				    ancestor);
1295 #else
1296 	return -ENOTSUPP;
1297 #endif
1298 }
1299 
1300 static inline bool sk_has_memory_pressure(const struct sock *sk)
1301 {
1302 	return sk->sk_prot->memory_pressure != NULL;
1303 }
1304 
1305 static inline bool sk_under_memory_pressure(const struct sock *sk)
1306 {
1307 	if (!sk->sk_prot->memory_pressure)
1308 		return false;
1309 
1310 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1311 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1312 		return true;
1313 
1314 	return !!*sk->sk_prot->memory_pressure;
1315 }
1316 
1317 static inline long
1318 sk_memory_allocated(const struct sock *sk)
1319 {
1320 	return atomic_long_read(sk->sk_prot->memory_allocated);
1321 }
1322 
1323 static inline long
1324 sk_memory_allocated_add(struct sock *sk, int amt)
1325 {
1326 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1327 }
1328 
1329 static inline void
1330 sk_memory_allocated_sub(struct sock *sk, int amt)
1331 {
1332 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1333 }
1334 
1335 static inline void sk_sockets_allocated_dec(struct sock *sk)
1336 {
1337 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1338 }
1339 
1340 static inline void sk_sockets_allocated_inc(struct sock *sk)
1341 {
1342 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1343 }
1344 
1345 static inline u64
1346 sk_sockets_allocated_read_positive(struct sock *sk)
1347 {
1348 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1349 }
1350 
1351 static inline int
1352 proto_sockets_allocated_sum_positive(struct proto *prot)
1353 {
1354 	return percpu_counter_sum_positive(prot->sockets_allocated);
1355 }
1356 
1357 static inline long
1358 proto_memory_allocated(struct proto *prot)
1359 {
1360 	return atomic_long_read(prot->memory_allocated);
1361 }
1362 
1363 static inline bool
1364 proto_memory_pressure(struct proto *prot)
1365 {
1366 	if (!prot->memory_pressure)
1367 		return false;
1368 	return !!*prot->memory_pressure;
1369 }
1370 
1371 
1372 #ifdef CONFIG_PROC_FS
1373 /* Called with local bh disabled */
1374 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1375 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1376 int sock_inuse_get(struct net *net);
1377 #else
1378 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1379 		int inc)
1380 {
1381 }
1382 #endif
1383 
1384 
1385 /* With per-bucket locks this operation is not-atomic, so that
1386  * this version is not worse.
1387  */
1388 static inline int __sk_prot_rehash(struct sock *sk)
1389 {
1390 	sk->sk_prot->unhash(sk);
1391 	return sk->sk_prot->hash(sk);
1392 }
1393 
1394 /* About 10 seconds */
1395 #define SOCK_DESTROY_TIME (10*HZ)
1396 
1397 /* Sockets 0-1023 can't be bound to unless you are superuser */
1398 #define PROT_SOCK	1024
1399 
1400 #define SHUTDOWN_MASK	3
1401 #define RCV_SHUTDOWN	1
1402 #define SEND_SHUTDOWN	2
1403 
1404 #define SOCK_SNDBUF_LOCK	1
1405 #define SOCK_RCVBUF_LOCK	2
1406 #define SOCK_BINDADDR_LOCK	4
1407 #define SOCK_BINDPORT_LOCK	8
1408 
1409 struct socket_alloc {
1410 	struct socket socket;
1411 	struct inode vfs_inode;
1412 };
1413 
1414 static inline struct socket *SOCKET_I(struct inode *inode)
1415 {
1416 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1417 }
1418 
1419 static inline struct inode *SOCK_INODE(struct socket *socket)
1420 {
1421 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1422 }
1423 
1424 /*
1425  * Functions for memory accounting
1426  */
1427 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1428 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1429 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1430 void __sk_mem_reclaim(struct sock *sk, int amount);
1431 
1432 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1433  * do not necessarily have 16x time more memory than 4KB ones.
1434  */
1435 #define SK_MEM_QUANTUM 4096
1436 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1437 #define SK_MEM_SEND	0
1438 #define SK_MEM_RECV	1
1439 
1440 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1441 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1442 {
1443 	long val = sk->sk_prot->sysctl_mem[index];
1444 
1445 #if PAGE_SIZE > SK_MEM_QUANTUM
1446 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1447 #elif PAGE_SIZE < SK_MEM_QUANTUM
1448 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1449 #endif
1450 	return val;
1451 }
1452 
1453 static inline int sk_mem_pages(int amt)
1454 {
1455 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1456 }
1457 
1458 static inline bool sk_has_account(struct sock *sk)
1459 {
1460 	/* return true if protocol supports memory accounting */
1461 	return !!sk->sk_prot->memory_allocated;
1462 }
1463 
1464 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1465 {
1466 	if (!sk_has_account(sk))
1467 		return true;
1468 	return size <= sk->sk_forward_alloc ||
1469 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1470 }
1471 
1472 static inline bool
1473 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1474 {
1475 	if (!sk_has_account(sk))
1476 		return true;
1477 	return size<= sk->sk_forward_alloc ||
1478 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1479 		skb_pfmemalloc(skb);
1480 }
1481 
1482 static inline void sk_mem_reclaim(struct sock *sk)
1483 {
1484 	if (!sk_has_account(sk))
1485 		return;
1486 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1487 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1488 }
1489 
1490 static inline void sk_mem_reclaim_partial(struct sock *sk)
1491 {
1492 	if (!sk_has_account(sk))
1493 		return;
1494 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1495 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1496 }
1497 
1498 static inline void sk_mem_charge(struct sock *sk, int size)
1499 {
1500 	if (!sk_has_account(sk))
1501 		return;
1502 	sk->sk_forward_alloc -= size;
1503 }
1504 
1505 static inline void sk_mem_uncharge(struct sock *sk, int size)
1506 {
1507 	if (!sk_has_account(sk))
1508 		return;
1509 	sk->sk_forward_alloc += size;
1510 
1511 	/* Avoid a possible overflow.
1512 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1513 	 * is not called and more than 2 GBytes are released at once.
1514 	 *
1515 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1516 	 * no need to hold that much forward allocation anyway.
1517 	 */
1518 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1519 		__sk_mem_reclaim(sk, 1 << 20);
1520 }
1521 
1522 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1523 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1524 {
1525 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1526 	sk_wmem_queued_add(sk, -skb->truesize);
1527 	sk_mem_uncharge(sk, skb->truesize);
1528 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1529 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1530 		skb_ext_reset(skb);
1531 		skb_zcopy_clear(skb, true);
1532 		sk->sk_tx_skb_cache = skb;
1533 		return;
1534 	}
1535 	__kfree_skb(skb);
1536 }
1537 
1538 static inline void sock_release_ownership(struct sock *sk)
1539 {
1540 	if (sk->sk_lock.owned) {
1541 		sk->sk_lock.owned = 0;
1542 
1543 		/* The sk_lock has mutex_unlock() semantics: */
1544 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1545 	}
1546 }
1547 
1548 /*
1549  * Macro so as to not evaluate some arguments when
1550  * lockdep is not enabled.
1551  *
1552  * Mark both the sk_lock and the sk_lock.slock as a
1553  * per-address-family lock class.
1554  */
1555 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1556 do {									\
1557 	sk->sk_lock.owned = 0;						\
1558 	init_waitqueue_head(&sk->sk_lock.wq);				\
1559 	spin_lock_init(&(sk)->sk_lock.slock);				\
1560 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1561 			sizeof((sk)->sk_lock));				\
1562 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1563 				(skey), (sname));				\
1564 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1565 } while (0)
1566 
1567 #ifdef CONFIG_LOCKDEP
1568 static inline bool lockdep_sock_is_held(const struct sock *sk)
1569 {
1570 	return lockdep_is_held(&sk->sk_lock) ||
1571 	       lockdep_is_held(&sk->sk_lock.slock);
1572 }
1573 #endif
1574 
1575 void lock_sock_nested(struct sock *sk, int subclass);
1576 
1577 static inline void lock_sock(struct sock *sk)
1578 {
1579 	lock_sock_nested(sk, 0);
1580 }
1581 
1582 void __release_sock(struct sock *sk);
1583 void release_sock(struct sock *sk);
1584 
1585 /* BH context may only use the following locking interface. */
1586 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1587 #define bh_lock_sock_nested(__sk) \
1588 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1589 				SINGLE_DEPTH_NESTING)
1590 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1591 
1592 bool lock_sock_fast(struct sock *sk);
1593 /**
1594  * unlock_sock_fast - complement of lock_sock_fast
1595  * @sk: socket
1596  * @slow: slow mode
1597  *
1598  * fast unlock socket for user context.
1599  * If slow mode is on, we call regular release_sock()
1600  */
1601 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1602 {
1603 	if (slow)
1604 		release_sock(sk);
1605 	else
1606 		spin_unlock_bh(&sk->sk_lock.slock);
1607 }
1608 
1609 /* Used by processes to "lock" a socket state, so that
1610  * interrupts and bottom half handlers won't change it
1611  * from under us. It essentially blocks any incoming
1612  * packets, so that we won't get any new data or any
1613  * packets that change the state of the socket.
1614  *
1615  * While locked, BH processing will add new packets to
1616  * the backlog queue.  This queue is processed by the
1617  * owner of the socket lock right before it is released.
1618  *
1619  * Since ~2.3.5 it is also exclusive sleep lock serializing
1620  * accesses from user process context.
1621  */
1622 
1623 static inline void sock_owned_by_me(const struct sock *sk)
1624 {
1625 #ifdef CONFIG_LOCKDEP
1626 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1627 #endif
1628 }
1629 
1630 static inline bool sock_owned_by_user(const struct sock *sk)
1631 {
1632 	sock_owned_by_me(sk);
1633 	return sk->sk_lock.owned;
1634 }
1635 
1636 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1637 {
1638 	return sk->sk_lock.owned;
1639 }
1640 
1641 /* no reclassification while locks are held */
1642 static inline bool sock_allow_reclassification(const struct sock *csk)
1643 {
1644 	struct sock *sk = (struct sock *)csk;
1645 
1646 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1647 }
1648 
1649 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1650 		      struct proto *prot, int kern);
1651 void sk_free(struct sock *sk);
1652 void sk_destruct(struct sock *sk);
1653 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1654 void sk_free_unlock_clone(struct sock *sk);
1655 
1656 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1657 			     gfp_t priority);
1658 void __sock_wfree(struct sk_buff *skb);
1659 void sock_wfree(struct sk_buff *skb);
1660 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1661 			     gfp_t priority);
1662 void skb_orphan_partial(struct sk_buff *skb);
1663 void sock_rfree(struct sk_buff *skb);
1664 void sock_efree(struct sk_buff *skb);
1665 #ifdef CONFIG_INET
1666 void sock_edemux(struct sk_buff *skb);
1667 void sock_pfree(struct sk_buff *skb);
1668 #else
1669 #define sock_edemux sock_efree
1670 #endif
1671 
1672 int sock_setsockopt(struct socket *sock, int level, int op,
1673 		    sockptr_t optval, unsigned int optlen);
1674 
1675 int sock_getsockopt(struct socket *sock, int level, int op,
1676 		    char __user *optval, int __user *optlen);
1677 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1678 		   bool timeval, bool time32);
1679 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1680 				    int noblock, int *errcode);
1681 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1682 				     unsigned long data_len, int noblock,
1683 				     int *errcode, int max_page_order);
1684 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1685 void sock_kfree_s(struct sock *sk, void *mem, int size);
1686 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1687 void sk_send_sigurg(struct sock *sk);
1688 
1689 struct sockcm_cookie {
1690 	u64 transmit_time;
1691 	u32 mark;
1692 	u16 tsflags;
1693 };
1694 
1695 static inline void sockcm_init(struct sockcm_cookie *sockc,
1696 			       const struct sock *sk)
1697 {
1698 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1699 }
1700 
1701 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1702 		     struct sockcm_cookie *sockc);
1703 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1704 		   struct sockcm_cookie *sockc);
1705 
1706 /*
1707  * Functions to fill in entries in struct proto_ops when a protocol
1708  * does not implement a particular function.
1709  */
1710 int sock_no_bind(struct socket *, struct sockaddr *, int);
1711 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1712 int sock_no_socketpair(struct socket *, struct socket *);
1713 int sock_no_accept(struct socket *, struct socket *, int, bool);
1714 int sock_no_getname(struct socket *, struct sockaddr *, int);
1715 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1716 int sock_no_listen(struct socket *, int);
1717 int sock_no_shutdown(struct socket *, int);
1718 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1719 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1720 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1721 int sock_no_mmap(struct file *file, struct socket *sock,
1722 		 struct vm_area_struct *vma);
1723 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1724 			 size_t size, int flags);
1725 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1726 				int offset, size_t size, int flags);
1727 
1728 /*
1729  * Functions to fill in entries in struct proto_ops when a protocol
1730  * uses the inet style.
1731  */
1732 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1733 				  char __user *optval, int __user *optlen);
1734 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1735 			int flags);
1736 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1737 			   sockptr_t optval, unsigned int optlen);
1738 
1739 void sk_common_release(struct sock *sk);
1740 
1741 /*
1742  *	Default socket callbacks and setup code
1743  */
1744 
1745 /* Initialise core socket variables */
1746 void sock_init_data(struct socket *sock, struct sock *sk);
1747 
1748 /*
1749  * Socket reference counting postulates.
1750  *
1751  * * Each user of socket SHOULD hold a reference count.
1752  * * Each access point to socket (an hash table bucket, reference from a list,
1753  *   running timer, skb in flight MUST hold a reference count.
1754  * * When reference count hits 0, it means it will never increase back.
1755  * * When reference count hits 0, it means that no references from
1756  *   outside exist to this socket and current process on current CPU
1757  *   is last user and may/should destroy this socket.
1758  * * sk_free is called from any context: process, BH, IRQ. When
1759  *   it is called, socket has no references from outside -> sk_free
1760  *   may release descendant resources allocated by the socket, but
1761  *   to the time when it is called, socket is NOT referenced by any
1762  *   hash tables, lists etc.
1763  * * Packets, delivered from outside (from network or from another process)
1764  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1765  *   when they sit in queue. Otherwise, packets will leak to hole, when
1766  *   socket is looked up by one cpu and unhasing is made by another CPU.
1767  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1768  *   (leak to backlog). Packet socket does all the processing inside
1769  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1770  *   use separate SMP lock, so that they are prone too.
1771  */
1772 
1773 /* Ungrab socket and destroy it, if it was the last reference. */
1774 static inline void sock_put(struct sock *sk)
1775 {
1776 	if (refcount_dec_and_test(&sk->sk_refcnt))
1777 		sk_free(sk);
1778 }
1779 /* Generic version of sock_put(), dealing with all sockets
1780  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1781  */
1782 void sock_gen_put(struct sock *sk);
1783 
1784 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1785 		     unsigned int trim_cap, bool refcounted);
1786 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1787 				 const int nested)
1788 {
1789 	return __sk_receive_skb(sk, skb, nested, 1, true);
1790 }
1791 
1792 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1793 {
1794 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1795 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1796 		return;
1797 	sk->sk_tx_queue_mapping = tx_queue;
1798 }
1799 
1800 #define NO_QUEUE_MAPPING	USHRT_MAX
1801 
1802 static inline void sk_tx_queue_clear(struct sock *sk)
1803 {
1804 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1805 }
1806 
1807 static inline int sk_tx_queue_get(const struct sock *sk)
1808 {
1809 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1810 		return sk->sk_tx_queue_mapping;
1811 
1812 	return -1;
1813 }
1814 
1815 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1816 {
1817 #ifdef CONFIG_XPS
1818 	if (skb_rx_queue_recorded(skb)) {
1819 		u16 rx_queue = skb_get_rx_queue(skb);
1820 
1821 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1822 			return;
1823 
1824 		sk->sk_rx_queue_mapping = rx_queue;
1825 	}
1826 #endif
1827 }
1828 
1829 static inline void sk_rx_queue_clear(struct sock *sk)
1830 {
1831 #ifdef CONFIG_XPS
1832 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1833 #endif
1834 }
1835 
1836 #ifdef CONFIG_XPS
1837 static inline int sk_rx_queue_get(const struct sock *sk)
1838 {
1839 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1840 		return sk->sk_rx_queue_mapping;
1841 
1842 	return -1;
1843 }
1844 #endif
1845 
1846 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1847 {
1848 	sk->sk_socket = sock;
1849 }
1850 
1851 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1852 {
1853 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1854 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1855 }
1856 /* Detach socket from process context.
1857  * Announce socket dead, detach it from wait queue and inode.
1858  * Note that parent inode held reference count on this struct sock,
1859  * we do not release it in this function, because protocol
1860  * probably wants some additional cleanups or even continuing
1861  * to work with this socket (TCP).
1862  */
1863 static inline void sock_orphan(struct sock *sk)
1864 {
1865 	write_lock_bh(&sk->sk_callback_lock);
1866 	sock_set_flag(sk, SOCK_DEAD);
1867 	sk_set_socket(sk, NULL);
1868 	sk->sk_wq  = NULL;
1869 	write_unlock_bh(&sk->sk_callback_lock);
1870 }
1871 
1872 static inline void sock_graft(struct sock *sk, struct socket *parent)
1873 {
1874 	WARN_ON(parent->sk);
1875 	write_lock_bh(&sk->sk_callback_lock);
1876 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1877 	parent->sk = sk;
1878 	sk_set_socket(sk, parent);
1879 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1880 	security_sock_graft(sk, parent);
1881 	write_unlock_bh(&sk->sk_callback_lock);
1882 }
1883 
1884 kuid_t sock_i_uid(struct sock *sk);
1885 unsigned long sock_i_ino(struct sock *sk);
1886 
1887 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1888 {
1889 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1890 }
1891 
1892 static inline u32 net_tx_rndhash(void)
1893 {
1894 	u32 v = prandom_u32();
1895 
1896 	return v ?: 1;
1897 }
1898 
1899 static inline void sk_set_txhash(struct sock *sk)
1900 {
1901 	sk->sk_txhash = net_tx_rndhash();
1902 }
1903 
1904 static inline void sk_rethink_txhash(struct sock *sk)
1905 {
1906 	if (sk->sk_txhash)
1907 		sk_set_txhash(sk);
1908 }
1909 
1910 static inline struct dst_entry *
1911 __sk_dst_get(struct sock *sk)
1912 {
1913 	return rcu_dereference_check(sk->sk_dst_cache,
1914 				     lockdep_sock_is_held(sk));
1915 }
1916 
1917 static inline struct dst_entry *
1918 sk_dst_get(struct sock *sk)
1919 {
1920 	struct dst_entry *dst;
1921 
1922 	rcu_read_lock();
1923 	dst = rcu_dereference(sk->sk_dst_cache);
1924 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1925 		dst = NULL;
1926 	rcu_read_unlock();
1927 	return dst;
1928 }
1929 
1930 static inline void dst_negative_advice(struct sock *sk)
1931 {
1932 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1933 
1934 	sk_rethink_txhash(sk);
1935 
1936 	if (dst && dst->ops->negative_advice) {
1937 		ndst = dst->ops->negative_advice(dst);
1938 
1939 		if (ndst != dst) {
1940 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1941 			sk_tx_queue_clear(sk);
1942 			sk->sk_dst_pending_confirm = 0;
1943 		}
1944 	}
1945 }
1946 
1947 static inline void
1948 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1949 {
1950 	struct dst_entry *old_dst;
1951 
1952 	sk_tx_queue_clear(sk);
1953 	sk->sk_dst_pending_confirm = 0;
1954 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1955 					    lockdep_sock_is_held(sk));
1956 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1957 	dst_release(old_dst);
1958 }
1959 
1960 static inline void
1961 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1962 {
1963 	struct dst_entry *old_dst;
1964 
1965 	sk_tx_queue_clear(sk);
1966 	sk->sk_dst_pending_confirm = 0;
1967 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1968 	dst_release(old_dst);
1969 }
1970 
1971 static inline void
1972 __sk_dst_reset(struct sock *sk)
1973 {
1974 	__sk_dst_set(sk, NULL);
1975 }
1976 
1977 static inline void
1978 sk_dst_reset(struct sock *sk)
1979 {
1980 	sk_dst_set(sk, NULL);
1981 }
1982 
1983 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1984 
1985 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1986 
1987 static inline void sk_dst_confirm(struct sock *sk)
1988 {
1989 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1990 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1991 }
1992 
1993 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1994 {
1995 	if (skb_get_dst_pending_confirm(skb)) {
1996 		struct sock *sk = skb->sk;
1997 		unsigned long now = jiffies;
1998 
1999 		/* avoid dirtying neighbour */
2000 		if (READ_ONCE(n->confirmed) != now)
2001 			WRITE_ONCE(n->confirmed, now);
2002 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2003 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2004 	}
2005 }
2006 
2007 bool sk_mc_loop(struct sock *sk);
2008 
2009 static inline bool sk_can_gso(const struct sock *sk)
2010 {
2011 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2012 }
2013 
2014 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2015 
2016 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2017 {
2018 	sk->sk_route_nocaps |= flags;
2019 	sk->sk_route_caps &= ~flags;
2020 }
2021 
2022 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2023 					   struct iov_iter *from, char *to,
2024 					   int copy, int offset)
2025 {
2026 	if (skb->ip_summed == CHECKSUM_NONE) {
2027 		__wsum csum = 0;
2028 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2029 			return -EFAULT;
2030 		skb->csum = csum_block_add(skb->csum, csum, offset);
2031 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2032 		if (!copy_from_iter_full_nocache(to, copy, from))
2033 			return -EFAULT;
2034 	} else if (!copy_from_iter_full(to, copy, from))
2035 		return -EFAULT;
2036 
2037 	return 0;
2038 }
2039 
2040 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2041 				       struct iov_iter *from, int copy)
2042 {
2043 	int err, offset = skb->len;
2044 
2045 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2046 				       copy, offset);
2047 	if (err)
2048 		__skb_trim(skb, offset);
2049 
2050 	return err;
2051 }
2052 
2053 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2054 					   struct sk_buff *skb,
2055 					   struct page *page,
2056 					   int off, int copy)
2057 {
2058 	int err;
2059 
2060 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2061 				       copy, skb->len);
2062 	if (err)
2063 		return err;
2064 
2065 	skb->len	     += copy;
2066 	skb->data_len	     += copy;
2067 	skb->truesize	     += copy;
2068 	sk_wmem_queued_add(sk, copy);
2069 	sk_mem_charge(sk, copy);
2070 	return 0;
2071 }
2072 
2073 /**
2074  * sk_wmem_alloc_get - returns write allocations
2075  * @sk: socket
2076  *
2077  * Return: sk_wmem_alloc minus initial offset of one
2078  */
2079 static inline int sk_wmem_alloc_get(const struct sock *sk)
2080 {
2081 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2082 }
2083 
2084 /**
2085  * sk_rmem_alloc_get - returns read allocations
2086  * @sk: socket
2087  *
2088  * Return: sk_rmem_alloc
2089  */
2090 static inline int sk_rmem_alloc_get(const struct sock *sk)
2091 {
2092 	return atomic_read(&sk->sk_rmem_alloc);
2093 }
2094 
2095 /**
2096  * sk_has_allocations - check if allocations are outstanding
2097  * @sk: socket
2098  *
2099  * Return: true if socket has write or read allocations
2100  */
2101 static inline bool sk_has_allocations(const struct sock *sk)
2102 {
2103 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2104 }
2105 
2106 /**
2107  * skwq_has_sleeper - check if there are any waiting processes
2108  * @wq: struct socket_wq
2109  *
2110  * Return: true if socket_wq has waiting processes
2111  *
2112  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2113  * barrier call. They were added due to the race found within the tcp code.
2114  *
2115  * Consider following tcp code paths::
2116  *
2117  *   CPU1                CPU2
2118  *   sys_select          receive packet
2119  *   ...                 ...
2120  *   __add_wait_queue    update tp->rcv_nxt
2121  *   ...                 ...
2122  *   tp->rcv_nxt check   sock_def_readable
2123  *   ...                 {
2124  *   schedule               rcu_read_lock();
2125  *                          wq = rcu_dereference(sk->sk_wq);
2126  *                          if (wq && waitqueue_active(&wq->wait))
2127  *                              wake_up_interruptible(&wq->wait)
2128  *                          ...
2129  *                       }
2130  *
2131  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2132  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2133  * could then endup calling schedule and sleep forever if there are no more
2134  * data on the socket.
2135  *
2136  */
2137 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2138 {
2139 	return wq && wq_has_sleeper(&wq->wait);
2140 }
2141 
2142 /**
2143  * sock_poll_wait - place memory barrier behind the poll_wait call.
2144  * @filp:           file
2145  * @sock:           socket to wait on
2146  * @p:              poll_table
2147  *
2148  * See the comments in the wq_has_sleeper function.
2149  */
2150 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2151 				  poll_table *p)
2152 {
2153 	if (!poll_does_not_wait(p)) {
2154 		poll_wait(filp, &sock->wq.wait, p);
2155 		/* We need to be sure we are in sync with the
2156 		 * socket flags modification.
2157 		 *
2158 		 * This memory barrier is paired in the wq_has_sleeper.
2159 		 */
2160 		smp_mb();
2161 	}
2162 }
2163 
2164 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2165 {
2166 	if (sk->sk_txhash) {
2167 		skb->l4_hash = 1;
2168 		skb->hash = sk->sk_txhash;
2169 	}
2170 }
2171 
2172 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2173 
2174 /*
2175  *	Queue a received datagram if it will fit. Stream and sequenced
2176  *	protocols can't normally use this as they need to fit buffers in
2177  *	and play with them.
2178  *
2179  *	Inlined as it's very short and called for pretty much every
2180  *	packet ever received.
2181  */
2182 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2183 {
2184 	skb_orphan(skb);
2185 	skb->sk = sk;
2186 	skb->destructor = sock_rfree;
2187 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2188 	sk_mem_charge(sk, skb->truesize);
2189 }
2190 
2191 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2192 		    unsigned long expires);
2193 
2194 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2195 
2196 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2197 			struct sk_buff *skb, unsigned int flags,
2198 			void (*destructor)(struct sock *sk,
2199 					   struct sk_buff *skb));
2200 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2201 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2202 
2203 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2204 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2205 
2206 /*
2207  *	Recover an error report and clear atomically
2208  */
2209 
2210 static inline int sock_error(struct sock *sk)
2211 {
2212 	int err;
2213 	if (likely(!sk->sk_err))
2214 		return 0;
2215 	err = xchg(&sk->sk_err, 0);
2216 	return -err;
2217 }
2218 
2219 static inline unsigned long sock_wspace(struct sock *sk)
2220 {
2221 	int amt = 0;
2222 
2223 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2224 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2225 		if (amt < 0)
2226 			amt = 0;
2227 	}
2228 	return amt;
2229 }
2230 
2231 /* Note:
2232  *  We use sk->sk_wq_raw, from contexts knowing this
2233  *  pointer is not NULL and cannot disappear/change.
2234  */
2235 static inline void sk_set_bit(int nr, struct sock *sk)
2236 {
2237 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2238 	    !sock_flag(sk, SOCK_FASYNC))
2239 		return;
2240 
2241 	set_bit(nr, &sk->sk_wq_raw->flags);
2242 }
2243 
2244 static inline void sk_clear_bit(int nr, struct sock *sk)
2245 {
2246 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2247 	    !sock_flag(sk, SOCK_FASYNC))
2248 		return;
2249 
2250 	clear_bit(nr, &sk->sk_wq_raw->flags);
2251 }
2252 
2253 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2254 {
2255 	if (sock_flag(sk, SOCK_FASYNC)) {
2256 		rcu_read_lock();
2257 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2258 		rcu_read_unlock();
2259 	}
2260 }
2261 
2262 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2263  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2264  * Note: for send buffers, TCP works better if we can build two skbs at
2265  * minimum.
2266  */
2267 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2268 
2269 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2270 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2271 
2272 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2273 {
2274 	u32 val;
2275 
2276 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2277 		return;
2278 
2279 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2280 
2281 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2282 }
2283 
2284 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2285 				    bool force_schedule);
2286 
2287 /**
2288  * sk_page_frag - return an appropriate page_frag
2289  * @sk: socket
2290  *
2291  * Use the per task page_frag instead of the per socket one for
2292  * optimization when we know that we're in the normal context and owns
2293  * everything that's associated with %current.
2294  *
2295  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2296  * inside other socket operations and end up recursing into sk_page_frag()
2297  * while it's already in use.
2298  *
2299  * Return: a per task page_frag if context allows that,
2300  * otherwise a per socket one.
2301  */
2302 static inline struct page_frag *sk_page_frag(struct sock *sk)
2303 {
2304 	if (gfpflags_normal_context(sk->sk_allocation))
2305 		return &current->task_frag;
2306 
2307 	return &sk->sk_frag;
2308 }
2309 
2310 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2311 
2312 /*
2313  *	Default write policy as shown to user space via poll/select/SIGIO
2314  */
2315 static inline bool sock_writeable(const struct sock *sk)
2316 {
2317 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2318 }
2319 
2320 static inline gfp_t gfp_any(void)
2321 {
2322 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2323 }
2324 
2325 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2326 {
2327 	return noblock ? 0 : sk->sk_rcvtimeo;
2328 }
2329 
2330 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2331 {
2332 	return noblock ? 0 : sk->sk_sndtimeo;
2333 }
2334 
2335 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2336 {
2337 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2338 
2339 	return v ?: 1;
2340 }
2341 
2342 /* Alas, with timeout socket operations are not restartable.
2343  * Compare this to poll().
2344  */
2345 static inline int sock_intr_errno(long timeo)
2346 {
2347 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2348 }
2349 
2350 struct sock_skb_cb {
2351 	u32 dropcount;
2352 };
2353 
2354 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2355  * using skb->cb[] would keep using it directly and utilize its
2356  * alignement guarantee.
2357  */
2358 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2359 			    sizeof(struct sock_skb_cb)))
2360 
2361 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2362 			    SOCK_SKB_CB_OFFSET))
2363 
2364 #define sock_skb_cb_check_size(size) \
2365 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2366 
2367 static inline void
2368 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2369 {
2370 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2371 						atomic_read(&sk->sk_drops) : 0;
2372 }
2373 
2374 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2375 {
2376 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2377 
2378 	atomic_add(segs, &sk->sk_drops);
2379 }
2380 
2381 static inline ktime_t sock_read_timestamp(struct sock *sk)
2382 {
2383 #if BITS_PER_LONG==32
2384 	unsigned int seq;
2385 	ktime_t kt;
2386 
2387 	do {
2388 		seq = read_seqbegin(&sk->sk_stamp_seq);
2389 		kt = sk->sk_stamp;
2390 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2391 
2392 	return kt;
2393 #else
2394 	return READ_ONCE(sk->sk_stamp);
2395 #endif
2396 }
2397 
2398 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2399 {
2400 #if BITS_PER_LONG==32
2401 	write_seqlock(&sk->sk_stamp_seq);
2402 	sk->sk_stamp = kt;
2403 	write_sequnlock(&sk->sk_stamp_seq);
2404 #else
2405 	WRITE_ONCE(sk->sk_stamp, kt);
2406 #endif
2407 }
2408 
2409 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2410 			   struct sk_buff *skb);
2411 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2412 			     struct sk_buff *skb);
2413 
2414 static inline void
2415 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2416 {
2417 	ktime_t kt = skb->tstamp;
2418 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2419 
2420 	/*
2421 	 * generate control messages if
2422 	 * - receive time stamping in software requested
2423 	 * - software time stamp available and wanted
2424 	 * - hardware time stamps available and wanted
2425 	 */
2426 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2427 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2428 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2429 	    (hwtstamps->hwtstamp &&
2430 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2431 		__sock_recv_timestamp(msg, sk, skb);
2432 	else
2433 		sock_write_timestamp(sk, kt);
2434 
2435 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2436 		__sock_recv_wifi_status(msg, sk, skb);
2437 }
2438 
2439 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2440 			      struct sk_buff *skb);
2441 
2442 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2443 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2444 					  struct sk_buff *skb)
2445 {
2446 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2447 			   (1UL << SOCK_RCVTSTAMP))
2448 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2449 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2450 
2451 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2452 		__sock_recv_ts_and_drops(msg, sk, skb);
2453 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2454 		sock_write_timestamp(sk, skb->tstamp);
2455 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2456 		sock_write_timestamp(sk, 0);
2457 }
2458 
2459 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2460 
2461 /**
2462  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2463  * @sk:		socket sending this packet
2464  * @tsflags:	timestamping flags to use
2465  * @tx_flags:	completed with instructions for time stamping
2466  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2467  *
2468  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2469  */
2470 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2471 				      __u8 *tx_flags, __u32 *tskey)
2472 {
2473 	if (unlikely(tsflags)) {
2474 		__sock_tx_timestamp(tsflags, tx_flags);
2475 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2476 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2477 			*tskey = sk->sk_tskey++;
2478 	}
2479 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2480 		*tx_flags |= SKBTX_WIFI_STATUS;
2481 }
2482 
2483 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2484 				     __u8 *tx_flags)
2485 {
2486 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2487 }
2488 
2489 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2490 {
2491 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2492 			   &skb_shinfo(skb)->tskey);
2493 }
2494 
2495 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2496 /**
2497  * sk_eat_skb - Release a skb if it is no longer needed
2498  * @sk: socket to eat this skb from
2499  * @skb: socket buffer to eat
2500  *
2501  * This routine must be called with interrupts disabled or with the socket
2502  * locked so that the sk_buff queue operation is ok.
2503 */
2504 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2505 {
2506 	__skb_unlink(skb, &sk->sk_receive_queue);
2507 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2508 	    !sk->sk_rx_skb_cache) {
2509 		sk->sk_rx_skb_cache = skb;
2510 		skb_orphan(skb);
2511 		return;
2512 	}
2513 	__kfree_skb(skb);
2514 }
2515 
2516 static inline
2517 struct net *sock_net(const struct sock *sk)
2518 {
2519 	return read_pnet(&sk->sk_net);
2520 }
2521 
2522 static inline
2523 void sock_net_set(struct sock *sk, struct net *net)
2524 {
2525 	write_pnet(&sk->sk_net, net);
2526 }
2527 
2528 static inline bool
2529 skb_sk_is_prefetched(struct sk_buff *skb)
2530 {
2531 #ifdef CONFIG_INET
2532 	return skb->destructor == sock_pfree;
2533 #else
2534 	return false;
2535 #endif /* CONFIG_INET */
2536 }
2537 
2538 /* This helper checks if a socket is a full socket,
2539  * ie _not_ a timewait or request socket.
2540  */
2541 static inline bool sk_fullsock(const struct sock *sk)
2542 {
2543 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2544 }
2545 
2546 static inline bool
2547 sk_is_refcounted(struct sock *sk)
2548 {
2549 	/* Only full sockets have sk->sk_flags. */
2550 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2551 }
2552 
2553 /**
2554  * skb_steal_sock - steal a socket from an sk_buff
2555  * @skb: sk_buff to steal the socket from
2556  * @refcounted: is set to true if the socket is reference-counted
2557  */
2558 static inline struct sock *
2559 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2560 {
2561 	if (skb->sk) {
2562 		struct sock *sk = skb->sk;
2563 
2564 		*refcounted = true;
2565 		if (skb_sk_is_prefetched(skb))
2566 			*refcounted = sk_is_refcounted(sk);
2567 		skb->destructor = NULL;
2568 		skb->sk = NULL;
2569 		return sk;
2570 	}
2571 	*refcounted = false;
2572 	return NULL;
2573 }
2574 
2575 /* Checks if this SKB belongs to an HW offloaded socket
2576  * and whether any SW fallbacks are required based on dev.
2577  * Check decrypted mark in case skb_orphan() cleared socket.
2578  */
2579 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2580 						   struct net_device *dev)
2581 {
2582 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2583 	struct sock *sk = skb->sk;
2584 
2585 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2586 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2587 #ifdef CONFIG_TLS_DEVICE
2588 	} else if (unlikely(skb->decrypted)) {
2589 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2590 		kfree_skb(skb);
2591 		skb = NULL;
2592 #endif
2593 	}
2594 #endif
2595 
2596 	return skb;
2597 }
2598 
2599 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2600  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2601  */
2602 static inline bool sk_listener(const struct sock *sk)
2603 {
2604 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2605 }
2606 
2607 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2608 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2609 		       int type);
2610 
2611 bool sk_ns_capable(const struct sock *sk,
2612 		   struct user_namespace *user_ns, int cap);
2613 bool sk_capable(const struct sock *sk, int cap);
2614 bool sk_net_capable(const struct sock *sk, int cap);
2615 
2616 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2617 
2618 /* Take into consideration the size of the struct sk_buff overhead in the
2619  * determination of these values, since that is non-constant across
2620  * platforms.  This makes socket queueing behavior and performance
2621  * not depend upon such differences.
2622  */
2623 #define _SK_MEM_PACKETS		256
2624 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2625 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2626 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2627 
2628 extern __u32 sysctl_wmem_max;
2629 extern __u32 sysctl_rmem_max;
2630 
2631 extern int sysctl_tstamp_allow_data;
2632 extern int sysctl_optmem_max;
2633 
2634 extern __u32 sysctl_wmem_default;
2635 extern __u32 sysctl_rmem_default;
2636 
2637 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2638 
2639 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2640 {
2641 	/* Does this proto have per netns sysctl_wmem ? */
2642 	if (proto->sysctl_wmem_offset)
2643 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2644 
2645 	return *proto->sysctl_wmem;
2646 }
2647 
2648 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2649 {
2650 	/* Does this proto have per netns sysctl_rmem ? */
2651 	if (proto->sysctl_rmem_offset)
2652 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2653 
2654 	return *proto->sysctl_rmem;
2655 }
2656 
2657 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2658  * Some wifi drivers need to tweak it to get more chunks.
2659  * They can use this helper from their ndo_start_xmit()
2660  */
2661 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2662 {
2663 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2664 		return;
2665 	WRITE_ONCE(sk->sk_pacing_shift, val);
2666 }
2667 
2668 /* if a socket is bound to a device, check that the given device
2669  * index is either the same or that the socket is bound to an L3
2670  * master device and the given device index is also enslaved to
2671  * that L3 master
2672  */
2673 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2674 {
2675 	int mdif;
2676 
2677 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2678 		return true;
2679 
2680 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2681 	if (mdif && mdif == sk->sk_bound_dev_if)
2682 		return true;
2683 
2684 	return false;
2685 }
2686 
2687 void sock_def_readable(struct sock *sk);
2688 
2689 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2690 void sock_enable_timestamps(struct sock *sk);
2691 void sock_no_linger(struct sock *sk);
2692 void sock_set_keepalive(struct sock *sk);
2693 void sock_set_priority(struct sock *sk, u32 priority);
2694 void sock_set_rcvbuf(struct sock *sk, int val);
2695 void sock_set_reuseaddr(struct sock *sk);
2696 void sock_set_reuseport(struct sock *sk);
2697 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2698 
2699 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2700 
2701 #endif	/* _SOCK_H */
2702