xref: /openbmc/linux/include/net/sock.h (revision 6c33a6f4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67 #include <net/tcp_states.h>
68 #include <linux/net_tstamp.h>
69 #include <net/l3mdev.h>
70 
71 /*
72  * This structure really needs to be cleaned up.
73  * Most of it is for TCP, and not used by any of
74  * the other protocols.
75  */
76 
77 /* Define this to get the SOCK_DBG debugging facility. */
78 #define SOCK_DEBUGGING
79 #ifdef SOCK_DEBUGGING
80 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
81 					printk(KERN_DEBUG msg); } while (0)
82 #else
83 /* Validate arguments and do nothing */
84 static inline __printf(2, 3)
85 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
86 {
87 }
88 #endif
89 
90 /* This is the per-socket lock.  The spinlock provides a synchronization
91  * between user contexts and software interrupt processing, whereas the
92  * mini-semaphore synchronizes multiple users amongst themselves.
93  */
94 typedef struct {
95 	spinlock_t		slock;
96 	int			owned;
97 	wait_queue_head_t	wq;
98 	/*
99 	 * We express the mutex-alike socket_lock semantics
100 	 * to the lock validator by explicitly managing
101 	 * the slock as a lock variant (in addition to
102 	 * the slock itself):
103 	 */
104 #ifdef CONFIG_DEBUG_LOCK_ALLOC
105 	struct lockdep_map dep_map;
106 #endif
107 } socket_lock_t;
108 
109 struct sock;
110 struct proto;
111 struct net;
112 
113 typedef __u32 __bitwise __portpair;
114 typedef __u64 __bitwise __addrpair;
115 
116 /**
117  *	struct sock_common - minimal network layer representation of sockets
118  *	@skc_daddr: Foreign IPv4 addr
119  *	@skc_rcv_saddr: Bound local IPv4 addr
120  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
121  *	@skc_hash: hash value used with various protocol lookup tables
122  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
123  *	@skc_dport: placeholder for inet_dport/tw_dport
124  *	@skc_num: placeholder for inet_num/tw_num
125  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
126  *	@skc_family: network address family
127  *	@skc_state: Connection state
128  *	@skc_reuse: %SO_REUSEADDR setting
129  *	@skc_reuseport: %SO_REUSEPORT setting
130  *	@skc_ipv6only: socket is IPV6 only
131  *	@skc_net_refcnt: socket is using net ref counting
132  *	@skc_bound_dev_if: bound device index if != 0
133  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
134  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
135  *	@skc_prot: protocol handlers inside a network family
136  *	@skc_net: reference to the network namespace of this socket
137  *	@skc_v6_daddr: IPV6 destination address
138  *	@skc_v6_rcv_saddr: IPV6 source address
139  *	@skc_cookie: socket's cookie value
140  *	@skc_node: main hash linkage for various protocol lookup tables
141  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
142  *	@skc_tx_queue_mapping: tx queue number for this connection
143  *	@skc_rx_queue_mapping: rx queue number for this connection
144  *	@skc_flags: place holder for sk_flags
145  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
146  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
147  *	@skc_listener: connection request listener socket (aka rsk_listener)
148  *		[union with @skc_flags]
149  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
150  *		[union with @skc_flags]
151  *	@skc_incoming_cpu: record/match cpu processing incoming packets
152  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
153  *		[union with @skc_incoming_cpu]
154  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
155  *		[union with @skc_incoming_cpu]
156  *	@skc_refcnt: reference count
157  *
158  *	This is the minimal network layer representation of sockets, the header
159  *	for struct sock and struct inet_timewait_sock.
160  */
161 struct sock_common {
162 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
163 	 * address on 64bit arches : cf INET_MATCH()
164 	 */
165 	union {
166 		__addrpair	skc_addrpair;
167 		struct {
168 			__be32	skc_daddr;
169 			__be32	skc_rcv_saddr;
170 		};
171 	};
172 	union  {
173 		unsigned int	skc_hash;
174 		__u16		skc_u16hashes[2];
175 	};
176 	/* skc_dport && skc_num must be grouped as well */
177 	union {
178 		__portpair	skc_portpair;
179 		struct {
180 			__be16	skc_dport;
181 			__u16	skc_num;
182 		};
183 	};
184 
185 	unsigned short		skc_family;
186 	volatile unsigned char	skc_state;
187 	unsigned char		skc_reuse:4;
188 	unsigned char		skc_reuseport:1;
189 	unsigned char		skc_ipv6only:1;
190 	unsigned char		skc_net_refcnt:1;
191 	int			skc_bound_dev_if;
192 	union {
193 		struct hlist_node	skc_bind_node;
194 		struct hlist_node	skc_portaddr_node;
195 	};
196 	struct proto		*skc_prot;
197 	possible_net_t		skc_net;
198 
199 #if IS_ENABLED(CONFIG_IPV6)
200 	struct in6_addr		skc_v6_daddr;
201 	struct in6_addr		skc_v6_rcv_saddr;
202 #endif
203 
204 	atomic64_t		skc_cookie;
205 
206 	/* following fields are padding to force
207 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
208 	 * assuming IPV6 is enabled. We use this padding differently
209 	 * for different kind of 'sockets'
210 	 */
211 	union {
212 		unsigned long	skc_flags;
213 		struct sock	*skc_listener; /* request_sock */
214 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
215 	};
216 	/*
217 	 * fields between dontcopy_begin/dontcopy_end
218 	 * are not copied in sock_copy()
219 	 */
220 	/* private: */
221 	int			skc_dontcopy_begin[0];
222 	/* public: */
223 	union {
224 		struct hlist_node	skc_node;
225 		struct hlist_nulls_node skc_nulls_node;
226 	};
227 	unsigned short		skc_tx_queue_mapping;
228 #ifdef CONFIG_XPS
229 	unsigned short		skc_rx_queue_mapping;
230 #endif
231 	union {
232 		int		skc_incoming_cpu;
233 		u32		skc_rcv_wnd;
234 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
235 	};
236 
237 	refcount_t		skc_refcnt;
238 	/* private: */
239 	int                     skc_dontcopy_end[0];
240 	union {
241 		u32		skc_rxhash;
242 		u32		skc_window_clamp;
243 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
244 	};
245 	/* public: */
246 };
247 
248 struct bpf_sk_storage;
249 
250 /**
251   *	struct sock - network layer representation of sockets
252   *	@__sk_common: shared layout with inet_timewait_sock
253   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255   *	@sk_lock:	synchronizer
256   *	@sk_kern_sock: True if sock is using kernel lock classes
257   *	@sk_rcvbuf: size of receive buffer in bytes
258   *	@sk_wq: sock wait queue and async head
259   *	@sk_rx_dst: receive input route used by early demux
260   *	@sk_dst_cache: destination cache
261   *	@sk_dst_pending_confirm: need to confirm neighbour
262   *	@sk_policy: flow policy
263   *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
264   *	@sk_receive_queue: incoming packets
265   *	@sk_wmem_alloc: transmit queue bytes committed
266   *	@sk_tsq_flags: TCP Small Queues flags
267   *	@sk_write_queue: Packet sending queue
268   *	@sk_omem_alloc: "o" is "option" or "other"
269   *	@sk_wmem_queued: persistent queue size
270   *	@sk_forward_alloc: space allocated forward
271   *	@sk_napi_id: id of the last napi context to receive data for sk
272   *	@sk_ll_usec: usecs to busypoll when there is no data
273   *	@sk_allocation: allocation mode
274   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
275   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
276   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
277   *	@sk_sndbuf: size of send buffer in bytes
278   *	@__sk_flags_offset: empty field used to determine location of bitfield
279   *	@sk_padding: unused element for alignment
280   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
281   *	@sk_no_check_rx: allow zero checksum in RX packets
282   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
283   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
284   *	@sk_route_forced_caps: static, forced route capabilities
285   *		(set in tcp_init_sock())
286   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287   *	@sk_gso_max_size: Maximum GSO segment size to build
288   *	@sk_gso_max_segs: Maximum number of GSO segments
289   *	@sk_pacing_shift: scaling factor for TCP Small Queues
290   *	@sk_lingertime: %SO_LINGER l_linger setting
291   *	@sk_backlog: always used with the per-socket spinlock held
292   *	@sk_callback_lock: used with the callbacks in the end of this struct
293   *	@sk_error_queue: rarely used
294   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295   *			  IPV6_ADDRFORM for instance)
296   *	@sk_err: last error
297   *	@sk_err_soft: errors that don't cause failure but are the cause of a
298   *		      persistent failure not just 'timed out'
299   *	@sk_drops: raw/udp drops counter
300   *	@sk_ack_backlog: current listen backlog
301   *	@sk_max_ack_backlog: listen backlog set in listen()
302   *	@sk_uid: user id of owner
303   *	@sk_priority: %SO_PRIORITY setting
304   *	@sk_type: socket type (%SOCK_STREAM, etc)
305   *	@sk_protocol: which protocol this socket belongs in this network family
306   *	@sk_peer_pid: &struct pid for this socket's peer
307   *	@sk_peer_cred: %SO_PEERCRED setting
308   *	@sk_rcvlowat: %SO_RCVLOWAT setting
309   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
310   *	@sk_sndtimeo: %SO_SNDTIMEO setting
311   *	@sk_txhash: computed flow hash for use on transmit
312   *	@sk_filter: socket filtering instructions
313   *	@sk_timer: sock cleanup timer
314   *	@sk_stamp: time stamp of last packet received
315   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
316   *	@sk_tsflags: SO_TIMESTAMPING socket options
317   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
318   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
319   *	@sk_socket: Identd and reporting IO signals
320   *	@sk_user_data: RPC layer private data
321   *	@sk_frag: cached page frag
322   *	@sk_peek_off: current peek_offset value
323   *	@sk_send_head: front of stuff to transmit
324   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
325   *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
326   *	@sk_security: used by security modules
327   *	@sk_mark: generic packet mark
328   *	@sk_cgrp_data: cgroup data for this cgroup
329   *	@sk_memcg: this socket's memory cgroup association
330   *	@sk_write_pending: a write to stream socket waits to start
331   *	@sk_state_change: callback to indicate change in the state of the sock
332   *	@sk_data_ready: callback to indicate there is data to be processed
333   *	@sk_write_space: callback to indicate there is bf sending space available
334   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
335   *	@sk_backlog_rcv: callback to process the backlog
336   *	@sk_validate_xmit_skb: ptr to an optional validate function
337   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
338   *	@sk_reuseport_cb: reuseport group container
339   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
340   *	@sk_rcu: used during RCU grace period
341   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
342   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
343   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
344   *	@sk_txtime_unused: unused txtime flags
345   */
346 struct sock {
347 	/*
348 	 * Now struct inet_timewait_sock also uses sock_common, so please just
349 	 * don't add nothing before this first member (__sk_common) --acme
350 	 */
351 	struct sock_common	__sk_common;
352 #define sk_node			__sk_common.skc_node
353 #define sk_nulls_node		__sk_common.skc_nulls_node
354 #define sk_refcnt		__sk_common.skc_refcnt
355 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
356 #ifdef CONFIG_XPS
357 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
358 #endif
359 
360 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
361 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
362 #define sk_hash			__sk_common.skc_hash
363 #define sk_portpair		__sk_common.skc_portpair
364 #define sk_num			__sk_common.skc_num
365 #define sk_dport		__sk_common.skc_dport
366 #define sk_addrpair		__sk_common.skc_addrpair
367 #define sk_daddr		__sk_common.skc_daddr
368 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
369 #define sk_family		__sk_common.skc_family
370 #define sk_state		__sk_common.skc_state
371 #define sk_reuse		__sk_common.skc_reuse
372 #define sk_reuseport		__sk_common.skc_reuseport
373 #define sk_ipv6only		__sk_common.skc_ipv6only
374 #define sk_net_refcnt		__sk_common.skc_net_refcnt
375 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
376 #define sk_bind_node		__sk_common.skc_bind_node
377 #define sk_prot			__sk_common.skc_prot
378 #define sk_net			__sk_common.skc_net
379 #define sk_v6_daddr		__sk_common.skc_v6_daddr
380 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
381 #define sk_cookie		__sk_common.skc_cookie
382 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
383 #define sk_flags		__sk_common.skc_flags
384 #define sk_rxhash		__sk_common.skc_rxhash
385 
386 	socket_lock_t		sk_lock;
387 	atomic_t		sk_drops;
388 	int			sk_rcvlowat;
389 	struct sk_buff_head	sk_error_queue;
390 	struct sk_buff		*sk_rx_skb_cache;
391 	struct sk_buff_head	sk_receive_queue;
392 	/*
393 	 * The backlog queue is special, it is always used with
394 	 * the per-socket spinlock held and requires low latency
395 	 * access. Therefore we special case it's implementation.
396 	 * Note : rmem_alloc is in this structure to fill a hole
397 	 * on 64bit arches, not because its logically part of
398 	 * backlog.
399 	 */
400 	struct {
401 		atomic_t	rmem_alloc;
402 		int		len;
403 		struct sk_buff	*head;
404 		struct sk_buff	*tail;
405 	} sk_backlog;
406 #define sk_rmem_alloc sk_backlog.rmem_alloc
407 
408 	int			sk_forward_alloc;
409 #ifdef CONFIG_NET_RX_BUSY_POLL
410 	unsigned int		sk_ll_usec;
411 	/* ===== mostly read cache line ===== */
412 	unsigned int		sk_napi_id;
413 #endif
414 	int			sk_rcvbuf;
415 
416 	struct sk_filter __rcu	*sk_filter;
417 	union {
418 		struct socket_wq __rcu	*sk_wq;
419 		/* private: */
420 		struct socket_wq	*sk_wq_raw;
421 		/* public: */
422 	};
423 #ifdef CONFIG_XFRM
424 	struct xfrm_policy __rcu *sk_policy[2];
425 #endif
426 	struct dst_entry	*sk_rx_dst;
427 	struct dst_entry __rcu	*sk_dst_cache;
428 	atomic_t		sk_omem_alloc;
429 	int			sk_sndbuf;
430 
431 	/* ===== cache line for TX ===== */
432 	int			sk_wmem_queued;
433 	refcount_t		sk_wmem_alloc;
434 	unsigned long		sk_tsq_flags;
435 	union {
436 		struct sk_buff	*sk_send_head;
437 		struct rb_root	tcp_rtx_queue;
438 	};
439 	struct sk_buff		*sk_tx_skb_cache;
440 	struct sk_buff_head	sk_write_queue;
441 	__s32			sk_peek_off;
442 	int			sk_write_pending;
443 	__u32			sk_dst_pending_confirm;
444 	u32			sk_pacing_status; /* see enum sk_pacing */
445 	long			sk_sndtimeo;
446 	struct timer_list	sk_timer;
447 	__u32			sk_priority;
448 	__u32			sk_mark;
449 	unsigned long		sk_pacing_rate; /* bytes per second */
450 	unsigned long		sk_max_pacing_rate;
451 	struct page_frag	sk_frag;
452 	netdev_features_t	sk_route_caps;
453 	netdev_features_t	sk_route_nocaps;
454 	netdev_features_t	sk_route_forced_caps;
455 	int			sk_gso_type;
456 	unsigned int		sk_gso_max_size;
457 	gfp_t			sk_allocation;
458 	__u32			sk_txhash;
459 
460 	/*
461 	 * Because of non atomicity rules, all
462 	 * changes are protected by socket lock.
463 	 */
464 	u8			sk_padding : 1,
465 				sk_kern_sock : 1,
466 				sk_no_check_tx : 1,
467 				sk_no_check_rx : 1,
468 				sk_userlocks : 4;
469 	u8			sk_pacing_shift;
470 	u16			sk_type;
471 	u16			sk_protocol;
472 	u16			sk_gso_max_segs;
473 	unsigned long	        sk_lingertime;
474 	struct proto		*sk_prot_creator;
475 	rwlock_t		sk_callback_lock;
476 	int			sk_err,
477 				sk_err_soft;
478 	u32			sk_ack_backlog;
479 	u32			sk_max_ack_backlog;
480 	kuid_t			sk_uid;
481 	struct pid		*sk_peer_pid;
482 	const struct cred	*sk_peer_cred;
483 	long			sk_rcvtimeo;
484 	ktime_t			sk_stamp;
485 #if BITS_PER_LONG==32
486 	seqlock_t		sk_stamp_seq;
487 #endif
488 	u16			sk_tsflags;
489 	u8			sk_shutdown;
490 	u32			sk_tskey;
491 	atomic_t		sk_zckey;
492 
493 	u8			sk_clockid;
494 	u8			sk_txtime_deadline_mode : 1,
495 				sk_txtime_report_errors : 1,
496 				sk_txtime_unused : 6;
497 
498 	struct socket		*sk_socket;
499 	void			*sk_user_data;
500 #ifdef CONFIG_SECURITY
501 	void			*sk_security;
502 #endif
503 	struct sock_cgroup_data	sk_cgrp_data;
504 	struct mem_cgroup	*sk_memcg;
505 	void			(*sk_state_change)(struct sock *sk);
506 	void			(*sk_data_ready)(struct sock *sk);
507 	void			(*sk_write_space)(struct sock *sk);
508 	void			(*sk_error_report)(struct sock *sk);
509 	int			(*sk_backlog_rcv)(struct sock *sk,
510 						  struct sk_buff *skb);
511 #ifdef CONFIG_SOCK_VALIDATE_XMIT
512 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
513 							struct net_device *dev,
514 							struct sk_buff *skb);
515 #endif
516 	void                    (*sk_destruct)(struct sock *sk);
517 	struct sock_reuseport __rcu	*sk_reuseport_cb;
518 #ifdef CONFIG_BPF_SYSCALL
519 	struct bpf_sk_storage __rcu	*sk_bpf_storage;
520 #endif
521 	struct rcu_head		sk_rcu;
522 };
523 
524 enum sk_pacing {
525 	SK_PACING_NONE		= 0,
526 	SK_PACING_NEEDED	= 1,
527 	SK_PACING_FQ		= 2,
528 };
529 
530 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
531 
532 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
533 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
534 
535 /*
536  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
537  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
538  * on a socket means that the socket will reuse everybody else's port
539  * without looking at the other's sk_reuse value.
540  */
541 
542 #define SK_NO_REUSE	0
543 #define SK_CAN_REUSE	1
544 #define SK_FORCE_REUSE	2
545 
546 int sk_set_peek_off(struct sock *sk, int val);
547 
548 static inline int sk_peek_offset(struct sock *sk, int flags)
549 {
550 	if (unlikely(flags & MSG_PEEK)) {
551 		return READ_ONCE(sk->sk_peek_off);
552 	}
553 
554 	return 0;
555 }
556 
557 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
558 {
559 	s32 off = READ_ONCE(sk->sk_peek_off);
560 
561 	if (unlikely(off >= 0)) {
562 		off = max_t(s32, off - val, 0);
563 		WRITE_ONCE(sk->sk_peek_off, off);
564 	}
565 }
566 
567 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
568 {
569 	sk_peek_offset_bwd(sk, -val);
570 }
571 
572 /*
573  * Hashed lists helper routines
574  */
575 static inline struct sock *sk_entry(const struct hlist_node *node)
576 {
577 	return hlist_entry(node, struct sock, sk_node);
578 }
579 
580 static inline struct sock *__sk_head(const struct hlist_head *head)
581 {
582 	return hlist_entry(head->first, struct sock, sk_node);
583 }
584 
585 static inline struct sock *sk_head(const struct hlist_head *head)
586 {
587 	return hlist_empty(head) ? NULL : __sk_head(head);
588 }
589 
590 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
591 {
592 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
593 }
594 
595 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
596 {
597 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
598 }
599 
600 static inline struct sock *sk_next(const struct sock *sk)
601 {
602 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
603 }
604 
605 static inline struct sock *sk_nulls_next(const struct sock *sk)
606 {
607 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
608 		hlist_nulls_entry(sk->sk_nulls_node.next,
609 				  struct sock, sk_nulls_node) :
610 		NULL;
611 }
612 
613 static inline bool sk_unhashed(const struct sock *sk)
614 {
615 	return hlist_unhashed(&sk->sk_node);
616 }
617 
618 static inline bool sk_hashed(const struct sock *sk)
619 {
620 	return !sk_unhashed(sk);
621 }
622 
623 static inline void sk_node_init(struct hlist_node *node)
624 {
625 	node->pprev = NULL;
626 }
627 
628 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
629 {
630 	node->pprev = NULL;
631 }
632 
633 static inline void __sk_del_node(struct sock *sk)
634 {
635 	__hlist_del(&sk->sk_node);
636 }
637 
638 /* NB: equivalent to hlist_del_init_rcu */
639 static inline bool __sk_del_node_init(struct sock *sk)
640 {
641 	if (sk_hashed(sk)) {
642 		__sk_del_node(sk);
643 		sk_node_init(&sk->sk_node);
644 		return true;
645 	}
646 	return false;
647 }
648 
649 /* Grab socket reference count. This operation is valid only
650    when sk is ALREADY grabbed f.e. it is found in hash table
651    or a list and the lookup is made under lock preventing hash table
652    modifications.
653  */
654 
655 static __always_inline void sock_hold(struct sock *sk)
656 {
657 	refcount_inc(&sk->sk_refcnt);
658 }
659 
660 /* Ungrab socket in the context, which assumes that socket refcnt
661    cannot hit zero, f.e. it is true in context of any socketcall.
662  */
663 static __always_inline void __sock_put(struct sock *sk)
664 {
665 	refcount_dec(&sk->sk_refcnt);
666 }
667 
668 static inline bool sk_del_node_init(struct sock *sk)
669 {
670 	bool rc = __sk_del_node_init(sk);
671 
672 	if (rc) {
673 		/* paranoid for a while -acme */
674 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
675 		__sock_put(sk);
676 	}
677 	return rc;
678 }
679 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
680 
681 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
682 {
683 	if (sk_hashed(sk)) {
684 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
685 		return true;
686 	}
687 	return false;
688 }
689 
690 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
691 {
692 	bool rc = __sk_nulls_del_node_init_rcu(sk);
693 
694 	if (rc) {
695 		/* paranoid for a while -acme */
696 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
697 		__sock_put(sk);
698 	}
699 	return rc;
700 }
701 
702 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
703 {
704 	hlist_add_head(&sk->sk_node, list);
705 }
706 
707 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
708 {
709 	sock_hold(sk);
710 	__sk_add_node(sk, list);
711 }
712 
713 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
714 {
715 	sock_hold(sk);
716 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
717 	    sk->sk_family == AF_INET6)
718 		hlist_add_tail_rcu(&sk->sk_node, list);
719 	else
720 		hlist_add_head_rcu(&sk->sk_node, list);
721 }
722 
723 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
724 {
725 	sock_hold(sk);
726 	hlist_add_tail_rcu(&sk->sk_node, list);
727 }
728 
729 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
730 {
731 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
732 }
733 
734 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
735 {
736 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
737 }
738 
739 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
740 {
741 	sock_hold(sk);
742 	__sk_nulls_add_node_rcu(sk, list);
743 }
744 
745 static inline void __sk_del_bind_node(struct sock *sk)
746 {
747 	__hlist_del(&sk->sk_bind_node);
748 }
749 
750 static inline void sk_add_bind_node(struct sock *sk,
751 					struct hlist_head *list)
752 {
753 	hlist_add_head(&sk->sk_bind_node, list);
754 }
755 
756 #define sk_for_each(__sk, list) \
757 	hlist_for_each_entry(__sk, list, sk_node)
758 #define sk_for_each_rcu(__sk, list) \
759 	hlist_for_each_entry_rcu(__sk, list, sk_node)
760 #define sk_nulls_for_each(__sk, node, list) \
761 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
762 #define sk_nulls_for_each_rcu(__sk, node, list) \
763 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
764 #define sk_for_each_from(__sk) \
765 	hlist_for_each_entry_from(__sk, sk_node)
766 #define sk_nulls_for_each_from(__sk, node) \
767 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
768 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
769 #define sk_for_each_safe(__sk, tmp, list) \
770 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
771 #define sk_for_each_bound(__sk, list) \
772 	hlist_for_each_entry(__sk, list, sk_bind_node)
773 
774 /**
775  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
776  * @tpos:	the type * to use as a loop cursor.
777  * @pos:	the &struct hlist_node to use as a loop cursor.
778  * @head:	the head for your list.
779  * @offset:	offset of hlist_node within the struct.
780  *
781  */
782 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
783 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
784 	     pos != NULL &&						       \
785 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
786 	     pos = rcu_dereference(hlist_next_rcu(pos)))
787 
788 static inline struct user_namespace *sk_user_ns(struct sock *sk)
789 {
790 	/* Careful only use this in a context where these parameters
791 	 * can not change and must all be valid, such as recvmsg from
792 	 * userspace.
793 	 */
794 	return sk->sk_socket->file->f_cred->user_ns;
795 }
796 
797 /* Sock flags */
798 enum sock_flags {
799 	SOCK_DEAD,
800 	SOCK_DONE,
801 	SOCK_URGINLINE,
802 	SOCK_KEEPOPEN,
803 	SOCK_LINGER,
804 	SOCK_DESTROY,
805 	SOCK_BROADCAST,
806 	SOCK_TIMESTAMP,
807 	SOCK_ZAPPED,
808 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
809 	SOCK_DBG, /* %SO_DEBUG setting */
810 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
811 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
812 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
813 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
814 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
815 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
816 	SOCK_FASYNC, /* fasync() active */
817 	SOCK_RXQ_OVFL,
818 	SOCK_ZEROCOPY, /* buffers from userspace */
819 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
820 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
821 		     * Will use last 4 bytes of packet sent from
822 		     * user-space instead.
823 		     */
824 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
825 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
826 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
827 	SOCK_TXTIME,
828 	SOCK_XDP, /* XDP is attached */
829 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
830 };
831 
832 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
833 
834 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
835 {
836 	nsk->sk_flags = osk->sk_flags;
837 }
838 
839 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
840 {
841 	__set_bit(flag, &sk->sk_flags);
842 }
843 
844 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
845 {
846 	__clear_bit(flag, &sk->sk_flags);
847 }
848 
849 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
850 {
851 	return test_bit(flag, &sk->sk_flags);
852 }
853 
854 #ifdef CONFIG_NET
855 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
856 static inline int sk_memalloc_socks(void)
857 {
858 	return static_branch_unlikely(&memalloc_socks_key);
859 }
860 #else
861 
862 static inline int sk_memalloc_socks(void)
863 {
864 	return 0;
865 }
866 
867 #endif
868 
869 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
870 {
871 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
872 }
873 
874 static inline void sk_acceptq_removed(struct sock *sk)
875 {
876 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
877 }
878 
879 static inline void sk_acceptq_added(struct sock *sk)
880 {
881 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
882 }
883 
884 static inline bool sk_acceptq_is_full(const struct sock *sk)
885 {
886 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
887 }
888 
889 /*
890  * Compute minimal free write space needed to queue new packets.
891  */
892 static inline int sk_stream_min_wspace(const struct sock *sk)
893 {
894 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
895 }
896 
897 static inline int sk_stream_wspace(const struct sock *sk)
898 {
899 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
900 }
901 
902 static inline void sk_wmem_queued_add(struct sock *sk, int val)
903 {
904 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
905 }
906 
907 void sk_stream_write_space(struct sock *sk);
908 
909 /* OOB backlog add */
910 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
911 {
912 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
913 	skb_dst_force(skb);
914 
915 	if (!sk->sk_backlog.tail)
916 		WRITE_ONCE(sk->sk_backlog.head, skb);
917 	else
918 		sk->sk_backlog.tail->next = skb;
919 
920 	WRITE_ONCE(sk->sk_backlog.tail, skb);
921 	skb->next = NULL;
922 }
923 
924 /*
925  * Take into account size of receive queue and backlog queue
926  * Do not take into account this skb truesize,
927  * to allow even a single big packet to come.
928  */
929 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
930 {
931 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
932 
933 	return qsize > limit;
934 }
935 
936 /* The per-socket spinlock must be held here. */
937 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
938 					      unsigned int limit)
939 {
940 	if (sk_rcvqueues_full(sk, limit))
941 		return -ENOBUFS;
942 
943 	/*
944 	 * If the skb was allocated from pfmemalloc reserves, only
945 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
946 	 * helping free memory
947 	 */
948 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
949 		return -ENOMEM;
950 
951 	__sk_add_backlog(sk, skb);
952 	sk->sk_backlog.len += skb->truesize;
953 	return 0;
954 }
955 
956 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
957 
958 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
959 {
960 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
961 		return __sk_backlog_rcv(sk, skb);
962 
963 	return sk->sk_backlog_rcv(sk, skb);
964 }
965 
966 static inline void sk_incoming_cpu_update(struct sock *sk)
967 {
968 	int cpu = raw_smp_processor_id();
969 
970 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
971 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
972 }
973 
974 static inline void sock_rps_record_flow_hash(__u32 hash)
975 {
976 #ifdef CONFIG_RPS
977 	struct rps_sock_flow_table *sock_flow_table;
978 
979 	rcu_read_lock();
980 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
981 	rps_record_sock_flow(sock_flow_table, hash);
982 	rcu_read_unlock();
983 #endif
984 }
985 
986 static inline void sock_rps_record_flow(const struct sock *sk)
987 {
988 #ifdef CONFIG_RPS
989 	if (static_branch_unlikely(&rfs_needed)) {
990 		/* Reading sk->sk_rxhash might incur an expensive cache line
991 		 * miss.
992 		 *
993 		 * TCP_ESTABLISHED does cover almost all states where RFS
994 		 * might be useful, and is cheaper [1] than testing :
995 		 *	IPv4: inet_sk(sk)->inet_daddr
996 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
997 		 * OR	an additional socket flag
998 		 * [1] : sk_state and sk_prot are in the same cache line.
999 		 */
1000 		if (sk->sk_state == TCP_ESTABLISHED)
1001 			sock_rps_record_flow_hash(sk->sk_rxhash);
1002 	}
1003 #endif
1004 }
1005 
1006 static inline void sock_rps_save_rxhash(struct sock *sk,
1007 					const struct sk_buff *skb)
1008 {
1009 #ifdef CONFIG_RPS
1010 	if (unlikely(sk->sk_rxhash != skb->hash))
1011 		sk->sk_rxhash = skb->hash;
1012 #endif
1013 }
1014 
1015 static inline void sock_rps_reset_rxhash(struct sock *sk)
1016 {
1017 #ifdef CONFIG_RPS
1018 	sk->sk_rxhash = 0;
1019 #endif
1020 }
1021 
1022 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1023 	({	int __rc;						\
1024 		release_sock(__sk);					\
1025 		__rc = __condition;					\
1026 		if (!__rc) {						\
1027 			*(__timeo) = wait_woken(__wait,			\
1028 						TASK_INTERRUPTIBLE,	\
1029 						*(__timeo));		\
1030 		}							\
1031 		sched_annotate_sleep();					\
1032 		lock_sock(__sk);					\
1033 		__rc = __condition;					\
1034 		__rc;							\
1035 	})
1036 
1037 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1038 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1039 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1040 int sk_stream_error(struct sock *sk, int flags, int err);
1041 void sk_stream_kill_queues(struct sock *sk);
1042 void sk_set_memalloc(struct sock *sk);
1043 void sk_clear_memalloc(struct sock *sk);
1044 
1045 void __sk_flush_backlog(struct sock *sk);
1046 
1047 static inline bool sk_flush_backlog(struct sock *sk)
1048 {
1049 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1050 		__sk_flush_backlog(sk);
1051 		return true;
1052 	}
1053 	return false;
1054 }
1055 
1056 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1057 
1058 struct request_sock_ops;
1059 struct timewait_sock_ops;
1060 struct inet_hashinfo;
1061 struct raw_hashinfo;
1062 struct smc_hashinfo;
1063 struct module;
1064 
1065 /*
1066  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1067  * un-modified. Special care is taken when initializing object to zero.
1068  */
1069 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1070 {
1071 	if (offsetof(struct sock, sk_node.next) != 0)
1072 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1073 	memset(&sk->sk_node.pprev, 0,
1074 	       size - offsetof(struct sock, sk_node.pprev));
1075 }
1076 
1077 /* Networking protocol blocks we attach to sockets.
1078  * socket layer -> transport layer interface
1079  */
1080 struct proto {
1081 	void			(*close)(struct sock *sk,
1082 					long timeout);
1083 	int			(*pre_connect)(struct sock *sk,
1084 					struct sockaddr *uaddr,
1085 					int addr_len);
1086 	int			(*connect)(struct sock *sk,
1087 					struct sockaddr *uaddr,
1088 					int addr_len);
1089 	int			(*disconnect)(struct sock *sk, int flags);
1090 
1091 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1092 					  bool kern);
1093 
1094 	int			(*ioctl)(struct sock *sk, int cmd,
1095 					 unsigned long arg);
1096 	int			(*init)(struct sock *sk);
1097 	void			(*destroy)(struct sock *sk);
1098 	void			(*shutdown)(struct sock *sk, int how);
1099 	int			(*setsockopt)(struct sock *sk, int level,
1100 					int optname, char __user *optval,
1101 					unsigned int optlen);
1102 	int			(*getsockopt)(struct sock *sk, int level,
1103 					int optname, char __user *optval,
1104 					int __user *option);
1105 	void			(*keepalive)(struct sock *sk, int valbool);
1106 #ifdef CONFIG_COMPAT
1107 	int			(*compat_setsockopt)(struct sock *sk,
1108 					int level,
1109 					int optname, char __user *optval,
1110 					unsigned int optlen);
1111 	int			(*compat_getsockopt)(struct sock *sk,
1112 					int level,
1113 					int optname, char __user *optval,
1114 					int __user *option);
1115 	int			(*compat_ioctl)(struct sock *sk,
1116 					unsigned int cmd, unsigned long arg);
1117 #endif
1118 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1119 					   size_t len);
1120 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1121 					   size_t len, int noblock, int flags,
1122 					   int *addr_len);
1123 	int			(*sendpage)(struct sock *sk, struct page *page,
1124 					int offset, size_t size, int flags);
1125 	int			(*bind)(struct sock *sk,
1126 					struct sockaddr *uaddr, int addr_len);
1127 
1128 	int			(*backlog_rcv) (struct sock *sk,
1129 						struct sk_buff *skb);
1130 
1131 	void		(*release_cb)(struct sock *sk);
1132 
1133 	/* Keeping track of sk's, looking them up, and port selection methods. */
1134 	int			(*hash)(struct sock *sk);
1135 	void			(*unhash)(struct sock *sk);
1136 	void			(*rehash)(struct sock *sk);
1137 	int			(*get_port)(struct sock *sk, unsigned short snum);
1138 
1139 	/* Keeping track of sockets in use */
1140 #ifdef CONFIG_PROC_FS
1141 	unsigned int		inuse_idx;
1142 #endif
1143 
1144 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1145 	bool			(*stream_memory_read)(const struct sock *sk);
1146 	/* Memory pressure */
1147 	void			(*enter_memory_pressure)(struct sock *sk);
1148 	void			(*leave_memory_pressure)(struct sock *sk);
1149 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1150 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1151 	/*
1152 	 * Pressure flag: try to collapse.
1153 	 * Technical note: it is used by multiple contexts non atomically.
1154 	 * All the __sk_mem_schedule() is of this nature: accounting
1155 	 * is strict, actions are advisory and have some latency.
1156 	 */
1157 	unsigned long		*memory_pressure;
1158 	long			*sysctl_mem;
1159 
1160 	int			*sysctl_wmem;
1161 	int			*sysctl_rmem;
1162 	u32			sysctl_wmem_offset;
1163 	u32			sysctl_rmem_offset;
1164 
1165 	int			max_header;
1166 	bool			no_autobind;
1167 
1168 	struct kmem_cache	*slab;
1169 	unsigned int		obj_size;
1170 	slab_flags_t		slab_flags;
1171 	unsigned int		useroffset;	/* Usercopy region offset */
1172 	unsigned int		usersize;	/* Usercopy region size */
1173 
1174 	struct percpu_counter	*orphan_count;
1175 
1176 	struct request_sock_ops	*rsk_prot;
1177 	struct timewait_sock_ops *twsk_prot;
1178 
1179 	union {
1180 		struct inet_hashinfo	*hashinfo;
1181 		struct udp_table	*udp_table;
1182 		struct raw_hashinfo	*raw_hash;
1183 		struct smc_hashinfo	*smc_hash;
1184 	} h;
1185 
1186 	struct module		*owner;
1187 
1188 	char			name[32];
1189 
1190 	struct list_head	node;
1191 #ifdef SOCK_REFCNT_DEBUG
1192 	atomic_t		socks;
1193 #endif
1194 	int			(*diag_destroy)(struct sock *sk, int err);
1195 } __randomize_layout;
1196 
1197 int proto_register(struct proto *prot, int alloc_slab);
1198 void proto_unregister(struct proto *prot);
1199 int sock_load_diag_module(int family, int protocol);
1200 
1201 #ifdef SOCK_REFCNT_DEBUG
1202 static inline void sk_refcnt_debug_inc(struct sock *sk)
1203 {
1204 	atomic_inc(&sk->sk_prot->socks);
1205 }
1206 
1207 static inline void sk_refcnt_debug_dec(struct sock *sk)
1208 {
1209 	atomic_dec(&sk->sk_prot->socks);
1210 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1211 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1212 }
1213 
1214 static inline void sk_refcnt_debug_release(const struct sock *sk)
1215 {
1216 	if (refcount_read(&sk->sk_refcnt) != 1)
1217 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1218 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1219 }
1220 #else /* SOCK_REFCNT_DEBUG */
1221 #define sk_refcnt_debug_inc(sk) do { } while (0)
1222 #define sk_refcnt_debug_dec(sk) do { } while (0)
1223 #define sk_refcnt_debug_release(sk) do { } while (0)
1224 #endif /* SOCK_REFCNT_DEBUG */
1225 
1226 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1227 {
1228 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1229 		return false;
1230 
1231 	return sk->sk_prot->stream_memory_free ?
1232 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1233 }
1234 
1235 static inline bool sk_stream_memory_free(const struct sock *sk)
1236 {
1237 	return __sk_stream_memory_free(sk, 0);
1238 }
1239 
1240 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1241 {
1242 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1243 	       __sk_stream_memory_free(sk, wake);
1244 }
1245 
1246 static inline bool sk_stream_is_writeable(const struct sock *sk)
1247 {
1248 	return __sk_stream_is_writeable(sk, 0);
1249 }
1250 
1251 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1252 					    struct cgroup *ancestor)
1253 {
1254 #ifdef CONFIG_SOCK_CGROUP_DATA
1255 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1256 				    ancestor);
1257 #else
1258 	return -ENOTSUPP;
1259 #endif
1260 }
1261 
1262 static inline bool sk_has_memory_pressure(const struct sock *sk)
1263 {
1264 	return sk->sk_prot->memory_pressure != NULL;
1265 }
1266 
1267 static inline bool sk_under_memory_pressure(const struct sock *sk)
1268 {
1269 	if (!sk->sk_prot->memory_pressure)
1270 		return false;
1271 
1272 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1273 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1274 		return true;
1275 
1276 	return !!*sk->sk_prot->memory_pressure;
1277 }
1278 
1279 static inline long
1280 sk_memory_allocated(const struct sock *sk)
1281 {
1282 	return atomic_long_read(sk->sk_prot->memory_allocated);
1283 }
1284 
1285 static inline long
1286 sk_memory_allocated_add(struct sock *sk, int amt)
1287 {
1288 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1289 }
1290 
1291 static inline void
1292 sk_memory_allocated_sub(struct sock *sk, int amt)
1293 {
1294 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1295 }
1296 
1297 static inline void sk_sockets_allocated_dec(struct sock *sk)
1298 {
1299 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1300 }
1301 
1302 static inline void sk_sockets_allocated_inc(struct sock *sk)
1303 {
1304 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1305 }
1306 
1307 static inline u64
1308 sk_sockets_allocated_read_positive(struct sock *sk)
1309 {
1310 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1311 }
1312 
1313 static inline int
1314 proto_sockets_allocated_sum_positive(struct proto *prot)
1315 {
1316 	return percpu_counter_sum_positive(prot->sockets_allocated);
1317 }
1318 
1319 static inline long
1320 proto_memory_allocated(struct proto *prot)
1321 {
1322 	return atomic_long_read(prot->memory_allocated);
1323 }
1324 
1325 static inline bool
1326 proto_memory_pressure(struct proto *prot)
1327 {
1328 	if (!prot->memory_pressure)
1329 		return false;
1330 	return !!*prot->memory_pressure;
1331 }
1332 
1333 
1334 #ifdef CONFIG_PROC_FS
1335 /* Called with local bh disabled */
1336 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1337 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1338 int sock_inuse_get(struct net *net);
1339 #else
1340 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1341 		int inc)
1342 {
1343 }
1344 #endif
1345 
1346 
1347 /* With per-bucket locks this operation is not-atomic, so that
1348  * this version is not worse.
1349  */
1350 static inline int __sk_prot_rehash(struct sock *sk)
1351 {
1352 	sk->sk_prot->unhash(sk);
1353 	return sk->sk_prot->hash(sk);
1354 }
1355 
1356 /* About 10 seconds */
1357 #define SOCK_DESTROY_TIME (10*HZ)
1358 
1359 /* Sockets 0-1023 can't be bound to unless you are superuser */
1360 #define PROT_SOCK	1024
1361 
1362 #define SHUTDOWN_MASK	3
1363 #define RCV_SHUTDOWN	1
1364 #define SEND_SHUTDOWN	2
1365 
1366 #define SOCK_SNDBUF_LOCK	1
1367 #define SOCK_RCVBUF_LOCK	2
1368 #define SOCK_BINDADDR_LOCK	4
1369 #define SOCK_BINDPORT_LOCK	8
1370 
1371 struct socket_alloc {
1372 	struct socket socket;
1373 	struct inode vfs_inode;
1374 };
1375 
1376 static inline struct socket *SOCKET_I(struct inode *inode)
1377 {
1378 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1379 }
1380 
1381 static inline struct inode *SOCK_INODE(struct socket *socket)
1382 {
1383 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1384 }
1385 
1386 /*
1387  * Functions for memory accounting
1388  */
1389 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1390 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1391 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1392 void __sk_mem_reclaim(struct sock *sk, int amount);
1393 
1394 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1395  * do not necessarily have 16x time more memory than 4KB ones.
1396  */
1397 #define SK_MEM_QUANTUM 4096
1398 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1399 #define SK_MEM_SEND	0
1400 #define SK_MEM_RECV	1
1401 
1402 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1403 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1404 {
1405 	long val = sk->sk_prot->sysctl_mem[index];
1406 
1407 #if PAGE_SIZE > SK_MEM_QUANTUM
1408 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1409 #elif PAGE_SIZE < SK_MEM_QUANTUM
1410 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1411 #endif
1412 	return val;
1413 }
1414 
1415 static inline int sk_mem_pages(int amt)
1416 {
1417 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1418 }
1419 
1420 static inline bool sk_has_account(struct sock *sk)
1421 {
1422 	/* return true if protocol supports memory accounting */
1423 	return !!sk->sk_prot->memory_allocated;
1424 }
1425 
1426 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1427 {
1428 	if (!sk_has_account(sk))
1429 		return true;
1430 	return size <= sk->sk_forward_alloc ||
1431 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1432 }
1433 
1434 static inline bool
1435 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1436 {
1437 	if (!sk_has_account(sk))
1438 		return true;
1439 	return size<= sk->sk_forward_alloc ||
1440 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1441 		skb_pfmemalloc(skb);
1442 }
1443 
1444 static inline void sk_mem_reclaim(struct sock *sk)
1445 {
1446 	if (!sk_has_account(sk))
1447 		return;
1448 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1449 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1450 }
1451 
1452 static inline void sk_mem_reclaim_partial(struct sock *sk)
1453 {
1454 	if (!sk_has_account(sk))
1455 		return;
1456 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1457 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1458 }
1459 
1460 static inline void sk_mem_charge(struct sock *sk, int size)
1461 {
1462 	if (!sk_has_account(sk))
1463 		return;
1464 	sk->sk_forward_alloc -= size;
1465 }
1466 
1467 static inline void sk_mem_uncharge(struct sock *sk, int size)
1468 {
1469 	if (!sk_has_account(sk))
1470 		return;
1471 	sk->sk_forward_alloc += size;
1472 
1473 	/* Avoid a possible overflow.
1474 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1475 	 * is not called and more than 2 GBytes are released at once.
1476 	 *
1477 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1478 	 * no need to hold that much forward allocation anyway.
1479 	 */
1480 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1481 		__sk_mem_reclaim(sk, 1 << 20);
1482 }
1483 
1484 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1485 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1486 {
1487 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1488 	sk_wmem_queued_add(sk, -skb->truesize);
1489 	sk_mem_uncharge(sk, skb->truesize);
1490 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1491 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1492 		skb_ext_reset(skb);
1493 		skb_zcopy_clear(skb, true);
1494 		sk->sk_tx_skb_cache = skb;
1495 		return;
1496 	}
1497 	__kfree_skb(skb);
1498 }
1499 
1500 static inline void sock_release_ownership(struct sock *sk)
1501 {
1502 	if (sk->sk_lock.owned) {
1503 		sk->sk_lock.owned = 0;
1504 
1505 		/* The sk_lock has mutex_unlock() semantics: */
1506 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1507 	}
1508 }
1509 
1510 /*
1511  * Macro so as to not evaluate some arguments when
1512  * lockdep is not enabled.
1513  *
1514  * Mark both the sk_lock and the sk_lock.slock as a
1515  * per-address-family lock class.
1516  */
1517 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1518 do {									\
1519 	sk->sk_lock.owned = 0;						\
1520 	init_waitqueue_head(&sk->sk_lock.wq);				\
1521 	spin_lock_init(&(sk)->sk_lock.slock);				\
1522 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1523 			sizeof((sk)->sk_lock));				\
1524 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1525 				(skey), (sname));				\
1526 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1527 } while (0)
1528 
1529 #ifdef CONFIG_LOCKDEP
1530 static inline bool lockdep_sock_is_held(const struct sock *sk)
1531 {
1532 	return lockdep_is_held(&sk->sk_lock) ||
1533 	       lockdep_is_held(&sk->sk_lock.slock);
1534 }
1535 #endif
1536 
1537 void lock_sock_nested(struct sock *sk, int subclass);
1538 
1539 static inline void lock_sock(struct sock *sk)
1540 {
1541 	lock_sock_nested(sk, 0);
1542 }
1543 
1544 void __release_sock(struct sock *sk);
1545 void release_sock(struct sock *sk);
1546 
1547 /* BH context may only use the following locking interface. */
1548 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1549 #define bh_lock_sock_nested(__sk) \
1550 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1551 				SINGLE_DEPTH_NESTING)
1552 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1553 
1554 bool lock_sock_fast(struct sock *sk);
1555 /**
1556  * unlock_sock_fast - complement of lock_sock_fast
1557  * @sk: socket
1558  * @slow: slow mode
1559  *
1560  * fast unlock socket for user context.
1561  * If slow mode is on, we call regular release_sock()
1562  */
1563 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1564 {
1565 	if (slow)
1566 		release_sock(sk);
1567 	else
1568 		spin_unlock_bh(&sk->sk_lock.slock);
1569 }
1570 
1571 /* Used by processes to "lock" a socket state, so that
1572  * interrupts and bottom half handlers won't change it
1573  * from under us. It essentially blocks any incoming
1574  * packets, so that we won't get any new data or any
1575  * packets that change the state of the socket.
1576  *
1577  * While locked, BH processing will add new packets to
1578  * the backlog queue.  This queue is processed by the
1579  * owner of the socket lock right before it is released.
1580  *
1581  * Since ~2.3.5 it is also exclusive sleep lock serializing
1582  * accesses from user process context.
1583  */
1584 
1585 static inline void sock_owned_by_me(const struct sock *sk)
1586 {
1587 #ifdef CONFIG_LOCKDEP
1588 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1589 #endif
1590 }
1591 
1592 static inline bool sock_owned_by_user(const struct sock *sk)
1593 {
1594 	sock_owned_by_me(sk);
1595 	return sk->sk_lock.owned;
1596 }
1597 
1598 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1599 {
1600 	return sk->sk_lock.owned;
1601 }
1602 
1603 /* no reclassification while locks are held */
1604 static inline bool sock_allow_reclassification(const struct sock *csk)
1605 {
1606 	struct sock *sk = (struct sock *)csk;
1607 
1608 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1609 }
1610 
1611 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1612 		      struct proto *prot, int kern);
1613 void sk_free(struct sock *sk);
1614 void sk_destruct(struct sock *sk);
1615 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1616 void sk_free_unlock_clone(struct sock *sk);
1617 
1618 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1619 			     gfp_t priority);
1620 void __sock_wfree(struct sk_buff *skb);
1621 void sock_wfree(struct sk_buff *skb);
1622 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1623 			     gfp_t priority);
1624 void skb_orphan_partial(struct sk_buff *skb);
1625 void sock_rfree(struct sk_buff *skb);
1626 void sock_efree(struct sk_buff *skb);
1627 #ifdef CONFIG_INET
1628 void sock_edemux(struct sk_buff *skb);
1629 #else
1630 #define sock_edemux sock_efree
1631 #endif
1632 
1633 int sock_setsockopt(struct socket *sock, int level, int op,
1634 		    char __user *optval, unsigned int optlen);
1635 
1636 int sock_getsockopt(struct socket *sock, int level, int op,
1637 		    char __user *optval, int __user *optlen);
1638 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1639 		   bool timeval, bool time32);
1640 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1641 				    int noblock, int *errcode);
1642 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1643 				     unsigned long data_len, int noblock,
1644 				     int *errcode, int max_page_order);
1645 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1646 void sock_kfree_s(struct sock *sk, void *mem, int size);
1647 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1648 void sk_send_sigurg(struct sock *sk);
1649 
1650 struct sockcm_cookie {
1651 	u64 transmit_time;
1652 	u32 mark;
1653 	u16 tsflags;
1654 };
1655 
1656 static inline void sockcm_init(struct sockcm_cookie *sockc,
1657 			       const struct sock *sk)
1658 {
1659 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1660 }
1661 
1662 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1663 		     struct sockcm_cookie *sockc);
1664 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1665 		   struct sockcm_cookie *sockc);
1666 
1667 /*
1668  * Functions to fill in entries in struct proto_ops when a protocol
1669  * does not implement a particular function.
1670  */
1671 int sock_no_bind(struct socket *, struct sockaddr *, int);
1672 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1673 int sock_no_socketpair(struct socket *, struct socket *);
1674 int sock_no_accept(struct socket *, struct socket *, int, bool);
1675 int sock_no_getname(struct socket *, struct sockaddr *, int);
1676 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1677 int sock_no_listen(struct socket *, int);
1678 int sock_no_shutdown(struct socket *, int);
1679 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1680 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1681 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1682 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1683 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1684 int sock_no_mmap(struct file *file, struct socket *sock,
1685 		 struct vm_area_struct *vma);
1686 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1687 			 size_t size, int flags);
1688 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1689 				int offset, size_t size, int flags);
1690 
1691 /*
1692  * Functions to fill in entries in struct proto_ops when a protocol
1693  * uses the inet style.
1694  */
1695 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1696 				  char __user *optval, int __user *optlen);
1697 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1698 			int flags);
1699 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1700 				  char __user *optval, unsigned int optlen);
1701 int compat_sock_common_getsockopt(struct socket *sock, int level,
1702 		int optname, char __user *optval, int __user *optlen);
1703 int compat_sock_common_setsockopt(struct socket *sock, int level,
1704 		int optname, char __user *optval, unsigned int optlen);
1705 
1706 void sk_common_release(struct sock *sk);
1707 
1708 /*
1709  *	Default socket callbacks and setup code
1710  */
1711 
1712 /* Initialise core socket variables */
1713 void sock_init_data(struct socket *sock, struct sock *sk);
1714 
1715 /*
1716  * Socket reference counting postulates.
1717  *
1718  * * Each user of socket SHOULD hold a reference count.
1719  * * Each access point to socket (an hash table bucket, reference from a list,
1720  *   running timer, skb in flight MUST hold a reference count.
1721  * * When reference count hits 0, it means it will never increase back.
1722  * * When reference count hits 0, it means that no references from
1723  *   outside exist to this socket and current process on current CPU
1724  *   is last user and may/should destroy this socket.
1725  * * sk_free is called from any context: process, BH, IRQ. When
1726  *   it is called, socket has no references from outside -> sk_free
1727  *   may release descendant resources allocated by the socket, but
1728  *   to the time when it is called, socket is NOT referenced by any
1729  *   hash tables, lists etc.
1730  * * Packets, delivered from outside (from network or from another process)
1731  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1732  *   when they sit in queue. Otherwise, packets will leak to hole, when
1733  *   socket is looked up by one cpu and unhasing is made by another CPU.
1734  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1735  *   (leak to backlog). Packet socket does all the processing inside
1736  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1737  *   use separate SMP lock, so that they are prone too.
1738  */
1739 
1740 /* Ungrab socket and destroy it, if it was the last reference. */
1741 static inline void sock_put(struct sock *sk)
1742 {
1743 	if (refcount_dec_and_test(&sk->sk_refcnt))
1744 		sk_free(sk);
1745 }
1746 /* Generic version of sock_put(), dealing with all sockets
1747  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1748  */
1749 void sock_gen_put(struct sock *sk);
1750 
1751 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1752 		     unsigned int trim_cap, bool refcounted);
1753 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1754 				 const int nested)
1755 {
1756 	return __sk_receive_skb(sk, skb, nested, 1, true);
1757 }
1758 
1759 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1760 {
1761 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1762 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1763 		return;
1764 	sk->sk_tx_queue_mapping = tx_queue;
1765 }
1766 
1767 #define NO_QUEUE_MAPPING	USHRT_MAX
1768 
1769 static inline void sk_tx_queue_clear(struct sock *sk)
1770 {
1771 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1772 }
1773 
1774 static inline int sk_tx_queue_get(const struct sock *sk)
1775 {
1776 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1777 		return sk->sk_tx_queue_mapping;
1778 
1779 	return -1;
1780 }
1781 
1782 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1783 {
1784 #ifdef CONFIG_XPS
1785 	if (skb_rx_queue_recorded(skb)) {
1786 		u16 rx_queue = skb_get_rx_queue(skb);
1787 
1788 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1789 			return;
1790 
1791 		sk->sk_rx_queue_mapping = rx_queue;
1792 	}
1793 #endif
1794 }
1795 
1796 static inline void sk_rx_queue_clear(struct sock *sk)
1797 {
1798 #ifdef CONFIG_XPS
1799 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1800 #endif
1801 }
1802 
1803 #ifdef CONFIG_XPS
1804 static inline int sk_rx_queue_get(const struct sock *sk)
1805 {
1806 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1807 		return sk->sk_rx_queue_mapping;
1808 
1809 	return -1;
1810 }
1811 #endif
1812 
1813 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1814 {
1815 	sk_tx_queue_clear(sk);
1816 	sk->sk_socket = sock;
1817 }
1818 
1819 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1820 {
1821 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1822 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1823 }
1824 /* Detach socket from process context.
1825  * Announce socket dead, detach it from wait queue and inode.
1826  * Note that parent inode held reference count on this struct sock,
1827  * we do not release it in this function, because protocol
1828  * probably wants some additional cleanups or even continuing
1829  * to work with this socket (TCP).
1830  */
1831 static inline void sock_orphan(struct sock *sk)
1832 {
1833 	write_lock_bh(&sk->sk_callback_lock);
1834 	sock_set_flag(sk, SOCK_DEAD);
1835 	sk_set_socket(sk, NULL);
1836 	sk->sk_wq  = NULL;
1837 	write_unlock_bh(&sk->sk_callback_lock);
1838 }
1839 
1840 static inline void sock_graft(struct sock *sk, struct socket *parent)
1841 {
1842 	WARN_ON(parent->sk);
1843 	write_lock_bh(&sk->sk_callback_lock);
1844 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1845 	parent->sk = sk;
1846 	sk_set_socket(sk, parent);
1847 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1848 	security_sock_graft(sk, parent);
1849 	write_unlock_bh(&sk->sk_callback_lock);
1850 }
1851 
1852 kuid_t sock_i_uid(struct sock *sk);
1853 unsigned long sock_i_ino(struct sock *sk);
1854 
1855 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1856 {
1857 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1858 }
1859 
1860 static inline u32 net_tx_rndhash(void)
1861 {
1862 	u32 v = prandom_u32();
1863 
1864 	return v ?: 1;
1865 }
1866 
1867 static inline void sk_set_txhash(struct sock *sk)
1868 {
1869 	sk->sk_txhash = net_tx_rndhash();
1870 }
1871 
1872 static inline void sk_rethink_txhash(struct sock *sk)
1873 {
1874 	if (sk->sk_txhash)
1875 		sk_set_txhash(sk);
1876 }
1877 
1878 static inline struct dst_entry *
1879 __sk_dst_get(struct sock *sk)
1880 {
1881 	return rcu_dereference_check(sk->sk_dst_cache,
1882 				     lockdep_sock_is_held(sk));
1883 }
1884 
1885 static inline struct dst_entry *
1886 sk_dst_get(struct sock *sk)
1887 {
1888 	struct dst_entry *dst;
1889 
1890 	rcu_read_lock();
1891 	dst = rcu_dereference(sk->sk_dst_cache);
1892 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1893 		dst = NULL;
1894 	rcu_read_unlock();
1895 	return dst;
1896 }
1897 
1898 static inline void dst_negative_advice(struct sock *sk)
1899 {
1900 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1901 
1902 	sk_rethink_txhash(sk);
1903 
1904 	if (dst && dst->ops->negative_advice) {
1905 		ndst = dst->ops->negative_advice(dst);
1906 
1907 		if (ndst != dst) {
1908 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1909 			sk_tx_queue_clear(sk);
1910 			sk->sk_dst_pending_confirm = 0;
1911 		}
1912 	}
1913 }
1914 
1915 static inline void
1916 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1917 {
1918 	struct dst_entry *old_dst;
1919 
1920 	sk_tx_queue_clear(sk);
1921 	sk->sk_dst_pending_confirm = 0;
1922 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1923 					    lockdep_sock_is_held(sk));
1924 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1925 	dst_release(old_dst);
1926 }
1927 
1928 static inline void
1929 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1930 {
1931 	struct dst_entry *old_dst;
1932 
1933 	sk_tx_queue_clear(sk);
1934 	sk->sk_dst_pending_confirm = 0;
1935 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1936 	dst_release(old_dst);
1937 }
1938 
1939 static inline void
1940 __sk_dst_reset(struct sock *sk)
1941 {
1942 	__sk_dst_set(sk, NULL);
1943 }
1944 
1945 static inline void
1946 sk_dst_reset(struct sock *sk)
1947 {
1948 	sk_dst_set(sk, NULL);
1949 }
1950 
1951 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1952 
1953 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1954 
1955 static inline void sk_dst_confirm(struct sock *sk)
1956 {
1957 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1958 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1959 }
1960 
1961 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1962 {
1963 	if (skb_get_dst_pending_confirm(skb)) {
1964 		struct sock *sk = skb->sk;
1965 		unsigned long now = jiffies;
1966 
1967 		/* avoid dirtying neighbour */
1968 		if (READ_ONCE(n->confirmed) != now)
1969 			WRITE_ONCE(n->confirmed, now);
1970 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
1971 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
1972 	}
1973 }
1974 
1975 bool sk_mc_loop(struct sock *sk);
1976 
1977 static inline bool sk_can_gso(const struct sock *sk)
1978 {
1979 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1980 }
1981 
1982 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1983 
1984 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1985 {
1986 	sk->sk_route_nocaps |= flags;
1987 	sk->sk_route_caps &= ~flags;
1988 }
1989 
1990 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1991 					   struct iov_iter *from, char *to,
1992 					   int copy, int offset)
1993 {
1994 	if (skb->ip_summed == CHECKSUM_NONE) {
1995 		__wsum csum = 0;
1996 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1997 			return -EFAULT;
1998 		skb->csum = csum_block_add(skb->csum, csum, offset);
1999 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2000 		if (!copy_from_iter_full_nocache(to, copy, from))
2001 			return -EFAULT;
2002 	} else if (!copy_from_iter_full(to, copy, from))
2003 		return -EFAULT;
2004 
2005 	return 0;
2006 }
2007 
2008 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2009 				       struct iov_iter *from, int copy)
2010 {
2011 	int err, offset = skb->len;
2012 
2013 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2014 				       copy, offset);
2015 	if (err)
2016 		__skb_trim(skb, offset);
2017 
2018 	return err;
2019 }
2020 
2021 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2022 					   struct sk_buff *skb,
2023 					   struct page *page,
2024 					   int off, int copy)
2025 {
2026 	int err;
2027 
2028 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2029 				       copy, skb->len);
2030 	if (err)
2031 		return err;
2032 
2033 	skb->len	     += copy;
2034 	skb->data_len	     += copy;
2035 	skb->truesize	     += copy;
2036 	sk_wmem_queued_add(sk, copy);
2037 	sk_mem_charge(sk, copy);
2038 	return 0;
2039 }
2040 
2041 /**
2042  * sk_wmem_alloc_get - returns write allocations
2043  * @sk: socket
2044  *
2045  * Return: sk_wmem_alloc minus initial offset of one
2046  */
2047 static inline int sk_wmem_alloc_get(const struct sock *sk)
2048 {
2049 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2050 }
2051 
2052 /**
2053  * sk_rmem_alloc_get - returns read allocations
2054  * @sk: socket
2055  *
2056  * Return: sk_rmem_alloc
2057  */
2058 static inline int sk_rmem_alloc_get(const struct sock *sk)
2059 {
2060 	return atomic_read(&sk->sk_rmem_alloc);
2061 }
2062 
2063 /**
2064  * sk_has_allocations - check if allocations are outstanding
2065  * @sk: socket
2066  *
2067  * Return: true if socket has write or read allocations
2068  */
2069 static inline bool sk_has_allocations(const struct sock *sk)
2070 {
2071 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2072 }
2073 
2074 /**
2075  * skwq_has_sleeper - check if there are any waiting processes
2076  * @wq: struct socket_wq
2077  *
2078  * Return: true if socket_wq has waiting processes
2079  *
2080  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2081  * barrier call. They were added due to the race found within the tcp code.
2082  *
2083  * Consider following tcp code paths::
2084  *
2085  *   CPU1                CPU2
2086  *   sys_select          receive packet
2087  *   ...                 ...
2088  *   __add_wait_queue    update tp->rcv_nxt
2089  *   ...                 ...
2090  *   tp->rcv_nxt check   sock_def_readable
2091  *   ...                 {
2092  *   schedule               rcu_read_lock();
2093  *                          wq = rcu_dereference(sk->sk_wq);
2094  *                          if (wq && waitqueue_active(&wq->wait))
2095  *                              wake_up_interruptible(&wq->wait)
2096  *                          ...
2097  *                       }
2098  *
2099  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2100  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2101  * could then endup calling schedule and sleep forever if there are no more
2102  * data on the socket.
2103  *
2104  */
2105 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2106 {
2107 	return wq && wq_has_sleeper(&wq->wait);
2108 }
2109 
2110 /**
2111  * sock_poll_wait - place memory barrier behind the poll_wait call.
2112  * @filp:           file
2113  * @sock:           socket to wait on
2114  * @p:              poll_table
2115  *
2116  * See the comments in the wq_has_sleeper function.
2117  */
2118 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2119 				  poll_table *p)
2120 {
2121 	if (!poll_does_not_wait(p)) {
2122 		poll_wait(filp, &sock->wq.wait, p);
2123 		/* We need to be sure we are in sync with the
2124 		 * socket flags modification.
2125 		 *
2126 		 * This memory barrier is paired in the wq_has_sleeper.
2127 		 */
2128 		smp_mb();
2129 	}
2130 }
2131 
2132 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2133 {
2134 	if (sk->sk_txhash) {
2135 		skb->l4_hash = 1;
2136 		skb->hash = sk->sk_txhash;
2137 	}
2138 }
2139 
2140 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2141 
2142 /*
2143  *	Queue a received datagram if it will fit. Stream and sequenced
2144  *	protocols can't normally use this as they need to fit buffers in
2145  *	and play with them.
2146  *
2147  *	Inlined as it's very short and called for pretty much every
2148  *	packet ever received.
2149  */
2150 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2151 {
2152 	skb_orphan(skb);
2153 	skb->sk = sk;
2154 	skb->destructor = sock_rfree;
2155 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2156 	sk_mem_charge(sk, skb->truesize);
2157 }
2158 
2159 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2160 		    unsigned long expires);
2161 
2162 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2163 
2164 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2165 			struct sk_buff *skb, unsigned int flags,
2166 			void (*destructor)(struct sock *sk,
2167 					   struct sk_buff *skb));
2168 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2169 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2170 
2171 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2172 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2173 
2174 /*
2175  *	Recover an error report and clear atomically
2176  */
2177 
2178 static inline int sock_error(struct sock *sk)
2179 {
2180 	int err;
2181 	if (likely(!sk->sk_err))
2182 		return 0;
2183 	err = xchg(&sk->sk_err, 0);
2184 	return -err;
2185 }
2186 
2187 static inline unsigned long sock_wspace(struct sock *sk)
2188 {
2189 	int amt = 0;
2190 
2191 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2192 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2193 		if (amt < 0)
2194 			amt = 0;
2195 	}
2196 	return amt;
2197 }
2198 
2199 /* Note:
2200  *  We use sk->sk_wq_raw, from contexts knowing this
2201  *  pointer is not NULL and cannot disappear/change.
2202  */
2203 static inline void sk_set_bit(int nr, struct sock *sk)
2204 {
2205 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2206 	    !sock_flag(sk, SOCK_FASYNC))
2207 		return;
2208 
2209 	set_bit(nr, &sk->sk_wq_raw->flags);
2210 }
2211 
2212 static inline void sk_clear_bit(int nr, struct sock *sk)
2213 {
2214 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2215 	    !sock_flag(sk, SOCK_FASYNC))
2216 		return;
2217 
2218 	clear_bit(nr, &sk->sk_wq_raw->flags);
2219 }
2220 
2221 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2222 {
2223 	if (sock_flag(sk, SOCK_FASYNC)) {
2224 		rcu_read_lock();
2225 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2226 		rcu_read_unlock();
2227 	}
2228 }
2229 
2230 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2231  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2232  * Note: for send buffers, TCP works better if we can build two skbs at
2233  * minimum.
2234  */
2235 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2236 
2237 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2238 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2239 
2240 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2241 {
2242 	u32 val;
2243 
2244 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2245 		return;
2246 
2247 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2248 
2249 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2250 }
2251 
2252 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2253 				    bool force_schedule);
2254 
2255 /**
2256  * sk_page_frag - return an appropriate page_frag
2257  * @sk: socket
2258  *
2259  * Use the per task page_frag instead of the per socket one for
2260  * optimization when we know that we're in the normal context and owns
2261  * everything that's associated with %current.
2262  *
2263  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2264  * inside other socket operations and end up recursing into sk_page_frag()
2265  * while it's already in use.
2266  *
2267  * Return: a per task page_frag if context allows that,
2268  * otherwise a per socket one.
2269  */
2270 static inline struct page_frag *sk_page_frag(struct sock *sk)
2271 {
2272 	if (gfpflags_normal_context(sk->sk_allocation))
2273 		return &current->task_frag;
2274 
2275 	return &sk->sk_frag;
2276 }
2277 
2278 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2279 
2280 /*
2281  *	Default write policy as shown to user space via poll/select/SIGIO
2282  */
2283 static inline bool sock_writeable(const struct sock *sk)
2284 {
2285 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2286 }
2287 
2288 static inline gfp_t gfp_any(void)
2289 {
2290 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2291 }
2292 
2293 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2294 {
2295 	return noblock ? 0 : sk->sk_rcvtimeo;
2296 }
2297 
2298 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2299 {
2300 	return noblock ? 0 : sk->sk_sndtimeo;
2301 }
2302 
2303 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2304 {
2305 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2306 
2307 	return v ?: 1;
2308 }
2309 
2310 /* Alas, with timeout socket operations are not restartable.
2311  * Compare this to poll().
2312  */
2313 static inline int sock_intr_errno(long timeo)
2314 {
2315 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2316 }
2317 
2318 struct sock_skb_cb {
2319 	u32 dropcount;
2320 };
2321 
2322 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2323  * using skb->cb[] would keep using it directly and utilize its
2324  * alignement guarantee.
2325  */
2326 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2327 			    sizeof(struct sock_skb_cb)))
2328 
2329 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2330 			    SOCK_SKB_CB_OFFSET))
2331 
2332 #define sock_skb_cb_check_size(size) \
2333 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2334 
2335 static inline void
2336 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2337 {
2338 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2339 						atomic_read(&sk->sk_drops) : 0;
2340 }
2341 
2342 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2343 {
2344 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2345 
2346 	atomic_add(segs, &sk->sk_drops);
2347 }
2348 
2349 static inline ktime_t sock_read_timestamp(struct sock *sk)
2350 {
2351 #if BITS_PER_LONG==32
2352 	unsigned int seq;
2353 	ktime_t kt;
2354 
2355 	do {
2356 		seq = read_seqbegin(&sk->sk_stamp_seq);
2357 		kt = sk->sk_stamp;
2358 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2359 
2360 	return kt;
2361 #else
2362 	return READ_ONCE(sk->sk_stamp);
2363 #endif
2364 }
2365 
2366 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2367 {
2368 #if BITS_PER_LONG==32
2369 	write_seqlock(&sk->sk_stamp_seq);
2370 	sk->sk_stamp = kt;
2371 	write_sequnlock(&sk->sk_stamp_seq);
2372 #else
2373 	WRITE_ONCE(sk->sk_stamp, kt);
2374 #endif
2375 }
2376 
2377 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2378 			   struct sk_buff *skb);
2379 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2380 			     struct sk_buff *skb);
2381 
2382 static inline void
2383 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2384 {
2385 	ktime_t kt = skb->tstamp;
2386 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2387 
2388 	/*
2389 	 * generate control messages if
2390 	 * - receive time stamping in software requested
2391 	 * - software time stamp available and wanted
2392 	 * - hardware time stamps available and wanted
2393 	 */
2394 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2395 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2396 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2397 	    (hwtstamps->hwtstamp &&
2398 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2399 		__sock_recv_timestamp(msg, sk, skb);
2400 	else
2401 		sock_write_timestamp(sk, kt);
2402 
2403 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2404 		__sock_recv_wifi_status(msg, sk, skb);
2405 }
2406 
2407 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2408 			      struct sk_buff *skb);
2409 
2410 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2411 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2412 					  struct sk_buff *skb)
2413 {
2414 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2415 			   (1UL << SOCK_RCVTSTAMP))
2416 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2417 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2418 
2419 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2420 		__sock_recv_ts_and_drops(msg, sk, skb);
2421 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2422 		sock_write_timestamp(sk, skb->tstamp);
2423 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2424 		sock_write_timestamp(sk, 0);
2425 }
2426 
2427 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2428 
2429 /**
2430  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2431  * @sk:		socket sending this packet
2432  * @tsflags:	timestamping flags to use
2433  * @tx_flags:	completed with instructions for time stamping
2434  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2435  *
2436  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2437  */
2438 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2439 				      __u8 *tx_flags, __u32 *tskey)
2440 {
2441 	if (unlikely(tsflags)) {
2442 		__sock_tx_timestamp(tsflags, tx_flags);
2443 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2444 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2445 			*tskey = sk->sk_tskey++;
2446 	}
2447 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2448 		*tx_flags |= SKBTX_WIFI_STATUS;
2449 }
2450 
2451 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2452 				     __u8 *tx_flags)
2453 {
2454 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2455 }
2456 
2457 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2458 {
2459 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2460 			   &skb_shinfo(skb)->tskey);
2461 }
2462 
2463 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2464 /**
2465  * sk_eat_skb - Release a skb if it is no longer needed
2466  * @sk: socket to eat this skb from
2467  * @skb: socket buffer to eat
2468  *
2469  * This routine must be called with interrupts disabled or with the socket
2470  * locked so that the sk_buff queue operation is ok.
2471 */
2472 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2473 {
2474 	__skb_unlink(skb, &sk->sk_receive_queue);
2475 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2476 	    !sk->sk_rx_skb_cache) {
2477 		sk->sk_rx_skb_cache = skb;
2478 		skb_orphan(skb);
2479 		return;
2480 	}
2481 	__kfree_skb(skb);
2482 }
2483 
2484 static inline
2485 struct net *sock_net(const struct sock *sk)
2486 {
2487 	return read_pnet(&sk->sk_net);
2488 }
2489 
2490 static inline
2491 void sock_net_set(struct sock *sk, struct net *net)
2492 {
2493 	write_pnet(&sk->sk_net, net);
2494 }
2495 
2496 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2497 {
2498 	if (skb->sk) {
2499 		struct sock *sk = skb->sk;
2500 
2501 		skb->destructor = NULL;
2502 		skb->sk = NULL;
2503 		return sk;
2504 	}
2505 	return NULL;
2506 }
2507 
2508 /* This helper checks if a socket is a full socket,
2509  * ie _not_ a timewait or request socket.
2510  */
2511 static inline bool sk_fullsock(const struct sock *sk)
2512 {
2513 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2514 }
2515 
2516 /* Checks if this SKB belongs to an HW offloaded socket
2517  * and whether any SW fallbacks are required based on dev.
2518  * Check decrypted mark in case skb_orphan() cleared socket.
2519  */
2520 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2521 						   struct net_device *dev)
2522 {
2523 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2524 	struct sock *sk = skb->sk;
2525 
2526 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2527 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2528 #ifdef CONFIG_TLS_DEVICE
2529 	} else if (unlikely(skb->decrypted)) {
2530 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2531 		kfree_skb(skb);
2532 		skb = NULL;
2533 #endif
2534 	}
2535 #endif
2536 
2537 	return skb;
2538 }
2539 
2540 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2541  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2542  */
2543 static inline bool sk_listener(const struct sock *sk)
2544 {
2545 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2546 }
2547 
2548 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2549 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2550 		       int type);
2551 
2552 bool sk_ns_capable(const struct sock *sk,
2553 		   struct user_namespace *user_ns, int cap);
2554 bool sk_capable(const struct sock *sk, int cap);
2555 bool sk_net_capable(const struct sock *sk, int cap);
2556 
2557 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2558 
2559 /* Take into consideration the size of the struct sk_buff overhead in the
2560  * determination of these values, since that is non-constant across
2561  * platforms.  This makes socket queueing behavior and performance
2562  * not depend upon such differences.
2563  */
2564 #define _SK_MEM_PACKETS		256
2565 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2566 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2567 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2568 
2569 extern __u32 sysctl_wmem_max;
2570 extern __u32 sysctl_rmem_max;
2571 
2572 extern int sysctl_tstamp_allow_data;
2573 extern int sysctl_optmem_max;
2574 
2575 extern __u32 sysctl_wmem_default;
2576 extern __u32 sysctl_rmem_default;
2577 
2578 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2579 
2580 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2581 {
2582 	/* Does this proto have per netns sysctl_wmem ? */
2583 	if (proto->sysctl_wmem_offset)
2584 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2585 
2586 	return *proto->sysctl_wmem;
2587 }
2588 
2589 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2590 {
2591 	/* Does this proto have per netns sysctl_rmem ? */
2592 	if (proto->sysctl_rmem_offset)
2593 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2594 
2595 	return *proto->sysctl_rmem;
2596 }
2597 
2598 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2599  * Some wifi drivers need to tweak it to get more chunks.
2600  * They can use this helper from their ndo_start_xmit()
2601  */
2602 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2603 {
2604 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2605 		return;
2606 	WRITE_ONCE(sk->sk_pacing_shift, val);
2607 }
2608 
2609 /* if a socket is bound to a device, check that the given device
2610  * index is either the same or that the socket is bound to an L3
2611  * master device and the given device index is also enslaved to
2612  * that L3 master
2613  */
2614 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2615 {
2616 	int mdif;
2617 
2618 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2619 		return true;
2620 
2621 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2622 	if (mdif && mdif == sk->sk_bound_dev_if)
2623 		return true;
2624 
2625 	return false;
2626 }
2627 
2628 void sock_def_readable(struct sock *sk);
2629 
2630 #endif	/* _SOCK_H */
2631