xref: /openbmc/linux/include/net/sock.h (revision 63dc02bd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56 #include <linux/memcontrol.h>
57 #include <linux/res_counter.h>
58 #include <linux/static_key.h>
59 #include <linux/aio.h>
60 #include <linux/sched.h>
61 
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65 
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 
70 struct cgroup;
71 struct cgroup_subsys;
72 #ifdef CONFIG_NET
73 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss);
74 void mem_cgroup_sockets_destroy(struct cgroup *cgrp);
75 #else
76 static inline
77 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
78 {
79 	return 0;
80 }
81 static inline
82 void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
83 {
84 }
85 #endif
86 /*
87  * This structure really needs to be cleaned up.
88  * Most of it is for TCP, and not used by any of
89  * the other protocols.
90  */
91 
92 /* Define this to get the SOCK_DBG debugging facility. */
93 #define SOCK_DEBUGGING
94 #ifdef SOCK_DEBUGGING
95 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
96 					printk(KERN_DEBUG msg); } while (0)
97 #else
98 /* Validate arguments and do nothing */
99 static inline __printf(2, 3)
100 void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
101 {
102 }
103 #endif
104 
105 /* This is the per-socket lock.  The spinlock provides a synchronization
106  * between user contexts and software interrupt processing, whereas the
107  * mini-semaphore synchronizes multiple users amongst themselves.
108  */
109 typedef struct {
110 	spinlock_t		slock;
111 	int			owned;
112 	wait_queue_head_t	wq;
113 	/*
114 	 * We express the mutex-alike socket_lock semantics
115 	 * to the lock validator by explicitly managing
116 	 * the slock as a lock variant (in addition to
117 	 * the slock itself):
118 	 */
119 #ifdef CONFIG_DEBUG_LOCK_ALLOC
120 	struct lockdep_map dep_map;
121 #endif
122 } socket_lock_t;
123 
124 struct sock;
125 struct proto;
126 struct net;
127 
128 /**
129  *	struct sock_common - minimal network layer representation of sockets
130  *	@skc_daddr: Foreign IPv4 addr
131  *	@skc_rcv_saddr: Bound local IPv4 addr
132  *	@skc_hash: hash value used with various protocol lookup tables
133  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
134  *	@skc_family: network address family
135  *	@skc_state: Connection state
136  *	@skc_reuse: %SO_REUSEADDR setting
137  *	@skc_bound_dev_if: bound device index if != 0
138  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
139  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
140  *	@skc_prot: protocol handlers inside a network family
141  *	@skc_net: reference to the network namespace of this socket
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_refcnt: reference count
146  *
147  *	This is the minimal network layer representation of sockets, the header
148  *	for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151 	/* skc_daddr and skc_rcv_saddr must be grouped :
152 	 * cf INET_MATCH() and INET_TW_MATCH()
153 	 */
154 	__be32			skc_daddr;
155 	__be32			skc_rcv_saddr;
156 
157 	union  {
158 		unsigned int	skc_hash;
159 		__u16		skc_u16hashes[2];
160 	};
161 	unsigned short		skc_family;
162 	volatile unsigned char	skc_state;
163 	unsigned char		skc_reuse;
164 	int			skc_bound_dev_if;
165 	union {
166 		struct hlist_node	skc_bind_node;
167 		struct hlist_nulls_node skc_portaddr_node;
168 	};
169 	struct proto		*skc_prot;
170 #ifdef CONFIG_NET_NS
171 	struct net	 	*skc_net;
172 #endif
173 	/*
174 	 * fields between dontcopy_begin/dontcopy_end
175 	 * are not copied in sock_copy()
176 	 */
177 	/* private: */
178 	int			skc_dontcopy_begin[0];
179 	/* public: */
180 	union {
181 		struct hlist_node	skc_node;
182 		struct hlist_nulls_node skc_nulls_node;
183 	};
184 	int			skc_tx_queue_mapping;
185 	atomic_t		skc_refcnt;
186 	/* private: */
187 	int                     skc_dontcopy_end[0];
188 	/* public: */
189 };
190 
191 struct cg_proto;
192 /**
193   *	struct sock - network layer representation of sockets
194   *	@__sk_common: shared layout with inet_timewait_sock
195   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
196   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
197   *	@sk_lock:	synchronizer
198   *	@sk_rcvbuf: size of receive buffer in bytes
199   *	@sk_wq: sock wait queue and async head
200   *	@sk_dst_cache: destination cache
201   *	@sk_dst_lock: destination cache lock
202   *	@sk_policy: flow policy
203   *	@sk_receive_queue: incoming packets
204   *	@sk_wmem_alloc: transmit queue bytes committed
205   *	@sk_write_queue: Packet sending queue
206   *	@sk_async_wait_queue: DMA copied packets
207   *	@sk_omem_alloc: "o" is "option" or "other"
208   *	@sk_wmem_queued: persistent queue size
209   *	@sk_forward_alloc: space allocated forward
210   *	@sk_allocation: allocation mode
211   *	@sk_sndbuf: size of send buffer in bytes
212   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
213   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
214   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
215   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
216   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
217   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
218   *	@sk_gso_max_size: Maximum GSO segment size to build
219   *	@sk_lingertime: %SO_LINGER l_linger setting
220   *	@sk_backlog: always used with the per-socket spinlock held
221   *	@sk_callback_lock: used with the callbacks in the end of this struct
222   *	@sk_error_queue: rarely used
223   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
224   *			  IPV6_ADDRFORM for instance)
225   *	@sk_err: last error
226   *	@sk_err_soft: errors that don't cause failure but are the cause of a
227   *		      persistent failure not just 'timed out'
228   *	@sk_drops: raw/udp drops counter
229   *	@sk_ack_backlog: current listen backlog
230   *	@sk_max_ack_backlog: listen backlog set in listen()
231   *	@sk_priority: %SO_PRIORITY setting
232   *	@sk_cgrp_prioidx: socket group's priority map index
233   *	@sk_type: socket type (%SOCK_STREAM, etc)
234   *	@sk_protocol: which protocol this socket belongs in this network family
235   *	@sk_peer_pid: &struct pid for this socket's peer
236   *	@sk_peer_cred: %SO_PEERCRED setting
237   *	@sk_rcvlowat: %SO_RCVLOWAT setting
238   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
239   *	@sk_sndtimeo: %SO_SNDTIMEO setting
240   *	@sk_rxhash: flow hash received from netif layer
241   *	@sk_filter: socket filtering instructions
242   *	@sk_protinfo: private area, net family specific, when not using slab
243   *	@sk_timer: sock cleanup timer
244   *	@sk_stamp: time stamp of last packet received
245   *	@sk_socket: Identd and reporting IO signals
246   *	@sk_user_data: RPC layer private data
247   *	@sk_sndmsg_page: cached page for sendmsg
248   *	@sk_sndmsg_off: cached offset for sendmsg
249   *	@sk_peek_off: current peek_offset value
250   *	@sk_send_head: front of stuff to transmit
251   *	@sk_security: used by security modules
252   *	@sk_mark: generic packet mark
253   *	@sk_classid: this socket's cgroup classid
254   *	@sk_cgrp: this socket's cgroup-specific proto data
255   *	@sk_write_pending: a write to stream socket waits to start
256   *	@sk_state_change: callback to indicate change in the state of the sock
257   *	@sk_data_ready: callback to indicate there is data to be processed
258   *	@sk_write_space: callback to indicate there is bf sending space available
259   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
260   *	@sk_backlog_rcv: callback to process the backlog
261   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
262  */
263 struct sock {
264 	/*
265 	 * Now struct inet_timewait_sock also uses sock_common, so please just
266 	 * don't add nothing before this first member (__sk_common) --acme
267 	 */
268 	struct sock_common	__sk_common;
269 #define sk_node			__sk_common.skc_node
270 #define sk_nulls_node		__sk_common.skc_nulls_node
271 #define sk_refcnt		__sk_common.skc_refcnt
272 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
273 
274 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
275 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
276 #define sk_hash			__sk_common.skc_hash
277 #define sk_family		__sk_common.skc_family
278 #define sk_state		__sk_common.skc_state
279 #define sk_reuse		__sk_common.skc_reuse
280 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
281 #define sk_bind_node		__sk_common.skc_bind_node
282 #define sk_prot			__sk_common.skc_prot
283 #define sk_net			__sk_common.skc_net
284 	socket_lock_t		sk_lock;
285 	struct sk_buff_head	sk_receive_queue;
286 	/*
287 	 * The backlog queue is special, it is always used with
288 	 * the per-socket spinlock held and requires low latency
289 	 * access. Therefore we special case it's implementation.
290 	 * Note : rmem_alloc is in this structure to fill a hole
291 	 * on 64bit arches, not because its logically part of
292 	 * backlog.
293 	 */
294 	struct {
295 		atomic_t	rmem_alloc;
296 		int		len;
297 		struct sk_buff	*head;
298 		struct sk_buff	*tail;
299 	} sk_backlog;
300 #define sk_rmem_alloc sk_backlog.rmem_alloc
301 	int			sk_forward_alloc;
302 #ifdef CONFIG_RPS
303 	__u32			sk_rxhash;
304 #endif
305 	atomic_t		sk_drops;
306 	int			sk_rcvbuf;
307 
308 	struct sk_filter __rcu	*sk_filter;
309 	struct socket_wq __rcu	*sk_wq;
310 
311 #ifdef CONFIG_NET_DMA
312 	struct sk_buff_head	sk_async_wait_queue;
313 #endif
314 
315 #ifdef CONFIG_XFRM
316 	struct xfrm_policy	*sk_policy[2];
317 #endif
318 	unsigned long 		sk_flags;
319 	struct dst_entry	*sk_dst_cache;
320 	spinlock_t		sk_dst_lock;
321 	atomic_t		sk_wmem_alloc;
322 	atomic_t		sk_omem_alloc;
323 	int			sk_sndbuf;
324 	struct sk_buff_head	sk_write_queue;
325 	kmemcheck_bitfield_begin(flags);
326 	unsigned int		sk_shutdown  : 2,
327 				sk_no_check  : 2,
328 				sk_userlocks : 4,
329 				sk_protocol  : 8,
330 				sk_type      : 16;
331 	kmemcheck_bitfield_end(flags);
332 	int			sk_wmem_queued;
333 	gfp_t			sk_allocation;
334 	netdev_features_t	sk_route_caps;
335 	netdev_features_t	sk_route_nocaps;
336 	int			sk_gso_type;
337 	unsigned int		sk_gso_max_size;
338 	int			sk_rcvlowat;
339 	unsigned long	        sk_lingertime;
340 	struct sk_buff_head	sk_error_queue;
341 	struct proto		*sk_prot_creator;
342 	rwlock_t		sk_callback_lock;
343 	int			sk_err,
344 				sk_err_soft;
345 	unsigned short		sk_ack_backlog;
346 	unsigned short		sk_max_ack_backlog;
347 	__u32			sk_priority;
348 #ifdef CONFIG_CGROUPS
349 	__u32			sk_cgrp_prioidx;
350 #endif
351 	struct pid		*sk_peer_pid;
352 	const struct cred	*sk_peer_cred;
353 	long			sk_rcvtimeo;
354 	long			sk_sndtimeo;
355 	void			*sk_protinfo;
356 	struct timer_list	sk_timer;
357 	ktime_t			sk_stamp;
358 	struct socket		*sk_socket;
359 	void			*sk_user_data;
360 	struct page		*sk_sndmsg_page;
361 	struct sk_buff		*sk_send_head;
362 	__u32			sk_sndmsg_off;
363 	__s32			sk_peek_off;
364 	int			sk_write_pending;
365 #ifdef CONFIG_SECURITY
366 	void			*sk_security;
367 #endif
368 	__u32			sk_mark;
369 	u32			sk_classid;
370 	struct cg_proto		*sk_cgrp;
371 	void			(*sk_state_change)(struct sock *sk);
372 	void			(*sk_data_ready)(struct sock *sk, int bytes);
373 	void			(*sk_write_space)(struct sock *sk);
374 	void			(*sk_error_report)(struct sock *sk);
375   	int			(*sk_backlog_rcv)(struct sock *sk,
376 						  struct sk_buff *skb);
377 	void                    (*sk_destruct)(struct sock *sk);
378 };
379 
380 static inline int sk_peek_offset(struct sock *sk, int flags)
381 {
382 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
383 		return sk->sk_peek_off;
384 	else
385 		return 0;
386 }
387 
388 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
389 {
390 	if (sk->sk_peek_off >= 0) {
391 		if (sk->sk_peek_off >= val)
392 			sk->sk_peek_off -= val;
393 		else
394 			sk->sk_peek_off = 0;
395 	}
396 }
397 
398 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
399 {
400 	if (sk->sk_peek_off >= 0)
401 		sk->sk_peek_off += val;
402 }
403 
404 /*
405  * Hashed lists helper routines
406  */
407 static inline struct sock *sk_entry(const struct hlist_node *node)
408 {
409 	return hlist_entry(node, struct sock, sk_node);
410 }
411 
412 static inline struct sock *__sk_head(const struct hlist_head *head)
413 {
414 	return hlist_entry(head->first, struct sock, sk_node);
415 }
416 
417 static inline struct sock *sk_head(const struct hlist_head *head)
418 {
419 	return hlist_empty(head) ? NULL : __sk_head(head);
420 }
421 
422 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
423 {
424 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
425 }
426 
427 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
428 {
429 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
430 }
431 
432 static inline struct sock *sk_next(const struct sock *sk)
433 {
434 	return sk->sk_node.next ?
435 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
436 }
437 
438 static inline struct sock *sk_nulls_next(const struct sock *sk)
439 {
440 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
441 		hlist_nulls_entry(sk->sk_nulls_node.next,
442 				  struct sock, sk_nulls_node) :
443 		NULL;
444 }
445 
446 static inline int sk_unhashed(const struct sock *sk)
447 {
448 	return hlist_unhashed(&sk->sk_node);
449 }
450 
451 static inline int sk_hashed(const struct sock *sk)
452 {
453 	return !sk_unhashed(sk);
454 }
455 
456 static __inline__ void sk_node_init(struct hlist_node *node)
457 {
458 	node->pprev = NULL;
459 }
460 
461 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
462 {
463 	node->pprev = NULL;
464 }
465 
466 static __inline__ void __sk_del_node(struct sock *sk)
467 {
468 	__hlist_del(&sk->sk_node);
469 }
470 
471 /* NB: equivalent to hlist_del_init_rcu */
472 static __inline__ int __sk_del_node_init(struct sock *sk)
473 {
474 	if (sk_hashed(sk)) {
475 		__sk_del_node(sk);
476 		sk_node_init(&sk->sk_node);
477 		return 1;
478 	}
479 	return 0;
480 }
481 
482 /* Grab socket reference count. This operation is valid only
483    when sk is ALREADY grabbed f.e. it is found in hash table
484    or a list and the lookup is made under lock preventing hash table
485    modifications.
486  */
487 
488 static inline void sock_hold(struct sock *sk)
489 {
490 	atomic_inc(&sk->sk_refcnt);
491 }
492 
493 /* Ungrab socket in the context, which assumes that socket refcnt
494    cannot hit zero, f.e. it is true in context of any socketcall.
495  */
496 static inline void __sock_put(struct sock *sk)
497 {
498 	atomic_dec(&sk->sk_refcnt);
499 }
500 
501 static __inline__ int sk_del_node_init(struct sock *sk)
502 {
503 	int rc = __sk_del_node_init(sk);
504 
505 	if (rc) {
506 		/* paranoid for a while -acme */
507 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
508 		__sock_put(sk);
509 	}
510 	return rc;
511 }
512 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
513 
514 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
515 {
516 	if (sk_hashed(sk)) {
517 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
518 		return 1;
519 	}
520 	return 0;
521 }
522 
523 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
524 {
525 	int rc = __sk_nulls_del_node_init_rcu(sk);
526 
527 	if (rc) {
528 		/* paranoid for a while -acme */
529 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
530 		__sock_put(sk);
531 	}
532 	return rc;
533 }
534 
535 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
536 {
537 	hlist_add_head(&sk->sk_node, list);
538 }
539 
540 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
541 {
542 	sock_hold(sk);
543 	__sk_add_node(sk, list);
544 }
545 
546 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
547 {
548 	sock_hold(sk);
549 	hlist_add_head_rcu(&sk->sk_node, list);
550 }
551 
552 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
553 {
554 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
555 }
556 
557 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
558 {
559 	sock_hold(sk);
560 	__sk_nulls_add_node_rcu(sk, list);
561 }
562 
563 static __inline__ void __sk_del_bind_node(struct sock *sk)
564 {
565 	__hlist_del(&sk->sk_bind_node);
566 }
567 
568 static __inline__ void sk_add_bind_node(struct sock *sk,
569 					struct hlist_head *list)
570 {
571 	hlist_add_head(&sk->sk_bind_node, list);
572 }
573 
574 #define sk_for_each(__sk, node, list) \
575 	hlist_for_each_entry(__sk, node, list, sk_node)
576 #define sk_for_each_rcu(__sk, node, list) \
577 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
578 #define sk_nulls_for_each(__sk, node, list) \
579 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
580 #define sk_nulls_for_each_rcu(__sk, node, list) \
581 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
582 #define sk_for_each_from(__sk, node) \
583 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
584 		hlist_for_each_entry_from(__sk, node, sk_node)
585 #define sk_nulls_for_each_from(__sk, node) \
586 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
587 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
588 #define sk_for_each_safe(__sk, node, tmp, list) \
589 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
590 #define sk_for_each_bound(__sk, node, list) \
591 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
592 
593 /* Sock flags */
594 enum sock_flags {
595 	SOCK_DEAD,
596 	SOCK_DONE,
597 	SOCK_URGINLINE,
598 	SOCK_KEEPOPEN,
599 	SOCK_LINGER,
600 	SOCK_DESTROY,
601 	SOCK_BROADCAST,
602 	SOCK_TIMESTAMP,
603 	SOCK_ZAPPED,
604 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
605 	SOCK_DBG, /* %SO_DEBUG setting */
606 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
607 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
608 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
609 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
610 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
611 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
612 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
613 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
614 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
615 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
616 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
617 	SOCK_FASYNC, /* fasync() active */
618 	SOCK_RXQ_OVFL,
619 	SOCK_ZEROCOPY, /* buffers from userspace */
620 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
621 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
622 		     * Will use last 4 bytes of packet sent from
623 		     * user-space instead.
624 		     */
625 };
626 
627 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
628 {
629 	nsk->sk_flags = osk->sk_flags;
630 }
631 
632 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
633 {
634 	__set_bit(flag, &sk->sk_flags);
635 }
636 
637 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
638 {
639 	__clear_bit(flag, &sk->sk_flags);
640 }
641 
642 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
643 {
644 	return test_bit(flag, &sk->sk_flags);
645 }
646 
647 static inline void sk_acceptq_removed(struct sock *sk)
648 {
649 	sk->sk_ack_backlog--;
650 }
651 
652 static inline void sk_acceptq_added(struct sock *sk)
653 {
654 	sk->sk_ack_backlog++;
655 }
656 
657 static inline int sk_acceptq_is_full(struct sock *sk)
658 {
659 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
660 }
661 
662 /*
663  * Compute minimal free write space needed to queue new packets.
664  */
665 static inline int sk_stream_min_wspace(struct sock *sk)
666 {
667 	return sk->sk_wmem_queued >> 1;
668 }
669 
670 static inline int sk_stream_wspace(struct sock *sk)
671 {
672 	return sk->sk_sndbuf - sk->sk_wmem_queued;
673 }
674 
675 extern void sk_stream_write_space(struct sock *sk);
676 
677 static inline int sk_stream_memory_free(struct sock *sk)
678 {
679 	return sk->sk_wmem_queued < sk->sk_sndbuf;
680 }
681 
682 /* OOB backlog add */
683 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
684 {
685 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
686 	skb_dst_force(skb);
687 
688 	if (!sk->sk_backlog.tail)
689 		sk->sk_backlog.head = skb;
690 	else
691 		sk->sk_backlog.tail->next = skb;
692 
693 	sk->sk_backlog.tail = skb;
694 	skb->next = NULL;
695 }
696 
697 /*
698  * Take into account size of receive queue and backlog queue
699  * Do not take into account this skb truesize,
700  * to allow even a single big packet to come.
701  */
702 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
703 {
704 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
705 
706 	return qsize > sk->sk_rcvbuf;
707 }
708 
709 /* The per-socket spinlock must be held here. */
710 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
711 {
712 	if (sk_rcvqueues_full(sk, skb))
713 		return -ENOBUFS;
714 
715 	__sk_add_backlog(sk, skb);
716 	sk->sk_backlog.len += skb->truesize;
717 	return 0;
718 }
719 
720 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
721 {
722 	return sk->sk_backlog_rcv(sk, skb);
723 }
724 
725 static inline void sock_rps_record_flow(const struct sock *sk)
726 {
727 #ifdef CONFIG_RPS
728 	struct rps_sock_flow_table *sock_flow_table;
729 
730 	rcu_read_lock();
731 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
732 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
733 	rcu_read_unlock();
734 #endif
735 }
736 
737 static inline void sock_rps_reset_flow(const struct sock *sk)
738 {
739 #ifdef CONFIG_RPS
740 	struct rps_sock_flow_table *sock_flow_table;
741 
742 	rcu_read_lock();
743 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
744 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
745 	rcu_read_unlock();
746 #endif
747 }
748 
749 static inline void sock_rps_save_rxhash(struct sock *sk,
750 					const struct sk_buff *skb)
751 {
752 #ifdef CONFIG_RPS
753 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
754 		sock_rps_reset_flow(sk);
755 		sk->sk_rxhash = skb->rxhash;
756 	}
757 #endif
758 }
759 
760 static inline void sock_rps_reset_rxhash(struct sock *sk)
761 {
762 #ifdef CONFIG_RPS
763 	sock_rps_reset_flow(sk);
764 	sk->sk_rxhash = 0;
765 #endif
766 }
767 
768 #define sk_wait_event(__sk, __timeo, __condition)			\
769 	({	int __rc;						\
770 		release_sock(__sk);					\
771 		__rc = __condition;					\
772 		if (!__rc) {						\
773 			*(__timeo) = schedule_timeout(*(__timeo));	\
774 		}							\
775 		lock_sock(__sk);					\
776 		__rc = __condition;					\
777 		__rc;							\
778 	})
779 
780 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
781 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
782 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
783 extern int sk_stream_error(struct sock *sk, int flags, int err);
784 extern void sk_stream_kill_queues(struct sock *sk);
785 
786 extern int sk_wait_data(struct sock *sk, long *timeo);
787 
788 struct request_sock_ops;
789 struct timewait_sock_ops;
790 struct inet_hashinfo;
791 struct raw_hashinfo;
792 struct module;
793 
794 /* Networking protocol blocks we attach to sockets.
795  * socket layer -> transport layer interface
796  * transport -> network interface is defined by struct inet_proto
797  */
798 struct proto {
799 	void			(*close)(struct sock *sk,
800 					long timeout);
801 	int			(*connect)(struct sock *sk,
802 				        struct sockaddr *uaddr,
803 					int addr_len);
804 	int			(*disconnect)(struct sock *sk, int flags);
805 
806 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
807 
808 	int			(*ioctl)(struct sock *sk, int cmd,
809 					 unsigned long arg);
810 	int			(*init)(struct sock *sk);
811 	void			(*destroy)(struct sock *sk);
812 	void			(*shutdown)(struct sock *sk, int how);
813 	int			(*setsockopt)(struct sock *sk, int level,
814 					int optname, char __user *optval,
815 					unsigned int optlen);
816 	int			(*getsockopt)(struct sock *sk, int level,
817 					int optname, char __user *optval,
818 					int __user *option);
819 #ifdef CONFIG_COMPAT
820 	int			(*compat_setsockopt)(struct sock *sk,
821 					int level,
822 					int optname, char __user *optval,
823 					unsigned int optlen);
824 	int			(*compat_getsockopt)(struct sock *sk,
825 					int level,
826 					int optname, char __user *optval,
827 					int __user *option);
828 	int			(*compat_ioctl)(struct sock *sk,
829 					unsigned int cmd, unsigned long arg);
830 #endif
831 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
832 					   struct msghdr *msg, size_t len);
833 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
834 					   struct msghdr *msg,
835 					size_t len, int noblock, int flags,
836 					int *addr_len);
837 	int			(*sendpage)(struct sock *sk, struct page *page,
838 					int offset, size_t size, int flags);
839 	int			(*bind)(struct sock *sk,
840 					struct sockaddr *uaddr, int addr_len);
841 
842 	int			(*backlog_rcv) (struct sock *sk,
843 						struct sk_buff *skb);
844 
845 	/* Keeping track of sk's, looking them up, and port selection methods. */
846 	void			(*hash)(struct sock *sk);
847 	void			(*unhash)(struct sock *sk);
848 	void			(*rehash)(struct sock *sk);
849 	int			(*get_port)(struct sock *sk, unsigned short snum);
850 	void			(*clear_sk)(struct sock *sk, int size);
851 
852 	/* Keeping track of sockets in use */
853 #ifdef CONFIG_PROC_FS
854 	unsigned int		inuse_idx;
855 #endif
856 
857 	/* Memory pressure */
858 	void			(*enter_memory_pressure)(struct sock *sk);
859 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
860 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
861 	/*
862 	 * Pressure flag: try to collapse.
863 	 * Technical note: it is used by multiple contexts non atomically.
864 	 * All the __sk_mem_schedule() is of this nature: accounting
865 	 * is strict, actions are advisory and have some latency.
866 	 */
867 	int			*memory_pressure;
868 	long			*sysctl_mem;
869 	int			*sysctl_wmem;
870 	int			*sysctl_rmem;
871 	int			max_header;
872 	bool			no_autobind;
873 
874 	struct kmem_cache	*slab;
875 	unsigned int		obj_size;
876 	int			slab_flags;
877 
878 	struct percpu_counter	*orphan_count;
879 
880 	struct request_sock_ops	*rsk_prot;
881 	struct timewait_sock_ops *twsk_prot;
882 
883 	union {
884 		struct inet_hashinfo	*hashinfo;
885 		struct udp_table	*udp_table;
886 		struct raw_hashinfo	*raw_hash;
887 	} h;
888 
889 	struct module		*owner;
890 
891 	char			name[32];
892 
893 	struct list_head	node;
894 #ifdef SOCK_REFCNT_DEBUG
895 	atomic_t		socks;
896 #endif
897 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
898 	/*
899 	 * cgroup specific init/deinit functions. Called once for all
900 	 * protocols that implement it, from cgroups populate function.
901 	 * This function has to setup any files the protocol want to
902 	 * appear in the kmem cgroup filesystem.
903 	 */
904 	int			(*init_cgroup)(struct cgroup *cgrp,
905 					       struct cgroup_subsys *ss);
906 	void			(*destroy_cgroup)(struct cgroup *cgrp);
907 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
908 #endif
909 };
910 
911 struct cg_proto {
912 	void			(*enter_memory_pressure)(struct sock *sk);
913 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
914 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
915 	int			*memory_pressure;
916 	long			*sysctl_mem;
917 	/*
918 	 * memcg field is used to find which memcg we belong directly
919 	 * Each memcg struct can hold more than one cg_proto, so container_of
920 	 * won't really cut.
921 	 *
922 	 * The elegant solution would be having an inverse function to
923 	 * proto_cgroup in struct proto, but that means polluting the structure
924 	 * for everybody, instead of just for memcg users.
925 	 */
926 	struct mem_cgroup	*memcg;
927 };
928 
929 extern int proto_register(struct proto *prot, int alloc_slab);
930 extern void proto_unregister(struct proto *prot);
931 
932 #ifdef SOCK_REFCNT_DEBUG
933 static inline void sk_refcnt_debug_inc(struct sock *sk)
934 {
935 	atomic_inc(&sk->sk_prot->socks);
936 }
937 
938 static inline void sk_refcnt_debug_dec(struct sock *sk)
939 {
940 	atomic_dec(&sk->sk_prot->socks);
941 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
942 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
943 }
944 
945 inline void sk_refcnt_debug_release(const struct sock *sk)
946 {
947 	if (atomic_read(&sk->sk_refcnt) != 1)
948 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
949 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
950 }
951 #else /* SOCK_REFCNT_DEBUG */
952 #define sk_refcnt_debug_inc(sk) do { } while (0)
953 #define sk_refcnt_debug_dec(sk) do { } while (0)
954 #define sk_refcnt_debug_release(sk) do { } while (0)
955 #endif /* SOCK_REFCNT_DEBUG */
956 
957 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
958 extern struct static_key memcg_socket_limit_enabled;
959 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
960 					       struct cg_proto *cg_proto)
961 {
962 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
963 }
964 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
965 #else
966 #define mem_cgroup_sockets_enabled 0
967 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
968 					       struct cg_proto *cg_proto)
969 {
970 	return NULL;
971 }
972 #endif
973 
974 
975 static inline bool sk_has_memory_pressure(const struct sock *sk)
976 {
977 	return sk->sk_prot->memory_pressure != NULL;
978 }
979 
980 static inline bool sk_under_memory_pressure(const struct sock *sk)
981 {
982 	if (!sk->sk_prot->memory_pressure)
983 		return false;
984 
985 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
986 		return !!*sk->sk_cgrp->memory_pressure;
987 
988 	return !!*sk->sk_prot->memory_pressure;
989 }
990 
991 static inline void sk_leave_memory_pressure(struct sock *sk)
992 {
993 	int *memory_pressure = sk->sk_prot->memory_pressure;
994 
995 	if (!memory_pressure)
996 		return;
997 
998 	if (*memory_pressure)
999 		*memory_pressure = 0;
1000 
1001 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1002 		struct cg_proto *cg_proto = sk->sk_cgrp;
1003 		struct proto *prot = sk->sk_prot;
1004 
1005 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1006 			if (*cg_proto->memory_pressure)
1007 				*cg_proto->memory_pressure = 0;
1008 	}
1009 
1010 }
1011 
1012 static inline void sk_enter_memory_pressure(struct sock *sk)
1013 {
1014 	if (!sk->sk_prot->enter_memory_pressure)
1015 		return;
1016 
1017 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1018 		struct cg_proto *cg_proto = sk->sk_cgrp;
1019 		struct proto *prot = sk->sk_prot;
1020 
1021 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1022 			cg_proto->enter_memory_pressure(sk);
1023 	}
1024 
1025 	sk->sk_prot->enter_memory_pressure(sk);
1026 }
1027 
1028 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1029 {
1030 	long *prot = sk->sk_prot->sysctl_mem;
1031 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1032 		prot = sk->sk_cgrp->sysctl_mem;
1033 	return prot[index];
1034 }
1035 
1036 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1037 					      unsigned long amt,
1038 					      int *parent_status)
1039 {
1040 	struct res_counter *fail;
1041 	int ret;
1042 
1043 	ret = res_counter_charge_nofail(prot->memory_allocated,
1044 					amt << PAGE_SHIFT, &fail);
1045 	if (ret < 0)
1046 		*parent_status = OVER_LIMIT;
1047 }
1048 
1049 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1050 					      unsigned long amt)
1051 {
1052 	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1053 }
1054 
1055 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1056 {
1057 	u64 ret;
1058 	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1059 	return ret >> PAGE_SHIFT;
1060 }
1061 
1062 static inline long
1063 sk_memory_allocated(const struct sock *sk)
1064 {
1065 	struct proto *prot = sk->sk_prot;
1066 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1067 		return memcg_memory_allocated_read(sk->sk_cgrp);
1068 
1069 	return atomic_long_read(prot->memory_allocated);
1070 }
1071 
1072 static inline long
1073 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1074 {
1075 	struct proto *prot = sk->sk_prot;
1076 
1077 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1078 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1079 		/* update the root cgroup regardless */
1080 		atomic_long_add_return(amt, prot->memory_allocated);
1081 		return memcg_memory_allocated_read(sk->sk_cgrp);
1082 	}
1083 
1084 	return atomic_long_add_return(amt, prot->memory_allocated);
1085 }
1086 
1087 static inline void
1088 sk_memory_allocated_sub(struct sock *sk, int amt)
1089 {
1090 	struct proto *prot = sk->sk_prot;
1091 
1092 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1093 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1094 
1095 	atomic_long_sub(amt, prot->memory_allocated);
1096 }
1097 
1098 static inline void sk_sockets_allocated_dec(struct sock *sk)
1099 {
1100 	struct proto *prot = sk->sk_prot;
1101 
1102 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1103 		struct cg_proto *cg_proto = sk->sk_cgrp;
1104 
1105 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1106 			percpu_counter_dec(cg_proto->sockets_allocated);
1107 	}
1108 
1109 	percpu_counter_dec(prot->sockets_allocated);
1110 }
1111 
1112 static inline void sk_sockets_allocated_inc(struct sock *sk)
1113 {
1114 	struct proto *prot = sk->sk_prot;
1115 
1116 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1117 		struct cg_proto *cg_proto = sk->sk_cgrp;
1118 
1119 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1120 			percpu_counter_inc(cg_proto->sockets_allocated);
1121 	}
1122 
1123 	percpu_counter_inc(prot->sockets_allocated);
1124 }
1125 
1126 static inline int
1127 sk_sockets_allocated_read_positive(struct sock *sk)
1128 {
1129 	struct proto *prot = sk->sk_prot;
1130 
1131 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1132 		return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1133 
1134 	return percpu_counter_read_positive(prot->sockets_allocated);
1135 }
1136 
1137 static inline int
1138 proto_sockets_allocated_sum_positive(struct proto *prot)
1139 {
1140 	return percpu_counter_sum_positive(prot->sockets_allocated);
1141 }
1142 
1143 static inline long
1144 proto_memory_allocated(struct proto *prot)
1145 {
1146 	return atomic_long_read(prot->memory_allocated);
1147 }
1148 
1149 static inline bool
1150 proto_memory_pressure(struct proto *prot)
1151 {
1152 	if (!prot->memory_pressure)
1153 		return false;
1154 	return !!*prot->memory_pressure;
1155 }
1156 
1157 
1158 #ifdef CONFIG_PROC_FS
1159 /* Called with local bh disabled */
1160 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1161 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1162 #else
1163 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
1164 		int inc)
1165 {
1166 }
1167 #endif
1168 
1169 
1170 /* With per-bucket locks this operation is not-atomic, so that
1171  * this version is not worse.
1172  */
1173 static inline void __sk_prot_rehash(struct sock *sk)
1174 {
1175 	sk->sk_prot->unhash(sk);
1176 	sk->sk_prot->hash(sk);
1177 }
1178 
1179 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1180 
1181 /* About 10 seconds */
1182 #define SOCK_DESTROY_TIME (10*HZ)
1183 
1184 /* Sockets 0-1023 can't be bound to unless you are superuser */
1185 #define PROT_SOCK	1024
1186 
1187 #define SHUTDOWN_MASK	3
1188 #define RCV_SHUTDOWN	1
1189 #define SEND_SHUTDOWN	2
1190 
1191 #define SOCK_SNDBUF_LOCK	1
1192 #define SOCK_RCVBUF_LOCK	2
1193 #define SOCK_BINDADDR_LOCK	4
1194 #define SOCK_BINDPORT_LOCK	8
1195 
1196 /* sock_iocb: used to kick off async processing of socket ios */
1197 struct sock_iocb {
1198 	struct list_head	list;
1199 
1200 	int			flags;
1201 	int			size;
1202 	struct socket		*sock;
1203 	struct sock		*sk;
1204 	struct scm_cookie	*scm;
1205 	struct msghdr		*msg, async_msg;
1206 	struct kiocb		*kiocb;
1207 };
1208 
1209 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1210 {
1211 	return (struct sock_iocb *)iocb->private;
1212 }
1213 
1214 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1215 {
1216 	return si->kiocb;
1217 }
1218 
1219 struct socket_alloc {
1220 	struct socket socket;
1221 	struct inode vfs_inode;
1222 };
1223 
1224 static inline struct socket *SOCKET_I(struct inode *inode)
1225 {
1226 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1227 }
1228 
1229 static inline struct inode *SOCK_INODE(struct socket *socket)
1230 {
1231 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1232 }
1233 
1234 /*
1235  * Functions for memory accounting
1236  */
1237 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1238 extern void __sk_mem_reclaim(struct sock *sk);
1239 
1240 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1241 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1242 #define SK_MEM_SEND	0
1243 #define SK_MEM_RECV	1
1244 
1245 static inline int sk_mem_pages(int amt)
1246 {
1247 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1248 }
1249 
1250 static inline int sk_has_account(struct sock *sk)
1251 {
1252 	/* return true if protocol supports memory accounting */
1253 	return !!sk->sk_prot->memory_allocated;
1254 }
1255 
1256 static inline int sk_wmem_schedule(struct sock *sk, int size)
1257 {
1258 	if (!sk_has_account(sk))
1259 		return 1;
1260 	return size <= sk->sk_forward_alloc ||
1261 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1262 }
1263 
1264 static inline int sk_rmem_schedule(struct sock *sk, int size)
1265 {
1266 	if (!sk_has_account(sk))
1267 		return 1;
1268 	return size <= sk->sk_forward_alloc ||
1269 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
1270 }
1271 
1272 static inline void sk_mem_reclaim(struct sock *sk)
1273 {
1274 	if (!sk_has_account(sk))
1275 		return;
1276 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1277 		__sk_mem_reclaim(sk);
1278 }
1279 
1280 static inline void sk_mem_reclaim_partial(struct sock *sk)
1281 {
1282 	if (!sk_has_account(sk))
1283 		return;
1284 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1285 		__sk_mem_reclaim(sk);
1286 }
1287 
1288 static inline void sk_mem_charge(struct sock *sk, int size)
1289 {
1290 	if (!sk_has_account(sk))
1291 		return;
1292 	sk->sk_forward_alloc -= size;
1293 }
1294 
1295 static inline void sk_mem_uncharge(struct sock *sk, int size)
1296 {
1297 	if (!sk_has_account(sk))
1298 		return;
1299 	sk->sk_forward_alloc += size;
1300 }
1301 
1302 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1303 {
1304 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1305 	sk->sk_wmem_queued -= skb->truesize;
1306 	sk_mem_uncharge(sk, skb->truesize);
1307 	__kfree_skb(skb);
1308 }
1309 
1310 /* Used by processes to "lock" a socket state, so that
1311  * interrupts and bottom half handlers won't change it
1312  * from under us. It essentially blocks any incoming
1313  * packets, so that we won't get any new data or any
1314  * packets that change the state of the socket.
1315  *
1316  * While locked, BH processing will add new packets to
1317  * the backlog queue.  This queue is processed by the
1318  * owner of the socket lock right before it is released.
1319  *
1320  * Since ~2.3.5 it is also exclusive sleep lock serializing
1321  * accesses from user process context.
1322  */
1323 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1324 
1325 /*
1326  * Macro so as to not evaluate some arguments when
1327  * lockdep is not enabled.
1328  *
1329  * Mark both the sk_lock and the sk_lock.slock as a
1330  * per-address-family lock class.
1331  */
1332 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1333 do {									\
1334 	sk->sk_lock.owned = 0;						\
1335 	init_waitqueue_head(&sk->sk_lock.wq);				\
1336 	spin_lock_init(&(sk)->sk_lock.slock);				\
1337 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1338 			sizeof((sk)->sk_lock));				\
1339 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1340 		       	(skey), (sname));				\
1341 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1342 } while (0)
1343 
1344 extern void lock_sock_nested(struct sock *sk, int subclass);
1345 
1346 static inline void lock_sock(struct sock *sk)
1347 {
1348 	lock_sock_nested(sk, 0);
1349 }
1350 
1351 extern void release_sock(struct sock *sk);
1352 
1353 /* BH context may only use the following locking interface. */
1354 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1355 #define bh_lock_sock_nested(__sk) \
1356 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1357 				SINGLE_DEPTH_NESTING)
1358 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1359 
1360 extern bool lock_sock_fast(struct sock *sk);
1361 /**
1362  * unlock_sock_fast - complement of lock_sock_fast
1363  * @sk: socket
1364  * @slow: slow mode
1365  *
1366  * fast unlock socket for user context.
1367  * If slow mode is on, we call regular release_sock()
1368  */
1369 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1370 {
1371 	if (slow)
1372 		release_sock(sk);
1373 	else
1374 		spin_unlock_bh(&sk->sk_lock.slock);
1375 }
1376 
1377 
1378 extern struct sock		*sk_alloc(struct net *net, int family,
1379 					  gfp_t priority,
1380 					  struct proto *prot);
1381 extern void			sk_free(struct sock *sk);
1382 extern void			sk_release_kernel(struct sock *sk);
1383 extern struct sock		*sk_clone_lock(const struct sock *sk,
1384 					       const gfp_t priority);
1385 
1386 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1387 					      unsigned long size, int force,
1388 					      gfp_t priority);
1389 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1390 					      unsigned long size, int force,
1391 					      gfp_t priority);
1392 extern void			sock_wfree(struct sk_buff *skb);
1393 extern void			sock_rfree(struct sk_buff *skb);
1394 
1395 extern int			sock_setsockopt(struct socket *sock, int level,
1396 						int op, char __user *optval,
1397 						unsigned int optlen);
1398 
1399 extern int			sock_getsockopt(struct socket *sock, int level,
1400 						int op, char __user *optval,
1401 						int __user *optlen);
1402 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1403 						     unsigned long size,
1404 						     int noblock,
1405 						     int *errcode);
1406 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1407 						      unsigned long header_len,
1408 						      unsigned long data_len,
1409 						      int noblock,
1410 						      int *errcode);
1411 extern void *sock_kmalloc(struct sock *sk, int size,
1412 			  gfp_t priority);
1413 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1414 extern void sk_send_sigurg(struct sock *sk);
1415 
1416 #ifdef CONFIG_CGROUPS
1417 extern void sock_update_classid(struct sock *sk);
1418 #else
1419 static inline void sock_update_classid(struct sock *sk)
1420 {
1421 }
1422 #endif
1423 
1424 /*
1425  * Functions to fill in entries in struct proto_ops when a protocol
1426  * does not implement a particular function.
1427  */
1428 extern int                      sock_no_bind(struct socket *,
1429 					     struct sockaddr *, int);
1430 extern int                      sock_no_connect(struct socket *,
1431 						struct sockaddr *, int, int);
1432 extern int                      sock_no_socketpair(struct socket *,
1433 						   struct socket *);
1434 extern int                      sock_no_accept(struct socket *,
1435 					       struct socket *, int);
1436 extern int                      sock_no_getname(struct socket *,
1437 						struct sockaddr *, int *, int);
1438 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1439 					     struct poll_table_struct *);
1440 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1441 					      unsigned long);
1442 extern int			sock_no_listen(struct socket *, int);
1443 extern int                      sock_no_shutdown(struct socket *, int);
1444 extern int			sock_no_getsockopt(struct socket *, int , int,
1445 						   char __user *, int __user *);
1446 extern int			sock_no_setsockopt(struct socket *, int, int,
1447 						   char __user *, unsigned int);
1448 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1449 						struct msghdr *, size_t);
1450 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1451 						struct msghdr *, size_t, int);
1452 extern int			sock_no_mmap(struct file *file,
1453 					     struct socket *sock,
1454 					     struct vm_area_struct *vma);
1455 extern ssize_t			sock_no_sendpage(struct socket *sock,
1456 						struct page *page,
1457 						int offset, size_t size,
1458 						int flags);
1459 
1460 /*
1461  * Functions to fill in entries in struct proto_ops when a protocol
1462  * uses the inet style.
1463  */
1464 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1465 				  char __user *optval, int __user *optlen);
1466 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1467 			       struct msghdr *msg, size_t size, int flags);
1468 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1469 				  char __user *optval, unsigned int optlen);
1470 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1471 		int optname, char __user *optval, int __user *optlen);
1472 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1473 		int optname, char __user *optval, unsigned int optlen);
1474 
1475 extern void sk_common_release(struct sock *sk);
1476 
1477 /*
1478  *	Default socket callbacks and setup code
1479  */
1480 
1481 /* Initialise core socket variables */
1482 extern void sock_init_data(struct socket *sock, struct sock *sk);
1483 
1484 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1485 
1486 /**
1487  *	sk_filter_release - release a socket filter
1488  *	@fp: filter to remove
1489  *
1490  *	Remove a filter from a socket and release its resources.
1491  */
1492 
1493 static inline void sk_filter_release(struct sk_filter *fp)
1494 {
1495 	if (atomic_dec_and_test(&fp->refcnt))
1496 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1497 }
1498 
1499 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1500 {
1501 	unsigned int size = sk_filter_len(fp);
1502 
1503 	atomic_sub(size, &sk->sk_omem_alloc);
1504 	sk_filter_release(fp);
1505 }
1506 
1507 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1508 {
1509 	atomic_inc(&fp->refcnt);
1510 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1511 }
1512 
1513 /*
1514  * Socket reference counting postulates.
1515  *
1516  * * Each user of socket SHOULD hold a reference count.
1517  * * Each access point to socket (an hash table bucket, reference from a list,
1518  *   running timer, skb in flight MUST hold a reference count.
1519  * * When reference count hits 0, it means it will never increase back.
1520  * * When reference count hits 0, it means that no references from
1521  *   outside exist to this socket and current process on current CPU
1522  *   is last user and may/should destroy this socket.
1523  * * sk_free is called from any context: process, BH, IRQ. When
1524  *   it is called, socket has no references from outside -> sk_free
1525  *   may release descendant resources allocated by the socket, but
1526  *   to the time when it is called, socket is NOT referenced by any
1527  *   hash tables, lists etc.
1528  * * Packets, delivered from outside (from network or from another process)
1529  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1530  *   when they sit in queue. Otherwise, packets will leak to hole, when
1531  *   socket is looked up by one cpu and unhasing is made by another CPU.
1532  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1533  *   (leak to backlog). Packet socket does all the processing inside
1534  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1535  *   use separate SMP lock, so that they are prone too.
1536  */
1537 
1538 /* Ungrab socket and destroy it, if it was the last reference. */
1539 static inline void sock_put(struct sock *sk)
1540 {
1541 	if (atomic_dec_and_test(&sk->sk_refcnt))
1542 		sk_free(sk);
1543 }
1544 
1545 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1546 			  const int nested);
1547 
1548 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1549 {
1550 	sk->sk_tx_queue_mapping = tx_queue;
1551 }
1552 
1553 static inline void sk_tx_queue_clear(struct sock *sk)
1554 {
1555 	sk->sk_tx_queue_mapping = -1;
1556 }
1557 
1558 static inline int sk_tx_queue_get(const struct sock *sk)
1559 {
1560 	return sk ? sk->sk_tx_queue_mapping : -1;
1561 }
1562 
1563 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1564 {
1565 	sk_tx_queue_clear(sk);
1566 	sk->sk_socket = sock;
1567 }
1568 
1569 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1570 {
1571 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1572 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1573 }
1574 /* Detach socket from process context.
1575  * Announce socket dead, detach it from wait queue and inode.
1576  * Note that parent inode held reference count on this struct sock,
1577  * we do not release it in this function, because protocol
1578  * probably wants some additional cleanups or even continuing
1579  * to work with this socket (TCP).
1580  */
1581 static inline void sock_orphan(struct sock *sk)
1582 {
1583 	write_lock_bh(&sk->sk_callback_lock);
1584 	sock_set_flag(sk, SOCK_DEAD);
1585 	sk_set_socket(sk, NULL);
1586 	sk->sk_wq  = NULL;
1587 	write_unlock_bh(&sk->sk_callback_lock);
1588 }
1589 
1590 static inline void sock_graft(struct sock *sk, struct socket *parent)
1591 {
1592 	write_lock_bh(&sk->sk_callback_lock);
1593 	sk->sk_wq = parent->wq;
1594 	parent->sk = sk;
1595 	sk_set_socket(sk, parent);
1596 	security_sock_graft(sk, parent);
1597 	write_unlock_bh(&sk->sk_callback_lock);
1598 }
1599 
1600 extern int sock_i_uid(struct sock *sk);
1601 extern unsigned long sock_i_ino(struct sock *sk);
1602 
1603 static inline struct dst_entry *
1604 __sk_dst_get(struct sock *sk)
1605 {
1606 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1607 						       lockdep_is_held(&sk->sk_lock.slock));
1608 }
1609 
1610 static inline struct dst_entry *
1611 sk_dst_get(struct sock *sk)
1612 {
1613 	struct dst_entry *dst;
1614 
1615 	rcu_read_lock();
1616 	dst = rcu_dereference(sk->sk_dst_cache);
1617 	if (dst)
1618 		dst_hold(dst);
1619 	rcu_read_unlock();
1620 	return dst;
1621 }
1622 
1623 extern void sk_reset_txq(struct sock *sk);
1624 
1625 static inline void dst_negative_advice(struct sock *sk)
1626 {
1627 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1628 
1629 	if (dst && dst->ops->negative_advice) {
1630 		ndst = dst->ops->negative_advice(dst);
1631 
1632 		if (ndst != dst) {
1633 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1634 			sk_reset_txq(sk);
1635 		}
1636 	}
1637 }
1638 
1639 static inline void
1640 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1641 {
1642 	struct dst_entry *old_dst;
1643 
1644 	sk_tx_queue_clear(sk);
1645 	/*
1646 	 * This can be called while sk is owned by the caller only,
1647 	 * with no state that can be checked in a rcu_dereference_check() cond
1648 	 */
1649 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1650 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1651 	dst_release(old_dst);
1652 }
1653 
1654 static inline void
1655 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1656 {
1657 	spin_lock(&sk->sk_dst_lock);
1658 	__sk_dst_set(sk, dst);
1659 	spin_unlock(&sk->sk_dst_lock);
1660 }
1661 
1662 static inline void
1663 __sk_dst_reset(struct sock *sk)
1664 {
1665 	__sk_dst_set(sk, NULL);
1666 }
1667 
1668 static inline void
1669 sk_dst_reset(struct sock *sk)
1670 {
1671 	spin_lock(&sk->sk_dst_lock);
1672 	__sk_dst_reset(sk);
1673 	spin_unlock(&sk->sk_dst_lock);
1674 }
1675 
1676 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1677 
1678 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1679 
1680 static inline int sk_can_gso(const struct sock *sk)
1681 {
1682 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1683 }
1684 
1685 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1686 
1687 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1688 {
1689 	sk->sk_route_nocaps |= flags;
1690 	sk->sk_route_caps &= ~flags;
1691 }
1692 
1693 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1694 					   char __user *from, char *to,
1695 					   int copy, int offset)
1696 {
1697 	if (skb->ip_summed == CHECKSUM_NONE) {
1698 		int err = 0;
1699 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1700 		if (err)
1701 			return err;
1702 		skb->csum = csum_block_add(skb->csum, csum, offset);
1703 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1704 		if (!access_ok(VERIFY_READ, from, copy) ||
1705 		    __copy_from_user_nocache(to, from, copy))
1706 			return -EFAULT;
1707 	} else if (copy_from_user(to, from, copy))
1708 		return -EFAULT;
1709 
1710 	return 0;
1711 }
1712 
1713 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1714 				       char __user *from, int copy)
1715 {
1716 	int err, offset = skb->len;
1717 
1718 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1719 				       copy, offset);
1720 	if (err)
1721 		__skb_trim(skb, offset);
1722 
1723 	return err;
1724 }
1725 
1726 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1727 					   struct sk_buff *skb,
1728 					   struct page *page,
1729 					   int off, int copy)
1730 {
1731 	int err;
1732 
1733 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1734 				       copy, skb->len);
1735 	if (err)
1736 		return err;
1737 
1738 	skb->len	     += copy;
1739 	skb->data_len	     += copy;
1740 	skb->truesize	     += copy;
1741 	sk->sk_wmem_queued   += copy;
1742 	sk_mem_charge(sk, copy);
1743 	return 0;
1744 }
1745 
1746 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1747 				   struct sk_buff *skb, struct page *page,
1748 				   int off, int copy)
1749 {
1750 	if (skb->ip_summed == CHECKSUM_NONE) {
1751 		int err = 0;
1752 		__wsum csum = csum_and_copy_from_user(from,
1753 						     page_address(page) + off,
1754 							    copy, 0, &err);
1755 		if (err)
1756 			return err;
1757 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1758 	} else if (copy_from_user(page_address(page) + off, from, copy))
1759 		return -EFAULT;
1760 
1761 	skb->len	     += copy;
1762 	skb->data_len	     += copy;
1763 	skb->truesize	     += copy;
1764 	sk->sk_wmem_queued   += copy;
1765 	sk_mem_charge(sk, copy);
1766 	return 0;
1767 }
1768 
1769 /**
1770  * sk_wmem_alloc_get - returns write allocations
1771  * @sk: socket
1772  *
1773  * Returns sk_wmem_alloc minus initial offset of one
1774  */
1775 static inline int sk_wmem_alloc_get(const struct sock *sk)
1776 {
1777 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1778 }
1779 
1780 /**
1781  * sk_rmem_alloc_get - returns read allocations
1782  * @sk: socket
1783  *
1784  * Returns sk_rmem_alloc
1785  */
1786 static inline int sk_rmem_alloc_get(const struct sock *sk)
1787 {
1788 	return atomic_read(&sk->sk_rmem_alloc);
1789 }
1790 
1791 /**
1792  * sk_has_allocations - check if allocations are outstanding
1793  * @sk: socket
1794  *
1795  * Returns true if socket has write or read allocations
1796  */
1797 static inline int sk_has_allocations(const struct sock *sk)
1798 {
1799 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1800 }
1801 
1802 /**
1803  * wq_has_sleeper - check if there are any waiting processes
1804  * @wq: struct socket_wq
1805  *
1806  * Returns true if socket_wq has waiting processes
1807  *
1808  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1809  * barrier call. They were added due to the race found within the tcp code.
1810  *
1811  * Consider following tcp code paths:
1812  *
1813  * CPU1                  CPU2
1814  *
1815  * sys_select            receive packet
1816  *   ...                 ...
1817  *   __add_wait_queue    update tp->rcv_nxt
1818  *   ...                 ...
1819  *   tp->rcv_nxt check   sock_def_readable
1820  *   ...                 {
1821  *   schedule               rcu_read_lock();
1822  *                          wq = rcu_dereference(sk->sk_wq);
1823  *                          if (wq && waitqueue_active(&wq->wait))
1824  *                              wake_up_interruptible(&wq->wait)
1825  *                          ...
1826  *                       }
1827  *
1828  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1829  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1830  * could then endup calling schedule and sleep forever if there are no more
1831  * data on the socket.
1832  *
1833  */
1834 static inline bool wq_has_sleeper(struct socket_wq *wq)
1835 {
1836 
1837 	/*
1838 	 * We need to be sure we are in sync with the
1839 	 * add_wait_queue modifications to the wait queue.
1840 	 *
1841 	 * This memory barrier is paired in the sock_poll_wait.
1842 	 */
1843 	smp_mb();
1844 	return wq && waitqueue_active(&wq->wait);
1845 }
1846 
1847 /**
1848  * sock_poll_wait - place memory barrier behind the poll_wait call.
1849  * @filp:           file
1850  * @wait_address:   socket wait queue
1851  * @p:              poll_table
1852  *
1853  * See the comments in the wq_has_sleeper function.
1854  */
1855 static inline void sock_poll_wait(struct file *filp,
1856 		wait_queue_head_t *wait_address, poll_table *p)
1857 {
1858 	if (!poll_does_not_wait(p) && wait_address) {
1859 		poll_wait(filp, wait_address, p);
1860 		/*
1861 		 * We need to be sure we are in sync with the
1862 		 * socket flags modification.
1863 		 *
1864 		 * This memory barrier is paired in the wq_has_sleeper.
1865 		*/
1866 		smp_mb();
1867 	}
1868 }
1869 
1870 /*
1871  * 	Queue a received datagram if it will fit. Stream and sequenced
1872  *	protocols can't normally use this as they need to fit buffers in
1873  *	and play with them.
1874  *
1875  * 	Inlined as it's very short and called for pretty much every
1876  *	packet ever received.
1877  */
1878 
1879 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1880 {
1881 	skb_orphan(skb);
1882 	skb->sk = sk;
1883 	skb->destructor = sock_wfree;
1884 	/*
1885 	 * We used to take a refcount on sk, but following operation
1886 	 * is enough to guarantee sk_free() wont free this sock until
1887 	 * all in-flight packets are completed
1888 	 */
1889 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1890 }
1891 
1892 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1893 {
1894 	skb_orphan(skb);
1895 	skb->sk = sk;
1896 	skb->destructor = sock_rfree;
1897 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1898 	sk_mem_charge(sk, skb->truesize);
1899 }
1900 
1901 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1902 			   unsigned long expires);
1903 
1904 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1905 
1906 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1907 
1908 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1909 
1910 /*
1911  *	Recover an error report and clear atomically
1912  */
1913 
1914 static inline int sock_error(struct sock *sk)
1915 {
1916 	int err;
1917 	if (likely(!sk->sk_err))
1918 		return 0;
1919 	err = xchg(&sk->sk_err, 0);
1920 	return -err;
1921 }
1922 
1923 static inline unsigned long sock_wspace(struct sock *sk)
1924 {
1925 	int amt = 0;
1926 
1927 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1928 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1929 		if (amt < 0)
1930 			amt = 0;
1931 	}
1932 	return amt;
1933 }
1934 
1935 static inline void sk_wake_async(struct sock *sk, int how, int band)
1936 {
1937 	if (sock_flag(sk, SOCK_FASYNC))
1938 		sock_wake_async(sk->sk_socket, how, band);
1939 }
1940 
1941 #define SOCK_MIN_SNDBUF 2048
1942 /*
1943  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1944  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1945  */
1946 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1947 
1948 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1949 {
1950 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1951 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1952 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1953 	}
1954 }
1955 
1956 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1957 
1958 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1959 {
1960 	struct page *page = NULL;
1961 
1962 	page = alloc_pages(sk->sk_allocation, 0);
1963 	if (!page) {
1964 		sk_enter_memory_pressure(sk);
1965 		sk_stream_moderate_sndbuf(sk);
1966 	}
1967 	return page;
1968 }
1969 
1970 /*
1971  *	Default write policy as shown to user space via poll/select/SIGIO
1972  */
1973 static inline int sock_writeable(const struct sock *sk)
1974 {
1975 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1976 }
1977 
1978 static inline gfp_t gfp_any(void)
1979 {
1980 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1981 }
1982 
1983 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1984 {
1985 	return noblock ? 0 : sk->sk_rcvtimeo;
1986 }
1987 
1988 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1989 {
1990 	return noblock ? 0 : sk->sk_sndtimeo;
1991 }
1992 
1993 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1994 {
1995 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1996 }
1997 
1998 /* Alas, with timeout socket operations are not restartable.
1999  * Compare this to poll().
2000  */
2001 static inline int sock_intr_errno(long timeo)
2002 {
2003 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2004 }
2005 
2006 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2007 	struct sk_buff *skb);
2008 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2009 	struct sk_buff *skb);
2010 
2011 static __inline__ void
2012 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2013 {
2014 	ktime_t kt = skb->tstamp;
2015 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2016 
2017 	/*
2018 	 * generate control messages if
2019 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2020 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2021 	 * - software time stamp available and wanted
2022 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2023 	 * - hardware time stamps available and wanted
2024 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2025 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2026 	 */
2027 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2028 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2029 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2030 	    (hwtstamps->hwtstamp.tv64 &&
2031 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2032 	    (hwtstamps->syststamp.tv64 &&
2033 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2034 		__sock_recv_timestamp(msg, sk, skb);
2035 	else
2036 		sk->sk_stamp = kt;
2037 
2038 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2039 		__sock_recv_wifi_status(msg, sk, skb);
2040 }
2041 
2042 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2043 				     struct sk_buff *skb);
2044 
2045 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2046 					  struct sk_buff *skb)
2047 {
2048 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2049 			   (1UL << SOCK_RCVTSTAMP)			| \
2050 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2051 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2052 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
2053 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2054 
2055 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2056 		__sock_recv_ts_and_drops(msg, sk, skb);
2057 	else
2058 		sk->sk_stamp = skb->tstamp;
2059 }
2060 
2061 /**
2062  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2063  * @sk:		socket sending this packet
2064  * @tx_flags:	filled with instructions for time stamping
2065  *
2066  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2067  * parameters are invalid.
2068  */
2069 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2070 
2071 /**
2072  * sk_eat_skb - Release a skb if it is no longer needed
2073  * @sk: socket to eat this skb from
2074  * @skb: socket buffer to eat
2075  * @copied_early: flag indicating whether DMA operations copied this data early
2076  *
2077  * This routine must be called with interrupts disabled or with the socket
2078  * locked so that the sk_buff queue operation is ok.
2079 */
2080 #ifdef CONFIG_NET_DMA
2081 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2082 {
2083 	__skb_unlink(skb, &sk->sk_receive_queue);
2084 	if (!copied_early)
2085 		__kfree_skb(skb);
2086 	else
2087 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2088 }
2089 #else
2090 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2091 {
2092 	__skb_unlink(skb, &sk->sk_receive_queue);
2093 	__kfree_skb(skb);
2094 }
2095 #endif
2096 
2097 static inline
2098 struct net *sock_net(const struct sock *sk)
2099 {
2100 	return read_pnet(&sk->sk_net);
2101 }
2102 
2103 static inline
2104 void sock_net_set(struct sock *sk, struct net *net)
2105 {
2106 	write_pnet(&sk->sk_net, net);
2107 }
2108 
2109 /*
2110  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2111  * They should not hold a reference to a namespace in order to allow
2112  * to stop it.
2113  * Sockets after sk_change_net should be released using sk_release_kernel
2114  */
2115 static inline void sk_change_net(struct sock *sk, struct net *net)
2116 {
2117 	put_net(sock_net(sk));
2118 	sock_net_set(sk, hold_net(net));
2119 }
2120 
2121 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2122 {
2123 	if (unlikely(skb->sk)) {
2124 		struct sock *sk = skb->sk;
2125 
2126 		skb->destructor = NULL;
2127 		skb->sk = NULL;
2128 		return sk;
2129 	}
2130 	return NULL;
2131 }
2132 
2133 extern void sock_enable_timestamp(struct sock *sk, int flag);
2134 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2135 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2136 
2137 /*
2138  *	Enable debug/info messages
2139  */
2140 extern int net_msg_warn;
2141 #define NETDEBUG(fmt, args...) \
2142 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2143 
2144 #define LIMIT_NETDEBUG(fmt, args...) \
2145 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2146 
2147 extern __u32 sysctl_wmem_max;
2148 extern __u32 sysctl_rmem_max;
2149 
2150 extern void sk_init(void);
2151 
2152 extern int sysctl_optmem_max;
2153 
2154 extern __u32 sysctl_wmem_default;
2155 extern __u32 sysctl_rmem_default;
2156 
2157 #endif	/* _SOCK_H */
2158