1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/kernel.h> 44 #include <linux/list.h> 45 #include <linux/timer.h> 46 #include <linux/cache.h> 47 #include <linux/module.h> 48 #include <linux/lockdep.h> 49 #include <linux/netdevice.h> 50 #include <linux/pcounter.h> 51 #include <linux/skbuff.h> /* struct sk_buff */ 52 #include <linux/mm.h> 53 #include <linux/security.h> 54 55 #include <linux/filter.h> 56 57 #include <asm/atomic.h> 58 #include <net/dst.h> 59 #include <net/checksum.h> 60 61 /* 62 * This structure really needs to be cleaned up. 63 * Most of it is for TCP, and not used by any of 64 * the other protocols. 65 */ 66 67 /* Define this to get the SOCK_DBG debugging facility. */ 68 #define SOCK_DEBUGGING 69 #ifdef SOCK_DEBUGGING 70 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 71 printk(KERN_DEBUG msg); } while (0) 72 #else 73 #define SOCK_DEBUG(sk, msg...) do { } while (0) 74 #endif 75 76 /* This is the per-socket lock. The spinlock provides a synchronization 77 * between user contexts and software interrupt processing, whereas the 78 * mini-semaphore synchronizes multiple users amongst themselves. 79 */ 80 typedef struct { 81 spinlock_t slock; 82 int owned; 83 wait_queue_head_t wq; 84 /* 85 * We express the mutex-alike socket_lock semantics 86 * to the lock validator by explicitly managing 87 * the slock as a lock variant (in addition to 88 * the slock itself): 89 */ 90 #ifdef CONFIG_DEBUG_LOCK_ALLOC 91 struct lockdep_map dep_map; 92 #endif 93 } socket_lock_t; 94 95 struct sock; 96 struct proto; 97 struct net; 98 99 /** 100 * struct sock_common - minimal network layer representation of sockets 101 * @skc_family: network address family 102 * @skc_state: Connection state 103 * @skc_reuse: %SO_REUSEADDR setting 104 * @skc_bound_dev_if: bound device index if != 0 105 * @skc_node: main hash linkage for various protocol lookup tables 106 * @skc_bind_node: bind hash linkage for various protocol lookup tables 107 * @skc_refcnt: reference count 108 * @skc_hash: hash value used with various protocol lookup tables 109 * @skc_prot: protocol handlers inside a network family 110 * @skc_net: reference to the network namespace of this socket 111 * 112 * This is the minimal network layer representation of sockets, the header 113 * for struct sock and struct inet_timewait_sock. 114 */ 115 struct sock_common { 116 unsigned short skc_family; 117 volatile unsigned char skc_state; 118 unsigned char skc_reuse; 119 int skc_bound_dev_if; 120 struct hlist_node skc_node; 121 struct hlist_node skc_bind_node; 122 atomic_t skc_refcnt; 123 unsigned int skc_hash; 124 struct proto *skc_prot; 125 struct net *skc_net; 126 }; 127 128 /** 129 * struct sock - network layer representation of sockets 130 * @__sk_common: shared layout with inet_timewait_sock 131 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 132 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 133 * @sk_lock: synchronizer 134 * @sk_rcvbuf: size of receive buffer in bytes 135 * @sk_sleep: sock wait queue 136 * @sk_dst_cache: destination cache 137 * @sk_dst_lock: destination cache lock 138 * @sk_policy: flow policy 139 * @sk_rmem_alloc: receive queue bytes committed 140 * @sk_receive_queue: incoming packets 141 * @sk_wmem_alloc: transmit queue bytes committed 142 * @sk_write_queue: Packet sending queue 143 * @sk_async_wait_queue: DMA copied packets 144 * @sk_omem_alloc: "o" is "option" or "other" 145 * @sk_wmem_queued: persistent queue size 146 * @sk_forward_alloc: space allocated forward 147 * @sk_allocation: allocation mode 148 * @sk_sndbuf: size of send buffer in bytes 149 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 150 * %SO_OOBINLINE settings 151 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 152 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 153 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 154 * @sk_lingertime: %SO_LINGER l_linger setting 155 * @sk_backlog: always used with the per-socket spinlock held 156 * @sk_callback_lock: used with the callbacks in the end of this struct 157 * @sk_error_queue: rarely used 158 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 159 * IPV6_ADDRFORM for instance) 160 * @sk_err: last error 161 * @sk_err_soft: errors that don't cause failure but are the cause of a 162 * persistent failure not just 'timed out' 163 * @sk_drops: raw drops counter 164 * @sk_ack_backlog: current listen backlog 165 * @sk_max_ack_backlog: listen backlog set in listen() 166 * @sk_priority: %SO_PRIORITY setting 167 * @sk_type: socket type (%SOCK_STREAM, etc) 168 * @sk_protocol: which protocol this socket belongs in this network family 169 * @sk_peercred: %SO_PEERCRED setting 170 * @sk_rcvlowat: %SO_RCVLOWAT setting 171 * @sk_rcvtimeo: %SO_RCVTIMEO setting 172 * @sk_sndtimeo: %SO_SNDTIMEO setting 173 * @sk_filter: socket filtering instructions 174 * @sk_protinfo: private area, net family specific, when not using slab 175 * @sk_timer: sock cleanup timer 176 * @sk_stamp: time stamp of last packet received 177 * @sk_socket: Identd and reporting IO signals 178 * @sk_user_data: RPC layer private data 179 * @sk_sndmsg_page: cached page for sendmsg 180 * @sk_sndmsg_off: cached offset for sendmsg 181 * @sk_send_head: front of stuff to transmit 182 * @sk_security: used by security modules 183 * @sk_write_pending: a write to stream socket waits to start 184 * @sk_state_change: callback to indicate change in the state of the sock 185 * @sk_data_ready: callback to indicate there is data to be processed 186 * @sk_write_space: callback to indicate there is bf sending space available 187 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 188 * @sk_backlog_rcv: callback to process the backlog 189 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 190 */ 191 struct sock { 192 /* 193 * Now struct inet_timewait_sock also uses sock_common, so please just 194 * don't add nothing before this first member (__sk_common) --acme 195 */ 196 struct sock_common __sk_common; 197 #define sk_family __sk_common.skc_family 198 #define sk_state __sk_common.skc_state 199 #define sk_reuse __sk_common.skc_reuse 200 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 201 #define sk_node __sk_common.skc_node 202 #define sk_bind_node __sk_common.skc_bind_node 203 #define sk_refcnt __sk_common.skc_refcnt 204 #define sk_hash __sk_common.skc_hash 205 #define sk_prot __sk_common.skc_prot 206 #define sk_net __sk_common.skc_net 207 unsigned char sk_shutdown : 2, 208 sk_no_check : 2, 209 sk_userlocks : 4; 210 unsigned char sk_protocol; 211 unsigned short sk_type; 212 int sk_rcvbuf; 213 socket_lock_t sk_lock; 214 /* 215 * The backlog queue is special, it is always used with 216 * the per-socket spinlock held and requires low latency 217 * access. Therefore we special case it's implementation. 218 */ 219 struct { 220 struct sk_buff *head; 221 struct sk_buff *tail; 222 } sk_backlog; 223 wait_queue_head_t *sk_sleep; 224 struct dst_entry *sk_dst_cache; 225 struct xfrm_policy *sk_policy[2]; 226 rwlock_t sk_dst_lock; 227 atomic_t sk_rmem_alloc; 228 atomic_t sk_wmem_alloc; 229 atomic_t sk_omem_alloc; 230 int sk_sndbuf; 231 struct sk_buff_head sk_receive_queue; 232 struct sk_buff_head sk_write_queue; 233 struct sk_buff_head sk_async_wait_queue; 234 int sk_wmem_queued; 235 int sk_forward_alloc; 236 gfp_t sk_allocation; 237 int sk_route_caps; 238 int sk_gso_type; 239 int sk_rcvlowat; 240 unsigned long sk_flags; 241 unsigned long sk_lingertime; 242 struct sk_buff_head sk_error_queue; 243 struct proto *sk_prot_creator; 244 rwlock_t sk_callback_lock; 245 int sk_err, 246 sk_err_soft; 247 atomic_t sk_drops; 248 unsigned short sk_ack_backlog; 249 unsigned short sk_max_ack_backlog; 250 __u32 sk_priority; 251 struct ucred sk_peercred; 252 long sk_rcvtimeo; 253 long sk_sndtimeo; 254 struct sk_filter *sk_filter; 255 void *sk_protinfo; 256 struct timer_list sk_timer; 257 ktime_t sk_stamp; 258 struct socket *sk_socket; 259 void *sk_user_data; 260 struct page *sk_sndmsg_page; 261 struct sk_buff *sk_send_head; 262 __u32 sk_sndmsg_off; 263 int sk_write_pending; 264 void *sk_security; 265 __u32 sk_mark; 266 /* XXX 4 bytes hole on 64 bit */ 267 void (*sk_state_change)(struct sock *sk); 268 void (*sk_data_ready)(struct sock *sk, int bytes); 269 void (*sk_write_space)(struct sock *sk); 270 void (*sk_error_report)(struct sock *sk); 271 int (*sk_backlog_rcv)(struct sock *sk, 272 struct sk_buff *skb); 273 void (*sk_destruct)(struct sock *sk); 274 }; 275 276 /* 277 * Hashed lists helper routines 278 */ 279 static inline struct sock *__sk_head(const struct hlist_head *head) 280 { 281 return hlist_entry(head->first, struct sock, sk_node); 282 } 283 284 static inline struct sock *sk_head(const struct hlist_head *head) 285 { 286 return hlist_empty(head) ? NULL : __sk_head(head); 287 } 288 289 static inline struct sock *sk_next(const struct sock *sk) 290 { 291 return sk->sk_node.next ? 292 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 293 } 294 295 static inline int sk_unhashed(const struct sock *sk) 296 { 297 return hlist_unhashed(&sk->sk_node); 298 } 299 300 static inline int sk_hashed(const struct sock *sk) 301 { 302 return !sk_unhashed(sk); 303 } 304 305 static __inline__ void sk_node_init(struct hlist_node *node) 306 { 307 node->pprev = NULL; 308 } 309 310 static __inline__ void __sk_del_node(struct sock *sk) 311 { 312 __hlist_del(&sk->sk_node); 313 } 314 315 static __inline__ int __sk_del_node_init(struct sock *sk) 316 { 317 if (sk_hashed(sk)) { 318 __sk_del_node(sk); 319 sk_node_init(&sk->sk_node); 320 return 1; 321 } 322 return 0; 323 } 324 325 /* Grab socket reference count. This operation is valid only 326 when sk is ALREADY grabbed f.e. it is found in hash table 327 or a list and the lookup is made under lock preventing hash table 328 modifications. 329 */ 330 331 static inline void sock_hold(struct sock *sk) 332 { 333 atomic_inc(&sk->sk_refcnt); 334 } 335 336 /* Ungrab socket in the context, which assumes that socket refcnt 337 cannot hit zero, f.e. it is true in context of any socketcall. 338 */ 339 static inline void __sock_put(struct sock *sk) 340 { 341 atomic_dec(&sk->sk_refcnt); 342 } 343 344 static __inline__ int sk_del_node_init(struct sock *sk) 345 { 346 int rc = __sk_del_node_init(sk); 347 348 if (rc) { 349 /* paranoid for a while -acme */ 350 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 351 __sock_put(sk); 352 } 353 return rc; 354 } 355 356 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 357 { 358 hlist_add_head(&sk->sk_node, list); 359 } 360 361 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 362 { 363 sock_hold(sk); 364 __sk_add_node(sk, list); 365 } 366 367 static __inline__ void __sk_del_bind_node(struct sock *sk) 368 { 369 __hlist_del(&sk->sk_bind_node); 370 } 371 372 static __inline__ void sk_add_bind_node(struct sock *sk, 373 struct hlist_head *list) 374 { 375 hlist_add_head(&sk->sk_bind_node, list); 376 } 377 378 #define sk_for_each(__sk, node, list) \ 379 hlist_for_each_entry(__sk, node, list, sk_node) 380 #define sk_for_each_from(__sk, node) \ 381 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 382 hlist_for_each_entry_from(__sk, node, sk_node) 383 #define sk_for_each_continue(__sk, node) \ 384 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 385 hlist_for_each_entry_continue(__sk, node, sk_node) 386 #define sk_for_each_safe(__sk, node, tmp, list) \ 387 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 388 #define sk_for_each_bound(__sk, node, list) \ 389 hlist_for_each_entry(__sk, node, list, sk_bind_node) 390 391 /* Sock flags */ 392 enum sock_flags { 393 SOCK_DEAD, 394 SOCK_DONE, 395 SOCK_URGINLINE, 396 SOCK_KEEPOPEN, 397 SOCK_LINGER, 398 SOCK_DESTROY, 399 SOCK_BROADCAST, 400 SOCK_TIMESTAMP, 401 SOCK_ZAPPED, 402 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 403 SOCK_DBG, /* %SO_DEBUG setting */ 404 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 405 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 406 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 407 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 408 }; 409 410 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 411 { 412 nsk->sk_flags = osk->sk_flags; 413 } 414 415 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 416 { 417 __set_bit(flag, &sk->sk_flags); 418 } 419 420 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 421 { 422 __clear_bit(flag, &sk->sk_flags); 423 } 424 425 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 426 { 427 return test_bit(flag, &sk->sk_flags); 428 } 429 430 static inline void sk_acceptq_removed(struct sock *sk) 431 { 432 sk->sk_ack_backlog--; 433 } 434 435 static inline void sk_acceptq_added(struct sock *sk) 436 { 437 sk->sk_ack_backlog++; 438 } 439 440 static inline int sk_acceptq_is_full(struct sock *sk) 441 { 442 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 443 } 444 445 /* 446 * Compute minimal free write space needed to queue new packets. 447 */ 448 static inline int sk_stream_min_wspace(struct sock *sk) 449 { 450 return sk->sk_wmem_queued >> 1; 451 } 452 453 static inline int sk_stream_wspace(struct sock *sk) 454 { 455 return sk->sk_sndbuf - sk->sk_wmem_queued; 456 } 457 458 extern void sk_stream_write_space(struct sock *sk); 459 460 static inline int sk_stream_memory_free(struct sock *sk) 461 { 462 return sk->sk_wmem_queued < sk->sk_sndbuf; 463 } 464 465 /* The per-socket spinlock must be held here. */ 466 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 467 { 468 if (!sk->sk_backlog.tail) { 469 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 470 } else { 471 sk->sk_backlog.tail->next = skb; 472 sk->sk_backlog.tail = skb; 473 } 474 skb->next = NULL; 475 } 476 477 #define sk_wait_event(__sk, __timeo, __condition) \ 478 ({ int __rc; \ 479 release_sock(__sk); \ 480 __rc = __condition; \ 481 if (!__rc) { \ 482 *(__timeo) = schedule_timeout(*(__timeo)); \ 483 } \ 484 lock_sock(__sk); \ 485 __rc = __condition; \ 486 __rc; \ 487 }) 488 489 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 490 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 491 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 492 extern int sk_stream_error(struct sock *sk, int flags, int err); 493 extern void sk_stream_kill_queues(struct sock *sk); 494 495 extern int sk_wait_data(struct sock *sk, long *timeo); 496 497 struct request_sock_ops; 498 struct timewait_sock_ops; 499 500 /* Networking protocol blocks we attach to sockets. 501 * socket layer -> transport layer interface 502 * transport -> network interface is defined by struct inet_proto 503 */ 504 struct proto { 505 void (*close)(struct sock *sk, 506 long timeout); 507 int (*connect)(struct sock *sk, 508 struct sockaddr *uaddr, 509 int addr_len); 510 int (*disconnect)(struct sock *sk, int flags); 511 512 struct sock * (*accept) (struct sock *sk, int flags, int *err); 513 514 int (*ioctl)(struct sock *sk, int cmd, 515 unsigned long arg); 516 int (*init)(struct sock *sk); 517 int (*destroy)(struct sock *sk); 518 void (*shutdown)(struct sock *sk, int how); 519 int (*setsockopt)(struct sock *sk, int level, 520 int optname, char __user *optval, 521 int optlen); 522 int (*getsockopt)(struct sock *sk, int level, 523 int optname, char __user *optval, 524 int __user *option); 525 int (*compat_setsockopt)(struct sock *sk, 526 int level, 527 int optname, char __user *optval, 528 int optlen); 529 int (*compat_getsockopt)(struct sock *sk, 530 int level, 531 int optname, char __user *optval, 532 int __user *option); 533 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 534 struct msghdr *msg, size_t len); 535 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 536 struct msghdr *msg, 537 size_t len, int noblock, int flags, 538 int *addr_len); 539 int (*sendpage)(struct sock *sk, struct page *page, 540 int offset, size_t size, int flags); 541 int (*bind)(struct sock *sk, 542 struct sockaddr *uaddr, int addr_len); 543 544 int (*backlog_rcv) (struct sock *sk, 545 struct sk_buff *skb); 546 547 /* Keeping track of sk's, looking them up, and port selection methods. */ 548 void (*hash)(struct sock *sk); 549 void (*unhash)(struct sock *sk); 550 int (*get_port)(struct sock *sk, unsigned short snum); 551 552 /* Keeping track of sockets in use */ 553 #ifdef CONFIG_PROC_FS 554 struct pcounter inuse; 555 #endif 556 557 /* Memory pressure */ 558 void (*enter_memory_pressure)(void); 559 atomic_t *memory_allocated; /* Current allocated memory. */ 560 atomic_t *sockets_allocated; /* Current number of sockets. */ 561 /* 562 * Pressure flag: try to collapse. 563 * Technical note: it is used by multiple contexts non atomically. 564 * All the __sk_mem_schedule() is of this nature: accounting 565 * is strict, actions are advisory and have some latency. 566 */ 567 int *memory_pressure; 568 int *sysctl_mem; 569 int *sysctl_wmem; 570 int *sysctl_rmem; 571 int max_header; 572 573 struct kmem_cache *slab; 574 unsigned int obj_size; 575 576 atomic_t *orphan_count; 577 578 struct request_sock_ops *rsk_prot; 579 struct timewait_sock_ops *twsk_prot; 580 581 struct module *owner; 582 583 char name[32]; 584 585 struct list_head node; 586 #ifdef SOCK_REFCNT_DEBUG 587 atomic_t socks; 588 #endif 589 }; 590 591 extern int proto_register(struct proto *prot, int alloc_slab); 592 extern void proto_unregister(struct proto *prot); 593 594 #ifdef SOCK_REFCNT_DEBUG 595 static inline void sk_refcnt_debug_inc(struct sock *sk) 596 { 597 atomic_inc(&sk->sk_prot->socks); 598 } 599 600 static inline void sk_refcnt_debug_dec(struct sock *sk) 601 { 602 atomic_dec(&sk->sk_prot->socks); 603 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 604 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 605 } 606 607 static inline void sk_refcnt_debug_release(const struct sock *sk) 608 { 609 if (atomic_read(&sk->sk_refcnt) != 1) 610 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 611 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 612 } 613 #else /* SOCK_REFCNT_DEBUG */ 614 #define sk_refcnt_debug_inc(sk) do { } while (0) 615 #define sk_refcnt_debug_dec(sk) do { } while (0) 616 #define sk_refcnt_debug_release(sk) do { } while (0) 617 #endif /* SOCK_REFCNT_DEBUG */ 618 619 620 #ifdef CONFIG_PROC_FS 621 # define DEFINE_PROTO_INUSE(NAME) DEFINE_PCOUNTER(NAME) 622 # define REF_PROTO_INUSE(NAME) PCOUNTER_MEMBER_INITIALIZER(NAME, .inuse) 623 /* Called with local bh disabled */ 624 static inline void sock_prot_inuse_add(struct proto *prot, int inc) 625 { 626 pcounter_add(&prot->inuse, inc); 627 } 628 static inline int sock_prot_inuse_init(struct proto *proto) 629 { 630 return pcounter_alloc(&proto->inuse); 631 } 632 static inline int sock_prot_inuse_get(struct proto *proto) 633 { 634 return pcounter_getval(&proto->inuse); 635 } 636 static inline void sock_prot_inuse_free(struct proto *proto) 637 { 638 pcounter_free(&proto->inuse); 639 } 640 #else 641 # define DEFINE_PROTO_INUSE(NAME) 642 # define REF_PROTO_INUSE(NAME) 643 static void inline sock_prot_inuse_add(struct proto *prot, int inc) 644 { 645 } 646 static int inline sock_prot_inuse_init(struct proto *proto) 647 { 648 return 0; 649 } 650 static void inline sock_prot_inuse_free(struct proto *proto) 651 { 652 } 653 #endif 654 655 656 /* With per-bucket locks this operation is not-atomic, so that 657 * this version is not worse. 658 */ 659 static inline void __sk_prot_rehash(struct sock *sk) 660 { 661 sk->sk_prot->unhash(sk); 662 sk->sk_prot->hash(sk); 663 } 664 665 /* About 10 seconds */ 666 #define SOCK_DESTROY_TIME (10*HZ) 667 668 /* Sockets 0-1023 can't be bound to unless you are superuser */ 669 #define PROT_SOCK 1024 670 671 #define SHUTDOWN_MASK 3 672 #define RCV_SHUTDOWN 1 673 #define SEND_SHUTDOWN 2 674 675 #define SOCK_SNDBUF_LOCK 1 676 #define SOCK_RCVBUF_LOCK 2 677 #define SOCK_BINDADDR_LOCK 4 678 #define SOCK_BINDPORT_LOCK 8 679 680 /* sock_iocb: used to kick off async processing of socket ios */ 681 struct sock_iocb { 682 struct list_head list; 683 684 int flags; 685 int size; 686 struct socket *sock; 687 struct sock *sk; 688 struct scm_cookie *scm; 689 struct msghdr *msg, async_msg; 690 struct kiocb *kiocb; 691 }; 692 693 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 694 { 695 return (struct sock_iocb *)iocb->private; 696 } 697 698 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 699 { 700 return si->kiocb; 701 } 702 703 struct socket_alloc { 704 struct socket socket; 705 struct inode vfs_inode; 706 }; 707 708 static inline struct socket *SOCKET_I(struct inode *inode) 709 { 710 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 711 } 712 713 static inline struct inode *SOCK_INODE(struct socket *socket) 714 { 715 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 716 } 717 718 /* 719 * Functions for memory accounting 720 */ 721 extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 722 extern void __sk_mem_reclaim(struct sock *sk); 723 724 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 725 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 726 #define SK_MEM_SEND 0 727 #define SK_MEM_RECV 1 728 729 static inline int sk_mem_pages(int amt) 730 { 731 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 732 } 733 734 static inline int sk_has_account(struct sock *sk) 735 { 736 /* return true if protocol supports memory accounting */ 737 return !!sk->sk_prot->memory_allocated; 738 } 739 740 static inline int sk_wmem_schedule(struct sock *sk, int size) 741 { 742 if (!sk_has_account(sk)) 743 return 1; 744 return size <= sk->sk_forward_alloc || 745 __sk_mem_schedule(sk, size, SK_MEM_SEND); 746 } 747 748 static inline int sk_rmem_schedule(struct sock *sk, int size) 749 { 750 if (!sk_has_account(sk)) 751 return 1; 752 return size <= sk->sk_forward_alloc || 753 __sk_mem_schedule(sk, size, SK_MEM_RECV); 754 } 755 756 static inline void sk_mem_reclaim(struct sock *sk) 757 { 758 if (!sk_has_account(sk)) 759 return; 760 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 761 __sk_mem_reclaim(sk); 762 } 763 764 static inline void sk_mem_reclaim_partial(struct sock *sk) 765 { 766 if (!sk_has_account(sk)) 767 return; 768 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 769 __sk_mem_reclaim(sk); 770 } 771 772 static inline void sk_mem_charge(struct sock *sk, int size) 773 { 774 if (!sk_has_account(sk)) 775 return; 776 sk->sk_forward_alloc -= size; 777 } 778 779 static inline void sk_mem_uncharge(struct sock *sk, int size) 780 { 781 if (!sk_has_account(sk)) 782 return; 783 sk->sk_forward_alloc += size; 784 } 785 786 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 787 { 788 skb_truesize_check(skb); 789 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 790 sk->sk_wmem_queued -= skb->truesize; 791 sk_mem_uncharge(sk, skb->truesize); 792 __kfree_skb(skb); 793 } 794 795 /* Used by processes to "lock" a socket state, so that 796 * interrupts and bottom half handlers won't change it 797 * from under us. It essentially blocks any incoming 798 * packets, so that we won't get any new data or any 799 * packets that change the state of the socket. 800 * 801 * While locked, BH processing will add new packets to 802 * the backlog queue. This queue is processed by the 803 * owner of the socket lock right before it is released. 804 * 805 * Since ~2.3.5 it is also exclusive sleep lock serializing 806 * accesses from user process context. 807 */ 808 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 809 810 /* 811 * Macro so as to not evaluate some arguments when 812 * lockdep is not enabled. 813 * 814 * Mark both the sk_lock and the sk_lock.slock as a 815 * per-address-family lock class. 816 */ 817 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 818 do { \ 819 sk->sk_lock.owned = 0; \ 820 init_waitqueue_head(&sk->sk_lock.wq); \ 821 spin_lock_init(&(sk)->sk_lock.slock); \ 822 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 823 sizeof((sk)->sk_lock)); \ 824 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 825 (skey), (sname)); \ 826 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 827 } while (0) 828 829 extern void lock_sock_nested(struct sock *sk, int subclass); 830 831 static inline void lock_sock(struct sock *sk) 832 { 833 lock_sock_nested(sk, 0); 834 } 835 836 extern void release_sock(struct sock *sk); 837 838 /* BH context may only use the following locking interface. */ 839 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 840 #define bh_lock_sock_nested(__sk) \ 841 spin_lock_nested(&((__sk)->sk_lock.slock), \ 842 SINGLE_DEPTH_NESTING) 843 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 844 845 extern struct sock *sk_alloc(struct net *net, int family, 846 gfp_t priority, 847 struct proto *prot); 848 extern void sk_free(struct sock *sk); 849 extern struct sock *sk_clone(const struct sock *sk, 850 const gfp_t priority); 851 852 extern struct sk_buff *sock_wmalloc(struct sock *sk, 853 unsigned long size, int force, 854 gfp_t priority); 855 extern struct sk_buff *sock_rmalloc(struct sock *sk, 856 unsigned long size, int force, 857 gfp_t priority); 858 extern void sock_wfree(struct sk_buff *skb); 859 extern void sock_rfree(struct sk_buff *skb); 860 861 extern int sock_setsockopt(struct socket *sock, int level, 862 int op, char __user *optval, 863 int optlen); 864 865 extern int sock_getsockopt(struct socket *sock, int level, 866 int op, char __user *optval, 867 int __user *optlen); 868 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 869 unsigned long size, 870 int noblock, 871 int *errcode); 872 extern void *sock_kmalloc(struct sock *sk, int size, 873 gfp_t priority); 874 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 875 extern void sk_send_sigurg(struct sock *sk); 876 877 /* 878 * Functions to fill in entries in struct proto_ops when a protocol 879 * does not implement a particular function. 880 */ 881 extern int sock_no_bind(struct socket *, 882 struct sockaddr *, int); 883 extern int sock_no_connect(struct socket *, 884 struct sockaddr *, int, int); 885 extern int sock_no_socketpair(struct socket *, 886 struct socket *); 887 extern int sock_no_accept(struct socket *, 888 struct socket *, int); 889 extern int sock_no_getname(struct socket *, 890 struct sockaddr *, int *, int); 891 extern unsigned int sock_no_poll(struct file *, struct socket *, 892 struct poll_table_struct *); 893 extern int sock_no_ioctl(struct socket *, unsigned int, 894 unsigned long); 895 extern int sock_no_listen(struct socket *, int); 896 extern int sock_no_shutdown(struct socket *, int); 897 extern int sock_no_getsockopt(struct socket *, int , int, 898 char __user *, int __user *); 899 extern int sock_no_setsockopt(struct socket *, int, int, 900 char __user *, int); 901 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 902 struct msghdr *, size_t); 903 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 904 struct msghdr *, size_t, int); 905 extern int sock_no_mmap(struct file *file, 906 struct socket *sock, 907 struct vm_area_struct *vma); 908 extern ssize_t sock_no_sendpage(struct socket *sock, 909 struct page *page, 910 int offset, size_t size, 911 int flags); 912 913 /* 914 * Functions to fill in entries in struct proto_ops when a protocol 915 * uses the inet style. 916 */ 917 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 918 char __user *optval, int __user *optlen); 919 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 920 struct msghdr *msg, size_t size, int flags); 921 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 922 char __user *optval, int optlen); 923 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 924 int optname, char __user *optval, int __user *optlen); 925 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 926 int optname, char __user *optval, int optlen); 927 928 extern void sk_common_release(struct sock *sk); 929 930 /* 931 * Default socket callbacks and setup code 932 */ 933 934 /* Initialise core socket variables */ 935 extern void sock_init_data(struct socket *sock, struct sock *sk); 936 937 /** 938 * sk_filter - run a packet through a socket filter 939 * @sk: sock associated with &sk_buff 940 * @skb: buffer to filter 941 * @needlock: set to 1 if the sock is not locked by caller. 942 * 943 * Run the filter code and then cut skb->data to correct size returned by 944 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller 945 * than pkt_len we keep whole skb->data. This is the socket level 946 * wrapper to sk_run_filter. It returns 0 if the packet should 947 * be accepted or -EPERM if the packet should be tossed. 948 * 949 */ 950 951 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 952 { 953 int err; 954 struct sk_filter *filter; 955 956 err = security_sock_rcv_skb(sk, skb); 957 if (err) 958 return err; 959 960 rcu_read_lock_bh(); 961 filter = rcu_dereference(sk->sk_filter); 962 if (filter) { 963 unsigned int pkt_len = sk_run_filter(skb, filter->insns, 964 filter->len); 965 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM; 966 } 967 rcu_read_unlock_bh(); 968 969 return err; 970 } 971 972 /** 973 * sk_filter_release: Release a socket filter 974 * @sk: socket 975 * @fp: filter to remove 976 * 977 * Remove a filter from a socket and release its resources. 978 */ 979 980 static inline void sk_filter_release(struct sk_filter *fp) 981 { 982 if (atomic_dec_and_test(&fp->refcnt)) 983 kfree(fp); 984 } 985 986 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 987 { 988 unsigned int size = sk_filter_len(fp); 989 990 atomic_sub(size, &sk->sk_omem_alloc); 991 sk_filter_release(fp); 992 } 993 994 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 995 { 996 atomic_inc(&fp->refcnt); 997 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 998 } 999 1000 /* 1001 * Socket reference counting postulates. 1002 * 1003 * * Each user of socket SHOULD hold a reference count. 1004 * * Each access point to socket (an hash table bucket, reference from a list, 1005 * running timer, skb in flight MUST hold a reference count. 1006 * * When reference count hits 0, it means it will never increase back. 1007 * * When reference count hits 0, it means that no references from 1008 * outside exist to this socket and current process on current CPU 1009 * is last user and may/should destroy this socket. 1010 * * sk_free is called from any context: process, BH, IRQ. When 1011 * it is called, socket has no references from outside -> sk_free 1012 * may release descendant resources allocated by the socket, but 1013 * to the time when it is called, socket is NOT referenced by any 1014 * hash tables, lists etc. 1015 * * Packets, delivered from outside (from network or from another process) 1016 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1017 * when they sit in queue. Otherwise, packets will leak to hole, when 1018 * socket is looked up by one cpu and unhasing is made by another CPU. 1019 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1020 * (leak to backlog). Packet socket does all the processing inside 1021 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1022 * use separate SMP lock, so that they are prone too. 1023 */ 1024 1025 /* Ungrab socket and destroy it, if it was the last reference. */ 1026 static inline void sock_put(struct sock *sk) 1027 { 1028 if (atomic_dec_and_test(&sk->sk_refcnt)) 1029 sk_free(sk); 1030 } 1031 1032 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1033 const int nested); 1034 1035 /* Detach socket from process context. 1036 * Announce socket dead, detach it from wait queue and inode. 1037 * Note that parent inode held reference count on this struct sock, 1038 * we do not release it in this function, because protocol 1039 * probably wants some additional cleanups or even continuing 1040 * to work with this socket (TCP). 1041 */ 1042 static inline void sock_orphan(struct sock *sk) 1043 { 1044 write_lock_bh(&sk->sk_callback_lock); 1045 sock_set_flag(sk, SOCK_DEAD); 1046 sk->sk_socket = NULL; 1047 sk->sk_sleep = NULL; 1048 write_unlock_bh(&sk->sk_callback_lock); 1049 } 1050 1051 static inline void sock_graft(struct sock *sk, struct socket *parent) 1052 { 1053 write_lock_bh(&sk->sk_callback_lock); 1054 sk->sk_sleep = &parent->wait; 1055 parent->sk = sk; 1056 sk->sk_socket = parent; 1057 security_sock_graft(sk, parent); 1058 write_unlock_bh(&sk->sk_callback_lock); 1059 } 1060 1061 extern int sock_i_uid(struct sock *sk); 1062 extern unsigned long sock_i_ino(struct sock *sk); 1063 1064 static inline struct dst_entry * 1065 __sk_dst_get(struct sock *sk) 1066 { 1067 return sk->sk_dst_cache; 1068 } 1069 1070 static inline struct dst_entry * 1071 sk_dst_get(struct sock *sk) 1072 { 1073 struct dst_entry *dst; 1074 1075 read_lock(&sk->sk_dst_lock); 1076 dst = sk->sk_dst_cache; 1077 if (dst) 1078 dst_hold(dst); 1079 read_unlock(&sk->sk_dst_lock); 1080 return dst; 1081 } 1082 1083 static inline void 1084 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1085 { 1086 struct dst_entry *old_dst; 1087 1088 old_dst = sk->sk_dst_cache; 1089 sk->sk_dst_cache = dst; 1090 dst_release(old_dst); 1091 } 1092 1093 static inline void 1094 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1095 { 1096 write_lock(&sk->sk_dst_lock); 1097 __sk_dst_set(sk, dst); 1098 write_unlock(&sk->sk_dst_lock); 1099 } 1100 1101 static inline void 1102 __sk_dst_reset(struct sock *sk) 1103 { 1104 struct dst_entry *old_dst; 1105 1106 old_dst = sk->sk_dst_cache; 1107 sk->sk_dst_cache = NULL; 1108 dst_release(old_dst); 1109 } 1110 1111 static inline void 1112 sk_dst_reset(struct sock *sk) 1113 { 1114 write_lock(&sk->sk_dst_lock); 1115 __sk_dst_reset(sk); 1116 write_unlock(&sk->sk_dst_lock); 1117 } 1118 1119 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1120 1121 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1122 1123 static inline int sk_can_gso(const struct sock *sk) 1124 { 1125 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1126 } 1127 1128 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1129 1130 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1131 struct sk_buff *skb, struct page *page, 1132 int off, int copy) 1133 { 1134 if (skb->ip_summed == CHECKSUM_NONE) { 1135 int err = 0; 1136 __wsum csum = csum_and_copy_from_user(from, 1137 page_address(page) + off, 1138 copy, 0, &err); 1139 if (err) 1140 return err; 1141 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1142 } else if (copy_from_user(page_address(page) + off, from, copy)) 1143 return -EFAULT; 1144 1145 skb->len += copy; 1146 skb->data_len += copy; 1147 skb->truesize += copy; 1148 sk->sk_wmem_queued += copy; 1149 sk_mem_charge(sk, copy); 1150 return 0; 1151 } 1152 1153 /* 1154 * Queue a received datagram if it will fit. Stream and sequenced 1155 * protocols can't normally use this as they need to fit buffers in 1156 * and play with them. 1157 * 1158 * Inlined as it's very short and called for pretty much every 1159 * packet ever received. 1160 */ 1161 1162 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1163 { 1164 sock_hold(sk); 1165 skb->sk = sk; 1166 skb->destructor = sock_wfree; 1167 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1168 } 1169 1170 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1171 { 1172 skb->sk = sk; 1173 skb->destructor = sock_rfree; 1174 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1175 sk_mem_charge(sk, skb->truesize); 1176 } 1177 1178 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1179 unsigned long expires); 1180 1181 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1182 1183 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1184 1185 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 1186 { 1187 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 1188 number of warnings when compiling with -W --ANK 1189 */ 1190 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 1191 (unsigned)sk->sk_rcvbuf) 1192 return -ENOMEM; 1193 skb_set_owner_r(skb, sk); 1194 skb_queue_tail(&sk->sk_error_queue, skb); 1195 if (!sock_flag(sk, SOCK_DEAD)) 1196 sk->sk_data_ready(sk, skb->len); 1197 return 0; 1198 } 1199 1200 /* 1201 * Recover an error report and clear atomically 1202 */ 1203 1204 static inline int sock_error(struct sock *sk) 1205 { 1206 int err; 1207 if (likely(!sk->sk_err)) 1208 return 0; 1209 err = xchg(&sk->sk_err, 0); 1210 return -err; 1211 } 1212 1213 static inline unsigned long sock_wspace(struct sock *sk) 1214 { 1215 int amt = 0; 1216 1217 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1218 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1219 if (amt < 0) 1220 amt = 0; 1221 } 1222 return amt; 1223 } 1224 1225 static inline void sk_wake_async(struct sock *sk, int how, int band) 1226 { 1227 if (sk->sk_socket && sk->sk_socket->fasync_list) 1228 sock_wake_async(sk->sk_socket, how, band); 1229 } 1230 1231 #define SOCK_MIN_SNDBUF 2048 1232 #define SOCK_MIN_RCVBUF 256 1233 1234 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1235 { 1236 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1237 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 1238 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1239 } 1240 } 1241 1242 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 1243 1244 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1245 { 1246 struct page *page = NULL; 1247 1248 page = alloc_pages(sk->sk_allocation, 0); 1249 if (!page) { 1250 sk->sk_prot->enter_memory_pressure(); 1251 sk_stream_moderate_sndbuf(sk); 1252 } 1253 return page; 1254 } 1255 1256 /* 1257 * Default write policy as shown to user space via poll/select/SIGIO 1258 */ 1259 static inline int sock_writeable(const struct sock *sk) 1260 { 1261 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 1262 } 1263 1264 static inline gfp_t gfp_any(void) 1265 { 1266 return in_atomic() ? GFP_ATOMIC : GFP_KERNEL; 1267 } 1268 1269 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1270 { 1271 return noblock ? 0 : sk->sk_rcvtimeo; 1272 } 1273 1274 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1275 { 1276 return noblock ? 0 : sk->sk_sndtimeo; 1277 } 1278 1279 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1280 { 1281 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1282 } 1283 1284 /* Alas, with timeout socket operations are not restartable. 1285 * Compare this to poll(). 1286 */ 1287 static inline int sock_intr_errno(long timeo) 1288 { 1289 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1290 } 1291 1292 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 1293 struct sk_buff *skb); 1294 1295 static __inline__ void 1296 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1297 { 1298 ktime_t kt = skb->tstamp; 1299 1300 if (sock_flag(sk, SOCK_RCVTSTAMP)) 1301 __sock_recv_timestamp(msg, sk, skb); 1302 else 1303 sk->sk_stamp = kt; 1304 } 1305 1306 /** 1307 * sk_eat_skb - Release a skb if it is no longer needed 1308 * @sk: socket to eat this skb from 1309 * @skb: socket buffer to eat 1310 * @copied_early: flag indicating whether DMA operations copied this data early 1311 * 1312 * This routine must be called with interrupts disabled or with the socket 1313 * locked so that the sk_buff queue operation is ok. 1314 */ 1315 #ifdef CONFIG_NET_DMA 1316 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1317 { 1318 __skb_unlink(skb, &sk->sk_receive_queue); 1319 if (!copied_early) 1320 __kfree_skb(skb); 1321 else 1322 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1323 } 1324 #else 1325 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1326 { 1327 __skb_unlink(skb, &sk->sk_receive_queue); 1328 __kfree_skb(skb); 1329 } 1330 #endif 1331 1332 extern void sock_enable_timestamp(struct sock *sk); 1333 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1334 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 1335 1336 /* 1337 * Enable debug/info messages 1338 */ 1339 extern int net_msg_warn; 1340 #define NETDEBUG(fmt, args...) \ 1341 do { if (net_msg_warn) printk(fmt,##args); } while (0) 1342 1343 #define LIMIT_NETDEBUG(fmt, args...) \ 1344 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 1345 1346 /* 1347 * Macros for sleeping on a socket. Use them like this: 1348 * 1349 * SOCK_SLEEP_PRE(sk) 1350 * if (condition) 1351 * schedule(); 1352 * SOCK_SLEEP_POST(sk) 1353 * 1354 * N.B. These are now obsolete and were, afaik, only ever used in DECnet 1355 * and when the last use of them in DECnet has gone, I'm intending to 1356 * remove them. 1357 */ 1358 1359 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \ 1360 DECLARE_WAITQUEUE(wait, tsk); \ 1361 tsk->state = TASK_INTERRUPTIBLE; \ 1362 add_wait_queue((sk)->sk_sleep, &wait); \ 1363 release_sock(sk); 1364 1365 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \ 1366 remove_wait_queue((sk)->sk_sleep, &wait); \ 1367 lock_sock(sk); \ 1368 } 1369 1370 extern __u32 sysctl_wmem_max; 1371 extern __u32 sysctl_rmem_max; 1372 1373 extern void sk_init(void); 1374 1375 extern int sysctl_optmem_max; 1376 1377 extern __u32 sysctl_wmem_default; 1378 extern __u32 sysctl_rmem_default; 1379 1380 #endif /* _SOCK_H */ 1381