xref: /openbmc/linux/include/net/sock.h (revision 680ef72a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 
76 /*
77  * This structure really needs to be cleaned up.
78  * Most of it is for TCP, and not used by any of
79  * the other protocols.
80  */
81 
82 /* Define this to get the SOCK_DBG debugging facility. */
83 #define SOCK_DEBUGGING
84 #ifdef SOCK_DEBUGGING
85 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
86 					printk(KERN_DEBUG msg); } while (0)
87 #else
88 /* Validate arguments and do nothing */
89 static inline __printf(2, 3)
90 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
91 {
92 }
93 #endif
94 
95 /* This is the per-socket lock.  The spinlock provides a synchronization
96  * between user contexts and software interrupt processing, whereas the
97  * mini-semaphore synchronizes multiple users amongst themselves.
98  */
99 typedef struct {
100 	spinlock_t		slock;
101 	int			owned;
102 	wait_queue_head_t	wq;
103 	/*
104 	 * We express the mutex-alike socket_lock semantics
105 	 * to the lock validator by explicitly managing
106 	 * the slock as a lock variant (in addition to
107 	 * the slock itself):
108 	 */
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 	struct lockdep_map dep_map;
111 #endif
112 } socket_lock_t;
113 
114 struct sock;
115 struct proto;
116 struct net;
117 
118 typedef __u32 __bitwise __portpair;
119 typedef __u64 __bitwise __addrpair;
120 
121 /**
122  *	struct sock_common - minimal network layer representation of sockets
123  *	@skc_daddr: Foreign IPv4 addr
124  *	@skc_rcv_saddr: Bound local IPv4 addr
125  *	@skc_hash: hash value used with various protocol lookup tables
126  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
127  *	@skc_dport: placeholder for inet_dport/tw_dport
128  *	@skc_num: placeholder for inet_num/tw_num
129  *	@skc_family: network address family
130  *	@skc_state: Connection state
131  *	@skc_reuse: %SO_REUSEADDR setting
132  *	@skc_reuseport: %SO_REUSEPORT setting
133  *	@skc_bound_dev_if: bound device index if != 0
134  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
135  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136  *	@skc_prot: protocol handlers inside a network family
137  *	@skc_net: reference to the network namespace of this socket
138  *	@skc_node: main hash linkage for various protocol lookup tables
139  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
140  *	@skc_tx_queue_mapping: tx queue number for this connection
141  *	@skc_flags: place holder for sk_flags
142  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
143  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
144  *	@skc_incoming_cpu: record/match cpu processing incoming packets
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
152 	 * address on 64bit arches : cf INET_MATCH()
153 	 */
154 	union {
155 		__addrpair	skc_addrpair;
156 		struct {
157 			__be32	skc_daddr;
158 			__be32	skc_rcv_saddr;
159 		};
160 	};
161 	union  {
162 		unsigned int	skc_hash;
163 		__u16		skc_u16hashes[2];
164 	};
165 	/* skc_dport && skc_num must be grouped as well */
166 	union {
167 		__portpair	skc_portpair;
168 		struct {
169 			__be16	skc_dport;
170 			__u16	skc_num;
171 		};
172 	};
173 
174 	unsigned short		skc_family;
175 	volatile unsigned char	skc_state;
176 	unsigned char		skc_reuse:4;
177 	unsigned char		skc_reuseport:1;
178 	unsigned char		skc_ipv6only:1;
179 	unsigned char		skc_net_refcnt:1;
180 	int			skc_bound_dev_if;
181 	union {
182 		struct hlist_node	skc_bind_node;
183 		struct hlist_node	skc_portaddr_node;
184 	};
185 	struct proto		*skc_prot;
186 	possible_net_t		skc_net;
187 
188 #if IS_ENABLED(CONFIG_IPV6)
189 	struct in6_addr		skc_v6_daddr;
190 	struct in6_addr		skc_v6_rcv_saddr;
191 #endif
192 
193 	atomic64_t		skc_cookie;
194 
195 	/* following fields are padding to force
196 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
197 	 * assuming IPV6 is enabled. We use this padding differently
198 	 * for different kind of 'sockets'
199 	 */
200 	union {
201 		unsigned long	skc_flags;
202 		struct sock	*skc_listener; /* request_sock */
203 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
204 	};
205 	/*
206 	 * fields between dontcopy_begin/dontcopy_end
207 	 * are not copied in sock_copy()
208 	 */
209 	/* private: */
210 	int			skc_dontcopy_begin[0];
211 	/* public: */
212 	union {
213 		struct hlist_node	skc_node;
214 		struct hlist_nulls_node skc_nulls_node;
215 	};
216 	int			skc_tx_queue_mapping;
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 /**
235   *	struct sock - network layer representation of sockets
236   *	@__sk_common: shared layout with inet_timewait_sock
237   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
238   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
239   *	@sk_lock:	synchronizer
240   *	@sk_kern_sock: True if sock is using kernel lock classes
241   *	@sk_rcvbuf: size of receive buffer in bytes
242   *	@sk_wq: sock wait queue and async head
243   *	@sk_rx_dst: receive input route used by early demux
244   *	@sk_dst_cache: destination cache
245   *	@sk_dst_pending_confirm: need to confirm neighbour
246   *	@sk_policy: flow policy
247   *	@sk_receive_queue: incoming packets
248   *	@sk_wmem_alloc: transmit queue bytes committed
249   *	@sk_tsq_flags: TCP Small Queues flags
250   *	@sk_write_queue: Packet sending queue
251   *	@sk_omem_alloc: "o" is "option" or "other"
252   *	@sk_wmem_queued: persistent queue size
253   *	@sk_forward_alloc: space allocated forward
254   *	@sk_napi_id: id of the last napi context to receive data for sk
255   *	@sk_ll_usec: usecs to busypoll when there is no data
256   *	@sk_allocation: allocation mode
257   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
258   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
259   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
260   *	@sk_sndbuf: size of send buffer in bytes
261   *	@__sk_flags_offset: empty field used to determine location of bitfield
262   *	@sk_padding: unused element for alignment
263   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
264   *	@sk_no_check_rx: allow zero checksum in RX packets
265   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
266   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
267   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
268   *	@sk_gso_max_size: Maximum GSO segment size to build
269   *	@sk_gso_max_segs: Maximum number of GSO segments
270   *	@sk_pacing_shift: scaling factor for TCP Small Queues
271   *	@sk_lingertime: %SO_LINGER l_linger setting
272   *	@sk_backlog: always used with the per-socket spinlock held
273   *	@sk_callback_lock: used with the callbacks in the end of this struct
274   *	@sk_error_queue: rarely used
275   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
276   *			  IPV6_ADDRFORM for instance)
277   *	@sk_err: last error
278   *	@sk_err_soft: errors that don't cause failure but are the cause of a
279   *		      persistent failure not just 'timed out'
280   *	@sk_drops: raw/udp drops counter
281   *	@sk_ack_backlog: current listen backlog
282   *	@sk_max_ack_backlog: listen backlog set in listen()
283   *	@sk_uid: user id of owner
284   *	@sk_priority: %SO_PRIORITY setting
285   *	@sk_type: socket type (%SOCK_STREAM, etc)
286   *	@sk_protocol: which protocol this socket belongs in this network family
287   *	@sk_peer_pid: &struct pid for this socket's peer
288   *	@sk_peer_cred: %SO_PEERCRED setting
289   *	@sk_rcvlowat: %SO_RCVLOWAT setting
290   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
291   *	@sk_sndtimeo: %SO_SNDTIMEO setting
292   *	@sk_txhash: computed flow hash for use on transmit
293   *	@sk_filter: socket filtering instructions
294   *	@sk_timer: sock cleanup timer
295   *	@sk_stamp: time stamp of last packet received
296   *	@sk_tsflags: SO_TIMESTAMPING socket options
297   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
298   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
299   *	@sk_socket: Identd and reporting IO signals
300   *	@sk_user_data: RPC layer private data
301   *	@sk_frag: cached page frag
302   *	@sk_peek_off: current peek_offset value
303   *	@sk_send_head: front of stuff to transmit
304   *	@sk_security: used by security modules
305   *	@sk_mark: generic packet mark
306   *	@sk_cgrp_data: cgroup data for this cgroup
307   *	@sk_memcg: this socket's memory cgroup association
308   *	@sk_write_pending: a write to stream socket waits to start
309   *	@sk_state_change: callback to indicate change in the state of the sock
310   *	@sk_data_ready: callback to indicate there is data to be processed
311   *	@sk_write_space: callback to indicate there is bf sending space available
312   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
313   *	@sk_backlog_rcv: callback to process the backlog
314   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
315   *	@sk_reuseport_cb: reuseport group container
316   *	@sk_rcu: used during RCU grace period
317   */
318 struct sock {
319 	/*
320 	 * Now struct inet_timewait_sock also uses sock_common, so please just
321 	 * don't add nothing before this first member (__sk_common) --acme
322 	 */
323 	struct sock_common	__sk_common;
324 #define sk_node			__sk_common.skc_node
325 #define sk_nulls_node		__sk_common.skc_nulls_node
326 #define sk_refcnt		__sk_common.skc_refcnt
327 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
328 
329 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
330 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
331 #define sk_hash			__sk_common.skc_hash
332 #define sk_portpair		__sk_common.skc_portpair
333 #define sk_num			__sk_common.skc_num
334 #define sk_dport		__sk_common.skc_dport
335 #define sk_addrpair		__sk_common.skc_addrpair
336 #define sk_daddr		__sk_common.skc_daddr
337 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
338 #define sk_family		__sk_common.skc_family
339 #define sk_state		__sk_common.skc_state
340 #define sk_reuse		__sk_common.skc_reuse
341 #define sk_reuseport		__sk_common.skc_reuseport
342 #define sk_ipv6only		__sk_common.skc_ipv6only
343 #define sk_net_refcnt		__sk_common.skc_net_refcnt
344 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
345 #define sk_bind_node		__sk_common.skc_bind_node
346 #define sk_prot			__sk_common.skc_prot
347 #define sk_net			__sk_common.skc_net
348 #define sk_v6_daddr		__sk_common.skc_v6_daddr
349 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
350 #define sk_cookie		__sk_common.skc_cookie
351 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
352 #define sk_flags		__sk_common.skc_flags
353 #define sk_rxhash		__sk_common.skc_rxhash
354 
355 	socket_lock_t		sk_lock;
356 	atomic_t		sk_drops;
357 	int			sk_rcvlowat;
358 	struct sk_buff_head	sk_error_queue;
359 	struct sk_buff_head	sk_receive_queue;
360 	/*
361 	 * The backlog queue is special, it is always used with
362 	 * the per-socket spinlock held and requires low latency
363 	 * access. Therefore we special case it's implementation.
364 	 * Note : rmem_alloc is in this structure to fill a hole
365 	 * on 64bit arches, not because its logically part of
366 	 * backlog.
367 	 */
368 	struct {
369 		atomic_t	rmem_alloc;
370 		int		len;
371 		struct sk_buff	*head;
372 		struct sk_buff	*tail;
373 	} sk_backlog;
374 #define sk_rmem_alloc sk_backlog.rmem_alloc
375 
376 	int			sk_forward_alloc;
377 #ifdef CONFIG_NET_RX_BUSY_POLL
378 	unsigned int		sk_ll_usec;
379 	/* ===== mostly read cache line ===== */
380 	unsigned int		sk_napi_id;
381 #endif
382 	int			sk_rcvbuf;
383 
384 	struct sk_filter __rcu	*sk_filter;
385 	union {
386 		struct socket_wq __rcu	*sk_wq;
387 		struct socket_wq	*sk_wq_raw;
388 	};
389 #ifdef CONFIG_XFRM
390 	struct xfrm_policy __rcu *sk_policy[2];
391 #endif
392 	struct dst_entry	*sk_rx_dst;
393 	struct dst_entry __rcu	*sk_dst_cache;
394 	atomic_t		sk_omem_alloc;
395 	int			sk_sndbuf;
396 
397 	/* ===== cache line for TX ===== */
398 	int			sk_wmem_queued;
399 	refcount_t		sk_wmem_alloc;
400 	unsigned long		sk_tsq_flags;
401 	union {
402 		struct sk_buff	*sk_send_head;
403 		struct rb_root	tcp_rtx_queue;
404 	};
405 	struct sk_buff_head	sk_write_queue;
406 	__s32			sk_peek_off;
407 	int			sk_write_pending;
408 	__u32			sk_dst_pending_confirm;
409 	u32			sk_pacing_status; /* see enum sk_pacing */
410 	long			sk_sndtimeo;
411 	struct timer_list	sk_timer;
412 	__u32			sk_priority;
413 	__u32			sk_mark;
414 	u32			sk_pacing_rate; /* bytes per second */
415 	u32			sk_max_pacing_rate;
416 	struct page_frag	sk_frag;
417 	netdev_features_t	sk_route_caps;
418 	netdev_features_t	sk_route_nocaps;
419 	int			sk_gso_type;
420 	unsigned int		sk_gso_max_size;
421 	gfp_t			sk_allocation;
422 	__u32			sk_txhash;
423 
424 	/*
425 	 * Because of non atomicity rules, all
426 	 * changes are protected by socket lock.
427 	 */
428 	unsigned int		__sk_flags_offset[0];
429 #ifdef __BIG_ENDIAN_BITFIELD
430 #define SK_FL_PROTO_SHIFT  16
431 #define SK_FL_PROTO_MASK   0x00ff0000
432 
433 #define SK_FL_TYPE_SHIFT   0
434 #define SK_FL_TYPE_MASK    0x0000ffff
435 #else
436 #define SK_FL_PROTO_SHIFT  8
437 #define SK_FL_PROTO_MASK   0x0000ff00
438 
439 #define SK_FL_TYPE_SHIFT   16
440 #define SK_FL_TYPE_MASK    0xffff0000
441 #endif
442 
443 	unsigned int		sk_padding : 1,
444 				sk_kern_sock : 1,
445 				sk_no_check_tx : 1,
446 				sk_no_check_rx : 1,
447 				sk_userlocks : 4,
448 				sk_protocol  : 8,
449 				sk_type      : 16;
450 #define SK_PROTOCOL_MAX U8_MAX
451 	u16			sk_gso_max_segs;
452 	u8			sk_pacing_shift;
453 	unsigned long	        sk_lingertime;
454 	struct proto		*sk_prot_creator;
455 	rwlock_t		sk_callback_lock;
456 	int			sk_err,
457 				sk_err_soft;
458 	u32			sk_ack_backlog;
459 	u32			sk_max_ack_backlog;
460 	kuid_t			sk_uid;
461 	struct pid		*sk_peer_pid;
462 	const struct cred	*sk_peer_cred;
463 	long			sk_rcvtimeo;
464 	ktime_t			sk_stamp;
465 	u16			sk_tsflags;
466 	u8			sk_shutdown;
467 	u32			sk_tskey;
468 	atomic_t		sk_zckey;
469 	struct socket		*sk_socket;
470 	void			*sk_user_data;
471 #ifdef CONFIG_SECURITY
472 	void			*sk_security;
473 #endif
474 	struct sock_cgroup_data	sk_cgrp_data;
475 	struct mem_cgroup	*sk_memcg;
476 	void			(*sk_state_change)(struct sock *sk);
477 	void			(*sk_data_ready)(struct sock *sk);
478 	void			(*sk_write_space)(struct sock *sk);
479 	void			(*sk_error_report)(struct sock *sk);
480 	int			(*sk_backlog_rcv)(struct sock *sk,
481 						  struct sk_buff *skb);
482 	void                    (*sk_destruct)(struct sock *sk);
483 	struct sock_reuseport __rcu	*sk_reuseport_cb;
484 	struct rcu_head		sk_rcu;
485 };
486 
487 enum sk_pacing {
488 	SK_PACING_NONE		= 0,
489 	SK_PACING_NEEDED	= 1,
490 	SK_PACING_FQ		= 2,
491 };
492 
493 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
494 
495 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
496 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
497 
498 /*
499  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
500  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
501  * on a socket means that the socket will reuse everybody else's port
502  * without looking at the other's sk_reuse value.
503  */
504 
505 #define SK_NO_REUSE	0
506 #define SK_CAN_REUSE	1
507 #define SK_FORCE_REUSE	2
508 
509 int sk_set_peek_off(struct sock *sk, int val);
510 
511 static inline int sk_peek_offset(struct sock *sk, int flags)
512 {
513 	if (unlikely(flags & MSG_PEEK)) {
514 		return READ_ONCE(sk->sk_peek_off);
515 	}
516 
517 	return 0;
518 }
519 
520 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
521 {
522 	s32 off = READ_ONCE(sk->sk_peek_off);
523 
524 	if (unlikely(off >= 0)) {
525 		off = max_t(s32, off - val, 0);
526 		WRITE_ONCE(sk->sk_peek_off, off);
527 	}
528 }
529 
530 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
531 {
532 	sk_peek_offset_bwd(sk, -val);
533 }
534 
535 /*
536  * Hashed lists helper routines
537  */
538 static inline struct sock *sk_entry(const struct hlist_node *node)
539 {
540 	return hlist_entry(node, struct sock, sk_node);
541 }
542 
543 static inline struct sock *__sk_head(const struct hlist_head *head)
544 {
545 	return hlist_entry(head->first, struct sock, sk_node);
546 }
547 
548 static inline struct sock *sk_head(const struct hlist_head *head)
549 {
550 	return hlist_empty(head) ? NULL : __sk_head(head);
551 }
552 
553 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
554 {
555 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
556 }
557 
558 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
559 {
560 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
561 }
562 
563 static inline struct sock *sk_next(const struct sock *sk)
564 {
565 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
566 }
567 
568 static inline struct sock *sk_nulls_next(const struct sock *sk)
569 {
570 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
571 		hlist_nulls_entry(sk->sk_nulls_node.next,
572 				  struct sock, sk_nulls_node) :
573 		NULL;
574 }
575 
576 static inline bool sk_unhashed(const struct sock *sk)
577 {
578 	return hlist_unhashed(&sk->sk_node);
579 }
580 
581 static inline bool sk_hashed(const struct sock *sk)
582 {
583 	return !sk_unhashed(sk);
584 }
585 
586 static inline void sk_node_init(struct hlist_node *node)
587 {
588 	node->pprev = NULL;
589 }
590 
591 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
592 {
593 	node->pprev = NULL;
594 }
595 
596 static inline void __sk_del_node(struct sock *sk)
597 {
598 	__hlist_del(&sk->sk_node);
599 }
600 
601 /* NB: equivalent to hlist_del_init_rcu */
602 static inline bool __sk_del_node_init(struct sock *sk)
603 {
604 	if (sk_hashed(sk)) {
605 		__sk_del_node(sk);
606 		sk_node_init(&sk->sk_node);
607 		return true;
608 	}
609 	return false;
610 }
611 
612 /* Grab socket reference count. This operation is valid only
613    when sk is ALREADY grabbed f.e. it is found in hash table
614    or a list and the lookup is made under lock preventing hash table
615    modifications.
616  */
617 
618 static __always_inline void sock_hold(struct sock *sk)
619 {
620 	refcount_inc(&sk->sk_refcnt);
621 }
622 
623 /* Ungrab socket in the context, which assumes that socket refcnt
624    cannot hit zero, f.e. it is true in context of any socketcall.
625  */
626 static __always_inline void __sock_put(struct sock *sk)
627 {
628 	refcount_dec(&sk->sk_refcnt);
629 }
630 
631 static inline bool sk_del_node_init(struct sock *sk)
632 {
633 	bool rc = __sk_del_node_init(sk);
634 
635 	if (rc) {
636 		/* paranoid for a while -acme */
637 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
638 		__sock_put(sk);
639 	}
640 	return rc;
641 }
642 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
643 
644 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
645 {
646 	if (sk_hashed(sk)) {
647 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
648 		return true;
649 	}
650 	return false;
651 }
652 
653 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
654 {
655 	bool rc = __sk_nulls_del_node_init_rcu(sk);
656 
657 	if (rc) {
658 		/* paranoid for a while -acme */
659 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
660 		__sock_put(sk);
661 	}
662 	return rc;
663 }
664 
665 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
666 {
667 	hlist_add_head(&sk->sk_node, list);
668 }
669 
670 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
671 {
672 	sock_hold(sk);
673 	__sk_add_node(sk, list);
674 }
675 
676 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
677 {
678 	sock_hold(sk);
679 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
680 	    sk->sk_family == AF_INET6)
681 		hlist_add_tail_rcu(&sk->sk_node, list);
682 	else
683 		hlist_add_head_rcu(&sk->sk_node, list);
684 }
685 
686 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
687 {
688 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
689 	    sk->sk_family == AF_INET6)
690 		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
691 	else
692 		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
693 }
694 
695 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
696 {
697 	sock_hold(sk);
698 	__sk_nulls_add_node_rcu(sk, list);
699 }
700 
701 static inline void __sk_del_bind_node(struct sock *sk)
702 {
703 	__hlist_del(&sk->sk_bind_node);
704 }
705 
706 static inline void sk_add_bind_node(struct sock *sk,
707 					struct hlist_head *list)
708 {
709 	hlist_add_head(&sk->sk_bind_node, list);
710 }
711 
712 #define sk_for_each(__sk, list) \
713 	hlist_for_each_entry(__sk, list, sk_node)
714 #define sk_for_each_rcu(__sk, list) \
715 	hlist_for_each_entry_rcu(__sk, list, sk_node)
716 #define sk_nulls_for_each(__sk, node, list) \
717 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
718 #define sk_nulls_for_each_rcu(__sk, node, list) \
719 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
720 #define sk_for_each_from(__sk) \
721 	hlist_for_each_entry_from(__sk, sk_node)
722 #define sk_nulls_for_each_from(__sk, node) \
723 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
724 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
725 #define sk_for_each_safe(__sk, tmp, list) \
726 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
727 #define sk_for_each_bound(__sk, list) \
728 	hlist_for_each_entry(__sk, list, sk_bind_node)
729 
730 /**
731  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
732  * @tpos:	the type * to use as a loop cursor.
733  * @pos:	the &struct hlist_node to use as a loop cursor.
734  * @head:	the head for your list.
735  * @offset:	offset of hlist_node within the struct.
736  *
737  */
738 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
739 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
740 	     pos != NULL &&						       \
741 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
742 	     pos = rcu_dereference(hlist_next_rcu(pos)))
743 
744 static inline struct user_namespace *sk_user_ns(struct sock *sk)
745 {
746 	/* Careful only use this in a context where these parameters
747 	 * can not change and must all be valid, such as recvmsg from
748 	 * userspace.
749 	 */
750 	return sk->sk_socket->file->f_cred->user_ns;
751 }
752 
753 /* Sock flags */
754 enum sock_flags {
755 	SOCK_DEAD,
756 	SOCK_DONE,
757 	SOCK_URGINLINE,
758 	SOCK_KEEPOPEN,
759 	SOCK_LINGER,
760 	SOCK_DESTROY,
761 	SOCK_BROADCAST,
762 	SOCK_TIMESTAMP,
763 	SOCK_ZAPPED,
764 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
765 	SOCK_DBG, /* %SO_DEBUG setting */
766 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
767 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
768 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
769 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
770 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
771 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
772 	SOCK_FASYNC, /* fasync() active */
773 	SOCK_RXQ_OVFL,
774 	SOCK_ZEROCOPY, /* buffers from userspace */
775 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
776 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
777 		     * Will use last 4 bytes of packet sent from
778 		     * user-space instead.
779 		     */
780 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
781 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
782 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
783 };
784 
785 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
786 
787 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
788 {
789 	nsk->sk_flags = osk->sk_flags;
790 }
791 
792 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
793 {
794 	__set_bit(flag, &sk->sk_flags);
795 }
796 
797 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
798 {
799 	__clear_bit(flag, &sk->sk_flags);
800 }
801 
802 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
803 {
804 	return test_bit(flag, &sk->sk_flags);
805 }
806 
807 #ifdef CONFIG_NET
808 extern struct static_key memalloc_socks;
809 static inline int sk_memalloc_socks(void)
810 {
811 	return static_key_false(&memalloc_socks);
812 }
813 #else
814 
815 static inline int sk_memalloc_socks(void)
816 {
817 	return 0;
818 }
819 
820 #endif
821 
822 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
823 {
824 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
825 }
826 
827 static inline void sk_acceptq_removed(struct sock *sk)
828 {
829 	sk->sk_ack_backlog--;
830 }
831 
832 static inline void sk_acceptq_added(struct sock *sk)
833 {
834 	sk->sk_ack_backlog++;
835 }
836 
837 static inline bool sk_acceptq_is_full(const struct sock *sk)
838 {
839 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
840 }
841 
842 /*
843  * Compute minimal free write space needed to queue new packets.
844  */
845 static inline int sk_stream_min_wspace(const struct sock *sk)
846 {
847 	return sk->sk_wmem_queued >> 1;
848 }
849 
850 static inline int sk_stream_wspace(const struct sock *sk)
851 {
852 	return sk->sk_sndbuf - sk->sk_wmem_queued;
853 }
854 
855 void sk_stream_write_space(struct sock *sk);
856 
857 /* OOB backlog add */
858 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
859 {
860 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
861 	skb_dst_force(skb);
862 
863 	if (!sk->sk_backlog.tail)
864 		sk->sk_backlog.head = skb;
865 	else
866 		sk->sk_backlog.tail->next = skb;
867 
868 	sk->sk_backlog.tail = skb;
869 	skb->next = NULL;
870 }
871 
872 /*
873  * Take into account size of receive queue and backlog queue
874  * Do not take into account this skb truesize,
875  * to allow even a single big packet to come.
876  */
877 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
878 {
879 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
880 
881 	return qsize > limit;
882 }
883 
884 /* The per-socket spinlock must be held here. */
885 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
886 					      unsigned int limit)
887 {
888 	if (sk_rcvqueues_full(sk, limit))
889 		return -ENOBUFS;
890 
891 	/*
892 	 * If the skb was allocated from pfmemalloc reserves, only
893 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
894 	 * helping free memory
895 	 */
896 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
897 		return -ENOMEM;
898 
899 	__sk_add_backlog(sk, skb);
900 	sk->sk_backlog.len += skb->truesize;
901 	return 0;
902 }
903 
904 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
905 
906 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
907 {
908 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
909 		return __sk_backlog_rcv(sk, skb);
910 
911 	return sk->sk_backlog_rcv(sk, skb);
912 }
913 
914 static inline void sk_incoming_cpu_update(struct sock *sk)
915 {
916 	int cpu = raw_smp_processor_id();
917 
918 	if (unlikely(sk->sk_incoming_cpu != cpu))
919 		sk->sk_incoming_cpu = cpu;
920 }
921 
922 static inline void sock_rps_record_flow_hash(__u32 hash)
923 {
924 #ifdef CONFIG_RPS
925 	struct rps_sock_flow_table *sock_flow_table;
926 
927 	rcu_read_lock();
928 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
929 	rps_record_sock_flow(sock_flow_table, hash);
930 	rcu_read_unlock();
931 #endif
932 }
933 
934 static inline void sock_rps_record_flow(const struct sock *sk)
935 {
936 #ifdef CONFIG_RPS
937 	if (static_key_false(&rfs_needed)) {
938 		/* Reading sk->sk_rxhash might incur an expensive cache line
939 		 * miss.
940 		 *
941 		 * TCP_ESTABLISHED does cover almost all states where RFS
942 		 * might be useful, and is cheaper [1] than testing :
943 		 *	IPv4: inet_sk(sk)->inet_daddr
944 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
945 		 * OR	an additional socket flag
946 		 * [1] : sk_state and sk_prot are in the same cache line.
947 		 */
948 		if (sk->sk_state == TCP_ESTABLISHED)
949 			sock_rps_record_flow_hash(sk->sk_rxhash);
950 	}
951 #endif
952 }
953 
954 static inline void sock_rps_save_rxhash(struct sock *sk,
955 					const struct sk_buff *skb)
956 {
957 #ifdef CONFIG_RPS
958 	if (unlikely(sk->sk_rxhash != skb->hash))
959 		sk->sk_rxhash = skb->hash;
960 #endif
961 }
962 
963 static inline void sock_rps_reset_rxhash(struct sock *sk)
964 {
965 #ifdef CONFIG_RPS
966 	sk->sk_rxhash = 0;
967 #endif
968 }
969 
970 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
971 	({	int __rc;						\
972 		release_sock(__sk);					\
973 		__rc = __condition;					\
974 		if (!__rc) {						\
975 			*(__timeo) = wait_woken(__wait,			\
976 						TASK_INTERRUPTIBLE,	\
977 						*(__timeo));		\
978 		}							\
979 		sched_annotate_sleep();					\
980 		lock_sock(__sk);					\
981 		__rc = __condition;					\
982 		__rc;							\
983 	})
984 
985 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
986 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
987 void sk_stream_wait_close(struct sock *sk, long timeo_p);
988 int sk_stream_error(struct sock *sk, int flags, int err);
989 void sk_stream_kill_queues(struct sock *sk);
990 void sk_set_memalloc(struct sock *sk);
991 void sk_clear_memalloc(struct sock *sk);
992 
993 void __sk_flush_backlog(struct sock *sk);
994 
995 static inline bool sk_flush_backlog(struct sock *sk)
996 {
997 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
998 		__sk_flush_backlog(sk);
999 		return true;
1000 	}
1001 	return false;
1002 }
1003 
1004 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1005 
1006 struct request_sock_ops;
1007 struct timewait_sock_ops;
1008 struct inet_hashinfo;
1009 struct raw_hashinfo;
1010 struct smc_hashinfo;
1011 struct module;
1012 
1013 /*
1014  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1015  * un-modified. Special care is taken when initializing object to zero.
1016  */
1017 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1018 {
1019 	if (offsetof(struct sock, sk_node.next) != 0)
1020 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1021 	memset(&sk->sk_node.pprev, 0,
1022 	       size - offsetof(struct sock, sk_node.pprev));
1023 }
1024 
1025 /* Networking protocol blocks we attach to sockets.
1026  * socket layer -> transport layer interface
1027  */
1028 struct proto {
1029 	void			(*close)(struct sock *sk,
1030 					long timeout);
1031 	int			(*connect)(struct sock *sk,
1032 					struct sockaddr *uaddr,
1033 					int addr_len);
1034 	int			(*disconnect)(struct sock *sk, int flags);
1035 
1036 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1037 					  bool kern);
1038 
1039 	int			(*ioctl)(struct sock *sk, int cmd,
1040 					 unsigned long arg);
1041 	int			(*init)(struct sock *sk);
1042 	void			(*destroy)(struct sock *sk);
1043 	void			(*shutdown)(struct sock *sk, int how);
1044 	int			(*setsockopt)(struct sock *sk, int level,
1045 					int optname, char __user *optval,
1046 					unsigned int optlen);
1047 	int			(*getsockopt)(struct sock *sk, int level,
1048 					int optname, char __user *optval,
1049 					int __user *option);
1050 	void			(*keepalive)(struct sock *sk, int valbool);
1051 #ifdef CONFIG_COMPAT
1052 	int			(*compat_setsockopt)(struct sock *sk,
1053 					int level,
1054 					int optname, char __user *optval,
1055 					unsigned int optlen);
1056 	int			(*compat_getsockopt)(struct sock *sk,
1057 					int level,
1058 					int optname, char __user *optval,
1059 					int __user *option);
1060 	int			(*compat_ioctl)(struct sock *sk,
1061 					unsigned int cmd, unsigned long arg);
1062 #endif
1063 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1064 					   size_t len);
1065 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1066 					   size_t len, int noblock, int flags,
1067 					   int *addr_len);
1068 	int			(*sendpage)(struct sock *sk, struct page *page,
1069 					int offset, size_t size, int flags);
1070 	int			(*bind)(struct sock *sk,
1071 					struct sockaddr *uaddr, int addr_len);
1072 
1073 	int			(*backlog_rcv) (struct sock *sk,
1074 						struct sk_buff *skb);
1075 
1076 	void		(*release_cb)(struct sock *sk);
1077 
1078 	/* Keeping track of sk's, looking them up, and port selection methods. */
1079 	int			(*hash)(struct sock *sk);
1080 	void			(*unhash)(struct sock *sk);
1081 	void			(*rehash)(struct sock *sk);
1082 	int			(*get_port)(struct sock *sk, unsigned short snum);
1083 
1084 	/* Keeping track of sockets in use */
1085 #ifdef CONFIG_PROC_FS
1086 	unsigned int		inuse_idx;
1087 #endif
1088 
1089 	bool			(*stream_memory_free)(const struct sock *sk);
1090 	/* Memory pressure */
1091 	void			(*enter_memory_pressure)(struct sock *sk);
1092 	void			(*leave_memory_pressure)(struct sock *sk);
1093 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1094 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1095 	/*
1096 	 * Pressure flag: try to collapse.
1097 	 * Technical note: it is used by multiple contexts non atomically.
1098 	 * All the __sk_mem_schedule() is of this nature: accounting
1099 	 * is strict, actions are advisory and have some latency.
1100 	 */
1101 	unsigned long		*memory_pressure;
1102 	long			*sysctl_mem;
1103 
1104 	int			*sysctl_wmem;
1105 	int			*sysctl_rmem;
1106 	u32			sysctl_wmem_offset;
1107 	u32			sysctl_rmem_offset;
1108 
1109 	int			max_header;
1110 	bool			no_autobind;
1111 
1112 	struct kmem_cache	*slab;
1113 	unsigned int		obj_size;
1114 	slab_flags_t		slab_flags;
1115 
1116 	struct percpu_counter	*orphan_count;
1117 
1118 	struct request_sock_ops	*rsk_prot;
1119 	struct timewait_sock_ops *twsk_prot;
1120 
1121 	union {
1122 		struct inet_hashinfo	*hashinfo;
1123 		struct udp_table	*udp_table;
1124 		struct raw_hashinfo	*raw_hash;
1125 		struct smc_hashinfo	*smc_hash;
1126 	} h;
1127 
1128 	struct module		*owner;
1129 
1130 	char			name[32];
1131 
1132 	struct list_head	node;
1133 #ifdef SOCK_REFCNT_DEBUG
1134 	atomic_t		socks;
1135 #endif
1136 	int			(*diag_destroy)(struct sock *sk, int err);
1137 } __randomize_layout;
1138 
1139 int proto_register(struct proto *prot, int alloc_slab);
1140 void proto_unregister(struct proto *prot);
1141 
1142 #ifdef SOCK_REFCNT_DEBUG
1143 static inline void sk_refcnt_debug_inc(struct sock *sk)
1144 {
1145 	atomic_inc(&sk->sk_prot->socks);
1146 }
1147 
1148 static inline void sk_refcnt_debug_dec(struct sock *sk)
1149 {
1150 	atomic_dec(&sk->sk_prot->socks);
1151 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1152 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1153 }
1154 
1155 static inline void sk_refcnt_debug_release(const struct sock *sk)
1156 {
1157 	if (refcount_read(&sk->sk_refcnt) != 1)
1158 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1159 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1160 }
1161 #else /* SOCK_REFCNT_DEBUG */
1162 #define sk_refcnt_debug_inc(sk) do { } while (0)
1163 #define sk_refcnt_debug_dec(sk) do { } while (0)
1164 #define sk_refcnt_debug_release(sk) do { } while (0)
1165 #endif /* SOCK_REFCNT_DEBUG */
1166 
1167 static inline bool sk_stream_memory_free(const struct sock *sk)
1168 {
1169 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1170 		return false;
1171 
1172 	return sk->sk_prot->stream_memory_free ?
1173 		sk->sk_prot->stream_memory_free(sk) : true;
1174 }
1175 
1176 static inline bool sk_stream_is_writeable(const struct sock *sk)
1177 {
1178 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1179 	       sk_stream_memory_free(sk);
1180 }
1181 
1182 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1183 					    struct cgroup *ancestor)
1184 {
1185 #ifdef CONFIG_SOCK_CGROUP_DATA
1186 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1187 				    ancestor);
1188 #else
1189 	return -ENOTSUPP;
1190 #endif
1191 }
1192 
1193 static inline bool sk_has_memory_pressure(const struct sock *sk)
1194 {
1195 	return sk->sk_prot->memory_pressure != NULL;
1196 }
1197 
1198 static inline bool sk_under_memory_pressure(const struct sock *sk)
1199 {
1200 	if (!sk->sk_prot->memory_pressure)
1201 		return false;
1202 
1203 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1204 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1205 		return true;
1206 
1207 	return !!*sk->sk_prot->memory_pressure;
1208 }
1209 
1210 static inline long
1211 sk_memory_allocated(const struct sock *sk)
1212 {
1213 	return atomic_long_read(sk->sk_prot->memory_allocated);
1214 }
1215 
1216 static inline long
1217 sk_memory_allocated_add(struct sock *sk, int amt)
1218 {
1219 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1220 }
1221 
1222 static inline void
1223 sk_memory_allocated_sub(struct sock *sk, int amt)
1224 {
1225 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1226 }
1227 
1228 static inline void sk_sockets_allocated_dec(struct sock *sk)
1229 {
1230 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1231 }
1232 
1233 static inline void sk_sockets_allocated_inc(struct sock *sk)
1234 {
1235 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1236 }
1237 
1238 static inline int
1239 sk_sockets_allocated_read_positive(struct sock *sk)
1240 {
1241 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1242 }
1243 
1244 static inline int
1245 proto_sockets_allocated_sum_positive(struct proto *prot)
1246 {
1247 	return percpu_counter_sum_positive(prot->sockets_allocated);
1248 }
1249 
1250 static inline long
1251 proto_memory_allocated(struct proto *prot)
1252 {
1253 	return atomic_long_read(prot->memory_allocated);
1254 }
1255 
1256 static inline bool
1257 proto_memory_pressure(struct proto *prot)
1258 {
1259 	if (!prot->memory_pressure)
1260 		return false;
1261 	return !!*prot->memory_pressure;
1262 }
1263 
1264 
1265 #ifdef CONFIG_PROC_FS
1266 /* Called with local bh disabled */
1267 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1268 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1269 #else
1270 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1271 		int inc)
1272 {
1273 }
1274 #endif
1275 
1276 
1277 /* With per-bucket locks this operation is not-atomic, so that
1278  * this version is not worse.
1279  */
1280 static inline int __sk_prot_rehash(struct sock *sk)
1281 {
1282 	sk->sk_prot->unhash(sk);
1283 	return sk->sk_prot->hash(sk);
1284 }
1285 
1286 /* About 10 seconds */
1287 #define SOCK_DESTROY_TIME (10*HZ)
1288 
1289 /* Sockets 0-1023 can't be bound to unless you are superuser */
1290 #define PROT_SOCK	1024
1291 
1292 #define SHUTDOWN_MASK	3
1293 #define RCV_SHUTDOWN	1
1294 #define SEND_SHUTDOWN	2
1295 
1296 #define SOCK_SNDBUF_LOCK	1
1297 #define SOCK_RCVBUF_LOCK	2
1298 #define SOCK_BINDADDR_LOCK	4
1299 #define SOCK_BINDPORT_LOCK	8
1300 
1301 struct socket_alloc {
1302 	struct socket socket;
1303 	struct inode vfs_inode;
1304 };
1305 
1306 static inline struct socket *SOCKET_I(struct inode *inode)
1307 {
1308 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1309 }
1310 
1311 static inline struct inode *SOCK_INODE(struct socket *socket)
1312 {
1313 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1314 }
1315 
1316 /*
1317  * Functions for memory accounting
1318  */
1319 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1320 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1321 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1322 void __sk_mem_reclaim(struct sock *sk, int amount);
1323 
1324 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1325  * do not necessarily have 16x time more memory than 4KB ones.
1326  */
1327 #define SK_MEM_QUANTUM 4096
1328 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1329 #define SK_MEM_SEND	0
1330 #define SK_MEM_RECV	1
1331 
1332 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1333 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1334 {
1335 	long val = sk->sk_prot->sysctl_mem[index];
1336 
1337 #if PAGE_SIZE > SK_MEM_QUANTUM
1338 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1339 #elif PAGE_SIZE < SK_MEM_QUANTUM
1340 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1341 #endif
1342 	return val;
1343 }
1344 
1345 static inline int sk_mem_pages(int amt)
1346 {
1347 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1348 }
1349 
1350 static inline bool sk_has_account(struct sock *sk)
1351 {
1352 	/* return true if protocol supports memory accounting */
1353 	return !!sk->sk_prot->memory_allocated;
1354 }
1355 
1356 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1357 {
1358 	if (!sk_has_account(sk))
1359 		return true;
1360 	return size <= sk->sk_forward_alloc ||
1361 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1362 }
1363 
1364 static inline bool
1365 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1366 {
1367 	if (!sk_has_account(sk))
1368 		return true;
1369 	return size<= sk->sk_forward_alloc ||
1370 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1371 		skb_pfmemalloc(skb);
1372 }
1373 
1374 static inline void sk_mem_reclaim(struct sock *sk)
1375 {
1376 	if (!sk_has_account(sk))
1377 		return;
1378 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1379 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1380 }
1381 
1382 static inline void sk_mem_reclaim_partial(struct sock *sk)
1383 {
1384 	if (!sk_has_account(sk))
1385 		return;
1386 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1387 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1388 }
1389 
1390 static inline void sk_mem_charge(struct sock *sk, int size)
1391 {
1392 	if (!sk_has_account(sk))
1393 		return;
1394 	sk->sk_forward_alloc -= size;
1395 }
1396 
1397 static inline void sk_mem_uncharge(struct sock *sk, int size)
1398 {
1399 	if (!sk_has_account(sk))
1400 		return;
1401 	sk->sk_forward_alloc += size;
1402 
1403 	/* Avoid a possible overflow.
1404 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1405 	 * is not called and more than 2 GBytes are released at once.
1406 	 *
1407 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1408 	 * no need to hold that much forward allocation anyway.
1409 	 */
1410 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1411 		__sk_mem_reclaim(sk, 1 << 20);
1412 }
1413 
1414 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1415 {
1416 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1417 	sk->sk_wmem_queued -= skb->truesize;
1418 	sk_mem_uncharge(sk, skb->truesize);
1419 	__kfree_skb(skb);
1420 }
1421 
1422 static inline void sock_release_ownership(struct sock *sk)
1423 {
1424 	if (sk->sk_lock.owned) {
1425 		sk->sk_lock.owned = 0;
1426 
1427 		/* The sk_lock has mutex_unlock() semantics: */
1428 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1429 	}
1430 }
1431 
1432 /*
1433  * Macro so as to not evaluate some arguments when
1434  * lockdep is not enabled.
1435  *
1436  * Mark both the sk_lock and the sk_lock.slock as a
1437  * per-address-family lock class.
1438  */
1439 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1440 do {									\
1441 	sk->sk_lock.owned = 0;						\
1442 	init_waitqueue_head(&sk->sk_lock.wq);				\
1443 	spin_lock_init(&(sk)->sk_lock.slock);				\
1444 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1445 			sizeof((sk)->sk_lock));				\
1446 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1447 				(skey), (sname));				\
1448 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1449 } while (0)
1450 
1451 #ifdef CONFIG_LOCKDEP
1452 static inline bool lockdep_sock_is_held(const struct sock *csk)
1453 {
1454 	struct sock *sk = (struct sock *)csk;
1455 
1456 	return lockdep_is_held(&sk->sk_lock) ||
1457 	       lockdep_is_held(&sk->sk_lock.slock);
1458 }
1459 #endif
1460 
1461 void lock_sock_nested(struct sock *sk, int subclass);
1462 
1463 static inline void lock_sock(struct sock *sk)
1464 {
1465 	lock_sock_nested(sk, 0);
1466 }
1467 
1468 void release_sock(struct sock *sk);
1469 
1470 /* BH context may only use the following locking interface. */
1471 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1472 #define bh_lock_sock_nested(__sk) \
1473 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1474 				SINGLE_DEPTH_NESTING)
1475 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1476 
1477 bool lock_sock_fast(struct sock *sk);
1478 /**
1479  * unlock_sock_fast - complement of lock_sock_fast
1480  * @sk: socket
1481  * @slow: slow mode
1482  *
1483  * fast unlock socket for user context.
1484  * If slow mode is on, we call regular release_sock()
1485  */
1486 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1487 {
1488 	if (slow)
1489 		release_sock(sk);
1490 	else
1491 		spin_unlock_bh(&sk->sk_lock.slock);
1492 }
1493 
1494 /* Used by processes to "lock" a socket state, so that
1495  * interrupts and bottom half handlers won't change it
1496  * from under us. It essentially blocks any incoming
1497  * packets, so that we won't get any new data or any
1498  * packets that change the state of the socket.
1499  *
1500  * While locked, BH processing will add new packets to
1501  * the backlog queue.  This queue is processed by the
1502  * owner of the socket lock right before it is released.
1503  *
1504  * Since ~2.3.5 it is also exclusive sleep lock serializing
1505  * accesses from user process context.
1506  */
1507 
1508 static inline void sock_owned_by_me(const struct sock *sk)
1509 {
1510 #ifdef CONFIG_LOCKDEP
1511 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1512 #endif
1513 }
1514 
1515 static inline bool sock_owned_by_user(const struct sock *sk)
1516 {
1517 	sock_owned_by_me(sk);
1518 	return sk->sk_lock.owned;
1519 }
1520 
1521 /* no reclassification while locks are held */
1522 static inline bool sock_allow_reclassification(const struct sock *csk)
1523 {
1524 	struct sock *sk = (struct sock *)csk;
1525 
1526 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1527 }
1528 
1529 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1530 		      struct proto *prot, int kern);
1531 void sk_free(struct sock *sk);
1532 void sk_destruct(struct sock *sk);
1533 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1534 void sk_free_unlock_clone(struct sock *sk);
1535 
1536 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1537 			     gfp_t priority);
1538 void __sock_wfree(struct sk_buff *skb);
1539 void sock_wfree(struct sk_buff *skb);
1540 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1541 			     gfp_t priority);
1542 void skb_orphan_partial(struct sk_buff *skb);
1543 void sock_rfree(struct sk_buff *skb);
1544 void sock_efree(struct sk_buff *skb);
1545 #ifdef CONFIG_INET
1546 void sock_edemux(struct sk_buff *skb);
1547 #else
1548 #define sock_edemux sock_efree
1549 #endif
1550 
1551 int sock_setsockopt(struct socket *sock, int level, int op,
1552 		    char __user *optval, unsigned int optlen);
1553 
1554 int sock_getsockopt(struct socket *sock, int level, int op,
1555 		    char __user *optval, int __user *optlen);
1556 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1557 				    int noblock, int *errcode);
1558 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1559 				     unsigned long data_len, int noblock,
1560 				     int *errcode, int max_page_order);
1561 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1562 void sock_kfree_s(struct sock *sk, void *mem, int size);
1563 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1564 void sk_send_sigurg(struct sock *sk);
1565 
1566 struct sockcm_cookie {
1567 	u32 mark;
1568 	u16 tsflags;
1569 };
1570 
1571 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1572 		     struct sockcm_cookie *sockc);
1573 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1574 		   struct sockcm_cookie *sockc);
1575 
1576 /*
1577  * Functions to fill in entries in struct proto_ops when a protocol
1578  * does not implement a particular function.
1579  */
1580 int sock_no_bind(struct socket *, struct sockaddr *, int);
1581 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1582 int sock_no_socketpair(struct socket *, struct socket *);
1583 int sock_no_accept(struct socket *, struct socket *, int, bool);
1584 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1585 unsigned int sock_no_poll(struct file *, struct socket *,
1586 			  struct poll_table_struct *);
1587 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1588 int sock_no_listen(struct socket *, int);
1589 int sock_no_shutdown(struct socket *, int);
1590 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1591 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1592 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1593 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1594 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1595 int sock_no_mmap(struct file *file, struct socket *sock,
1596 		 struct vm_area_struct *vma);
1597 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1598 			 size_t size, int flags);
1599 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1600 				int offset, size_t size, int flags);
1601 
1602 /*
1603  * Functions to fill in entries in struct proto_ops when a protocol
1604  * uses the inet style.
1605  */
1606 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1607 				  char __user *optval, int __user *optlen);
1608 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1609 			int flags);
1610 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1611 				  char __user *optval, unsigned int optlen);
1612 int compat_sock_common_getsockopt(struct socket *sock, int level,
1613 		int optname, char __user *optval, int __user *optlen);
1614 int compat_sock_common_setsockopt(struct socket *sock, int level,
1615 		int optname, char __user *optval, unsigned int optlen);
1616 
1617 void sk_common_release(struct sock *sk);
1618 
1619 /*
1620  *	Default socket callbacks and setup code
1621  */
1622 
1623 /* Initialise core socket variables */
1624 void sock_init_data(struct socket *sock, struct sock *sk);
1625 
1626 /*
1627  * Socket reference counting postulates.
1628  *
1629  * * Each user of socket SHOULD hold a reference count.
1630  * * Each access point to socket (an hash table bucket, reference from a list,
1631  *   running timer, skb in flight MUST hold a reference count.
1632  * * When reference count hits 0, it means it will never increase back.
1633  * * When reference count hits 0, it means that no references from
1634  *   outside exist to this socket and current process on current CPU
1635  *   is last user and may/should destroy this socket.
1636  * * sk_free is called from any context: process, BH, IRQ. When
1637  *   it is called, socket has no references from outside -> sk_free
1638  *   may release descendant resources allocated by the socket, but
1639  *   to the time when it is called, socket is NOT referenced by any
1640  *   hash tables, lists etc.
1641  * * Packets, delivered from outside (from network or from another process)
1642  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1643  *   when they sit in queue. Otherwise, packets will leak to hole, when
1644  *   socket is looked up by one cpu and unhasing is made by another CPU.
1645  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1646  *   (leak to backlog). Packet socket does all the processing inside
1647  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1648  *   use separate SMP lock, so that they are prone too.
1649  */
1650 
1651 /* Ungrab socket and destroy it, if it was the last reference. */
1652 static inline void sock_put(struct sock *sk)
1653 {
1654 	if (refcount_dec_and_test(&sk->sk_refcnt))
1655 		sk_free(sk);
1656 }
1657 /* Generic version of sock_put(), dealing with all sockets
1658  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1659  */
1660 void sock_gen_put(struct sock *sk);
1661 
1662 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1663 		     unsigned int trim_cap, bool refcounted);
1664 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1665 				 const int nested)
1666 {
1667 	return __sk_receive_skb(sk, skb, nested, 1, true);
1668 }
1669 
1670 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1671 {
1672 	sk->sk_tx_queue_mapping = tx_queue;
1673 }
1674 
1675 static inline void sk_tx_queue_clear(struct sock *sk)
1676 {
1677 	sk->sk_tx_queue_mapping = -1;
1678 }
1679 
1680 static inline int sk_tx_queue_get(const struct sock *sk)
1681 {
1682 	return sk ? sk->sk_tx_queue_mapping : -1;
1683 }
1684 
1685 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1686 {
1687 	sk_tx_queue_clear(sk);
1688 	sk->sk_socket = sock;
1689 }
1690 
1691 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1692 {
1693 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1694 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1695 }
1696 /* Detach socket from process context.
1697  * Announce socket dead, detach it from wait queue and inode.
1698  * Note that parent inode held reference count on this struct sock,
1699  * we do not release it in this function, because protocol
1700  * probably wants some additional cleanups or even continuing
1701  * to work with this socket (TCP).
1702  */
1703 static inline void sock_orphan(struct sock *sk)
1704 {
1705 	write_lock_bh(&sk->sk_callback_lock);
1706 	sock_set_flag(sk, SOCK_DEAD);
1707 	sk_set_socket(sk, NULL);
1708 	sk->sk_wq  = NULL;
1709 	write_unlock_bh(&sk->sk_callback_lock);
1710 }
1711 
1712 static inline void sock_graft(struct sock *sk, struct socket *parent)
1713 {
1714 	WARN_ON(parent->sk);
1715 	write_lock_bh(&sk->sk_callback_lock);
1716 	sk->sk_wq = parent->wq;
1717 	parent->sk = sk;
1718 	sk_set_socket(sk, parent);
1719 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1720 	security_sock_graft(sk, parent);
1721 	write_unlock_bh(&sk->sk_callback_lock);
1722 }
1723 
1724 kuid_t sock_i_uid(struct sock *sk);
1725 unsigned long sock_i_ino(struct sock *sk);
1726 
1727 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1728 {
1729 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1730 }
1731 
1732 static inline u32 net_tx_rndhash(void)
1733 {
1734 	u32 v = prandom_u32();
1735 
1736 	return v ?: 1;
1737 }
1738 
1739 static inline void sk_set_txhash(struct sock *sk)
1740 {
1741 	sk->sk_txhash = net_tx_rndhash();
1742 }
1743 
1744 static inline void sk_rethink_txhash(struct sock *sk)
1745 {
1746 	if (sk->sk_txhash)
1747 		sk_set_txhash(sk);
1748 }
1749 
1750 static inline struct dst_entry *
1751 __sk_dst_get(struct sock *sk)
1752 {
1753 	return rcu_dereference_check(sk->sk_dst_cache,
1754 				     lockdep_sock_is_held(sk));
1755 }
1756 
1757 static inline struct dst_entry *
1758 sk_dst_get(struct sock *sk)
1759 {
1760 	struct dst_entry *dst;
1761 
1762 	rcu_read_lock();
1763 	dst = rcu_dereference(sk->sk_dst_cache);
1764 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1765 		dst = NULL;
1766 	rcu_read_unlock();
1767 	return dst;
1768 }
1769 
1770 static inline void dst_negative_advice(struct sock *sk)
1771 {
1772 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1773 
1774 	sk_rethink_txhash(sk);
1775 
1776 	if (dst && dst->ops->negative_advice) {
1777 		ndst = dst->ops->negative_advice(dst);
1778 
1779 		if (ndst != dst) {
1780 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1781 			sk_tx_queue_clear(sk);
1782 			sk->sk_dst_pending_confirm = 0;
1783 		}
1784 	}
1785 }
1786 
1787 static inline void
1788 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1789 {
1790 	struct dst_entry *old_dst;
1791 
1792 	sk_tx_queue_clear(sk);
1793 	sk->sk_dst_pending_confirm = 0;
1794 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1795 					    lockdep_sock_is_held(sk));
1796 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1797 	dst_release(old_dst);
1798 }
1799 
1800 static inline void
1801 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1802 {
1803 	struct dst_entry *old_dst;
1804 
1805 	sk_tx_queue_clear(sk);
1806 	sk->sk_dst_pending_confirm = 0;
1807 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1808 	dst_release(old_dst);
1809 }
1810 
1811 static inline void
1812 __sk_dst_reset(struct sock *sk)
1813 {
1814 	__sk_dst_set(sk, NULL);
1815 }
1816 
1817 static inline void
1818 sk_dst_reset(struct sock *sk)
1819 {
1820 	sk_dst_set(sk, NULL);
1821 }
1822 
1823 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1824 
1825 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1826 
1827 static inline void sk_dst_confirm(struct sock *sk)
1828 {
1829 	if (!sk->sk_dst_pending_confirm)
1830 		sk->sk_dst_pending_confirm = 1;
1831 }
1832 
1833 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1834 {
1835 	if (skb_get_dst_pending_confirm(skb)) {
1836 		struct sock *sk = skb->sk;
1837 		unsigned long now = jiffies;
1838 
1839 		/* avoid dirtying neighbour */
1840 		if (n->confirmed != now)
1841 			n->confirmed = now;
1842 		if (sk && sk->sk_dst_pending_confirm)
1843 			sk->sk_dst_pending_confirm = 0;
1844 	}
1845 }
1846 
1847 bool sk_mc_loop(struct sock *sk);
1848 
1849 static inline bool sk_can_gso(const struct sock *sk)
1850 {
1851 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1852 }
1853 
1854 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1855 
1856 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1857 {
1858 	sk->sk_route_nocaps |= flags;
1859 	sk->sk_route_caps &= ~flags;
1860 }
1861 
1862 static inline bool sk_check_csum_caps(struct sock *sk)
1863 {
1864 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1865 	       (sk->sk_family == PF_INET &&
1866 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1867 	       (sk->sk_family == PF_INET6 &&
1868 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1869 }
1870 
1871 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1872 					   struct iov_iter *from, char *to,
1873 					   int copy, int offset)
1874 {
1875 	if (skb->ip_summed == CHECKSUM_NONE) {
1876 		__wsum csum = 0;
1877 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1878 			return -EFAULT;
1879 		skb->csum = csum_block_add(skb->csum, csum, offset);
1880 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1881 		if (!copy_from_iter_full_nocache(to, copy, from))
1882 			return -EFAULT;
1883 	} else if (!copy_from_iter_full(to, copy, from))
1884 		return -EFAULT;
1885 
1886 	return 0;
1887 }
1888 
1889 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1890 				       struct iov_iter *from, int copy)
1891 {
1892 	int err, offset = skb->len;
1893 
1894 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1895 				       copy, offset);
1896 	if (err)
1897 		__skb_trim(skb, offset);
1898 
1899 	return err;
1900 }
1901 
1902 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1903 					   struct sk_buff *skb,
1904 					   struct page *page,
1905 					   int off, int copy)
1906 {
1907 	int err;
1908 
1909 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1910 				       copy, skb->len);
1911 	if (err)
1912 		return err;
1913 
1914 	skb->len	     += copy;
1915 	skb->data_len	     += copy;
1916 	skb->truesize	     += copy;
1917 	sk->sk_wmem_queued   += copy;
1918 	sk_mem_charge(sk, copy);
1919 	return 0;
1920 }
1921 
1922 /**
1923  * sk_wmem_alloc_get - returns write allocations
1924  * @sk: socket
1925  *
1926  * Returns sk_wmem_alloc minus initial offset of one
1927  */
1928 static inline int sk_wmem_alloc_get(const struct sock *sk)
1929 {
1930 	return refcount_read(&sk->sk_wmem_alloc) - 1;
1931 }
1932 
1933 /**
1934  * sk_rmem_alloc_get - returns read allocations
1935  * @sk: socket
1936  *
1937  * Returns sk_rmem_alloc
1938  */
1939 static inline int sk_rmem_alloc_get(const struct sock *sk)
1940 {
1941 	return atomic_read(&sk->sk_rmem_alloc);
1942 }
1943 
1944 /**
1945  * sk_has_allocations - check if allocations are outstanding
1946  * @sk: socket
1947  *
1948  * Returns true if socket has write or read allocations
1949  */
1950 static inline bool sk_has_allocations(const struct sock *sk)
1951 {
1952 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1953 }
1954 
1955 /**
1956  * skwq_has_sleeper - check if there are any waiting processes
1957  * @wq: struct socket_wq
1958  *
1959  * Returns true if socket_wq has waiting processes
1960  *
1961  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1962  * barrier call. They were added due to the race found within the tcp code.
1963  *
1964  * Consider following tcp code paths::
1965  *
1966  *   CPU1                CPU2
1967  *   sys_select          receive packet
1968  *   ...                 ...
1969  *   __add_wait_queue    update tp->rcv_nxt
1970  *   ...                 ...
1971  *   tp->rcv_nxt check   sock_def_readable
1972  *   ...                 {
1973  *   schedule               rcu_read_lock();
1974  *                          wq = rcu_dereference(sk->sk_wq);
1975  *                          if (wq && waitqueue_active(&wq->wait))
1976  *                              wake_up_interruptible(&wq->wait)
1977  *                          ...
1978  *                       }
1979  *
1980  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1981  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1982  * could then endup calling schedule and sleep forever if there are no more
1983  * data on the socket.
1984  *
1985  */
1986 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1987 {
1988 	return wq && wq_has_sleeper(&wq->wait);
1989 }
1990 
1991 /**
1992  * sock_poll_wait - place memory barrier behind the poll_wait call.
1993  * @filp:           file
1994  * @wait_address:   socket wait queue
1995  * @p:              poll_table
1996  *
1997  * See the comments in the wq_has_sleeper function.
1998  */
1999 static inline void sock_poll_wait(struct file *filp,
2000 		wait_queue_head_t *wait_address, poll_table *p)
2001 {
2002 	if (!poll_does_not_wait(p) && wait_address) {
2003 		poll_wait(filp, wait_address, p);
2004 		/* We need to be sure we are in sync with the
2005 		 * socket flags modification.
2006 		 *
2007 		 * This memory barrier is paired in the wq_has_sleeper.
2008 		 */
2009 		smp_mb();
2010 	}
2011 }
2012 
2013 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2014 {
2015 	if (sk->sk_txhash) {
2016 		skb->l4_hash = 1;
2017 		skb->hash = sk->sk_txhash;
2018 	}
2019 }
2020 
2021 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2022 
2023 /*
2024  *	Queue a received datagram if it will fit. Stream and sequenced
2025  *	protocols can't normally use this as they need to fit buffers in
2026  *	and play with them.
2027  *
2028  *	Inlined as it's very short and called for pretty much every
2029  *	packet ever received.
2030  */
2031 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2032 {
2033 	skb_orphan(skb);
2034 	skb->sk = sk;
2035 	skb->destructor = sock_rfree;
2036 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2037 	sk_mem_charge(sk, skb->truesize);
2038 }
2039 
2040 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2041 		    unsigned long expires);
2042 
2043 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2044 
2045 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2046 			struct sk_buff *skb, unsigned int flags,
2047 			void (*destructor)(struct sock *sk,
2048 					   struct sk_buff *skb));
2049 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2050 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2051 
2052 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2053 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2054 
2055 /*
2056  *	Recover an error report and clear atomically
2057  */
2058 
2059 static inline int sock_error(struct sock *sk)
2060 {
2061 	int err;
2062 	if (likely(!sk->sk_err))
2063 		return 0;
2064 	err = xchg(&sk->sk_err, 0);
2065 	return -err;
2066 }
2067 
2068 static inline unsigned long sock_wspace(struct sock *sk)
2069 {
2070 	int amt = 0;
2071 
2072 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2073 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2074 		if (amt < 0)
2075 			amt = 0;
2076 	}
2077 	return amt;
2078 }
2079 
2080 /* Note:
2081  *  We use sk->sk_wq_raw, from contexts knowing this
2082  *  pointer is not NULL and cannot disappear/change.
2083  */
2084 static inline void sk_set_bit(int nr, struct sock *sk)
2085 {
2086 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2087 	    !sock_flag(sk, SOCK_FASYNC))
2088 		return;
2089 
2090 	set_bit(nr, &sk->sk_wq_raw->flags);
2091 }
2092 
2093 static inline void sk_clear_bit(int nr, struct sock *sk)
2094 {
2095 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2096 	    !sock_flag(sk, SOCK_FASYNC))
2097 		return;
2098 
2099 	clear_bit(nr, &sk->sk_wq_raw->flags);
2100 }
2101 
2102 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2103 {
2104 	if (sock_flag(sk, SOCK_FASYNC)) {
2105 		rcu_read_lock();
2106 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2107 		rcu_read_unlock();
2108 	}
2109 }
2110 
2111 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2112  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2113  * Note: for send buffers, TCP works better if we can build two skbs at
2114  * minimum.
2115  */
2116 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2117 
2118 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2119 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2120 
2121 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2122 {
2123 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2124 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2125 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2126 	}
2127 }
2128 
2129 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2130 				    bool force_schedule);
2131 
2132 /**
2133  * sk_page_frag - return an appropriate page_frag
2134  * @sk: socket
2135  *
2136  * If socket allocation mode allows current thread to sleep, it means its
2137  * safe to use the per task page_frag instead of the per socket one.
2138  */
2139 static inline struct page_frag *sk_page_frag(struct sock *sk)
2140 {
2141 	if (gfpflags_allow_blocking(sk->sk_allocation))
2142 		return &current->task_frag;
2143 
2144 	return &sk->sk_frag;
2145 }
2146 
2147 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2148 
2149 /*
2150  *	Default write policy as shown to user space via poll/select/SIGIO
2151  */
2152 static inline bool sock_writeable(const struct sock *sk)
2153 {
2154 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2155 }
2156 
2157 static inline gfp_t gfp_any(void)
2158 {
2159 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2160 }
2161 
2162 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2163 {
2164 	return noblock ? 0 : sk->sk_rcvtimeo;
2165 }
2166 
2167 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2168 {
2169 	return noblock ? 0 : sk->sk_sndtimeo;
2170 }
2171 
2172 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2173 {
2174 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2175 }
2176 
2177 /* Alas, with timeout socket operations are not restartable.
2178  * Compare this to poll().
2179  */
2180 static inline int sock_intr_errno(long timeo)
2181 {
2182 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2183 }
2184 
2185 struct sock_skb_cb {
2186 	u32 dropcount;
2187 };
2188 
2189 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2190  * using skb->cb[] would keep using it directly and utilize its
2191  * alignement guarantee.
2192  */
2193 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2194 			    sizeof(struct sock_skb_cb)))
2195 
2196 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2197 			    SOCK_SKB_CB_OFFSET))
2198 
2199 #define sock_skb_cb_check_size(size) \
2200 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2201 
2202 static inline void
2203 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2204 {
2205 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2206 						atomic_read(&sk->sk_drops) : 0;
2207 }
2208 
2209 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2210 {
2211 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2212 
2213 	atomic_add(segs, &sk->sk_drops);
2214 }
2215 
2216 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2217 			   struct sk_buff *skb);
2218 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2219 			     struct sk_buff *skb);
2220 
2221 static inline void
2222 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2223 {
2224 	ktime_t kt = skb->tstamp;
2225 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2226 
2227 	/*
2228 	 * generate control messages if
2229 	 * - receive time stamping in software requested
2230 	 * - software time stamp available and wanted
2231 	 * - hardware time stamps available and wanted
2232 	 */
2233 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2234 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2235 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2236 	    (hwtstamps->hwtstamp &&
2237 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2238 		__sock_recv_timestamp(msg, sk, skb);
2239 	else
2240 		sk->sk_stamp = kt;
2241 
2242 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2243 		__sock_recv_wifi_status(msg, sk, skb);
2244 }
2245 
2246 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2247 			      struct sk_buff *skb);
2248 
2249 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2250 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2251 					  struct sk_buff *skb)
2252 {
2253 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2254 			   (1UL << SOCK_RCVTSTAMP))
2255 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2256 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2257 
2258 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2259 		__sock_recv_ts_and_drops(msg, sk, skb);
2260 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2261 		sk->sk_stamp = skb->tstamp;
2262 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2263 		sk->sk_stamp = 0;
2264 }
2265 
2266 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2267 
2268 /**
2269  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2270  * @sk:		socket sending this packet
2271  * @tsflags:	timestamping flags to use
2272  * @tx_flags:	completed with instructions for time stamping
2273  *
2274  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2275  */
2276 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2277 				     __u8 *tx_flags)
2278 {
2279 	if (unlikely(tsflags))
2280 		__sock_tx_timestamp(tsflags, tx_flags);
2281 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2282 		*tx_flags |= SKBTX_WIFI_STATUS;
2283 }
2284 
2285 /**
2286  * sk_eat_skb - Release a skb if it is no longer needed
2287  * @sk: socket to eat this skb from
2288  * @skb: socket buffer to eat
2289  *
2290  * This routine must be called with interrupts disabled or with the socket
2291  * locked so that the sk_buff queue operation is ok.
2292 */
2293 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2294 {
2295 	__skb_unlink(skb, &sk->sk_receive_queue);
2296 	__kfree_skb(skb);
2297 }
2298 
2299 static inline
2300 struct net *sock_net(const struct sock *sk)
2301 {
2302 	return read_pnet(&sk->sk_net);
2303 }
2304 
2305 static inline
2306 void sock_net_set(struct sock *sk, struct net *net)
2307 {
2308 	write_pnet(&sk->sk_net, net);
2309 }
2310 
2311 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2312 {
2313 	if (skb->sk) {
2314 		struct sock *sk = skb->sk;
2315 
2316 		skb->destructor = NULL;
2317 		skb->sk = NULL;
2318 		return sk;
2319 	}
2320 	return NULL;
2321 }
2322 
2323 /* This helper checks if a socket is a full socket,
2324  * ie _not_ a timewait or request socket.
2325  */
2326 static inline bool sk_fullsock(const struct sock *sk)
2327 {
2328 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2329 }
2330 
2331 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2332  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2333  */
2334 static inline bool sk_listener(const struct sock *sk)
2335 {
2336 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2337 }
2338 
2339 /**
2340  * sk_state_load - read sk->sk_state for lockless contexts
2341  * @sk: socket pointer
2342  *
2343  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2344  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2345  */
2346 static inline int sk_state_load(const struct sock *sk)
2347 {
2348 	return smp_load_acquire(&sk->sk_state);
2349 }
2350 
2351 /**
2352  * sk_state_store - update sk->sk_state
2353  * @sk: socket pointer
2354  * @newstate: new state
2355  *
2356  * Paired with sk_state_load(). Should be used in contexts where
2357  * state change might impact lockless readers.
2358  */
2359 static inline void sk_state_store(struct sock *sk, int newstate)
2360 {
2361 	smp_store_release(&sk->sk_state, newstate);
2362 }
2363 
2364 void sock_enable_timestamp(struct sock *sk, int flag);
2365 int sock_get_timestamp(struct sock *, struct timeval __user *);
2366 int sock_get_timestampns(struct sock *, struct timespec __user *);
2367 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2368 		       int type);
2369 
2370 bool sk_ns_capable(const struct sock *sk,
2371 		   struct user_namespace *user_ns, int cap);
2372 bool sk_capable(const struct sock *sk, int cap);
2373 bool sk_net_capable(const struct sock *sk, int cap);
2374 
2375 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2376 
2377 /* Take into consideration the size of the struct sk_buff overhead in the
2378  * determination of these values, since that is non-constant across
2379  * platforms.  This makes socket queueing behavior and performance
2380  * not depend upon such differences.
2381  */
2382 #define _SK_MEM_PACKETS		256
2383 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2384 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2385 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2386 
2387 extern __u32 sysctl_wmem_max;
2388 extern __u32 sysctl_rmem_max;
2389 
2390 extern int sysctl_tstamp_allow_data;
2391 extern int sysctl_optmem_max;
2392 
2393 extern __u32 sysctl_wmem_default;
2394 extern __u32 sysctl_rmem_default;
2395 
2396 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2397 {
2398 	/* Does this proto have per netns sysctl_wmem ? */
2399 	if (proto->sysctl_wmem_offset)
2400 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2401 
2402 	return *proto->sysctl_wmem;
2403 }
2404 
2405 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2406 {
2407 	/* Does this proto have per netns sysctl_rmem ? */
2408 	if (proto->sysctl_rmem_offset)
2409 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2410 
2411 	return *proto->sysctl_rmem;
2412 }
2413 
2414 #endif	/* _SOCK_H */
2415