1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 #include <linux/sockptr.h> 63 64 #include <linux/atomic.h> 65 #include <linux/refcount.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 72 /* 73 * This structure really needs to be cleaned up. 74 * Most of it is for TCP, and not used by any of 75 * the other protocols. 76 */ 77 78 /* Define this to get the SOCK_DBG debugging facility. */ 79 #define SOCK_DEBUGGING 80 #ifdef SOCK_DEBUGGING 81 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 82 printk(KERN_DEBUG msg); } while (0) 83 #else 84 /* Validate arguments and do nothing */ 85 static inline __printf(2, 3) 86 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 87 { 88 } 89 #endif 90 91 /* This is the per-socket lock. The spinlock provides a synchronization 92 * between user contexts and software interrupt processing, whereas the 93 * mini-semaphore synchronizes multiple users amongst themselves. 94 */ 95 typedef struct { 96 spinlock_t slock; 97 int owned; 98 wait_queue_head_t wq; 99 /* 100 * We express the mutex-alike socket_lock semantics 101 * to the lock validator by explicitly managing 102 * the slock as a lock variant (in addition to 103 * the slock itself): 104 */ 105 #ifdef CONFIG_DEBUG_LOCK_ALLOC 106 struct lockdep_map dep_map; 107 #endif 108 } socket_lock_t; 109 110 struct sock; 111 struct proto; 112 struct net; 113 114 typedef __u32 __bitwise __portpair; 115 typedef __u64 __bitwise __addrpair; 116 117 /** 118 * struct sock_common - minimal network layer representation of sockets 119 * @skc_daddr: Foreign IPv4 addr 120 * @skc_rcv_saddr: Bound local IPv4 addr 121 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 122 * @skc_hash: hash value used with various protocol lookup tables 123 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 124 * @skc_dport: placeholder for inet_dport/tw_dport 125 * @skc_num: placeholder for inet_num/tw_num 126 * @skc_portpair: __u32 union of @skc_dport & @skc_num 127 * @skc_family: network address family 128 * @skc_state: Connection state 129 * @skc_reuse: %SO_REUSEADDR setting 130 * @skc_reuseport: %SO_REUSEPORT setting 131 * @skc_ipv6only: socket is IPV6 only 132 * @skc_net_refcnt: socket is using net ref counting 133 * @skc_bound_dev_if: bound device index if != 0 134 * @skc_bind_node: bind hash linkage for various protocol lookup tables 135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 136 * @skc_prot: protocol handlers inside a network family 137 * @skc_net: reference to the network namespace of this socket 138 * @skc_v6_daddr: IPV6 destination address 139 * @skc_v6_rcv_saddr: IPV6 source address 140 * @skc_cookie: socket's cookie value 141 * @skc_node: main hash linkage for various protocol lookup tables 142 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 143 * @skc_tx_queue_mapping: tx queue number for this connection 144 * @skc_rx_queue_mapping: rx queue number for this connection 145 * @skc_flags: place holder for sk_flags 146 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 147 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 148 * @skc_listener: connection request listener socket (aka rsk_listener) 149 * [union with @skc_flags] 150 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 151 * [union with @skc_flags] 152 * @skc_incoming_cpu: record/match cpu processing incoming packets 153 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 154 * [union with @skc_incoming_cpu] 155 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 156 * [union with @skc_incoming_cpu] 157 * @skc_refcnt: reference count 158 * 159 * This is the minimal network layer representation of sockets, the header 160 * for struct sock and struct inet_timewait_sock. 161 */ 162 struct sock_common { 163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 164 * address on 64bit arches : cf INET_MATCH() 165 */ 166 union { 167 __addrpair skc_addrpair; 168 struct { 169 __be32 skc_daddr; 170 __be32 skc_rcv_saddr; 171 }; 172 }; 173 union { 174 unsigned int skc_hash; 175 __u16 skc_u16hashes[2]; 176 }; 177 /* skc_dport && skc_num must be grouped as well */ 178 union { 179 __portpair skc_portpair; 180 struct { 181 __be16 skc_dport; 182 __u16 skc_num; 183 }; 184 }; 185 186 unsigned short skc_family; 187 volatile unsigned char skc_state; 188 unsigned char skc_reuse:4; 189 unsigned char skc_reuseport:1; 190 unsigned char skc_ipv6only:1; 191 unsigned char skc_net_refcnt:1; 192 int skc_bound_dev_if; 193 union { 194 struct hlist_node skc_bind_node; 195 struct hlist_node skc_portaddr_node; 196 }; 197 struct proto *skc_prot; 198 possible_net_t skc_net; 199 200 #if IS_ENABLED(CONFIG_IPV6) 201 struct in6_addr skc_v6_daddr; 202 struct in6_addr skc_v6_rcv_saddr; 203 #endif 204 205 atomic64_t skc_cookie; 206 207 /* following fields are padding to force 208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 209 * assuming IPV6 is enabled. We use this padding differently 210 * for different kind of 'sockets' 211 */ 212 union { 213 unsigned long skc_flags; 214 struct sock *skc_listener; /* request_sock */ 215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 216 }; 217 /* 218 * fields between dontcopy_begin/dontcopy_end 219 * are not copied in sock_copy() 220 */ 221 /* private: */ 222 int skc_dontcopy_begin[0]; 223 /* public: */ 224 union { 225 struct hlist_node skc_node; 226 struct hlist_nulls_node skc_nulls_node; 227 }; 228 unsigned short skc_tx_queue_mapping; 229 #ifdef CONFIG_XPS 230 unsigned short skc_rx_queue_mapping; 231 #endif 232 union { 233 int skc_incoming_cpu; 234 u32 skc_rcv_wnd; 235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 236 }; 237 238 refcount_t skc_refcnt; 239 /* private: */ 240 int skc_dontcopy_end[0]; 241 union { 242 u32 skc_rxhash; 243 u32 skc_window_clamp; 244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 245 }; 246 /* public: */ 247 }; 248 249 struct bpf_sk_storage; 250 251 /** 252 * struct sock - network layer representation of sockets 253 * @__sk_common: shared layout with inet_timewait_sock 254 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 255 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 256 * @sk_lock: synchronizer 257 * @sk_kern_sock: True if sock is using kernel lock classes 258 * @sk_rcvbuf: size of receive buffer in bytes 259 * @sk_wq: sock wait queue and async head 260 * @sk_rx_dst: receive input route used by early demux 261 * @sk_dst_cache: destination cache 262 * @sk_dst_pending_confirm: need to confirm neighbour 263 * @sk_policy: flow policy 264 * @sk_rx_skb_cache: cache copy of recently accessed RX skb 265 * @sk_receive_queue: incoming packets 266 * @sk_wmem_alloc: transmit queue bytes committed 267 * @sk_tsq_flags: TCP Small Queues flags 268 * @sk_write_queue: Packet sending queue 269 * @sk_omem_alloc: "o" is "option" or "other" 270 * @sk_wmem_queued: persistent queue size 271 * @sk_forward_alloc: space allocated forward 272 * @sk_napi_id: id of the last napi context to receive data for sk 273 * @sk_ll_usec: usecs to busypoll when there is no data 274 * @sk_allocation: allocation mode 275 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 276 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 277 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 278 * @sk_sndbuf: size of send buffer in bytes 279 * @__sk_flags_offset: empty field used to determine location of bitfield 280 * @sk_padding: unused element for alignment 281 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 282 * @sk_no_check_rx: allow zero checksum in RX packets 283 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 284 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 285 * @sk_route_forced_caps: static, forced route capabilities 286 * (set in tcp_init_sock()) 287 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 288 * @sk_gso_max_size: Maximum GSO segment size to build 289 * @sk_gso_max_segs: Maximum number of GSO segments 290 * @sk_pacing_shift: scaling factor for TCP Small Queues 291 * @sk_lingertime: %SO_LINGER l_linger setting 292 * @sk_backlog: always used with the per-socket spinlock held 293 * @sk_callback_lock: used with the callbacks in the end of this struct 294 * @sk_error_queue: rarely used 295 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 296 * IPV6_ADDRFORM for instance) 297 * @sk_err: last error 298 * @sk_err_soft: errors that don't cause failure but are the cause of a 299 * persistent failure not just 'timed out' 300 * @sk_drops: raw/udp drops counter 301 * @sk_ack_backlog: current listen backlog 302 * @sk_max_ack_backlog: listen backlog set in listen() 303 * @sk_uid: user id of owner 304 * @sk_priority: %SO_PRIORITY setting 305 * @sk_type: socket type (%SOCK_STREAM, etc) 306 * @sk_protocol: which protocol this socket belongs in this network family 307 * @sk_peer_pid: &struct pid for this socket's peer 308 * @sk_peer_cred: %SO_PEERCRED setting 309 * @sk_rcvlowat: %SO_RCVLOWAT setting 310 * @sk_rcvtimeo: %SO_RCVTIMEO setting 311 * @sk_sndtimeo: %SO_SNDTIMEO setting 312 * @sk_txhash: computed flow hash for use on transmit 313 * @sk_filter: socket filtering instructions 314 * @sk_timer: sock cleanup timer 315 * @sk_stamp: time stamp of last packet received 316 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 317 * @sk_tsflags: SO_TIMESTAMPING socket options 318 * @sk_tskey: counter to disambiguate concurrent tstamp requests 319 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 320 * @sk_socket: Identd and reporting IO signals 321 * @sk_user_data: RPC layer private data 322 * @sk_frag: cached page frag 323 * @sk_peek_off: current peek_offset value 324 * @sk_send_head: front of stuff to transmit 325 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 326 * @sk_tx_skb_cache: cache copy of recently accessed TX skb 327 * @sk_security: used by security modules 328 * @sk_mark: generic packet mark 329 * @sk_cgrp_data: cgroup data for this cgroup 330 * @sk_memcg: this socket's memory cgroup association 331 * @sk_write_pending: a write to stream socket waits to start 332 * @sk_state_change: callback to indicate change in the state of the sock 333 * @sk_data_ready: callback to indicate there is data to be processed 334 * @sk_write_space: callback to indicate there is bf sending space available 335 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 336 * @sk_backlog_rcv: callback to process the backlog 337 * @sk_validate_xmit_skb: ptr to an optional validate function 338 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 339 * @sk_reuseport_cb: reuseport group container 340 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 341 * @sk_rcu: used during RCU grace period 342 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 343 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 344 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 345 * @sk_txtime_unused: unused txtime flags 346 */ 347 struct sock { 348 /* 349 * Now struct inet_timewait_sock also uses sock_common, so please just 350 * don't add nothing before this first member (__sk_common) --acme 351 */ 352 struct sock_common __sk_common; 353 #define sk_node __sk_common.skc_node 354 #define sk_nulls_node __sk_common.skc_nulls_node 355 #define sk_refcnt __sk_common.skc_refcnt 356 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 357 #ifdef CONFIG_XPS 358 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 359 #endif 360 361 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 362 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 363 #define sk_hash __sk_common.skc_hash 364 #define sk_portpair __sk_common.skc_portpair 365 #define sk_num __sk_common.skc_num 366 #define sk_dport __sk_common.skc_dport 367 #define sk_addrpair __sk_common.skc_addrpair 368 #define sk_daddr __sk_common.skc_daddr 369 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 370 #define sk_family __sk_common.skc_family 371 #define sk_state __sk_common.skc_state 372 #define sk_reuse __sk_common.skc_reuse 373 #define sk_reuseport __sk_common.skc_reuseport 374 #define sk_ipv6only __sk_common.skc_ipv6only 375 #define sk_net_refcnt __sk_common.skc_net_refcnt 376 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 377 #define sk_bind_node __sk_common.skc_bind_node 378 #define sk_prot __sk_common.skc_prot 379 #define sk_net __sk_common.skc_net 380 #define sk_v6_daddr __sk_common.skc_v6_daddr 381 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 382 #define sk_cookie __sk_common.skc_cookie 383 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 384 #define sk_flags __sk_common.skc_flags 385 #define sk_rxhash __sk_common.skc_rxhash 386 387 socket_lock_t sk_lock; 388 atomic_t sk_drops; 389 int sk_rcvlowat; 390 struct sk_buff_head sk_error_queue; 391 struct sk_buff *sk_rx_skb_cache; 392 struct sk_buff_head sk_receive_queue; 393 /* 394 * The backlog queue is special, it is always used with 395 * the per-socket spinlock held and requires low latency 396 * access. Therefore we special case it's implementation. 397 * Note : rmem_alloc is in this structure to fill a hole 398 * on 64bit arches, not because its logically part of 399 * backlog. 400 */ 401 struct { 402 atomic_t rmem_alloc; 403 int len; 404 struct sk_buff *head; 405 struct sk_buff *tail; 406 } sk_backlog; 407 #define sk_rmem_alloc sk_backlog.rmem_alloc 408 409 int sk_forward_alloc; 410 #ifdef CONFIG_NET_RX_BUSY_POLL 411 unsigned int sk_ll_usec; 412 /* ===== mostly read cache line ===== */ 413 unsigned int sk_napi_id; 414 #endif 415 int sk_rcvbuf; 416 417 struct sk_filter __rcu *sk_filter; 418 union { 419 struct socket_wq __rcu *sk_wq; 420 /* private: */ 421 struct socket_wq *sk_wq_raw; 422 /* public: */ 423 }; 424 #ifdef CONFIG_XFRM 425 struct xfrm_policy __rcu *sk_policy[2]; 426 #endif 427 struct dst_entry *sk_rx_dst; 428 struct dst_entry __rcu *sk_dst_cache; 429 atomic_t sk_omem_alloc; 430 int sk_sndbuf; 431 432 /* ===== cache line for TX ===== */ 433 int sk_wmem_queued; 434 refcount_t sk_wmem_alloc; 435 unsigned long sk_tsq_flags; 436 union { 437 struct sk_buff *sk_send_head; 438 struct rb_root tcp_rtx_queue; 439 }; 440 struct sk_buff *sk_tx_skb_cache; 441 struct sk_buff_head sk_write_queue; 442 __s32 sk_peek_off; 443 int sk_write_pending; 444 __u32 sk_dst_pending_confirm; 445 u32 sk_pacing_status; /* see enum sk_pacing */ 446 long sk_sndtimeo; 447 struct timer_list sk_timer; 448 __u32 sk_priority; 449 __u32 sk_mark; 450 unsigned long sk_pacing_rate; /* bytes per second */ 451 unsigned long sk_max_pacing_rate; 452 struct page_frag sk_frag; 453 netdev_features_t sk_route_caps; 454 netdev_features_t sk_route_nocaps; 455 netdev_features_t sk_route_forced_caps; 456 int sk_gso_type; 457 unsigned int sk_gso_max_size; 458 gfp_t sk_allocation; 459 __u32 sk_txhash; 460 461 /* 462 * Because of non atomicity rules, all 463 * changes are protected by socket lock. 464 */ 465 u8 sk_padding : 1, 466 sk_kern_sock : 1, 467 sk_no_check_tx : 1, 468 sk_no_check_rx : 1, 469 sk_userlocks : 4; 470 u8 sk_pacing_shift; 471 u16 sk_type; 472 u16 sk_protocol; 473 u16 sk_gso_max_segs; 474 unsigned long sk_lingertime; 475 struct proto *sk_prot_creator; 476 rwlock_t sk_callback_lock; 477 int sk_err, 478 sk_err_soft; 479 u32 sk_ack_backlog; 480 u32 sk_max_ack_backlog; 481 kuid_t sk_uid; 482 struct pid *sk_peer_pid; 483 const struct cred *sk_peer_cred; 484 long sk_rcvtimeo; 485 ktime_t sk_stamp; 486 #if BITS_PER_LONG==32 487 seqlock_t sk_stamp_seq; 488 #endif 489 u16 sk_tsflags; 490 u8 sk_shutdown; 491 u32 sk_tskey; 492 atomic_t sk_zckey; 493 494 u8 sk_clockid; 495 u8 sk_txtime_deadline_mode : 1, 496 sk_txtime_report_errors : 1, 497 sk_txtime_unused : 6; 498 499 struct socket *sk_socket; 500 void *sk_user_data; 501 #ifdef CONFIG_SECURITY 502 void *sk_security; 503 #endif 504 struct sock_cgroup_data sk_cgrp_data; 505 struct mem_cgroup *sk_memcg; 506 void (*sk_state_change)(struct sock *sk); 507 void (*sk_data_ready)(struct sock *sk); 508 void (*sk_write_space)(struct sock *sk); 509 void (*sk_error_report)(struct sock *sk); 510 int (*sk_backlog_rcv)(struct sock *sk, 511 struct sk_buff *skb); 512 #ifdef CONFIG_SOCK_VALIDATE_XMIT 513 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 514 struct net_device *dev, 515 struct sk_buff *skb); 516 #endif 517 void (*sk_destruct)(struct sock *sk); 518 struct sock_reuseport __rcu *sk_reuseport_cb; 519 #ifdef CONFIG_BPF_SYSCALL 520 struct bpf_sk_storage __rcu *sk_bpf_storage; 521 #endif 522 struct rcu_head sk_rcu; 523 }; 524 525 enum sk_pacing { 526 SK_PACING_NONE = 0, 527 SK_PACING_NEEDED = 1, 528 SK_PACING_FQ = 2, 529 }; 530 531 /* Pointer stored in sk_user_data might not be suitable for copying 532 * when cloning the socket. For instance, it can point to a reference 533 * counted object. sk_user_data bottom bit is set if pointer must not 534 * be copied. 535 */ 536 #define SK_USER_DATA_NOCOPY 1UL 537 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ 538 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) 539 540 /** 541 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 542 * @sk: socket 543 */ 544 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 545 { 546 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 547 } 548 549 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 550 551 #define rcu_dereference_sk_user_data(sk) \ 552 ({ \ 553 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 554 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 555 }) 556 #define rcu_assign_sk_user_data(sk, ptr) \ 557 ({ \ 558 uintptr_t __tmp = (uintptr_t)(ptr); \ 559 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 560 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 561 }) 562 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 563 ({ \ 564 uintptr_t __tmp = (uintptr_t)(ptr); \ 565 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 566 rcu_assign_pointer(__sk_user_data((sk)), \ 567 __tmp | SK_USER_DATA_NOCOPY); \ 568 }) 569 570 /* 571 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 572 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 573 * on a socket means that the socket will reuse everybody else's port 574 * without looking at the other's sk_reuse value. 575 */ 576 577 #define SK_NO_REUSE 0 578 #define SK_CAN_REUSE 1 579 #define SK_FORCE_REUSE 2 580 581 int sk_set_peek_off(struct sock *sk, int val); 582 583 static inline int sk_peek_offset(struct sock *sk, int flags) 584 { 585 if (unlikely(flags & MSG_PEEK)) { 586 return READ_ONCE(sk->sk_peek_off); 587 } 588 589 return 0; 590 } 591 592 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 593 { 594 s32 off = READ_ONCE(sk->sk_peek_off); 595 596 if (unlikely(off >= 0)) { 597 off = max_t(s32, off - val, 0); 598 WRITE_ONCE(sk->sk_peek_off, off); 599 } 600 } 601 602 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 603 { 604 sk_peek_offset_bwd(sk, -val); 605 } 606 607 /* 608 * Hashed lists helper routines 609 */ 610 static inline struct sock *sk_entry(const struct hlist_node *node) 611 { 612 return hlist_entry(node, struct sock, sk_node); 613 } 614 615 static inline struct sock *__sk_head(const struct hlist_head *head) 616 { 617 return hlist_entry(head->first, struct sock, sk_node); 618 } 619 620 static inline struct sock *sk_head(const struct hlist_head *head) 621 { 622 return hlist_empty(head) ? NULL : __sk_head(head); 623 } 624 625 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 626 { 627 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 628 } 629 630 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 631 { 632 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 633 } 634 635 static inline struct sock *sk_next(const struct sock *sk) 636 { 637 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 638 } 639 640 static inline struct sock *sk_nulls_next(const struct sock *sk) 641 { 642 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 643 hlist_nulls_entry(sk->sk_nulls_node.next, 644 struct sock, sk_nulls_node) : 645 NULL; 646 } 647 648 static inline bool sk_unhashed(const struct sock *sk) 649 { 650 return hlist_unhashed(&sk->sk_node); 651 } 652 653 static inline bool sk_hashed(const struct sock *sk) 654 { 655 return !sk_unhashed(sk); 656 } 657 658 static inline void sk_node_init(struct hlist_node *node) 659 { 660 node->pprev = NULL; 661 } 662 663 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 664 { 665 node->pprev = NULL; 666 } 667 668 static inline void __sk_del_node(struct sock *sk) 669 { 670 __hlist_del(&sk->sk_node); 671 } 672 673 /* NB: equivalent to hlist_del_init_rcu */ 674 static inline bool __sk_del_node_init(struct sock *sk) 675 { 676 if (sk_hashed(sk)) { 677 __sk_del_node(sk); 678 sk_node_init(&sk->sk_node); 679 return true; 680 } 681 return false; 682 } 683 684 /* Grab socket reference count. This operation is valid only 685 when sk is ALREADY grabbed f.e. it is found in hash table 686 or a list and the lookup is made under lock preventing hash table 687 modifications. 688 */ 689 690 static __always_inline void sock_hold(struct sock *sk) 691 { 692 refcount_inc(&sk->sk_refcnt); 693 } 694 695 /* Ungrab socket in the context, which assumes that socket refcnt 696 cannot hit zero, f.e. it is true in context of any socketcall. 697 */ 698 static __always_inline void __sock_put(struct sock *sk) 699 { 700 refcount_dec(&sk->sk_refcnt); 701 } 702 703 static inline bool sk_del_node_init(struct sock *sk) 704 { 705 bool rc = __sk_del_node_init(sk); 706 707 if (rc) { 708 /* paranoid for a while -acme */ 709 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 710 __sock_put(sk); 711 } 712 return rc; 713 } 714 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 715 716 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 717 { 718 if (sk_hashed(sk)) { 719 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 720 return true; 721 } 722 return false; 723 } 724 725 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 726 { 727 bool rc = __sk_nulls_del_node_init_rcu(sk); 728 729 if (rc) { 730 /* paranoid for a while -acme */ 731 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 732 __sock_put(sk); 733 } 734 return rc; 735 } 736 737 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 738 { 739 hlist_add_head(&sk->sk_node, list); 740 } 741 742 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 743 { 744 sock_hold(sk); 745 __sk_add_node(sk, list); 746 } 747 748 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 749 { 750 sock_hold(sk); 751 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 752 sk->sk_family == AF_INET6) 753 hlist_add_tail_rcu(&sk->sk_node, list); 754 else 755 hlist_add_head_rcu(&sk->sk_node, list); 756 } 757 758 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 759 { 760 sock_hold(sk); 761 hlist_add_tail_rcu(&sk->sk_node, list); 762 } 763 764 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 765 { 766 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 767 } 768 769 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 770 { 771 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 772 } 773 774 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 775 { 776 sock_hold(sk); 777 __sk_nulls_add_node_rcu(sk, list); 778 } 779 780 static inline void __sk_del_bind_node(struct sock *sk) 781 { 782 __hlist_del(&sk->sk_bind_node); 783 } 784 785 static inline void sk_add_bind_node(struct sock *sk, 786 struct hlist_head *list) 787 { 788 hlist_add_head(&sk->sk_bind_node, list); 789 } 790 791 #define sk_for_each(__sk, list) \ 792 hlist_for_each_entry(__sk, list, sk_node) 793 #define sk_for_each_rcu(__sk, list) \ 794 hlist_for_each_entry_rcu(__sk, list, sk_node) 795 #define sk_nulls_for_each(__sk, node, list) \ 796 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 797 #define sk_nulls_for_each_rcu(__sk, node, list) \ 798 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 799 #define sk_for_each_from(__sk) \ 800 hlist_for_each_entry_from(__sk, sk_node) 801 #define sk_nulls_for_each_from(__sk, node) \ 802 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 803 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 804 #define sk_for_each_safe(__sk, tmp, list) \ 805 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 806 #define sk_for_each_bound(__sk, list) \ 807 hlist_for_each_entry(__sk, list, sk_bind_node) 808 809 /** 810 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 811 * @tpos: the type * to use as a loop cursor. 812 * @pos: the &struct hlist_node to use as a loop cursor. 813 * @head: the head for your list. 814 * @offset: offset of hlist_node within the struct. 815 * 816 */ 817 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 818 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 819 pos != NULL && \ 820 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 821 pos = rcu_dereference(hlist_next_rcu(pos))) 822 823 static inline struct user_namespace *sk_user_ns(struct sock *sk) 824 { 825 /* Careful only use this in a context where these parameters 826 * can not change and must all be valid, such as recvmsg from 827 * userspace. 828 */ 829 return sk->sk_socket->file->f_cred->user_ns; 830 } 831 832 /* Sock flags */ 833 enum sock_flags { 834 SOCK_DEAD, 835 SOCK_DONE, 836 SOCK_URGINLINE, 837 SOCK_KEEPOPEN, 838 SOCK_LINGER, 839 SOCK_DESTROY, 840 SOCK_BROADCAST, 841 SOCK_TIMESTAMP, 842 SOCK_ZAPPED, 843 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 844 SOCK_DBG, /* %SO_DEBUG setting */ 845 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 846 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 847 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 848 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 849 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 850 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 851 SOCK_FASYNC, /* fasync() active */ 852 SOCK_RXQ_OVFL, 853 SOCK_ZEROCOPY, /* buffers from userspace */ 854 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 855 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 856 * Will use last 4 bytes of packet sent from 857 * user-space instead. 858 */ 859 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 860 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 861 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 862 SOCK_TXTIME, 863 SOCK_XDP, /* XDP is attached */ 864 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 865 }; 866 867 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 868 869 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 870 { 871 nsk->sk_flags = osk->sk_flags; 872 } 873 874 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 875 { 876 __set_bit(flag, &sk->sk_flags); 877 } 878 879 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 880 { 881 __clear_bit(flag, &sk->sk_flags); 882 } 883 884 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 885 int valbool) 886 { 887 if (valbool) 888 sock_set_flag(sk, bit); 889 else 890 sock_reset_flag(sk, bit); 891 } 892 893 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 894 { 895 return test_bit(flag, &sk->sk_flags); 896 } 897 898 #ifdef CONFIG_NET 899 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 900 static inline int sk_memalloc_socks(void) 901 { 902 return static_branch_unlikely(&memalloc_socks_key); 903 } 904 #else 905 906 static inline int sk_memalloc_socks(void) 907 { 908 return 0; 909 } 910 911 #endif 912 913 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 914 { 915 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 916 } 917 918 static inline void sk_acceptq_removed(struct sock *sk) 919 { 920 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 921 } 922 923 static inline void sk_acceptq_added(struct sock *sk) 924 { 925 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 926 } 927 928 static inline bool sk_acceptq_is_full(const struct sock *sk) 929 { 930 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 931 } 932 933 /* 934 * Compute minimal free write space needed to queue new packets. 935 */ 936 static inline int sk_stream_min_wspace(const struct sock *sk) 937 { 938 return READ_ONCE(sk->sk_wmem_queued) >> 1; 939 } 940 941 static inline int sk_stream_wspace(const struct sock *sk) 942 { 943 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 944 } 945 946 static inline void sk_wmem_queued_add(struct sock *sk, int val) 947 { 948 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 949 } 950 951 void sk_stream_write_space(struct sock *sk); 952 953 /* OOB backlog add */ 954 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 955 { 956 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 957 skb_dst_force(skb); 958 959 if (!sk->sk_backlog.tail) 960 WRITE_ONCE(sk->sk_backlog.head, skb); 961 else 962 sk->sk_backlog.tail->next = skb; 963 964 WRITE_ONCE(sk->sk_backlog.tail, skb); 965 skb->next = NULL; 966 } 967 968 /* 969 * Take into account size of receive queue and backlog queue 970 * Do not take into account this skb truesize, 971 * to allow even a single big packet to come. 972 */ 973 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 974 { 975 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 976 977 return qsize > limit; 978 } 979 980 /* The per-socket spinlock must be held here. */ 981 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 982 unsigned int limit) 983 { 984 if (sk_rcvqueues_full(sk, limit)) 985 return -ENOBUFS; 986 987 /* 988 * If the skb was allocated from pfmemalloc reserves, only 989 * allow SOCK_MEMALLOC sockets to use it as this socket is 990 * helping free memory 991 */ 992 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 993 return -ENOMEM; 994 995 __sk_add_backlog(sk, skb); 996 sk->sk_backlog.len += skb->truesize; 997 return 0; 998 } 999 1000 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1001 1002 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1003 { 1004 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1005 return __sk_backlog_rcv(sk, skb); 1006 1007 return sk->sk_backlog_rcv(sk, skb); 1008 } 1009 1010 static inline void sk_incoming_cpu_update(struct sock *sk) 1011 { 1012 int cpu = raw_smp_processor_id(); 1013 1014 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1015 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1016 } 1017 1018 static inline void sock_rps_record_flow_hash(__u32 hash) 1019 { 1020 #ifdef CONFIG_RPS 1021 struct rps_sock_flow_table *sock_flow_table; 1022 1023 rcu_read_lock(); 1024 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1025 rps_record_sock_flow(sock_flow_table, hash); 1026 rcu_read_unlock(); 1027 #endif 1028 } 1029 1030 static inline void sock_rps_record_flow(const struct sock *sk) 1031 { 1032 #ifdef CONFIG_RPS 1033 if (static_branch_unlikely(&rfs_needed)) { 1034 /* Reading sk->sk_rxhash might incur an expensive cache line 1035 * miss. 1036 * 1037 * TCP_ESTABLISHED does cover almost all states where RFS 1038 * might be useful, and is cheaper [1] than testing : 1039 * IPv4: inet_sk(sk)->inet_daddr 1040 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1041 * OR an additional socket flag 1042 * [1] : sk_state and sk_prot are in the same cache line. 1043 */ 1044 if (sk->sk_state == TCP_ESTABLISHED) 1045 sock_rps_record_flow_hash(sk->sk_rxhash); 1046 } 1047 #endif 1048 } 1049 1050 static inline void sock_rps_save_rxhash(struct sock *sk, 1051 const struct sk_buff *skb) 1052 { 1053 #ifdef CONFIG_RPS 1054 if (unlikely(sk->sk_rxhash != skb->hash)) 1055 sk->sk_rxhash = skb->hash; 1056 #endif 1057 } 1058 1059 static inline void sock_rps_reset_rxhash(struct sock *sk) 1060 { 1061 #ifdef CONFIG_RPS 1062 sk->sk_rxhash = 0; 1063 #endif 1064 } 1065 1066 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1067 ({ int __rc; \ 1068 release_sock(__sk); \ 1069 __rc = __condition; \ 1070 if (!__rc) { \ 1071 *(__timeo) = wait_woken(__wait, \ 1072 TASK_INTERRUPTIBLE, \ 1073 *(__timeo)); \ 1074 } \ 1075 sched_annotate_sleep(); \ 1076 lock_sock(__sk); \ 1077 __rc = __condition; \ 1078 __rc; \ 1079 }) 1080 1081 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1082 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1083 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1084 int sk_stream_error(struct sock *sk, int flags, int err); 1085 void sk_stream_kill_queues(struct sock *sk); 1086 void sk_set_memalloc(struct sock *sk); 1087 void sk_clear_memalloc(struct sock *sk); 1088 1089 void __sk_flush_backlog(struct sock *sk); 1090 1091 static inline bool sk_flush_backlog(struct sock *sk) 1092 { 1093 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1094 __sk_flush_backlog(sk); 1095 return true; 1096 } 1097 return false; 1098 } 1099 1100 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1101 1102 struct request_sock_ops; 1103 struct timewait_sock_ops; 1104 struct inet_hashinfo; 1105 struct raw_hashinfo; 1106 struct smc_hashinfo; 1107 struct module; 1108 1109 /* 1110 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1111 * un-modified. Special care is taken when initializing object to zero. 1112 */ 1113 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1114 { 1115 if (offsetof(struct sock, sk_node.next) != 0) 1116 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1117 memset(&sk->sk_node.pprev, 0, 1118 size - offsetof(struct sock, sk_node.pprev)); 1119 } 1120 1121 /* Networking protocol blocks we attach to sockets. 1122 * socket layer -> transport layer interface 1123 */ 1124 struct proto { 1125 void (*close)(struct sock *sk, 1126 long timeout); 1127 int (*pre_connect)(struct sock *sk, 1128 struct sockaddr *uaddr, 1129 int addr_len); 1130 int (*connect)(struct sock *sk, 1131 struct sockaddr *uaddr, 1132 int addr_len); 1133 int (*disconnect)(struct sock *sk, int flags); 1134 1135 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1136 bool kern); 1137 1138 int (*ioctl)(struct sock *sk, int cmd, 1139 unsigned long arg); 1140 int (*init)(struct sock *sk); 1141 void (*destroy)(struct sock *sk); 1142 void (*shutdown)(struct sock *sk, int how); 1143 int (*setsockopt)(struct sock *sk, int level, 1144 int optname, sockptr_t optval, 1145 unsigned int optlen); 1146 int (*getsockopt)(struct sock *sk, int level, 1147 int optname, char __user *optval, 1148 int __user *option); 1149 void (*keepalive)(struct sock *sk, int valbool); 1150 #ifdef CONFIG_COMPAT 1151 int (*compat_ioctl)(struct sock *sk, 1152 unsigned int cmd, unsigned long arg); 1153 #endif 1154 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1155 size_t len); 1156 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1157 size_t len, int noblock, int flags, 1158 int *addr_len); 1159 int (*sendpage)(struct sock *sk, struct page *page, 1160 int offset, size_t size, int flags); 1161 int (*bind)(struct sock *sk, 1162 struct sockaddr *addr, int addr_len); 1163 int (*bind_add)(struct sock *sk, 1164 struct sockaddr *addr, int addr_len); 1165 1166 int (*backlog_rcv) (struct sock *sk, 1167 struct sk_buff *skb); 1168 1169 void (*release_cb)(struct sock *sk); 1170 1171 /* Keeping track of sk's, looking them up, and port selection methods. */ 1172 int (*hash)(struct sock *sk); 1173 void (*unhash)(struct sock *sk); 1174 void (*rehash)(struct sock *sk); 1175 int (*get_port)(struct sock *sk, unsigned short snum); 1176 1177 /* Keeping track of sockets in use */ 1178 #ifdef CONFIG_PROC_FS 1179 unsigned int inuse_idx; 1180 #endif 1181 1182 bool (*stream_memory_free)(const struct sock *sk, int wake); 1183 bool (*stream_memory_read)(const struct sock *sk); 1184 /* Memory pressure */ 1185 void (*enter_memory_pressure)(struct sock *sk); 1186 void (*leave_memory_pressure)(struct sock *sk); 1187 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1188 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1189 /* 1190 * Pressure flag: try to collapse. 1191 * Technical note: it is used by multiple contexts non atomically. 1192 * All the __sk_mem_schedule() is of this nature: accounting 1193 * is strict, actions are advisory and have some latency. 1194 */ 1195 unsigned long *memory_pressure; 1196 long *sysctl_mem; 1197 1198 int *sysctl_wmem; 1199 int *sysctl_rmem; 1200 u32 sysctl_wmem_offset; 1201 u32 sysctl_rmem_offset; 1202 1203 int max_header; 1204 bool no_autobind; 1205 1206 struct kmem_cache *slab; 1207 unsigned int obj_size; 1208 slab_flags_t slab_flags; 1209 unsigned int useroffset; /* Usercopy region offset */ 1210 unsigned int usersize; /* Usercopy region size */ 1211 1212 struct percpu_counter *orphan_count; 1213 1214 struct request_sock_ops *rsk_prot; 1215 struct timewait_sock_ops *twsk_prot; 1216 1217 union { 1218 struct inet_hashinfo *hashinfo; 1219 struct udp_table *udp_table; 1220 struct raw_hashinfo *raw_hash; 1221 struct smc_hashinfo *smc_hash; 1222 } h; 1223 1224 struct module *owner; 1225 1226 char name[32]; 1227 1228 struct list_head node; 1229 #ifdef SOCK_REFCNT_DEBUG 1230 atomic_t socks; 1231 #endif 1232 int (*diag_destroy)(struct sock *sk, int err); 1233 } __randomize_layout; 1234 1235 int proto_register(struct proto *prot, int alloc_slab); 1236 void proto_unregister(struct proto *prot); 1237 int sock_load_diag_module(int family, int protocol); 1238 1239 #ifdef SOCK_REFCNT_DEBUG 1240 static inline void sk_refcnt_debug_inc(struct sock *sk) 1241 { 1242 atomic_inc(&sk->sk_prot->socks); 1243 } 1244 1245 static inline void sk_refcnt_debug_dec(struct sock *sk) 1246 { 1247 atomic_dec(&sk->sk_prot->socks); 1248 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1249 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1250 } 1251 1252 static inline void sk_refcnt_debug_release(const struct sock *sk) 1253 { 1254 if (refcount_read(&sk->sk_refcnt) != 1) 1255 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1256 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1257 } 1258 #else /* SOCK_REFCNT_DEBUG */ 1259 #define sk_refcnt_debug_inc(sk) do { } while (0) 1260 #define sk_refcnt_debug_dec(sk) do { } while (0) 1261 #define sk_refcnt_debug_release(sk) do { } while (0) 1262 #endif /* SOCK_REFCNT_DEBUG */ 1263 1264 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1265 { 1266 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1267 return false; 1268 1269 return sk->sk_prot->stream_memory_free ? 1270 sk->sk_prot->stream_memory_free(sk, wake) : true; 1271 } 1272 1273 static inline bool sk_stream_memory_free(const struct sock *sk) 1274 { 1275 return __sk_stream_memory_free(sk, 0); 1276 } 1277 1278 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1279 { 1280 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1281 __sk_stream_memory_free(sk, wake); 1282 } 1283 1284 static inline bool sk_stream_is_writeable(const struct sock *sk) 1285 { 1286 return __sk_stream_is_writeable(sk, 0); 1287 } 1288 1289 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1290 struct cgroup *ancestor) 1291 { 1292 #ifdef CONFIG_SOCK_CGROUP_DATA 1293 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1294 ancestor); 1295 #else 1296 return -ENOTSUPP; 1297 #endif 1298 } 1299 1300 static inline bool sk_has_memory_pressure(const struct sock *sk) 1301 { 1302 return sk->sk_prot->memory_pressure != NULL; 1303 } 1304 1305 static inline bool sk_under_memory_pressure(const struct sock *sk) 1306 { 1307 if (!sk->sk_prot->memory_pressure) 1308 return false; 1309 1310 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1311 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1312 return true; 1313 1314 return !!*sk->sk_prot->memory_pressure; 1315 } 1316 1317 static inline long 1318 sk_memory_allocated(const struct sock *sk) 1319 { 1320 return atomic_long_read(sk->sk_prot->memory_allocated); 1321 } 1322 1323 static inline long 1324 sk_memory_allocated_add(struct sock *sk, int amt) 1325 { 1326 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1327 } 1328 1329 static inline void 1330 sk_memory_allocated_sub(struct sock *sk, int amt) 1331 { 1332 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1333 } 1334 1335 static inline void sk_sockets_allocated_dec(struct sock *sk) 1336 { 1337 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1338 } 1339 1340 static inline void sk_sockets_allocated_inc(struct sock *sk) 1341 { 1342 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1343 } 1344 1345 static inline u64 1346 sk_sockets_allocated_read_positive(struct sock *sk) 1347 { 1348 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1349 } 1350 1351 static inline int 1352 proto_sockets_allocated_sum_positive(struct proto *prot) 1353 { 1354 return percpu_counter_sum_positive(prot->sockets_allocated); 1355 } 1356 1357 static inline long 1358 proto_memory_allocated(struct proto *prot) 1359 { 1360 return atomic_long_read(prot->memory_allocated); 1361 } 1362 1363 static inline bool 1364 proto_memory_pressure(struct proto *prot) 1365 { 1366 if (!prot->memory_pressure) 1367 return false; 1368 return !!*prot->memory_pressure; 1369 } 1370 1371 1372 #ifdef CONFIG_PROC_FS 1373 /* Called with local bh disabled */ 1374 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1375 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1376 int sock_inuse_get(struct net *net); 1377 #else 1378 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1379 int inc) 1380 { 1381 } 1382 #endif 1383 1384 1385 /* With per-bucket locks this operation is not-atomic, so that 1386 * this version is not worse. 1387 */ 1388 static inline int __sk_prot_rehash(struct sock *sk) 1389 { 1390 sk->sk_prot->unhash(sk); 1391 return sk->sk_prot->hash(sk); 1392 } 1393 1394 /* About 10 seconds */ 1395 #define SOCK_DESTROY_TIME (10*HZ) 1396 1397 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1398 #define PROT_SOCK 1024 1399 1400 #define SHUTDOWN_MASK 3 1401 #define RCV_SHUTDOWN 1 1402 #define SEND_SHUTDOWN 2 1403 1404 #define SOCK_SNDBUF_LOCK 1 1405 #define SOCK_RCVBUF_LOCK 2 1406 #define SOCK_BINDADDR_LOCK 4 1407 #define SOCK_BINDPORT_LOCK 8 1408 1409 struct socket_alloc { 1410 struct socket socket; 1411 struct inode vfs_inode; 1412 }; 1413 1414 static inline struct socket *SOCKET_I(struct inode *inode) 1415 { 1416 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1417 } 1418 1419 static inline struct inode *SOCK_INODE(struct socket *socket) 1420 { 1421 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1422 } 1423 1424 /* 1425 * Functions for memory accounting 1426 */ 1427 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1428 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1429 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1430 void __sk_mem_reclaim(struct sock *sk, int amount); 1431 1432 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1433 * do not necessarily have 16x time more memory than 4KB ones. 1434 */ 1435 #define SK_MEM_QUANTUM 4096 1436 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1437 #define SK_MEM_SEND 0 1438 #define SK_MEM_RECV 1 1439 1440 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1441 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1442 { 1443 long val = sk->sk_prot->sysctl_mem[index]; 1444 1445 #if PAGE_SIZE > SK_MEM_QUANTUM 1446 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1447 #elif PAGE_SIZE < SK_MEM_QUANTUM 1448 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1449 #endif 1450 return val; 1451 } 1452 1453 static inline int sk_mem_pages(int amt) 1454 { 1455 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1456 } 1457 1458 static inline bool sk_has_account(struct sock *sk) 1459 { 1460 /* return true if protocol supports memory accounting */ 1461 return !!sk->sk_prot->memory_allocated; 1462 } 1463 1464 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1465 { 1466 if (!sk_has_account(sk)) 1467 return true; 1468 return size <= sk->sk_forward_alloc || 1469 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1470 } 1471 1472 static inline bool 1473 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1474 { 1475 if (!sk_has_account(sk)) 1476 return true; 1477 return size<= sk->sk_forward_alloc || 1478 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1479 skb_pfmemalloc(skb); 1480 } 1481 1482 static inline void sk_mem_reclaim(struct sock *sk) 1483 { 1484 if (!sk_has_account(sk)) 1485 return; 1486 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1487 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1488 } 1489 1490 static inline void sk_mem_reclaim_partial(struct sock *sk) 1491 { 1492 if (!sk_has_account(sk)) 1493 return; 1494 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1495 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1496 } 1497 1498 static inline void sk_mem_charge(struct sock *sk, int size) 1499 { 1500 if (!sk_has_account(sk)) 1501 return; 1502 sk->sk_forward_alloc -= size; 1503 } 1504 1505 static inline void sk_mem_uncharge(struct sock *sk, int size) 1506 { 1507 if (!sk_has_account(sk)) 1508 return; 1509 sk->sk_forward_alloc += size; 1510 1511 /* Avoid a possible overflow. 1512 * TCP send queues can make this happen, if sk_mem_reclaim() 1513 * is not called and more than 2 GBytes are released at once. 1514 * 1515 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1516 * no need to hold that much forward allocation anyway. 1517 */ 1518 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1519 __sk_mem_reclaim(sk, 1 << 20); 1520 } 1521 1522 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 1523 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1524 { 1525 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1526 sk_wmem_queued_add(sk, -skb->truesize); 1527 sk_mem_uncharge(sk, skb->truesize); 1528 if (static_branch_unlikely(&tcp_tx_skb_cache_key) && 1529 !sk->sk_tx_skb_cache && !skb_cloned(skb)) { 1530 skb_ext_reset(skb); 1531 skb_zcopy_clear(skb, true); 1532 sk->sk_tx_skb_cache = skb; 1533 return; 1534 } 1535 __kfree_skb(skb); 1536 } 1537 1538 static inline void sock_release_ownership(struct sock *sk) 1539 { 1540 if (sk->sk_lock.owned) { 1541 sk->sk_lock.owned = 0; 1542 1543 /* The sk_lock has mutex_unlock() semantics: */ 1544 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1545 } 1546 } 1547 1548 /* 1549 * Macro so as to not evaluate some arguments when 1550 * lockdep is not enabled. 1551 * 1552 * Mark both the sk_lock and the sk_lock.slock as a 1553 * per-address-family lock class. 1554 */ 1555 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1556 do { \ 1557 sk->sk_lock.owned = 0; \ 1558 init_waitqueue_head(&sk->sk_lock.wq); \ 1559 spin_lock_init(&(sk)->sk_lock.slock); \ 1560 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1561 sizeof((sk)->sk_lock)); \ 1562 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1563 (skey), (sname)); \ 1564 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1565 } while (0) 1566 1567 #ifdef CONFIG_LOCKDEP 1568 static inline bool lockdep_sock_is_held(const struct sock *sk) 1569 { 1570 return lockdep_is_held(&sk->sk_lock) || 1571 lockdep_is_held(&sk->sk_lock.slock); 1572 } 1573 #endif 1574 1575 void lock_sock_nested(struct sock *sk, int subclass); 1576 1577 static inline void lock_sock(struct sock *sk) 1578 { 1579 lock_sock_nested(sk, 0); 1580 } 1581 1582 void __release_sock(struct sock *sk); 1583 void release_sock(struct sock *sk); 1584 1585 /* BH context may only use the following locking interface. */ 1586 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1587 #define bh_lock_sock_nested(__sk) \ 1588 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1589 SINGLE_DEPTH_NESTING) 1590 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1591 1592 bool lock_sock_fast(struct sock *sk); 1593 /** 1594 * unlock_sock_fast - complement of lock_sock_fast 1595 * @sk: socket 1596 * @slow: slow mode 1597 * 1598 * fast unlock socket for user context. 1599 * If slow mode is on, we call regular release_sock() 1600 */ 1601 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1602 { 1603 if (slow) 1604 release_sock(sk); 1605 else 1606 spin_unlock_bh(&sk->sk_lock.slock); 1607 } 1608 1609 /* Used by processes to "lock" a socket state, so that 1610 * interrupts and bottom half handlers won't change it 1611 * from under us. It essentially blocks any incoming 1612 * packets, so that we won't get any new data or any 1613 * packets that change the state of the socket. 1614 * 1615 * While locked, BH processing will add new packets to 1616 * the backlog queue. This queue is processed by the 1617 * owner of the socket lock right before it is released. 1618 * 1619 * Since ~2.3.5 it is also exclusive sleep lock serializing 1620 * accesses from user process context. 1621 */ 1622 1623 static inline void sock_owned_by_me(const struct sock *sk) 1624 { 1625 #ifdef CONFIG_LOCKDEP 1626 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1627 #endif 1628 } 1629 1630 static inline bool sock_owned_by_user(const struct sock *sk) 1631 { 1632 sock_owned_by_me(sk); 1633 return sk->sk_lock.owned; 1634 } 1635 1636 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1637 { 1638 return sk->sk_lock.owned; 1639 } 1640 1641 /* no reclassification while locks are held */ 1642 static inline bool sock_allow_reclassification(const struct sock *csk) 1643 { 1644 struct sock *sk = (struct sock *)csk; 1645 1646 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1647 } 1648 1649 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1650 struct proto *prot, int kern); 1651 void sk_free(struct sock *sk); 1652 void sk_destruct(struct sock *sk); 1653 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1654 void sk_free_unlock_clone(struct sock *sk); 1655 1656 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1657 gfp_t priority); 1658 void __sock_wfree(struct sk_buff *skb); 1659 void sock_wfree(struct sk_buff *skb); 1660 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1661 gfp_t priority); 1662 void skb_orphan_partial(struct sk_buff *skb); 1663 void sock_rfree(struct sk_buff *skb); 1664 void sock_efree(struct sk_buff *skb); 1665 #ifdef CONFIG_INET 1666 void sock_edemux(struct sk_buff *skb); 1667 void sock_pfree(struct sk_buff *skb); 1668 #else 1669 #define sock_edemux sock_efree 1670 #endif 1671 1672 int sock_setsockopt(struct socket *sock, int level, int op, 1673 sockptr_t optval, unsigned int optlen); 1674 1675 int sock_getsockopt(struct socket *sock, int level, int op, 1676 char __user *optval, int __user *optlen); 1677 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1678 bool timeval, bool time32); 1679 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1680 int noblock, int *errcode); 1681 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1682 unsigned long data_len, int noblock, 1683 int *errcode, int max_page_order); 1684 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1685 void sock_kfree_s(struct sock *sk, void *mem, int size); 1686 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1687 void sk_send_sigurg(struct sock *sk); 1688 1689 struct sockcm_cookie { 1690 u64 transmit_time; 1691 u32 mark; 1692 u16 tsflags; 1693 }; 1694 1695 static inline void sockcm_init(struct sockcm_cookie *sockc, 1696 const struct sock *sk) 1697 { 1698 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1699 } 1700 1701 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1702 struct sockcm_cookie *sockc); 1703 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1704 struct sockcm_cookie *sockc); 1705 1706 /* 1707 * Functions to fill in entries in struct proto_ops when a protocol 1708 * does not implement a particular function. 1709 */ 1710 int sock_no_bind(struct socket *, struct sockaddr *, int); 1711 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1712 int sock_no_socketpair(struct socket *, struct socket *); 1713 int sock_no_accept(struct socket *, struct socket *, int, bool); 1714 int sock_no_getname(struct socket *, struct sockaddr *, int); 1715 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1716 int sock_no_listen(struct socket *, int); 1717 int sock_no_shutdown(struct socket *, int); 1718 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1719 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1720 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1721 int sock_no_mmap(struct file *file, struct socket *sock, 1722 struct vm_area_struct *vma); 1723 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1724 size_t size, int flags); 1725 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1726 int offset, size_t size, int flags); 1727 1728 /* 1729 * Functions to fill in entries in struct proto_ops when a protocol 1730 * uses the inet style. 1731 */ 1732 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1733 char __user *optval, int __user *optlen); 1734 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1735 int flags); 1736 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1737 sockptr_t optval, unsigned int optlen); 1738 1739 void sk_common_release(struct sock *sk); 1740 1741 /* 1742 * Default socket callbacks and setup code 1743 */ 1744 1745 /* Initialise core socket variables */ 1746 void sock_init_data(struct socket *sock, struct sock *sk); 1747 1748 /* 1749 * Socket reference counting postulates. 1750 * 1751 * * Each user of socket SHOULD hold a reference count. 1752 * * Each access point to socket (an hash table bucket, reference from a list, 1753 * running timer, skb in flight MUST hold a reference count. 1754 * * When reference count hits 0, it means it will never increase back. 1755 * * When reference count hits 0, it means that no references from 1756 * outside exist to this socket and current process on current CPU 1757 * is last user and may/should destroy this socket. 1758 * * sk_free is called from any context: process, BH, IRQ. When 1759 * it is called, socket has no references from outside -> sk_free 1760 * may release descendant resources allocated by the socket, but 1761 * to the time when it is called, socket is NOT referenced by any 1762 * hash tables, lists etc. 1763 * * Packets, delivered from outside (from network or from another process) 1764 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1765 * when they sit in queue. Otherwise, packets will leak to hole, when 1766 * socket is looked up by one cpu and unhasing is made by another CPU. 1767 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1768 * (leak to backlog). Packet socket does all the processing inside 1769 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1770 * use separate SMP lock, so that they are prone too. 1771 */ 1772 1773 /* Ungrab socket and destroy it, if it was the last reference. */ 1774 static inline void sock_put(struct sock *sk) 1775 { 1776 if (refcount_dec_and_test(&sk->sk_refcnt)) 1777 sk_free(sk); 1778 } 1779 /* Generic version of sock_put(), dealing with all sockets 1780 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1781 */ 1782 void sock_gen_put(struct sock *sk); 1783 1784 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1785 unsigned int trim_cap, bool refcounted); 1786 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1787 const int nested) 1788 { 1789 return __sk_receive_skb(sk, skb, nested, 1, true); 1790 } 1791 1792 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1793 { 1794 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1795 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1796 return; 1797 sk->sk_tx_queue_mapping = tx_queue; 1798 } 1799 1800 #define NO_QUEUE_MAPPING USHRT_MAX 1801 1802 static inline void sk_tx_queue_clear(struct sock *sk) 1803 { 1804 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1805 } 1806 1807 static inline int sk_tx_queue_get(const struct sock *sk) 1808 { 1809 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1810 return sk->sk_tx_queue_mapping; 1811 1812 return -1; 1813 } 1814 1815 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1816 { 1817 #ifdef CONFIG_XPS 1818 if (skb_rx_queue_recorded(skb)) { 1819 u16 rx_queue = skb_get_rx_queue(skb); 1820 1821 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1822 return; 1823 1824 sk->sk_rx_queue_mapping = rx_queue; 1825 } 1826 #endif 1827 } 1828 1829 static inline void sk_rx_queue_clear(struct sock *sk) 1830 { 1831 #ifdef CONFIG_XPS 1832 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1833 #endif 1834 } 1835 1836 #ifdef CONFIG_XPS 1837 static inline int sk_rx_queue_get(const struct sock *sk) 1838 { 1839 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1840 return sk->sk_rx_queue_mapping; 1841 1842 return -1; 1843 } 1844 #endif 1845 1846 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1847 { 1848 sk->sk_socket = sock; 1849 } 1850 1851 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1852 { 1853 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1854 return &rcu_dereference_raw(sk->sk_wq)->wait; 1855 } 1856 /* Detach socket from process context. 1857 * Announce socket dead, detach it from wait queue and inode. 1858 * Note that parent inode held reference count on this struct sock, 1859 * we do not release it in this function, because protocol 1860 * probably wants some additional cleanups or even continuing 1861 * to work with this socket (TCP). 1862 */ 1863 static inline void sock_orphan(struct sock *sk) 1864 { 1865 write_lock_bh(&sk->sk_callback_lock); 1866 sock_set_flag(sk, SOCK_DEAD); 1867 sk_set_socket(sk, NULL); 1868 sk->sk_wq = NULL; 1869 write_unlock_bh(&sk->sk_callback_lock); 1870 } 1871 1872 static inline void sock_graft(struct sock *sk, struct socket *parent) 1873 { 1874 WARN_ON(parent->sk); 1875 write_lock_bh(&sk->sk_callback_lock); 1876 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1877 parent->sk = sk; 1878 sk_set_socket(sk, parent); 1879 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1880 security_sock_graft(sk, parent); 1881 write_unlock_bh(&sk->sk_callback_lock); 1882 } 1883 1884 kuid_t sock_i_uid(struct sock *sk); 1885 unsigned long sock_i_ino(struct sock *sk); 1886 1887 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1888 { 1889 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1890 } 1891 1892 static inline u32 net_tx_rndhash(void) 1893 { 1894 u32 v = prandom_u32(); 1895 1896 return v ?: 1; 1897 } 1898 1899 static inline void sk_set_txhash(struct sock *sk) 1900 { 1901 sk->sk_txhash = net_tx_rndhash(); 1902 } 1903 1904 static inline void sk_rethink_txhash(struct sock *sk) 1905 { 1906 if (sk->sk_txhash) 1907 sk_set_txhash(sk); 1908 } 1909 1910 static inline struct dst_entry * 1911 __sk_dst_get(struct sock *sk) 1912 { 1913 return rcu_dereference_check(sk->sk_dst_cache, 1914 lockdep_sock_is_held(sk)); 1915 } 1916 1917 static inline struct dst_entry * 1918 sk_dst_get(struct sock *sk) 1919 { 1920 struct dst_entry *dst; 1921 1922 rcu_read_lock(); 1923 dst = rcu_dereference(sk->sk_dst_cache); 1924 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1925 dst = NULL; 1926 rcu_read_unlock(); 1927 return dst; 1928 } 1929 1930 static inline void dst_negative_advice(struct sock *sk) 1931 { 1932 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1933 1934 sk_rethink_txhash(sk); 1935 1936 if (dst && dst->ops->negative_advice) { 1937 ndst = dst->ops->negative_advice(dst); 1938 1939 if (ndst != dst) { 1940 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1941 sk_tx_queue_clear(sk); 1942 sk->sk_dst_pending_confirm = 0; 1943 } 1944 } 1945 } 1946 1947 static inline void 1948 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1949 { 1950 struct dst_entry *old_dst; 1951 1952 sk_tx_queue_clear(sk); 1953 sk->sk_dst_pending_confirm = 0; 1954 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 1955 lockdep_sock_is_held(sk)); 1956 rcu_assign_pointer(sk->sk_dst_cache, dst); 1957 dst_release(old_dst); 1958 } 1959 1960 static inline void 1961 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1962 { 1963 struct dst_entry *old_dst; 1964 1965 sk_tx_queue_clear(sk); 1966 sk->sk_dst_pending_confirm = 0; 1967 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1968 dst_release(old_dst); 1969 } 1970 1971 static inline void 1972 __sk_dst_reset(struct sock *sk) 1973 { 1974 __sk_dst_set(sk, NULL); 1975 } 1976 1977 static inline void 1978 sk_dst_reset(struct sock *sk) 1979 { 1980 sk_dst_set(sk, NULL); 1981 } 1982 1983 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1984 1985 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1986 1987 static inline void sk_dst_confirm(struct sock *sk) 1988 { 1989 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 1990 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 1991 } 1992 1993 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 1994 { 1995 if (skb_get_dst_pending_confirm(skb)) { 1996 struct sock *sk = skb->sk; 1997 unsigned long now = jiffies; 1998 1999 /* avoid dirtying neighbour */ 2000 if (READ_ONCE(n->confirmed) != now) 2001 WRITE_ONCE(n->confirmed, now); 2002 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2003 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2004 } 2005 } 2006 2007 bool sk_mc_loop(struct sock *sk); 2008 2009 static inline bool sk_can_gso(const struct sock *sk) 2010 { 2011 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2012 } 2013 2014 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2015 2016 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 2017 { 2018 sk->sk_route_nocaps |= flags; 2019 sk->sk_route_caps &= ~flags; 2020 } 2021 2022 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2023 struct iov_iter *from, char *to, 2024 int copy, int offset) 2025 { 2026 if (skb->ip_summed == CHECKSUM_NONE) { 2027 __wsum csum = 0; 2028 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2029 return -EFAULT; 2030 skb->csum = csum_block_add(skb->csum, csum, offset); 2031 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2032 if (!copy_from_iter_full_nocache(to, copy, from)) 2033 return -EFAULT; 2034 } else if (!copy_from_iter_full(to, copy, from)) 2035 return -EFAULT; 2036 2037 return 0; 2038 } 2039 2040 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2041 struct iov_iter *from, int copy) 2042 { 2043 int err, offset = skb->len; 2044 2045 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2046 copy, offset); 2047 if (err) 2048 __skb_trim(skb, offset); 2049 2050 return err; 2051 } 2052 2053 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2054 struct sk_buff *skb, 2055 struct page *page, 2056 int off, int copy) 2057 { 2058 int err; 2059 2060 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2061 copy, skb->len); 2062 if (err) 2063 return err; 2064 2065 skb->len += copy; 2066 skb->data_len += copy; 2067 skb->truesize += copy; 2068 sk_wmem_queued_add(sk, copy); 2069 sk_mem_charge(sk, copy); 2070 return 0; 2071 } 2072 2073 /** 2074 * sk_wmem_alloc_get - returns write allocations 2075 * @sk: socket 2076 * 2077 * Return: sk_wmem_alloc minus initial offset of one 2078 */ 2079 static inline int sk_wmem_alloc_get(const struct sock *sk) 2080 { 2081 return refcount_read(&sk->sk_wmem_alloc) - 1; 2082 } 2083 2084 /** 2085 * sk_rmem_alloc_get - returns read allocations 2086 * @sk: socket 2087 * 2088 * Return: sk_rmem_alloc 2089 */ 2090 static inline int sk_rmem_alloc_get(const struct sock *sk) 2091 { 2092 return atomic_read(&sk->sk_rmem_alloc); 2093 } 2094 2095 /** 2096 * sk_has_allocations - check if allocations are outstanding 2097 * @sk: socket 2098 * 2099 * Return: true if socket has write or read allocations 2100 */ 2101 static inline bool sk_has_allocations(const struct sock *sk) 2102 { 2103 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2104 } 2105 2106 /** 2107 * skwq_has_sleeper - check if there are any waiting processes 2108 * @wq: struct socket_wq 2109 * 2110 * Return: true if socket_wq has waiting processes 2111 * 2112 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2113 * barrier call. They were added due to the race found within the tcp code. 2114 * 2115 * Consider following tcp code paths:: 2116 * 2117 * CPU1 CPU2 2118 * sys_select receive packet 2119 * ... ... 2120 * __add_wait_queue update tp->rcv_nxt 2121 * ... ... 2122 * tp->rcv_nxt check sock_def_readable 2123 * ... { 2124 * schedule rcu_read_lock(); 2125 * wq = rcu_dereference(sk->sk_wq); 2126 * if (wq && waitqueue_active(&wq->wait)) 2127 * wake_up_interruptible(&wq->wait) 2128 * ... 2129 * } 2130 * 2131 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2132 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2133 * could then endup calling schedule and sleep forever if there are no more 2134 * data on the socket. 2135 * 2136 */ 2137 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2138 { 2139 return wq && wq_has_sleeper(&wq->wait); 2140 } 2141 2142 /** 2143 * sock_poll_wait - place memory barrier behind the poll_wait call. 2144 * @filp: file 2145 * @sock: socket to wait on 2146 * @p: poll_table 2147 * 2148 * See the comments in the wq_has_sleeper function. 2149 */ 2150 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2151 poll_table *p) 2152 { 2153 if (!poll_does_not_wait(p)) { 2154 poll_wait(filp, &sock->wq.wait, p); 2155 /* We need to be sure we are in sync with the 2156 * socket flags modification. 2157 * 2158 * This memory barrier is paired in the wq_has_sleeper. 2159 */ 2160 smp_mb(); 2161 } 2162 } 2163 2164 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2165 { 2166 if (sk->sk_txhash) { 2167 skb->l4_hash = 1; 2168 skb->hash = sk->sk_txhash; 2169 } 2170 } 2171 2172 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2173 2174 /* 2175 * Queue a received datagram if it will fit. Stream and sequenced 2176 * protocols can't normally use this as they need to fit buffers in 2177 * and play with them. 2178 * 2179 * Inlined as it's very short and called for pretty much every 2180 * packet ever received. 2181 */ 2182 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2183 { 2184 skb_orphan(skb); 2185 skb->sk = sk; 2186 skb->destructor = sock_rfree; 2187 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2188 sk_mem_charge(sk, skb->truesize); 2189 } 2190 2191 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2192 unsigned long expires); 2193 2194 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2195 2196 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2197 struct sk_buff *skb, unsigned int flags, 2198 void (*destructor)(struct sock *sk, 2199 struct sk_buff *skb)); 2200 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2201 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2202 2203 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2204 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2205 2206 /* 2207 * Recover an error report and clear atomically 2208 */ 2209 2210 static inline int sock_error(struct sock *sk) 2211 { 2212 int err; 2213 if (likely(!sk->sk_err)) 2214 return 0; 2215 err = xchg(&sk->sk_err, 0); 2216 return -err; 2217 } 2218 2219 static inline unsigned long sock_wspace(struct sock *sk) 2220 { 2221 int amt = 0; 2222 2223 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2224 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2225 if (amt < 0) 2226 amt = 0; 2227 } 2228 return amt; 2229 } 2230 2231 /* Note: 2232 * We use sk->sk_wq_raw, from contexts knowing this 2233 * pointer is not NULL and cannot disappear/change. 2234 */ 2235 static inline void sk_set_bit(int nr, struct sock *sk) 2236 { 2237 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2238 !sock_flag(sk, SOCK_FASYNC)) 2239 return; 2240 2241 set_bit(nr, &sk->sk_wq_raw->flags); 2242 } 2243 2244 static inline void sk_clear_bit(int nr, struct sock *sk) 2245 { 2246 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2247 !sock_flag(sk, SOCK_FASYNC)) 2248 return; 2249 2250 clear_bit(nr, &sk->sk_wq_raw->flags); 2251 } 2252 2253 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2254 { 2255 if (sock_flag(sk, SOCK_FASYNC)) { 2256 rcu_read_lock(); 2257 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2258 rcu_read_unlock(); 2259 } 2260 } 2261 2262 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2263 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2264 * Note: for send buffers, TCP works better if we can build two skbs at 2265 * minimum. 2266 */ 2267 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2268 2269 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2270 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2271 2272 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2273 { 2274 u32 val; 2275 2276 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2277 return; 2278 2279 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2280 2281 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2282 } 2283 2284 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2285 bool force_schedule); 2286 2287 /** 2288 * sk_page_frag - return an appropriate page_frag 2289 * @sk: socket 2290 * 2291 * Use the per task page_frag instead of the per socket one for 2292 * optimization when we know that we're in the normal context and owns 2293 * everything that's associated with %current. 2294 * 2295 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2296 * inside other socket operations and end up recursing into sk_page_frag() 2297 * while it's already in use. 2298 * 2299 * Return: a per task page_frag if context allows that, 2300 * otherwise a per socket one. 2301 */ 2302 static inline struct page_frag *sk_page_frag(struct sock *sk) 2303 { 2304 if (gfpflags_normal_context(sk->sk_allocation)) 2305 return ¤t->task_frag; 2306 2307 return &sk->sk_frag; 2308 } 2309 2310 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2311 2312 /* 2313 * Default write policy as shown to user space via poll/select/SIGIO 2314 */ 2315 static inline bool sock_writeable(const struct sock *sk) 2316 { 2317 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2318 } 2319 2320 static inline gfp_t gfp_any(void) 2321 { 2322 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2323 } 2324 2325 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2326 { 2327 return noblock ? 0 : sk->sk_rcvtimeo; 2328 } 2329 2330 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2331 { 2332 return noblock ? 0 : sk->sk_sndtimeo; 2333 } 2334 2335 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2336 { 2337 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2338 2339 return v ?: 1; 2340 } 2341 2342 /* Alas, with timeout socket operations are not restartable. 2343 * Compare this to poll(). 2344 */ 2345 static inline int sock_intr_errno(long timeo) 2346 { 2347 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2348 } 2349 2350 struct sock_skb_cb { 2351 u32 dropcount; 2352 }; 2353 2354 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2355 * using skb->cb[] would keep using it directly and utilize its 2356 * alignement guarantee. 2357 */ 2358 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2359 sizeof(struct sock_skb_cb))) 2360 2361 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2362 SOCK_SKB_CB_OFFSET)) 2363 2364 #define sock_skb_cb_check_size(size) \ 2365 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2366 2367 static inline void 2368 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2369 { 2370 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2371 atomic_read(&sk->sk_drops) : 0; 2372 } 2373 2374 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2375 { 2376 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2377 2378 atomic_add(segs, &sk->sk_drops); 2379 } 2380 2381 static inline ktime_t sock_read_timestamp(struct sock *sk) 2382 { 2383 #if BITS_PER_LONG==32 2384 unsigned int seq; 2385 ktime_t kt; 2386 2387 do { 2388 seq = read_seqbegin(&sk->sk_stamp_seq); 2389 kt = sk->sk_stamp; 2390 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2391 2392 return kt; 2393 #else 2394 return READ_ONCE(sk->sk_stamp); 2395 #endif 2396 } 2397 2398 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2399 { 2400 #if BITS_PER_LONG==32 2401 write_seqlock(&sk->sk_stamp_seq); 2402 sk->sk_stamp = kt; 2403 write_sequnlock(&sk->sk_stamp_seq); 2404 #else 2405 WRITE_ONCE(sk->sk_stamp, kt); 2406 #endif 2407 } 2408 2409 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2410 struct sk_buff *skb); 2411 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2412 struct sk_buff *skb); 2413 2414 static inline void 2415 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2416 { 2417 ktime_t kt = skb->tstamp; 2418 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2419 2420 /* 2421 * generate control messages if 2422 * - receive time stamping in software requested 2423 * - software time stamp available and wanted 2424 * - hardware time stamps available and wanted 2425 */ 2426 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2427 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2428 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2429 (hwtstamps->hwtstamp && 2430 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2431 __sock_recv_timestamp(msg, sk, skb); 2432 else 2433 sock_write_timestamp(sk, kt); 2434 2435 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2436 __sock_recv_wifi_status(msg, sk, skb); 2437 } 2438 2439 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2440 struct sk_buff *skb); 2441 2442 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2443 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2444 struct sk_buff *skb) 2445 { 2446 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2447 (1UL << SOCK_RCVTSTAMP)) 2448 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2449 SOF_TIMESTAMPING_RAW_HARDWARE) 2450 2451 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2452 __sock_recv_ts_and_drops(msg, sk, skb); 2453 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2454 sock_write_timestamp(sk, skb->tstamp); 2455 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2456 sock_write_timestamp(sk, 0); 2457 } 2458 2459 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2460 2461 /** 2462 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2463 * @sk: socket sending this packet 2464 * @tsflags: timestamping flags to use 2465 * @tx_flags: completed with instructions for time stamping 2466 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2467 * 2468 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2469 */ 2470 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2471 __u8 *tx_flags, __u32 *tskey) 2472 { 2473 if (unlikely(tsflags)) { 2474 __sock_tx_timestamp(tsflags, tx_flags); 2475 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2476 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2477 *tskey = sk->sk_tskey++; 2478 } 2479 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2480 *tx_flags |= SKBTX_WIFI_STATUS; 2481 } 2482 2483 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2484 __u8 *tx_flags) 2485 { 2486 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2487 } 2488 2489 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2490 { 2491 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2492 &skb_shinfo(skb)->tskey); 2493 } 2494 2495 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 2496 /** 2497 * sk_eat_skb - Release a skb if it is no longer needed 2498 * @sk: socket to eat this skb from 2499 * @skb: socket buffer to eat 2500 * 2501 * This routine must be called with interrupts disabled or with the socket 2502 * locked so that the sk_buff queue operation is ok. 2503 */ 2504 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2505 { 2506 __skb_unlink(skb, &sk->sk_receive_queue); 2507 if (static_branch_unlikely(&tcp_rx_skb_cache_key) && 2508 !sk->sk_rx_skb_cache) { 2509 sk->sk_rx_skb_cache = skb; 2510 skb_orphan(skb); 2511 return; 2512 } 2513 __kfree_skb(skb); 2514 } 2515 2516 static inline 2517 struct net *sock_net(const struct sock *sk) 2518 { 2519 return read_pnet(&sk->sk_net); 2520 } 2521 2522 static inline 2523 void sock_net_set(struct sock *sk, struct net *net) 2524 { 2525 write_pnet(&sk->sk_net, net); 2526 } 2527 2528 static inline bool 2529 skb_sk_is_prefetched(struct sk_buff *skb) 2530 { 2531 #ifdef CONFIG_INET 2532 return skb->destructor == sock_pfree; 2533 #else 2534 return false; 2535 #endif /* CONFIG_INET */ 2536 } 2537 2538 /* This helper checks if a socket is a full socket, 2539 * ie _not_ a timewait or request socket. 2540 */ 2541 static inline bool sk_fullsock(const struct sock *sk) 2542 { 2543 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2544 } 2545 2546 static inline bool 2547 sk_is_refcounted(struct sock *sk) 2548 { 2549 /* Only full sockets have sk->sk_flags. */ 2550 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2551 } 2552 2553 /** 2554 * skb_steal_sock - steal a socket from an sk_buff 2555 * @skb: sk_buff to steal the socket from 2556 * @refcounted: is set to true if the socket is reference-counted 2557 */ 2558 static inline struct sock * 2559 skb_steal_sock(struct sk_buff *skb, bool *refcounted) 2560 { 2561 if (skb->sk) { 2562 struct sock *sk = skb->sk; 2563 2564 *refcounted = true; 2565 if (skb_sk_is_prefetched(skb)) 2566 *refcounted = sk_is_refcounted(sk); 2567 skb->destructor = NULL; 2568 skb->sk = NULL; 2569 return sk; 2570 } 2571 *refcounted = false; 2572 return NULL; 2573 } 2574 2575 /* Checks if this SKB belongs to an HW offloaded socket 2576 * and whether any SW fallbacks are required based on dev. 2577 * Check decrypted mark in case skb_orphan() cleared socket. 2578 */ 2579 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2580 struct net_device *dev) 2581 { 2582 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2583 struct sock *sk = skb->sk; 2584 2585 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2586 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2587 #ifdef CONFIG_TLS_DEVICE 2588 } else if (unlikely(skb->decrypted)) { 2589 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2590 kfree_skb(skb); 2591 skb = NULL; 2592 #endif 2593 } 2594 #endif 2595 2596 return skb; 2597 } 2598 2599 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2600 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2601 */ 2602 static inline bool sk_listener(const struct sock *sk) 2603 { 2604 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2605 } 2606 2607 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2608 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2609 int type); 2610 2611 bool sk_ns_capable(const struct sock *sk, 2612 struct user_namespace *user_ns, int cap); 2613 bool sk_capable(const struct sock *sk, int cap); 2614 bool sk_net_capable(const struct sock *sk, int cap); 2615 2616 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2617 2618 /* Take into consideration the size of the struct sk_buff overhead in the 2619 * determination of these values, since that is non-constant across 2620 * platforms. This makes socket queueing behavior and performance 2621 * not depend upon such differences. 2622 */ 2623 #define _SK_MEM_PACKETS 256 2624 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2625 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2626 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2627 2628 extern __u32 sysctl_wmem_max; 2629 extern __u32 sysctl_rmem_max; 2630 2631 extern int sysctl_tstamp_allow_data; 2632 extern int sysctl_optmem_max; 2633 2634 extern __u32 sysctl_wmem_default; 2635 extern __u32 sysctl_rmem_default; 2636 2637 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2638 2639 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2640 { 2641 /* Does this proto have per netns sysctl_wmem ? */ 2642 if (proto->sysctl_wmem_offset) 2643 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2644 2645 return *proto->sysctl_wmem; 2646 } 2647 2648 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2649 { 2650 /* Does this proto have per netns sysctl_rmem ? */ 2651 if (proto->sysctl_rmem_offset) 2652 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2653 2654 return *proto->sysctl_rmem; 2655 } 2656 2657 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2658 * Some wifi drivers need to tweak it to get more chunks. 2659 * They can use this helper from their ndo_start_xmit() 2660 */ 2661 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2662 { 2663 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2664 return; 2665 WRITE_ONCE(sk->sk_pacing_shift, val); 2666 } 2667 2668 /* if a socket is bound to a device, check that the given device 2669 * index is either the same or that the socket is bound to an L3 2670 * master device and the given device index is also enslaved to 2671 * that L3 master 2672 */ 2673 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2674 { 2675 int mdif; 2676 2677 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2678 return true; 2679 2680 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2681 if (mdif && mdif == sk->sk_bound_dev_if) 2682 return true; 2683 2684 return false; 2685 } 2686 2687 void sock_def_readable(struct sock *sk); 2688 2689 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2690 void sock_enable_timestamps(struct sock *sk); 2691 void sock_no_linger(struct sock *sk); 2692 void sock_set_keepalive(struct sock *sk); 2693 void sock_set_priority(struct sock *sk, u32 priority); 2694 void sock_set_rcvbuf(struct sock *sk, int val); 2695 void sock_set_reuseaddr(struct sock *sk); 2696 void sock_set_reuseport(struct sock *sk); 2697 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2698 2699 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2700 2701 #endif /* _SOCK_H */ 2702