1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 62 #include <linux/filter.h> 63 #include <linux/rculist_nulls.h> 64 #include <linux/poll.h> 65 66 #include <linux/atomic.h> 67 #include <net/dst.h> 68 #include <net/checksum.h> 69 #include <net/tcp_states.h> 70 #include <linux/net_tstamp.h> 71 72 struct cgroup; 73 struct cgroup_subsys; 74 #ifdef CONFIG_NET 75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 77 #else 78 static inline 79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 80 { 81 return 0; 82 } 83 static inline 84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 85 { 86 } 87 #endif 88 /* 89 * This structure really needs to be cleaned up. 90 * Most of it is for TCP, and not used by any of 91 * the other protocols. 92 */ 93 94 /* Define this to get the SOCK_DBG debugging facility. */ 95 #define SOCK_DEBUGGING 96 #ifdef SOCK_DEBUGGING 97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 98 printk(KERN_DEBUG msg); } while (0) 99 #else 100 /* Validate arguments and do nothing */ 101 static inline __printf(2, 3) 102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 103 { 104 } 105 #endif 106 107 /* This is the per-socket lock. The spinlock provides a synchronization 108 * between user contexts and software interrupt processing, whereas the 109 * mini-semaphore synchronizes multiple users amongst themselves. 110 */ 111 typedef struct { 112 spinlock_t slock; 113 int owned; 114 wait_queue_head_t wq; 115 /* 116 * We express the mutex-alike socket_lock semantics 117 * to the lock validator by explicitly managing 118 * the slock as a lock variant (in addition to 119 * the slock itself): 120 */ 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 struct lockdep_map dep_map; 123 #endif 124 } socket_lock_t; 125 126 struct sock; 127 struct proto; 128 struct net; 129 130 typedef __u32 __bitwise __portpair; 131 typedef __u64 __bitwise __addrpair; 132 133 /** 134 * struct sock_common - minimal network layer representation of sockets 135 * @skc_daddr: Foreign IPv4 addr 136 * @skc_rcv_saddr: Bound local IPv4 addr 137 * @skc_hash: hash value used with various protocol lookup tables 138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 139 * @skc_dport: placeholder for inet_dport/tw_dport 140 * @skc_num: placeholder for inet_num/tw_num 141 * @skc_family: network address family 142 * @skc_state: Connection state 143 * @skc_reuse: %SO_REUSEADDR setting 144 * @skc_reuseport: %SO_REUSEPORT setting 145 * @skc_bound_dev_if: bound device index if != 0 146 * @skc_bind_node: bind hash linkage for various protocol lookup tables 147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 148 * @skc_prot: protocol handlers inside a network family 149 * @skc_net: reference to the network namespace of this socket 150 * @skc_node: main hash linkage for various protocol lookup tables 151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 152 * @skc_tx_queue_mapping: tx queue number for this connection 153 * @skc_refcnt: reference count 154 * 155 * This is the minimal network layer representation of sockets, the header 156 * for struct sock and struct inet_timewait_sock. 157 */ 158 struct sock_common { 159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 160 * address on 64bit arches : cf INET_MATCH() 161 */ 162 union { 163 __addrpair skc_addrpair; 164 struct { 165 __be32 skc_daddr; 166 __be32 skc_rcv_saddr; 167 }; 168 }; 169 union { 170 unsigned int skc_hash; 171 __u16 skc_u16hashes[2]; 172 }; 173 /* skc_dport && skc_num must be grouped as well */ 174 union { 175 __portpair skc_portpair; 176 struct { 177 __be16 skc_dport; 178 __u16 skc_num; 179 }; 180 }; 181 182 unsigned short skc_family; 183 volatile unsigned char skc_state; 184 unsigned char skc_reuse:4; 185 unsigned char skc_reuseport:1; 186 unsigned char skc_ipv6only:1; 187 int skc_bound_dev_if; 188 union { 189 struct hlist_node skc_bind_node; 190 struct hlist_nulls_node skc_portaddr_node; 191 }; 192 struct proto *skc_prot; 193 possible_net_t skc_net; 194 195 #if IS_ENABLED(CONFIG_IPV6) 196 struct in6_addr skc_v6_daddr; 197 struct in6_addr skc_v6_rcv_saddr; 198 #endif 199 200 atomic64_t skc_cookie; 201 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 int skc_tx_queue_mapping; 214 atomic_t skc_refcnt; 215 /* private: */ 216 int skc_dontcopy_end[0]; 217 /* public: */ 218 }; 219 220 struct cg_proto; 221 /** 222 * struct sock - network layer representation of sockets 223 * @__sk_common: shared layout with inet_timewait_sock 224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 226 * @sk_lock: synchronizer 227 * @sk_rcvbuf: size of receive buffer in bytes 228 * @sk_wq: sock wait queue and async head 229 * @sk_rx_dst: receive input route used by early demux 230 * @sk_dst_cache: destination cache 231 * @sk_dst_lock: destination cache lock 232 * @sk_policy: flow policy 233 * @sk_receive_queue: incoming packets 234 * @sk_wmem_alloc: transmit queue bytes committed 235 * @sk_write_queue: Packet sending queue 236 * @sk_omem_alloc: "o" is "option" or "other" 237 * @sk_wmem_queued: persistent queue size 238 * @sk_forward_alloc: space allocated forward 239 * @sk_napi_id: id of the last napi context to receive data for sk 240 * @sk_ll_usec: usecs to busypoll when there is no data 241 * @sk_allocation: allocation mode 242 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 243 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 244 * @sk_sndbuf: size of send buffer in bytes 245 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 246 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 247 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 248 * @sk_no_check_rx: allow zero checksum in RX packets 249 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 250 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 251 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 252 * @sk_gso_max_size: Maximum GSO segment size to build 253 * @sk_gso_max_segs: Maximum number of GSO segments 254 * @sk_lingertime: %SO_LINGER l_linger setting 255 * @sk_backlog: always used with the per-socket spinlock held 256 * @sk_callback_lock: used with the callbacks in the end of this struct 257 * @sk_error_queue: rarely used 258 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 259 * IPV6_ADDRFORM for instance) 260 * @sk_err: last error 261 * @sk_err_soft: errors that don't cause failure but are the cause of a 262 * persistent failure not just 'timed out' 263 * @sk_drops: raw/udp drops counter 264 * @sk_ack_backlog: current listen backlog 265 * @sk_max_ack_backlog: listen backlog set in listen() 266 * @sk_priority: %SO_PRIORITY setting 267 * @sk_cgrp_prioidx: socket group's priority map index 268 * @sk_type: socket type (%SOCK_STREAM, etc) 269 * @sk_protocol: which protocol this socket belongs in this network family 270 * @sk_peer_pid: &struct pid for this socket's peer 271 * @sk_peer_cred: %SO_PEERCRED setting 272 * @sk_rcvlowat: %SO_RCVLOWAT setting 273 * @sk_rcvtimeo: %SO_RCVTIMEO setting 274 * @sk_sndtimeo: %SO_SNDTIMEO setting 275 * @sk_rxhash: flow hash received from netif layer 276 * @sk_incoming_cpu: record cpu processing incoming packets 277 * @sk_txhash: computed flow hash for use on transmit 278 * @sk_filter: socket filtering instructions 279 * @sk_protinfo: private area, net family specific, when not using slab 280 * @sk_timer: sock cleanup timer 281 * @sk_stamp: time stamp of last packet received 282 * @sk_tsflags: SO_TIMESTAMPING socket options 283 * @sk_tskey: counter to disambiguate concurrent tstamp requests 284 * @sk_socket: Identd and reporting IO signals 285 * @sk_user_data: RPC layer private data 286 * @sk_frag: cached page frag 287 * @sk_peek_off: current peek_offset value 288 * @sk_send_head: front of stuff to transmit 289 * @sk_security: used by security modules 290 * @sk_mark: generic packet mark 291 * @sk_classid: this socket's cgroup classid 292 * @sk_cgrp: this socket's cgroup-specific proto data 293 * @sk_write_pending: a write to stream socket waits to start 294 * @sk_state_change: callback to indicate change in the state of the sock 295 * @sk_data_ready: callback to indicate there is data to be processed 296 * @sk_write_space: callback to indicate there is bf sending space available 297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 298 * @sk_backlog_rcv: callback to process the backlog 299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 300 */ 301 struct sock { 302 /* 303 * Now struct inet_timewait_sock also uses sock_common, so please just 304 * don't add nothing before this first member (__sk_common) --acme 305 */ 306 struct sock_common __sk_common; 307 #define sk_node __sk_common.skc_node 308 #define sk_nulls_node __sk_common.skc_nulls_node 309 #define sk_refcnt __sk_common.skc_refcnt 310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 311 312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 314 #define sk_hash __sk_common.skc_hash 315 #define sk_portpair __sk_common.skc_portpair 316 #define sk_num __sk_common.skc_num 317 #define sk_dport __sk_common.skc_dport 318 #define sk_addrpair __sk_common.skc_addrpair 319 #define sk_daddr __sk_common.skc_daddr 320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 321 #define sk_family __sk_common.skc_family 322 #define sk_state __sk_common.skc_state 323 #define sk_reuse __sk_common.skc_reuse 324 #define sk_reuseport __sk_common.skc_reuseport 325 #define sk_ipv6only __sk_common.skc_ipv6only 326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 327 #define sk_bind_node __sk_common.skc_bind_node 328 #define sk_prot __sk_common.skc_prot 329 #define sk_net __sk_common.skc_net 330 #define sk_v6_daddr __sk_common.skc_v6_daddr 331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 332 #define sk_cookie __sk_common.skc_cookie 333 334 socket_lock_t sk_lock; 335 struct sk_buff_head sk_receive_queue; 336 /* 337 * The backlog queue is special, it is always used with 338 * the per-socket spinlock held and requires low latency 339 * access. Therefore we special case it's implementation. 340 * Note : rmem_alloc is in this structure to fill a hole 341 * on 64bit arches, not because its logically part of 342 * backlog. 343 */ 344 struct { 345 atomic_t rmem_alloc; 346 int len; 347 struct sk_buff *head; 348 struct sk_buff *tail; 349 } sk_backlog; 350 #define sk_rmem_alloc sk_backlog.rmem_alloc 351 int sk_forward_alloc; 352 #ifdef CONFIG_RPS 353 __u32 sk_rxhash; 354 #endif 355 u16 sk_incoming_cpu; 356 /* 16bit hole 357 * Warned : sk_incoming_cpu can be set from softirq, 358 * Do not use this hole without fully understanding possible issues. 359 */ 360 361 __u32 sk_txhash; 362 #ifdef CONFIG_NET_RX_BUSY_POLL 363 unsigned int sk_napi_id; 364 unsigned int sk_ll_usec; 365 #endif 366 atomic_t sk_drops; 367 int sk_rcvbuf; 368 369 struct sk_filter __rcu *sk_filter; 370 struct socket_wq __rcu *sk_wq; 371 372 #ifdef CONFIG_XFRM 373 struct xfrm_policy *sk_policy[2]; 374 #endif 375 unsigned long sk_flags; 376 struct dst_entry *sk_rx_dst; 377 struct dst_entry __rcu *sk_dst_cache; 378 spinlock_t sk_dst_lock; 379 atomic_t sk_wmem_alloc; 380 atomic_t sk_omem_alloc; 381 int sk_sndbuf; 382 struct sk_buff_head sk_write_queue; 383 kmemcheck_bitfield_begin(flags); 384 unsigned int sk_shutdown : 2, 385 sk_no_check_tx : 1, 386 sk_no_check_rx : 1, 387 sk_userlocks : 4, 388 sk_protocol : 8, 389 sk_type : 16; 390 kmemcheck_bitfield_end(flags); 391 int sk_wmem_queued; 392 gfp_t sk_allocation; 393 u32 sk_pacing_rate; /* bytes per second */ 394 u32 sk_max_pacing_rate; 395 netdev_features_t sk_route_caps; 396 netdev_features_t sk_route_nocaps; 397 int sk_gso_type; 398 unsigned int sk_gso_max_size; 399 u16 sk_gso_max_segs; 400 int sk_rcvlowat; 401 unsigned long sk_lingertime; 402 struct sk_buff_head sk_error_queue; 403 struct proto *sk_prot_creator; 404 rwlock_t sk_callback_lock; 405 int sk_err, 406 sk_err_soft; 407 u32 sk_ack_backlog; 408 u32 sk_max_ack_backlog; 409 __u32 sk_priority; 410 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 411 __u32 sk_cgrp_prioidx; 412 #endif 413 struct pid *sk_peer_pid; 414 const struct cred *sk_peer_cred; 415 long sk_rcvtimeo; 416 long sk_sndtimeo; 417 void *sk_protinfo; 418 struct timer_list sk_timer; 419 ktime_t sk_stamp; 420 u16 sk_tsflags; 421 u32 sk_tskey; 422 struct socket *sk_socket; 423 void *sk_user_data; 424 struct page_frag sk_frag; 425 struct sk_buff *sk_send_head; 426 __s32 sk_peek_off; 427 int sk_write_pending; 428 #ifdef CONFIG_SECURITY 429 void *sk_security; 430 #endif 431 __u32 sk_mark; 432 u32 sk_classid; 433 struct cg_proto *sk_cgrp; 434 void (*sk_state_change)(struct sock *sk); 435 void (*sk_data_ready)(struct sock *sk); 436 void (*sk_write_space)(struct sock *sk); 437 void (*sk_error_report)(struct sock *sk); 438 int (*sk_backlog_rcv)(struct sock *sk, 439 struct sk_buff *skb); 440 void (*sk_destruct)(struct sock *sk); 441 }; 442 443 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 444 445 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 446 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 447 448 /* 449 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 450 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 451 * on a socket means that the socket will reuse everybody else's port 452 * without looking at the other's sk_reuse value. 453 */ 454 455 #define SK_NO_REUSE 0 456 #define SK_CAN_REUSE 1 457 #define SK_FORCE_REUSE 2 458 459 static inline int sk_peek_offset(struct sock *sk, int flags) 460 { 461 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 462 return sk->sk_peek_off; 463 else 464 return 0; 465 } 466 467 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 468 { 469 if (sk->sk_peek_off >= 0) { 470 if (sk->sk_peek_off >= val) 471 sk->sk_peek_off -= val; 472 else 473 sk->sk_peek_off = 0; 474 } 475 } 476 477 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 478 { 479 if (sk->sk_peek_off >= 0) 480 sk->sk_peek_off += val; 481 } 482 483 /* 484 * Hashed lists helper routines 485 */ 486 static inline struct sock *sk_entry(const struct hlist_node *node) 487 { 488 return hlist_entry(node, struct sock, sk_node); 489 } 490 491 static inline struct sock *__sk_head(const struct hlist_head *head) 492 { 493 return hlist_entry(head->first, struct sock, sk_node); 494 } 495 496 static inline struct sock *sk_head(const struct hlist_head *head) 497 { 498 return hlist_empty(head) ? NULL : __sk_head(head); 499 } 500 501 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 502 { 503 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 504 } 505 506 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 507 { 508 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 509 } 510 511 static inline struct sock *sk_next(const struct sock *sk) 512 { 513 return sk->sk_node.next ? 514 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 515 } 516 517 static inline struct sock *sk_nulls_next(const struct sock *sk) 518 { 519 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 520 hlist_nulls_entry(sk->sk_nulls_node.next, 521 struct sock, sk_nulls_node) : 522 NULL; 523 } 524 525 static inline bool sk_unhashed(const struct sock *sk) 526 { 527 return hlist_unhashed(&sk->sk_node); 528 } 529 530 static inline bool sk_hashed(const struct sock *sk) 531 { 532 return !sk_unhashed(sk); 533 } 534 535 static inline void sk_node_init(struct hlist_node *node) 536 { 537 node->pprev = NULL; 538 } 539 540 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 541 { 542 node->pprev = NULL; 543 } 544 545 static inline void __sk_del_node(struct sock *sk) 546 { 547 __hlist_del(&sk->sk_node); 548 } 549 550 /* NB: equivalent to hlist_del_init_rcu */ 551 static inline bool __sk_del_node_init(struct sock *sk) 552 { 553 if (sk_hashed(sk)) { 554 __sk_del_node(sk); 555 sk_node_init(&sk->sk_node); 556 return true; 557 } 558 return false; 559 } 560 561 /* Grab socket reference count. This operation is valid only 562 when sk is ALREADY grabbed f.e. it is found in hash table 563 or a list and the lookup is made under lock preventing hash table 564 modifications. 565 */ 566 567 static inline void sock_hold(struct sock *sk) 568 { 569 atomic_inc(&sk->sk_refcnt); 570 } 571 572 /* Ungrab socket in the context, which assumes that socket refcnt 573 cannot hit zero, f.e. it is true in context of any socketcall. 574 */ 575 static inline void __sock_put(struct sock *sk) 576 { 577 atomic_dec(&sk->sk_refcnt); 578 } 579 580 static inline bool sk_del_node_init(struct sock *sk) 581 { 582 bool rc = __sk_del_node_init(sk); 583 584 if (rc) { 585 /* paranoid for a while -acme */ 586 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 587 __sock_put(sk); 588 } 589 return rc; 590 } 591 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 592 593 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 594 { 595 if (sk_hashed(sk)) { 596 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 597 return true; 598 } 599 return false; 600 } 601 602 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 603 { 604 bool rc = __sk_nulls_del_node_init_rcu(sk); 605 606 if (rc) { 607 /* paranoid for a while -acme */ 608 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 609 __sock_put(sk); 610 } 611 return rc; 612 } 613 614 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 615 { 616 hlist_add_head(&sk->sk_node, list); 617 } 618 619 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 620 { 621 sock_hold(sk); 622 __sk_add_node(sk, list); 623 } 624 625 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 626 { 627 sock_hold(sk); 628 hlist_add_head_rcu(&sk->sk_node, list); 629 } 630 631 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 632 { 633 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 634 } 635 636 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 637 { 638 sock_hold(sk); 639 __sk_nulls_add_node_rcu(sk, list); 640 } 641 642 static inline void __sk_del_bind_node(struct sock *sk) 643 { 644 __hlist_del(&sk->sk_bind_node); 645 } 646 647 static inline void sk_add_bind_node(struct sock *sk, 648 struct hlist_head *list) 649 { 650 hlist_add_head(&sk->sk_bind_node, list); 651 } 652 653 #define sk_for_each(__sk, list) \ 654 hlist_for_each_entry(__sk, list, sk_node) 655 #define sk_for_each_rcu(__sk, list) \ 656 hlist_for_each_entry_rcu(__sk, list, sk_node) 657 #define sk_nulls_for_each(__sk, node, list) \ 658 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 659 #define sk_nulls_for_each_rcu(__sk, node, list) \ 660 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 661 #define sk_for_each_from(__sk) \ 662 hlist_for_each_entry_from(__sk, sk_node) 663 #define sk_nulls_for_each_from(__sk, node) \ 664 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 665 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 666 #define sk_for_each_safe(__sk, tmp, list) \ 667 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 668 #define sk_for_each_bound(__sk, list) \ 669 hlist_for_each_entry(__sk, list, sk_bind_node) 670 671 /** 672 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 673 * @tpos: the type * to use as a loop cursor. 674 * @pos: the &struct hlist_node to use as a loop cursor. 675 * @head: the head for your list. 676 * @offset: offset of hlist_node within the struct. 677 * 678 */ 679 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 680 for (pos = (head)->first; \ 681 (!is_a_nulls(pos)) && \ 682 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 683 pos = pos->next) 684 685 static inline struct user_namespace *sk_user_ns(struct sock *sk) 686 { 687 /* Careful only use this in a context where these parameters 688 * can not change and must all be valid, such as recvmsg from 689 * userspace. 690 */ 691 return sk->sk_socket->file->f_cred->user_ns; 692 } 693 694 /* Sock flags */ 695 enum sock_flags { 696 SOCK_DEAD, 697 SOCK_DONE, 698 SOCK_URGINLINE, 699 SOCK_KEEPOPEN, 700 SOCK_LINGER, 701 SOCK_DESTROY, 702 SOCK_BROADCAST, 703 SOCK_TIMESTAMP, 704 SOCK_ZAPPED, 705 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 706 SOCK_DBG, /* %SO_DEBUG setting */ 707 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 708 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 709 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 710 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 711 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 712 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 713 SOCK_FASYNC, /* fasync() active */ 714 SOCK_RXQ_OVFL, 715 SOCK_ZEROCOPY, /* buffers from userspace */ 716 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 717 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 718 * Will use last 4 bytes of packet sent from 719 * user-space instead. 720 */ 721 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 722 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 723 }; 724 725 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 726 { 727 nsk->sk_flags = osk->sk_flags; 728 } 729 730 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 731 { 732 __set_bit(flag, &sk->sk_flags); 733 } 734 735 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 736 { 737 __clear_bit(flag, &sk->sk_flags); 738 } 739 740 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 741 { 742 return test_bit(flag, &sk->sk_flags); 743 } 744 745 #ifdef CONFIG_NET 746 extern struct static_key memalloc_socks; 747 static inline int sk_memalloc_socks(void) 748 { 749 return static_key_false(&memalloc_socks); 750 } 751 #else 752 753 static inline int sk_memalloc_socks(void) 754 { 755 return 0; 756 } 757 758 #endif 759 760 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 761 { 762 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 763 } 764 765 static inline void sk_acceptq_removed(struct sock *sk) 766 { 767 sk->sk_ack_backlog--; 768 } 769 770 static inline void sk_acceptq_added(struct sock *sk) 771 { 772 sk->sk_ack_backlog++; 773 } 774 775 static inline bool sk_acceptq_is_full(const struct sock *sk) 776 { 777 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 778 } 779 780 /* 781 * Compute minimal free write space needed to queue new packets. 782 */ 783 static inline int sk_stream_min_wspace(const struct sock *sk) 784 { 785 return sk->sk_wmem_queued >> 1; 786 } 787 788 static inline int sk_stream_wspace(const struct sock *sk) 789 { 790 return sk->sk_sndbuf - sk->sk_wmem_queued; 791 } 792 793 void sk_stream_write_space(struct sock *sk); 794 795 /* OOB backlog add */ 796 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 797 { 798 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 799 skb_dst_force(skb); 800 801 if (!sk->sk_backlog.tail) 802 sk->sk_backlog.head = skb; 803 else 804 sk->sk_backlog.tail->next = skb; 805 806 sk->sk_backlog.tail = skb; 807 skb->next = NULL; 808 } 809 810 /* 811 * Take into account size of receive queue and backlog queue 812 * Do not take into account this skb truesize, 813 * to allow even a single big packet to come. 814 */ 815 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 816 { 817 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 818 819 return qsize > limit; 820 } 821 822 /* The per-socket spinlock must be held here. */ 823 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 824 unsigned int limit) 825 { 826 if (sk_rcvqueues_full(sk, limit)) 827 return -ENOBUFS; 828 829 __sk_add_backlog(sk, skb); 830 sk->sk_backlog.len += skb->truesize; 831 return 0; 832 } 833 834 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 835 836 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 837 { 838 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 839 return __sk_backlog_rcv(sk, skb); 840 841 return sk->sk_backlog_rcv(sk, skb); 842 } 843 844 static inline void sk_incoming_cpu_update(struct sock *sk) 845 { 846 sk->sk_incoming_cpu = raw_smp_processor_id(); 847 } 848 849 static inline void sock_rps_record_flow_hash(__u32 hash) 850 { 851 #ifdef CONFIG_RPS 852 struct rps_sock_flow_table *sock_flow_table; 853 854 rcu_read_lock(); 855 sock_flow_table = rcu_dereference(rps_sock_flow_table); 856 rps_record_sock_flow(sock_flow_table, hash); 857 rcu_read_unlock(); 858 #endif 859 } 860 861 static inline void sock_rps_record_flow(const struct sock *sk) 862 { 863 #ifdef CONFIG_RPS 864 sock_rps_record_flow_hash(sk->sk_rxhash); 865 #endif 866 } 867 868 static inline void sock_rps_save_rxhash(struct sock *sk, 869 const struct sk_buff *skb) 870 { 871 #ifdef CONFIG_RPS 872 if (unlikely(sk->sk_rxhash != skb->hash)) 873 sk->sk_rxhash = skb->hash; 874 #endif 875 } 876 877 static inline void sock_rps_reset_rxhash(struct sock *sk) 878 { 879 #ifdef CONFIG_RPS 880 sk->sk_rxhash = 0; 881 #endif 882 } 883 884 #define sk_wait_event(__sk, __timeo, __condition) \ 885 ({ int __rc; \ 886 release_sock(__sk); \ 887 __rc = __condition; \ 888 if (!__rc) { \ 889 *(__timeo) = schedule_timeout(*(__timeo)); \ 890 } \ 891 sched_annotate_sleep(); \ 892 lock_sock(__sk); \ 893 __rc = __condition; \ 894 __rc; \ 895 }) 896 897 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 898 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 899 void sk_stream_wait_close(struct sock *sk, long timeo_p); 900 int sk_stream_error(struct sock *sk, int flags, int err); 901 void sk_stream_kill_queues(struct sock *sk); 902 void sk_set_memalloc(struct sock *sk); 903 void sk_clear_memalloc(struct sock *sk); 904 905 int sk_wait_data(struct sock *sk, long *timeo); 906 907 struct request_sock_ops; 908 struct timewait_sock_ops; 909 struct inet_hashinfo; 910 struct raw_hashinfo; 911 struct module; 912 913 /* 914 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 915 * un-modified. Special care is taken when initializing object to zero. 916 */ 917 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 918 { 919 if (offsetof(struct sock, sk_node.next) != 0) 920 memset(sk, 0, offsetof(struct sock, sk_node.next)); 921 memset(&sk->sk_node.pprev, 0, 922 size - offsetof(struct sock, sk_node.pprev)); 923 } 924 925 /* Networking protocol blocks we attach to sockets. 926 * socket layer -> transport layer interface 927 * transport -> network interface is defined by struct inet_proto 928 */ 929 struct proto { 930 void (*close)(struct sock *sk, 931 long timeout); 932 int (*connect)(struct sock *sk, 933 struct sockaddr *uaddr, 934 int addr_len); 935 int (*disconnect)(struct sock *sk, int flags); 936 937 struct sock * (*accept)(struct sock *sk, int flags, int *err); 938 939 int (*ioctl)(struct sock *sk, int cmd, 940 unsigned long arg); 941 int (*init)(struct sock *sk); 942 void (*destroy)(struct sock *sk); 943 void (*shutdown)(struct sock *sk, int how); 944 int (*setsockopt)(struct sock *sk, int level, 945 int optname, char __user *optval, 946 unsigned int optlen); 947 int (*getsockopt)(struct sock *sk, int level, 948 int optname, char __user *optval, 949 int __user *option); 950 #ifdef CONFIG_COMPAT 951 int (*compat_setsockopt)(struct sock *sk, 952 int level, 953 int optname, char __user *optval, 954 unsigned int optlen); 955 int (*compat_getsockopt)(struct sock *sk, 956 int level, 957 int optname, char __user *optval, 958 int __user *option); 959 int (*compat_ioctl)(struct sock *sk, 960 unsigned int cmd, unsigned long arg); 961 #endif 962 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 963 size_t len); 964 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 965 size_t len, int noblock, int flags, 966 int *addr_len); 967 int (*sendpage)(struct sock *sk, struct page *page, 968 int offset, size_t size, int flags); 969 int (*bind)(struct sock *sk, 970 struct sockaddr *uaddr, int addr_len); 971 972 int (*backlog_rcv) (struct sock *sk, 973 struct sk_buff *skb); 974 975 void (*release_cb)(struct sock *sk); 976 977 /* Keeping track of sk's, looking them up, and port selection methods. */ 978 void (*hash)(struct sock *sk); 979 void (*unhash)(struct sock *sk); 980 void (*rehash)(struct sock *sk); 981 int (*get_port)(struct sock *sk, unsigned short snum); 982 void (*clear_sk)(struct sock *sk, int size); 983 984 /* Keeping track of sockets in use */ 985 #ifdef CONFIG_PROC_FS 986 unsigned int inuse_idx; 987 #endif 988 989 bool (*stream_memory_free)(const struct sock *sk); 990 /* Memory pressure */ 991 void (*enter_memory_pressure)(struct sock *sk); 992 atomic_long_t *memory_allocated; /* Current allocated memory. */ 993 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 994 /* 995 * Pressure flag: try to collapse. 996 * Technical note: it is used by multiple contexts non atomically. 997 * All the __sk_mem_schedule() is of this nature: accounting 998 * is strict, actions are advisory and have some latency. 999 */ 1000 int *memory_pressure; 1001 long *sysctl_mem; 1002 int *sysctl_wmem; 1003 int *sysctl_rmem; 1004 int max_header; 1005 bool no_autobind; 1006 1007 struct kmem_cache *slab; 1008 unsigned int obj_size; 1009 int slab_flags; 1010 1011 struct percpu_counter *orphan_count; 1012 1013 struct request_sock_ops *rsk_prot; 1014 struct timewait_sock_ops *twsk_prot; 1015 1016 union { 1017 struct inet_hashinfo *hashinfo; 1018 struct udp_table *udp_table; 1019 struct raw_hashinfo *raw_hash; 1020 } h; 1021 1022 struct module *owner; 1023 1024 char name[32]; 1025 1026 struct list_head node; 1027 #ifdef SOCK_REFCNT_DEBUG 1028 atomic_t socks; 1029 #endif 1030 #ifdef CONFIG_MEMCG_KMEM 1031 /* 1032 * cgroup specific init/deinit functions. Called once for all 1033 * protocols that implement it, from cgroups populate function. 1034 * This function has to setup any files the protocol want to 1035 * appear in the kmem cgroup filesystem. 1036 */ 1037 int (*init_cgroup)(struct mem_cgroup *memcg, 1038 struct cgroup_subsys *ss); 1039 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1040 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1041 #endif 1042 }; 1043 1044 /* 1045 * Bits in struct cg_proto.flags 1046 */ 1047 enum cg_proto_flags { 1048 /* Currently active and new sockets should be assigned to cgroups */ 1049 MEMCG_SOCK_ACTIVE, 1050 /* It was ever activated; we must disarm static keys on destruction */ 1051 MEMCG_SOCK_ACTIVATED, 1052 }; 1053 1054 struct cg_proto { 1055 struct page_counter memory_allocated; /* Current allocated memory. */ 1056 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1057 int memory_pressure; 1058 long sysctl_mem[3]; 1059 unsigned long flags; 1060 /* 1061 * memcg field is used to find which memcg we belong directly 1062 * Each memcg struct can hold more than one cg_proto, so container_of 1063 * won't really cut. 1064 * 1065 * The elegant solution would be having an inverse function to 1066 * proto_cgroup in struct proto, but that means polluting the structure 1067 * for everybody, instead of just for memcg users. 1068 */ 1069 struct mem_cgroup *memcg; 1070 }; 1071 1072 int proto_register(struct proto *prot, int alloc_slab); 1073 void proto_unregister(struct proto *prot); 1074 1075 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1076 { 1077 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1078 } 1079 1080 #ifdef SOCK_REFCNT_DEBUG 1081 static inline void sk_refcnt_debug_inc(struct sock *sk) 1082 { 1083 atomic_inc(&sk->sk_prot->socks); 1084 } 1085 1086 static inline void sk_refcnt_debug_dec(struct sock *sk) 1087 { 1088 atomic_dec(&sk->sk_prot->socks); 1089 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1090 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1091 } 1092 1093 static inline void sk_refcnt_debug_release(const struct sock *sk) 1094 { 1095 if (atomic_read(&sk->sk_refcnt) != 1) 1096 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1097 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1098 } 1099 #else /* SOCK_REFCNT_DEBUG */ 1100 #define sk_refcnt_debug_inc(sk) do { } while (0) 1101 #define sk_refcnt_debug_dec(sk) do { } while (0) 1102 #define sk_refcnt_debug_release(sk) do { } while (0) 1103 #endif /* SOCK_REFCNT_DEBUG */ 1104 1105 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1106 extern struct static_key memcg_socket_limit_enabled; 1107 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1108 struct cg_proto *cg_proto) 1109 { 1110 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1111 } 1112 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1113 #else 1114 #define mem_cgroup_sockets_enabled 0 1115 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1116 struct cg_proto *cg_proto) 1117 { 1118 return NULL; 1119 } 1120 #endif 1121 1122 static inline bool sk_stream_memory_free(const struct sock *sk) 1123 { 1124 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1125 return false; 1126 1127 return sk->sk_prot->stream_memory_free ? 1128 sk->sk_prot->stream_memory_free(sk) : true; 1129 } 1130 1131 static inline bool sk_stream_is_writeable(const struct sock *sk) 1132 { 1133 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1134 sk_stream_memory_free(sk); 1135 } 1136 1137 1138 static inline bool sk_has_memory_pressure(const struct sock *sk) 1139 { 1140 return sk->sk_prot->memory_pressure != NULL; 1141 } 1142 1143 static inline bool sk_under_memory_pressure(const struct sock *sk) 1144 { 1145 if (!sk->sk_prot->memory_pressure) 1146 return false; 1147 1148 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1149 return !!sk->sk_cgrp->memory_pressure; 1150 1151 return !!*sk->sk_prot->memory_pressure; 1152 } 1153 1154 static inline void sk_leave_memory_pressure(struct sock *sk) 1155 { 1156 int *memory_pressure = sk->sk_prot->memory_pressure; 1157 1158 if (!memory_pressure) 1159 return; 1160 1161 if (*memory_pressure) 1162 *memory_pressure = 0; 1163 1164 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1165 struct cg_proto *cg_proto = sk->sk_cgrp; 1166 struct proto *prot = sk->sk_prot; 1167 1168 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1169 cg_proto->memory_pressure = 0; 1170 } 1171 1172 } 1173 1174 static inline void sk_enter_memory_pressure(struct sock *sk) 1175 { 1176 if (!sk->sk_prot->enter_memory_pressure) 1177 return; 1178 1179 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1180 struct cg_proto *cg_proto = sk->sk_cgrp; 1181 struct proto *prot = sk->sk_prot; 1182 1183 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1184 cg_proto->memory_pressure = 1; 1185 } 1186 1187 sk->sk_prot->enter_memory_pressure(sk); 1188 } 1189 1190 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1191 { 1192 long *prot = sk->sk_prot->sysctl_mem; 1193 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1194 prot = sk->sk_cgrp->sysctl_mem; 1195 return prot[index]; 1196 } 1197 1198 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1199 unsigned long amt, 1200 int *parent_status) 1201 { 1202 page_counter_charge(&prot->memory_allocated, amt); 1203 1204 if (page_counter_read(&prot->memory_allocated) > 1205 prot->memory_allocated.limit) 1206 *parent_status = OVER_LIMIT; 1207 } 1208 1209 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1210 unsigned long amt) 1211 { 1212 page_counter_uncharge(&prot->memory_allocated, amt); 1213 } 1214 1215 static inline long 1216 sk_memory_allocated(const struct sock *sk) 1217 { 1218 struct proto *prot = sk->sk_prot; 1219 1220 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1221 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1222 1223 return atomic_long_read(prot->memory_allocated); 1224 } 1225 1226 static inline long 1227 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1228 { 1229 struct proto *prot = sk->sk_prot; 1230 1231 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1232 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1233 /* update the root cgroup regardless */ 1234 atomic_long_add_return(amt, prot->memory_allocated); 1235 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1236 } 1237 1238 return atomic_long_add_return(amt, prot->memory_allocated); 1239 } 1240 1241 static inline void 1242 sk_memory_allocated_sub(struct sock *sk, int amt) 1243 { 1244 struct proto *prot = sk->sk_prot; 1245 1246 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1247 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1248 1249 atomic_long_sub(amt, prot->memory_allocated); 1250 } 1251 1252 static inline void sk_sockets_allocated_dec(struct sock *sk) 1253 { 1254 struct proto *prot = sk->sk_prot; 1255 1256 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1257 struct cg_proto *cg_proto = sk->sk_cgrp; 1258 1259 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1260 percpu_counter_dec(&cg_proto->sockets_allocated); 1261 } 1262 1263 percpu_counter_dec(prot->sockets_allocated); 1264 } 1265 1266 static inline void sk_sockets_allocated_inc(struct sock *sk) 1267 { 1268 struct proto *prot = sk->sk_prot; 1269 1270 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1271 struct cg_proto *cg_proto = sk->sk_cgrp; 1272 1273 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1274 percpu_counter_inc(&cg_proto->sockets_allocated); 1275 } 1276 1277 percpu_counter_inc(prot->sockets_allocated); 1278 } 1279 1280 static inline int 1281 sk_sockets_allocated_read_positive(struct sock *sk) 1282 { 1283 struct proto *prot = sk->sk_prot; 1284 1285 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1286 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1287 1288 return percpu_counter_read_positive(prot->sockets_allocated); 1289 } 1290 1291 static inline int 1292 proto_sockets_allocated_sum_positive(struct proto *prot) 1293 { 1294 return percpu_counter_sum_positive(prot->sockets_allocated); 1295 } 1296 1297 static inline long 1298 proto_memory_allocated(struct proto *prot) 1299 { 1300 return atomic_long_read(prot->memory_allocated); 1301 } 1302 1303 static inline bool 1304 proto_memory_pressure(struct proto *prot) 1305 { 1306 if (!prot->memory_pressure) 1307 return false; 1308 return !!*prot->memory_pressure; 1309 } 1310 1311 1312 #ifdef CONFIG_PROC_FS 1313 /* Called with local bh disabled */ 1314 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1315 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1316 #else 1317 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1318 int inc) 1319 { 1320 } 1321 #endif 1322 1323 1324 /* With per-bucket locks this operation is not-atomic, so that 1325 * this version is not worse. 1326 */ 1327 static inline void __sk_prot_rehash(struct sock *sk) 1328 { 1329 sk->sk_prot->unhash(sk); 1330 sk->sk_prot->hash(sk); 1331 } 1332 1333 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1334 1335 /* About 10 seconds */ 1336 #define SOCK_DESTROY_TIME (10*HZ) 1337 1338 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1339 #define PROT_SOCK 1024 1340 1341 #define SHUTDOWN_MASK 3 1342 #define RCV_SHUTDOWN 1 1343 #define SEND_SHUTDOWN 2 1344 1345 #define SOCK_SNDBUF_LOCK 1 1346 #define SOCK_RCVBUF_LOCK 2 1347 #define SOCK_BINDADDR_LOCK 4 1348 #define SOCK_BINDPORT_LOCK 8 1349 1350 struct socket_alloc { 1351 struct socket socket; 1352 struct inode vfs_inode; 1353 }; 1354 1355 static inline struct socket *SOCKET_I(struct inode *inode) 1356 { 1357 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1358 } 1359 1360 static inline struct inode *SOCK_INODE(struct socket *socket) 1361 { 1362 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1363 } 1364 1365 /* 1366 * Functions for memory accounting 1367 */ 1368 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1369 void __sk_mem_reclaim(struct sock *sk); 1370 1371 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1372 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1373 #define SK_MEM_SEND 0 1374 #define SK_MEM_RECV 1 1375 1376 static inline int sk_mem_pages(int amt) 1377 { 1378 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1379 } 1380 1381 static inline bool sk_has_account(struct sock *sk) 1382 { 1383 /* return true if protocol supports memory accounting */ 1384 return !!sk->sk_prot->memory_allocated; 1385 } 1386 1387 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1388 { 1389 if (!sk_has_account(sk)) 1390 return true; 1391 return size <= sk->sk_forward_alloc || 1392 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1393 } 1394 1395 static inline bool 1396 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1397 { 1398 if (!sk_has_account(sk)) 1399 return true; 1400 return size<= sk->sk_forward_alloc || 1401 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1402 skb_pfmemalloc(skb); 1403 } 1404 1405 static inline void sk_mem_reclaim(struct sock *sk) 1406 { 1407 if (!sk_has_account(sk)) 1408 return; 1409 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1410 __sk_mem_reclaim(sk); 1411 } 1412 1413 static inline void sk_mem_reclaim_partial(struct sock *sk) 1414 { 1415 if (!sk_has_account(sk)) 1416 return; 1417 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1418 __sk_mem_reclaim(sk); 1419 } 1420 1421 static inline void sk_mem_charge(struct sock *sk, int size) 1422 { 1423 if (!sk_has_account(sk)) 1424 return; 1425 sk->sk_forward_alloc -= size; 1426 } 1427 1428 static inline void sk_mem_uncharge(struct sock *sk, int size) 1429 { 1430 if (!sk_has_account(sk)) 1431 return; 1432 sk->sk_forward_alloc += size; 1433 } 1434 1435 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1436 { 1437 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1438 sk->sk_wmem_queued -= skb->truesize; 1439 sk_mem_uncharge(sk, skb->truesize); 1440 __kfree_skb(skb); 1441 } 1442 1443 /* Used by processes to "lock" a socket state, so that 1444 * interrupts and bottom half handlers won't change it 1445 * from under us. It essentially blocks any incoming 1446 * packets, so that we won't get any new data or any 1447 * packets that change the state of the socket. 1448 * 1449 * While locked, BH processing will add new packets to 1450 * the backlog queue. This queue is processed by the 1451 * owner of the socket lock right before it is released. 1452 * 1453 * Since ~2.3.5 it is also exclusive sleep lock serializing 1454 * accesses from user process context. 1455 */ 1456 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1457 1458 static inline void sock_release_ownership(struct sock *sk) 1459 { 1460 sk->sk_lock.owned = 0; 1461 } 1462 1463 /* 1464 * Macro so as to not evaluate some arguments when 1465 * lockdep is not enabled. 1466 * 1467 * Mark both the sk_lock and the sk_lock.slock as a 1468 * per-address-family lock class. 1469 */ 1470 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1471 do { \ 1472 sk->sk_lock.owned = 0; \ 1473 init_waitqueue_head(&sk->sk_lock.wq); \ 1474 spin_lock_init(&(sk)->sk_lock.slock); \ 1475 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1476 sizeof((sk)->sk_lock)); \ 1477 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1478 (skey), (sname)); \ 1479 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1480 } while (0) 1481 1482 void lock_sock_nested(struct sock *sk, int subclass); 1483 1484 static inline void lock_sock(struct sock *sk) 1485 { 1486 lock_sock_nested(sk, 0); 1487 } 1488 1489 void release_sock(struct sock *sk); 1490 1491 /* BH context may only use the following locking interface. */ 1492 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1493 #define bh_lock_sock_nested(__sk) \ 1494 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1495 SINGLE_DEPTH_NESTING) 1496 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1497 1498 bool lock_sock_fast(struct sock *sk); 1499 /** 1500 * unlock_sock_fast - complement of lock_sock_fast 1501 * @sk: socket 1502 * @slow: slow mode 1503 * 1504 * fast unlock socket for user context. 1505 * If slow mode is on, we call regular release_sock() 1506 */ 1507 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1508 { 1509 if (slow) 1510 release_sock(sk); 1511 else 1512 spin_unlock_bh(&sk->sk_lock.slock); 1513 } 1514 1515 1516 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1517 struct proto *prot); 1518 void sk_free(struct sock *sk); 1519 void sk_release_kernel(struct sock *sk); 1520 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1521 1522 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1523 gfp_t priority); 1524 void sock_wfree(struct sk_buff *skb); 1525 void skb_orphan_partial(struct sk_buff *skb); 1526 void sock_rfree(struct sk_buff *skb); 1527 void sock_efree(struct sk_buff *skb); 1528 #ifdef CONFIG_INET 1529 void sock_edemux(struct sk_buff *skb); 1530 #else 1531 #define sock_edemux(skb) sock_efree(skb) 1532 #endif 1533 1534 int sock_setsockopt(struct socket *sock, int level, int op, 1535 char __user *optval, unsigned int optlen); 1536 1537 int sock_getsockopt(struct socket *sock, int level, int op, 1538 char __user *optval, int __user *optlen); 1539 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1540 int noblock, int *errcode); 1541 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1542 unsigned long data_len, int noblock, 1543 int *errcode, int max_page_order); 1544 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1545 void sock_kfree_s(struct sock *sk, void *mem, int size); 1546 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1547 void sk_send_sigurg(struct sock *sk); 1548 1549 /* 1550 * Functions to fill in entries in struct proto_ops when a protocol 1551 * does not implement a particular function. 1552 */ 1553 int sock_no_bind(struct socket *, struct sockaddr *, int); 1554 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1555 int sock_no_socketpair(struct socket *, struct socket *); 1556 int sock_no_accept(struct socket *, struct socket *, int); 1557 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1558 unsigned int sock_no_poll(struct file *, struct socket *, 1559 struct poll_table_struct *); 1560 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1561 int sock_no_listen(struct socket *, int); 1562 int sock_no_shutdown(struct socket *, int); 1563 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1564 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1565 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1566 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1567 int sock_no_mmap(struct file *file, struct socket *sock, 1568 struct vm_area_struct *vma); 1569 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1570 size_t size, int flags); 1571 1572 /* 1573 * Functions to fill in entries in struct proto_ops when a protocol 1574 * uses the inet style. 1575 */ 1576 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1577 char __user *optval, int __user *optlen); 1578 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1579 int flags); 1580 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1581 char __user *optval, unsigned int optlen); 1582 int compat_sock_common_getsockopt(struct socket *sock, int level, 1583 int optname, char __user *optval, int __user *optlen); 1584 int compat_sock_common_setsockopt(struct socket *sock, int level, 1585 int optname, char __user *optval, unsigned int optlen); 1586 1587 void sk_common_release(struct sock *sk); 1588 1589 /* 1590 * Default socket callbacks and setup code 1591 */ 1592 1593 /* Initialise core socket variables */ 1594 void sock_init_data(struct socket *sock, struct sock *sk); 1595 1596 /* 1597 * Socket reference counting postulates. 1598 * 1599 * * Each user of socket SHOULD hold a reference count. 1600 * * Each access point to socket (an hash table bucket, reference from a list, 1601 * running timer, skb in flight MUST hold a reference count. 1602 * * When reference count hits 0, it means it will never increase back. 1603 * * When reference count hits 0, it means that no references from 1604 * outside exist to this socket and current process on current CPU 1605 * is last user and may/should destroy this socket. 1606 * * sk_free is called from any context: process, BH, IRQ. When 1607 * it is called, socket has no references from outside -> sk_free 1608 * may release descendant resources allocated by the socket, but 1609 * to the time when it is called, socket is NOT referenced by any 1610 * hash tables, lists etc. 1611 * * Packets, delivered from outside (from network or from another process) 1612 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1613 * when they sit in queue. Otherwise, packets will leak to hole, when 1614 * socket is looked up by one cpu and unhasing is made by another CPU. 1615 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1616 * (leak to backlog). Packet socket does all the processing inside 1617 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1618 * use separate SMP lock, so that they are prone too. 1619 */ 1620 1621 /* Ungrab socket and destroy it, if it was the last reference. */ 1622 static inline void sock_put(struct sock *sk) 1623 { 1624 if (atomic_dec_and_test(&sk->sk_refcnt)) 1625 sk_free(sk); 1626 } 1627 /* Generic version of sock_put(), dealing with all sockets 1628 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1629 */ 1630 void sock_gen_put(struct sock *sk); 1631 1632 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1633 1634 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1635 { 1636 sk->sk_tx_queue_mapping = tx_queue; 1637 } 1638 1639 static inline void sk_tx_queue_clear(struct sock *sk) 1640 { 1641 sk->sk_tx_queue_mapping = -1; 1642 } 1643 1644 static inline int sk_tx_queue_get(const struct sock *sk) 1645 { 1646 return sk ? sk->sk_tx_queue_mapping : -1; 1647 } 1648 1649 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1650 { 1651 sk_tx_queue_clear(sk); 1652 sk->sk_socket = sock; 1653 } 1654 1655 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1656 { 1657 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1658 return &rcu_dereference_raw(sk->sk_wq)->wait; 1659 } 1660 /* Detach socket from process context. 1661 * Announce socket dead, detach it from wait queue and inode. 1662 * Note that parent inode held reference count on this struct sock, 1663 * we do not release it in this function, because protocol 1664 * probably wants some additional cleanups or even continuing 1665 * to work with this socket (TCP). 1666 */ 1667 static inline void sock_orphan(struct sock *sk) 1668 { 1669 write_lock_bh(&sk->sk_callback_lock); 1670 sock_set_flag(sk, SOCK_DEAD); 1671 sk_set_socket(sk, NULL); 1672 sk->sk_wq = NULL; 1673 write_unlock_bh(&sk->sk_callback_lock); 1674 } 1675 1676 static inline void sock_graft(struct sock *sk, struct socket *parent) 1677 { 1678 write_lock_bh(&sk->sk_callback_lock); 1679 sk->sk_wq = parent->wq; 1680 parent->sk = sk; 1681 sk_set_socket(sk, parent); 1682 security_sock_graft(sk, parent); 1683 write_unlock_bh(&sk->sk_callback_lock); 1684 } 1685 1686 kuid_t sock_i_uid(struct sock *sk); 1687 unsigned long sock_i_ino(struct sock *sk); 1688 1689 static inline struct dst_entry * 1690 __sk_dst_get(struct sock *sk) 1691 { 1692 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1693 lockdep_is_held(&sk->sk_lock.slock)); 1694 } 1695 1696 static inline struct dst_entry * 1697 sk_dst_get(struct sock *sk) 1698 { 1699 struct dst_entry *dst; 1700 1701 rcu_read_lock(); 1702 dst = rcu_dereference(sk->sk_dst_cache); 1703 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1704 dst = NULL; 1705 rcu_read_unlock(); 1706 return dst; 1707 } 1708 1709 static inline void dst_negative_advice(struct sock *sk) 1710 { 1711 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1712 1713 if (dst && dst->ops->negative_advice) { 1714 ndst = dst->ops->negative_advice(dst); 1715 1716 if (ndst != dst) { 1717 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1718 sk_tx_queue_clear(sk); 1719 } 1720 } 1721 } 1722 1723 static inline void 1724 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1725 { 1726 struct dst_entry *old_dst; 1727 1728 sk_tx_queue_clear(sk); 1729 /* 1730 * This can be called while sk is owned by the caller only, 1731 * with no state that can be checked in a rcu_dereference_check() cond 1732 */ 1733 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1734 rcu_assign_pointer(sk->sk_dst_cache, dst); 1735 dst_release(old_dst); 1736 } 1737 1738 static inline void 1739 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1740 { 1741 struct dst_entry *old_dst; 1742 1743 sk_tx_queue_clear(sk); 1744 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1745 dst_release(old_dst); 1746 } 1747 1748 static inline void 1749 __sk_dst_reset(struct sock *sk) 1750 { 1751 __sk_dst_set(sk, NULL); 1752 } 1753 1754 static inline void 1755 sk_dst_reset(struct sock *sk) 1756 { 1757 sk_dst_set(sk, NULL); 1758 } 1759 1760 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1761 1762 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1763 1764 bool sk_mc_loop(struct sock *sk); 1765 1766 static inline bool sk_can_gso(const struct sock *sk) 1767 { 1768 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1769 } 1770 1771 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1772 1773 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1774 { 1775 sk->sk_route_nocaps |= flags; 1776 sk->sk_route_caps &= ~flags; 1777 } 1778 1779 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1780 struct iov_iter *from, char *to, 1781 int copy, int offset) 1782 { 1783 if (skb->ip_summed == CHECKSUM_NONE) { 1784 __wsum csum = 0; 1785 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy) 1786 return -EFAULT; 1787 skb->csum = csum_block_add(skb->csum, csum, offset); 1788 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1789 if (copy_from_iter_nocache(to, copy, from) != copy) 1790 return -EFAULT; 1791 } else if (copy_from_iter(to, copy, from) != copy) 1792 return -EFAULT; 1793 1794 return 0; 1795 } 1796 1797 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1798 struct iov_iter *from, int copy) 1799 { 1800 int err, offset = skb->len; 1801 1802 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1803 copy, offset); 1804 if (err) 1805 __skb_trim(skb, offset); 1806 1807 return err; 1808 } 1809 1810 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1811 struct sk_buff *skb, 1812 struct page *page, 1813 int off, int copy) 1814 { 1815 int err; 1816 1817 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1818 copy, skb->len); 1819 if (err) 1820 return err; 1821 1822 skb->len += copy; 1823 skb->data_len += copy; 1824 skb->truesize += copy; 1825 sk->sk_wmem_queued += copy; 1826 sk_mem_charge(sk, copy); 1827 return 0; 1828 } 1829 1830 /** 1831 * sk_wmem_alloc_get - returns write allocations 1832 * @sk: socket 1833 * 1834 * Returns sk_wmem_alloc minus initial offset of one 1835 */ 1836 static inline int sk_wmem_alloc_get(const struct sock *sk) 1837 { 1838 return atomic_read(&sk->sk_wmem_alloc) - 1; 1839 } 1840 1841 /** 1842 * sk_rmem_alloc_get - returns read allocations 1843 * @sk: socket 1844 * 1845 * Returns sk_rmem_alloc 1846 */ 1847 static inline int sk_rmem_alloc_get(const struct sock *sk) 1848 { 1849 return atomic_read(&sk->sk_rmem_alloc); 1850 } 1851 1852 /** 1853 * sk_has_allocations - check if allocations are outstanding 1854 * @sk: socket 1855 * 1856 * Returns true if socket has write or read allocations 1857 */ 1858 static inline bool sk_has_allocations(const struct sock *sk) 1859 { 1860 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1861 } 1862 1863 /** 1864 * wq_has_sleeper - check if there are any waiting processes 1865 * @wq: struct socket_wq 1866 * 1867 * Returns true if socket_wq has waiting processes 1868 * 1869 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1870 * barrier call. They were added due to the race found within the tcp code. 1871 * 1872 * Consider following tcp code paths: 1873 * 1874 * CPU1 CPU2 1875 * 1876 * sys_select receive packet 1877 * ... ... 1878 * __add_wait_queue update tp->rcv_nxt 1879 * ... ... 1880 * tp->rcv_nxt check sock_def_readable 1881 * ... { 1882 * schedule rcu_read_lock(); 1883 * wq = rcu_dereference(sk->sk_wq); 1884 * if (wq && waitqueue_active(&wq->wait)) 1885 * wake_up_interruptible(&wq->wait) 1886 * ... 1887 * } 1888 * 1889 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1890 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1891 * could then endup calling schedule and sleep forever if there are no more 1892 * data on the socket. 1893 * 1894 */ 1895 static inline bool wq_has_sleeper(struct socket_wq *wq) 1896 { 1897 /* We need to be sure we are in sync with the 1898 * add_wait_queue modifications to the wait queue. 1899 * 1900 * This memory barrier is paired in the sock_poll_wait. 1901 */ 1902 smp_mb(); 1903 return wq && waitqueue_active(&wq->wait); 1904 } 1905 1906 /** 1907 * sock_poll_wait - place memory barrier behind the poll_wait call. 1908 * @filp: file 1909 * @wait_address: socket wait queue 1910 * @p: poll_table 1911 * 1912 * See the comments in the wq_has_sleeper function. 1913 */ 1914 static inline void sock_poll_wait(struct file *filp, 1915 wait_queue_head_t *wait_address, poll_table *p) 1916 { 1917 if (!poll_does_not_wait(p) && wait_address) { 1918 poll_wait(filp, wait_address, p); 1919 /* We need to be sure we are in sync with the 1920 * socket flags modification. 1921 * 1922 * This memory barrier is paired in the wq_has_sleeper. 1923 */ 1924 smp_mb(); 1925 } 1926 } 1927 1928 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1929 { 1930 if (sk->sk_txhash) { 1931 skb->l4_hash = 1; 1932 skb->hash = sk->sk_txhash; 1933 } 1934 } 1935 1936 /* 1937 * Queue a received datagram if it will fit. Stream and sequenced 1938 * protocols can't normally use this as they need to fit buffers in 1939 * and play with them. 1940 * 1941 * Inlined as it's very short and called for pretty much every 1942 * packet ever received. 1943 */ 1944 1945 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1946 { 1947 skb_orphan(skb); 1948 skb->sk = sk; 1949 skb->destructor = sock_wfree; 1950 skb_set_hash_from_sk(skb, sk); 1951 /* 1952 * We used to take a refcount on sk, but following operation 1953 * is enough to guarantee sk_free() wont free this sock until 1954 * all in-flight packets are completed 1955 */ 1956 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1957 } 1958 1959 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1960 { 1961 skb_orphan(skb); 1962 skb->sk = sk; 1963 skb->destructor = sock_rfree; 1964 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1965 sk_mem_charge(sk, skb->truesize); 1966 } 1967 1968 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 1969 unsigned long expires); 1970 1971 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 1972 1973 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1974 1975 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1976 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 1977 1978 /* 1979 * Recover an error report and clear atomically 1980 */ 1981 1982 static inline int sock_error(struct sock *sk) 1983 { 1984 int err; 1985 if (likely(!sk->sk_err)) 1986 return 0; 1987 err = xchg(&sk->sk_err, 0); 1988 return -err; 1989 } 1990 1991 static inline unsigned long sock_wspace(struct sock *sk) 1992 { 1993 int amt = 0; 1994 1995 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1996 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1997 if (amt < 0) 1998 amt = 0; 1999 } 2000 return amt; 2001 } 2002 2003 static inline void sk_wake_async(struct sock *sk, int how, int band) 2004 { 2005 if (sock_flag(sk, SOCK_FASYNC)) 2006 sock_wake_async(sk->sk_socket, how, band); 2007 } 2008 2009 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2010 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2011 * Note: for send buffers, TCP works better if we can build two skbs at 2012 * minimum. 2013 */ 2014 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2015 2016 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2017 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2018 2019 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2020 { 2021 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2022 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2023 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2024 } 2025 } 2026 2027 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2028 2029 /** 2030 * sk_page_frag - return an appropriate page_frag 2031 * @sk: socket 2032 * 2033 * If socket allocation mode allows current thread to sleep, it means its 2034 * safe to use the per task page_frag instead of the per socket one. 2035 */ 2036 static inline struct page_frag *sk_page_frag(struct sock *sk) 2037 { 2038 if (sk->sk_allocation & __GFP_WAIT) 2039 return ¤t->task_frag; 2040 2041 return &sk->sk_frag; 2042 } 2043 2044 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2045 2046 /* 2047 * Default write policy as shown to user space via poll/select/SIGIO 2048 */ 2049 static inline bool sock_writeable(const struct sock *sk) 2050 { 2051 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2052 } 2053 2054 static inline gfp_t gfp_any(void) 2055 { 2056 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2057 } 2058 2059 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2060 { 2061 return noblock ? 0 : sk->sk_rcvtimeo; 2062 } 2063 2064 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2065 { 2066 return noblock ? 0 : sk->sk_sndtimeo; 2067 } 2068 2069 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2070 { 2071 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2072 } 2073 2074 /* Alas, with timeout socket operations are not restartable. 2075 * Compare this to poll(). 2076 */ 2077 static inline int sock_intr_errno(long timeo) 2078 { 2079 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2080 } 2081 2082 struct sock_skb_cb { 2083 u32 dropcount; 2084 }; 2085 2086 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2087 * using skb->cb[] would keep using it directly and utilize its 2088 * alignement guarantee. 2089 */ 2090 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2091 sizeof(struct sock_skb_cb))) 2092 2093 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2094 SOCK_SKB_CB_OFFSET)) 2095 2096 #define sock_skb_cb_check_size(size) \ 2097 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2098 2099 static inline void 2100 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2101 { 2102 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops); 2103 } 2104 2105 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2106 struct sk_buff *skb); 2107 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2108 struct sk_buff *skb); 2109 2110 static inline void 2111 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2112 { 2113 ktime_t kt = skb->tstamp; 2114 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2115 2116 /* 2117 * generate control messages if 2118 * - receive time stamping in software requested 2119 * - software time stamp available and wanted 2120 * - hardware time stamps available and wanted 2121 */ 2122 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2123 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2124 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2125 (hwtstamps->hwtstamp.tv64 && 2126 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2127 __sock_recv_timestamp(msg, sk, skb); 2128 else 2129 sk->sk_stamp = kt; 2130 2131 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2132 __sock_recv_wifi_status(msg, sk, skb); 2133 } 2134 2135 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2136 struct sk_buff *skb); 2137 2138 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2139 struct sk_buff *skb) 2140 { 2141 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2142 (1UL << SOCK_RCVTSTAMP)) 2143 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2144 SOF_TIMESTAMPING_RAW_HARDWARE) 2145 2146 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2147 __sock_recv_ts_and_drops(msg, sk, skb); 2148 else 2149 sk->sk_stamp = skb->tstamp; 2150 } 2151 2152 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags); 2153 2154 /** 2155 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2156 * @sk: socket sending this packet 2157 * @tx_flags: completed with instructions for time stamping 2158 * 2159 * Note : callers should take care of initial *tx_flags value (usually 0) 2160 */ 2161 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 2162 { 2163 if (unlikely(sk->sk_tsflags)) 2164 __sock_tx_timestamp(sk, tx_flags); 2165 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2166 *tx_flags |= SKBTX_WIFI_STATUS; 2167 } 2168 2169 /** 2170 * sk_eat_skb - Release a skb if it is no longer needed 2171 * @sk: socket to eat this skb from 2172 * @skb: socket buffer to eat 2173 * 2174 * This routine must be called with interrupts disabled or with the socket 2175 * locked so that the sk_buff queue operation is ok. 2176 */ 2177 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2178 { 2179 __skb_unlink(skb, &sk->sk_receive_queue); 2180 __kfree_skb(skb); 2181 } 2182 2183 static inline 2184 struct net *sock_net(const struct sock *sk) 2185 { 2186 return read_pnet(&sk->sk_net); 2187 } 2188 2189 static inline 2190 void sock_net_set(struct sock *sk, struct net *net) 2191 { 2192 write_pnet(&sk->sk_net, net); 2193 } 2194 2195 /* 2196 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2197 * They should not hold a reference to a namespace in order to allow 2198 * to stop it. 2199 * Sockets after sk_change_net should be released using sk_release_kernel 2200 */ 2201 static inline void sk_change_net(struct sock *sk, struct net *net) 2202 { 2203 struct net *current_net = sock_net(sk); 2204 2205 if (!net_eq(current_net, net)) { 2206 put_net(current_net); 2207 sock_net_set(sk, net); 2208 } 2209 } 2210 2211 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2212 { 2213 if (skb->sk) { 2214 struct sock *sk = skb->sk; 2215 2216 skb->destructor = NULL; 2217 skb->sk = NULL; 2218 return sk; 2219 } 2220 return NULL; 2221 } 2222 2223 /* This helper checks if a socket is a full socket, 2224 * ie _not_ a timewait or request socket. 2225 */ 2226 static inline bool sk_fullsock(const struct sock *sk) 2227 { 2228 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2229 } 2230 2231 void sock_enable_timestamp(struct sock *sk, int flag); 2232 int sock_get_timestamp(struct sock *, struct timeval __user *); 2233 int sock_get_timestampns(struct sock *, struct timespec __user *); 2234 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2235 int type); 2236 2237 bool sk_ns_capable(const struct sock *sk, 2238 struct user_namespace *user_ns, int cap); 2239 bool sk_capable(const struct sock *sk, int cap); 2240 bool sk_net_capable(const struct sock *sk, int cap); 2241 2242 extern __u32 sysctl_wmem_max; 2243 extern __u32 sysctl_rmem_max; 2244 2245 extern int sysctl_tstamp_allow_data; 2246 extern int sysctl_optmem_max; 2247 2248 extern __u32 sysctl_wmem_default; 2249 extern __u32 sysctl_rmem_default; 2250 2251 #endif /* _SOCK_H */ 2252