1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/lockdep.h> 50 #include <linux/netdevice.h> 51 #include <linux/skbuff.h> /* struct sk_buff */ 52 #include <linux/mm.h> 53 #include <linux/security.h> 54 #include <linux/slab.h> 55 #include <linux/uaccess.h> 56 #include <linux/memcontrol.h> 57 #include <linux/res_counter.h> 58 #include <linux/static_key.h> 59 #include <linux/aio.h> 60 #include <linux/sched.h> 61 62 #include <linux/filter.h> 63 #include <linux/rculist_nulls.h> 64 #include <linux/poll.h> 65 66 #include <linux/atomic.h> 67 #include <net/dst.h> 68 #include <net/checksum.h> 69 70 struct cgroup; 71 struct cgroup_subsys; 72 #ifdef CONFIG_NET 73 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss); 74 void mem_cgroup_sockets_destroy(struct cgroup *cgrp); 75 #else 76 static inline 77 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss) 78 { 79 return 0; 80 } 81 static inline 82 void mem_cgroup_sockets_destroy(struct cgroup *cgrp) 83 { 84 } 85 #endif 86 /* 87 * This structure really needs to be cleaned up. 88 * Most of it is for TCP, and not used by any of 89 * the other protocols. 90 */ 91 92 /* Define this to get the SOCK_DBG debugging facility. */ 93 #define SOCK_DEBUGGING 94 #ifdef SOCK_DEBUGGING 95 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 96 printk(KERN_DEBUG msg); } while (0) 97 #else 98 /* Validate arguments and do nothing */ 99 static inline __printf(2, 3) 100 void SOCK_DEBUG(struct sock *sk, const char *msg, ...) 101 { 102 } 103 #endif 104 105 /* This is the per-socket lock. The spinlock provides a synchronization 106 * between user contexts and software interrupt processing, whereas the 107 * mini-semaphore synchronizes multiple users amongst themselves. 108 */ 109 typedef struct { 110 spinlock_t slock; 111 int owned; 112 wait_queue_head_t wq; 113 /* 114 * We express the mutex-alike socket_lock semantics 115 * to the lock validator by explicitly managing 116 * the slock as a lock variant (in addition to 117 * the slock itself): 118 */ 119 #ifdef CONFIG_DEBUG_LOCK_ALLOC 120 struct lockdep_map dep_map; 121 #endif 122 } socket_lock_t; 123 124 struct sock; 125 struct proto; 126 struct net; 127 128 /** 129 * struct sock_common - minimal network layer representation of sockets 130 * @skc_daddr: Foreign IPv4 addr 131 * @skc_rcv_saddr: Bound local IPv4 addr 132 * @skc_hash: hash value used with various protocol lookup tables 133 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 134 * @skc_family: network address family 135 * @skc_state: Connection state 136 * @skc_reuse: %SO_REUSEADDR setting 137 * @skc_bound_dev_if: bound device index if != 0 138 * @skc_bind_node: bind hash linkage for various protocol lookup tables 139 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 140 * @skc_prot: protocol handlers inside a network family 141 * @skc_net: reference to the network namespace of this socket 142 * @skc_node: main hash linkage for various protocol lookup tables 143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 144 * @skc_tx_queue_mapping: tx queue number for this connection 145 * @skc_refcnt: reference count 146 * 147 * This is the minimal network layer representation of sockets, the header 148 * for struct sock and struct inet_timewait_sock. 149 */ 150 struct sock_common { 151 /* skc_daddr and skc_rcv_saddr must be grouped : 152 * cf INET_MATCH() and INET_TW_MATCH() 153 */ 154 __be32 skc_daddr; 155 __be32 skc_rcv_saddr; 156 157 union { 158 unsigned int skc_hash; 159 __u16 skc_u16hashes[2]; 160 }; 161 unsigned short skc_family; 162 volatile unsigned char skc_state; 163 unsigned char skc_reuse; 164 int skc_bound_dev_if; 165 union { 166 struct hlist_node skc_bind_node; 167 struct hlist_nulls_node skc_portaddr_node; 168 }; 169 struct proto *skc_prot; 170 #ifdef CONFIG_NET_NS 171 struct net *skc_net; 172 #endif 173 /* 174 * fields between dontcopy_begin/dontcopy_end 175 * are not copied in sock_copy() 176 */ 177 /* private: */ 178 int skc_dontcopy_begin[0]; 179 /* public: */ 180 union { 181 struct hlist_node skc_node; 182 struct hlist_nulls_node skc_nulls_node; 183 }; 184 int skc_tx_queue_mapping; 185 atomic_t skc_refcnt; 186 /* private: */ 187 int skc_dontcopy_end[0]; 188 /* public: */ 189 }; 190 191 struct cg_proto; 192 /** 193 * struct sock - network layer representation of sockets 194 * @__sk_common: shared layout with inet_timewait_sock 195 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 196 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 197 * @sk_lock: synchronizer 198 * @sk_rcvbuf: size of receive buffer in bytes 199 * @sk_wq: sock wait queue and async head 200 * @sk_dst_cache: destination cache 201 * @sk_dst_lock: destination cache lock 202 * @sk_policy: flow policy 203 * @sk_receive_queue: incoming packets 204 * @sk_wmem_alloc: transmit queue bytes committed 205 * @sk_write_queue: Packet sending queue 206 * @sk_async_wait_queue: DMA copied packets 207 * @sk_omem_alloc: "o" is "option" or "other" 208 * @sk_wmem_queued: persistent queue size 209 * @sk_forward_alloc: space allocated forward 210 * @sk_allocation: allocation mode 211 * @sk_sndbuf: size of send buffer in bytes 212 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 213 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 214 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 215 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 216 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 217 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 218 * @sk_gso_max_size: Maximum GSO segment size to build 219 * @sk_lingertime: %SO_LINGER l_linger setting 220 * @sk_backlog: always used with the per-socket spinlock held 221 * @sk_callback_lock: used with the callbacks in the end of this struct 222 * @sk_error_queue: rarely used 223 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 224 * IPV6_ADDRFORM for instance) 225 * @sk_err: last error 226 * @sk_err_soft: errors that don't cause failure but are the cause of a 227 * persistent failure not just 'timed out' 228 * @sk_drops: raw/udp drops counter 229 * @sk_ack_backlog: current listen backlog 230 * @sk_max_ack_backlog: listen backlog set in listen() 231 * @sk_priority: %SO_PRIORITY setting 232 * @sk_cgrp_prioidx: socket group's priority map index 233 * @sk_type: socket type (%SOCK_STREAM, etc) 234 * @sk_protocol: which protocol this socket belongs in this network family 235 * @sk_peer_pid: &struct pid for this socket's peer 236 * @sk_peer_cred: %SO_PEERCRED setting 237 * @sk_rcvlowat: %SO_RCVLOWAT setting 238 * @sk_rcvtimeo: %SO_RCVTIMEO setting 239 * @sk_sndtimeo: %SO_SNDTIMEO setting 240 * @sk_rxhash: flow hash received from netif layer 241 * @sk_filter: socket filtering instructions 242 * @sk_protinfo: private area, net family specific, when not using slab 243 * @sk_timer: sock cleanup timer 244 * @sk_stamp: time stamp of last packet received 245 * @sk_socket: Identd and reporting IO signals 246 * @sk_user_data: RPC layer private data 247 * @sk_sndmsg_page: cached page for sendmsg 248 * @sk_sndmsg_off: cached offset for sendmsg 249 * @sk_peek_off: current peek_offset value 250 * @sk_send_head: front of stuff to transmit 251 * @sk_security: used by security modules 252 * @sk_mark: generic packet mark 253 * @sk_classid: this socket's cgroup classid 254 * @sk_cgrp: this socket's cgroup-specific proto data 255 * @sk_write_pending: a write to stream socket waits to start 256 * @sk_state_change: callback to indicate change in the state of the sock 257 * @sk_data_ready: callback to indicate there is data to be processed 258 * @sk_write_space: callback to indicate there is bf sending space available 259 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 260 * @sk_backlog_rcv: callback to process the backlog 261 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 262 */ 263 struct sock { 264 /* 265 * Now struct inet_timewait_sock also uses sock_common, so please just 266 * don't add nothing before this first member (__sk_common) --acme 267 */ 268 struct sock_common __sk_common; 269 #define sk_node __sk_common.skc_node 270 #define sk_nulls_node __sk_common.skc_nulls_node 271 #define sk_refcnt __sk_common.skc_refcnt 272 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 273 274 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 275 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 276 #define sk_hash __sk_common.skc_hash 277 #define sk_family __sk_common.skc_family 278 #define sk_state __sk_common.skc_state 279 #define sk_reuse __sk_common.skc_reuse 280 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 281 #define sk_bind_node __sk_common.skc_bind_node 282 #define sk_prot __sk_common.skc_prot 283 #define sk_net __sk_common.skc_net 284 socket_lock_t sk_lock; 285 struct sk_buff_head sk_receive_queue; 286 /* 287 * The backlog queue is special, it is always used with 288 * the per-socket spinlock held and requires low latency 289 * access. Therefore we special case it's implementation. 290 * Note : rmem_alloc is in this structure to fill a hole 291 * on 64bit arches, not because its logically part of 292 * backlog. 293 */ 294 struct { 295 atomic_t rmem_alloc; 296 int len; 297 struct sk_buff *head; 298 struct sk_buff *tail; 299 } sk_backlog; 300 #define sk_rmem_alloc sk_backlog.rmem_alloc 301 int sk_forward_alloc; 302 #ifdef CONFIG_RPS 303 __u32 sk_rxhash; 304 #endif 305 atomic_t sk_drops; 306 int sk_rcvbuf; 307 308 struct sk_filter __rcu *sk_filter; 309 struct socket_wq __rcu *sk_wq; 310 311 #ifdef CONFIG_NET_DMA 312 struct sk_buff_head sk_async_wait_queue; 313 #endif 314 315 #ifdef CONFIG_XFRM 316 struct xfrm_policy *sk_policy[2]; 317 #endif 318 unsigned long sk_flags; 319 struct dst_entry *sk_dst_cache; 320 spinlock_t sk_dst_lock; 321 atomic_t sk_wmem_alloc; 322 atomic_t sk_omem_alloc; 323 int sk_sndbuf; 324 struct sk_buff_head sk_write_queue; 325 kmemcheck_bitfield_begin(flags); 326 unsigned int sk_shutdown : 2, 327 sk_no_check : 2, 328 sk_userlocks : 4, 329 sk_protocol : 8, 330 sk_type : 16; 331 kmemcheck_bitfield_end(flags); 332 int sk_wmem_queued; 333 gfp_t sk_allocation; 334 netdev_features_t sk_route_caps; 335 netdev_features_t sk_route_nocaps; 336 int sk_gso_type; 337 unsigned int sk_gso_max_size; 338 int sk_rcvlowat; 339 unsigned long sk_lingertime; 340 struct sk_buff_head sk_error_queue; 341 struct proto *sk_prot_creator; 342 rwlock_t sk_callback_lock; 343 int sk_err, 344 sk_err_soft; 345 unsigned short sk_ack_backlog; 346 unsigned short sk_max_ack_backlog; 347 __u32 sk_priority; 348 #ifdef CONFIG_CGROUPS 349 __u32 sk_cgrp_prioidx; 350 #endif 351 struct pid *sk_peer_pid; 352 const struct cred *sk_peer_cred; 353 long sk_rcvtimeo; 354 long sk_sndtimeo; 355 void *sk_protinfo; 356 struct timer_list sk_timer; 357 ktime_t sk_stamp; 358 struct socket *sk_socket; 359 void *sk_user_data; 360 struct page *sk_sndmsg_page; 361 struct sk_buff *sk_send_head; 362 __u32 sk_sndmsg_off; 363 __s32 sk_peek_off; 364 int sk_write_pending; 365 #ifdef CONFIG_SECURITY 366 void *sk_security; 367 #endif 368 __u32 sk_mark; 369 u32 sk_classid; 370 struct cg_proto *sk_cgrp; 371 void (*sk_state_change)(struct sock *sk); 372 void (*sk_data_ready)(struct sock *sk, int bytes); 373 void (*sk_write_space)(struct sock *sk); 374 void (*sk_error_report)(struct sock *sk); 375 int (*sk_backlog_rcv)(struct sock *sk, 376 struct sk_buff *skb); 377 void (*sk_destruct)(struct sock *sk); 378 }; 379 380 static inline int sk_peek_offset(struct sock *sk, int flags) 381 { 382 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 383 return sk->sk_peek_off; 384 else 385 return 0; 386 } 387 388 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 389 { 390 if (sk->sk_peek_off >= 0) { 391 if (sk->sk_peek_off >= val) 392 sk->sk_peek_off -= val; 393 else 394 sk->sk_peek_off = 0; 395 } 396 } 397 398 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 399 { 400 if (sk->sk_peek_off >= 0) 401 sk->sk_peek_off += val; 402 } 403 404 /* 405 * Hashed lists helper routines 406 */ 407 static inline struct sock *sk_entry(const struct hlist_node *node) 408 { 409 return hlist_entry(node, struct sock, sk_node); 410 } 411 412 static inline struct sock *__sk_head(const struct hlist_head *head) 413 { 414 return hlist_entry(head->first, struct sock, sk_node); 415 } 416 417 static inline struct sock *sk_head(const struct hlist_head *head) 418 { 419 return hlist_empty(head) ? NULL : __sk_head(head); 420 } 421 422 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 423 { 424 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 425 } 426 427 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 428 { 429 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 430 } 431 432 static inline struct sock *sk_next(const struct sock *sk) 433 { 434 return sk->sk_node.next ? 435 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 436 } 437 438 static inline struct sock *sk_nulls_next(const struct sock *sk) 439 { 440 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 441 hlist_nulls_entry(sk->sk_nulls_node.next, 442 struct sock, sk_nulls_node) : 443 NULL; 444 } 445 446 static inline int sk_unhashed(const struct sock *sk) 447 { 448 return hlist_unhashed(&sk->sk_node); 449 } 450 451 static inline int sk_hashed(const struct sock *sk) 452 { 453 return !sk_unhashed(sk); 454 } 455 456 static __inline__ void sk_node_init(struct hlist_node *node) 457 { 458 node->pprev = NULL; 459 } 460 461 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node) 462 { 463 node->pprev = NULL; 464 } 465 466 static __inline__ void __sk_del_node(struct sock *sk) 467 { 468 __hlist_del(&sk->sk_node); 469 } 470 471 /* NB: equivalent to hlist_del_init_rcu */ 472 static __inline__ int __sk_del_node_init(struct sock *sk) 473 { 474 if (sk_hashed(sk)) { 475 __sk_del_node(sk); 476 sk_node_init(&sk->sk_node); 477 return 1; 478 } 479 return 0; 480 } 481 482 /* Grab socket reference count. This operation is valid only 483 when sk is ALREADY grabbed f.e. it is found in hash table 484 or a list and the lookup is made under lock preventing hash table 485 modifications. 486 */ 487 488 static inline void sock_hold(struct sock *sk) 489 { 490 atomic_inc(&sk->sk_refcnt); 491 } 492 493 /* Ungrab socket in the context, which assumes that socket refcnt 494 cannot hit zero, f.e. it is true in context of any socketcall. 495 */ 496 static inline void __sock_put(struct sock *sk) 497 { 498 atomic_dec(&sk->sk_refcnt); 499 } 500 501 static __inline__ int sk_del_node_init(struct sock *sk) 502 { 503 int rc = __sk_del_node_init(sk); 504 505 if (rc) { 506 /* paranoid for a while -acme */ 507 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 508 __sock_put(sk); 509 } 510 return rc; 511 } 512 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 513 514 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk) 515 { 516 if (sk_hashed(sk)) { 517 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 518 return 1; 519 } 520 return 0; 521 } 522 523 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk) 524 { 525 int rc = __sk_nulls_del_node_init_rcu(sk); 526 527 if (rc) { 528 /* paranoid for a while -acme */ 529 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 530 __sock_put(sk); 531 } 532 return rc; 533 } 534 535 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 536 { 537 hlist_add_head(&sk->sk_node, list); 538 } 539 540 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 541 { 542 sock_hold(sk); 543 __sk_add_node(sk, list); 544 } 545 546 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 547 { 548 sock_hold(sk); 549 hlist_add_head_rcu(&sk->sk_node, list); 550 } 551 552 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 553 { 554 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 555 } 556 557 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 558 { 559 sock_hold(sk); 560 __sk_nulls_add_node_rcu(sk, list); 561 } 562 563 static __inline__ void __sk_del_bind_node(struct sock *sk) 564 { 565 __hlist_del(&sk->sk_bind_node); 566 } 567 568 static __inline__ void sk_add_bind_node(struct sock *sk, 569 struct hlist_head *list) 570 { 571 hlist_add_head(&sk->sk_bind_node, list); 572 } 573 574 #define sk_for_each(__sk, node, list) \ 575 hlist_for_each_entry(__sk, node, list, sk_node) 576 #define sk_for_each_rcu(__sk, node, list) \ 577 hlist_for_each_entry_rcu(__sk, node, list, sk_node) 578 #define sk_nulls_for_each(__sk, node, list) \ 579 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 580 #define sk_nulls_for_each_rcu(__sk, node, list) \ 581 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 582 #define sk_for_each_from(__sk, node) \ 583 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 584 hlist_for_each_entry_from(__sk, node, sk_node) 585 #define sk_nulls_for_each_from(__sk, node) \ 586 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 587 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 588 #define sk_for_each_safe(__sk, node, tmp, list) \ 589 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 590 #define sk_for_each_bound(__sk, node, list) \ 591 hlist_for_each_entry(__sk, node, list, sk_bind_node) 592 593 /* Sock flags */ 594 enum sock_flags { 595 SOCK_DEAD, 596 SOCK_DONE, 597 SOCK_URGINLINE, 598 SOCK_KEEPOPEN, 599 SOCK_LINGER, 600 SOCK_DESTROY, 601 SOCK_BROADCAST, 602 SOCK_TIMESTAMP, 603 SOCK_ZAPPED, 604 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 605 SOCK_DBG, /* %SO_DEBUG setting */ 606 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 607 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 608 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 609 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 610 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 611 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 612 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 613 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 614 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 615 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 616 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 617 SOCK_FASYNC, /* fasync() active */ 618 SOCK_RXQ_OVFL, 619 SOCK_ZEROCOPY, /* buffers from userspace */ 620 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 621 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 622 * Will use last 4 bytes of packet sent from 623 * user-space instead. 624 */ 625 }; 626 627 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 628 { 629 nsk->sk_flags = osk->sk_flags; 630 } 631 632 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 633 { 634 __set_bit(flag, &sk->sk_flags); 635 } 636 637 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 638 { 639 __clear_bit(flag, &sk->sk_flags); 640 } 641 642 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 643 { 644 return test_bit(flag, &sk->sk_flags); 645 } 646 647 static inline void sk_acceptq_removed(struct sock *sk) 648 { 649 sk->sk_ack_backlog--; 650 } 651 652 static inline void sk_acceptq_added(struct sock *sk) 653 { 654 sk->sk_ack_backlog++; 655 } 656 657 static inline int sk_acceptq_is_full(struct sock *sk) 658 { 659 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 660 } 661 662 /* 663 * Compute minimal free write space needed to queue new packets. 664 */ 665 static inline int sk_stream_min_wspace(struct sock *sk) 666 { 667 return sk->sk_wmem_queued >> 1; 668 } 669 670 static inline int sk_stream_wspace(struct sock *sk) 671 { 672 return sk->sk_sndbuf - sk->sk_wmem_queued; 673 } 674 675 extern void sk_stream_write_space(struct sock *sk); 676 677 static inline int sk_stream_memory_free(struct sock *sk) 678 { 679 return sk->sk_wmem_queued < sk->sk_sndbuf; 680 } 681 682 /* OOB backlog add */ 683 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 684 { 685 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 686 skb_dst_force(skb); 687 688 if (!sk->sk_backlog.tail) 689 sk->sk_backlog.head = skb; 690 else 691 sk->sk_backlog.tail->next = skb; 692 693 sk->sk_backlog.tail = skb; 694 skb->next = NULL; 695 } 696 697 /* 698 * Take into account size of receive queue and backlog queue 699 * Do not take into account this skb truesize, 700 * to allow even a single big packet to come. 701 */ 702 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb) 703 { 704 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 705 706 return qsize > sk->sk_rcvbuf; 707 } 708 709 /* The per-socket spinlock must be held here. */ 710 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb) 711 { 712 if (sk_rcvqueues_full(sk, skb)) 713 return -ENOBUFS; 714 715 __sk_add_backlog(sk, skb); 716 sk->sk_backlog.len += skb->truesize; 717 return 0; 718 } 719 720 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 721 { 722 return sk->sk_backlog_rcv(sk, skb); 723 } 724 725 static inline void sock_rps_record_flow(const struct sock *sk) 726 { 727 #ifdef CONFIG_RPS 728 struct rps_sock_flow_table *sock_flow_table; 729 730 rcu_read_lock(); 731 sock_flow_table = rcu_dereference(rps_sock_flow_table); 732 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash); 733 rcu_read_unlock(); 734 #endif 735 } 736 737 static inline void sock_rps_reset_flow(const struct sock *sk) 738 { 739 #ifdef CONFIG_RPS 740 struct rps_sock_flow_table *sock_flow_table; 741 742 rcu_read_lock(); 743 sock_flow_table = rcu_dereference(rps_sock_flow_table); 744 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash); 745 rcu_read_unlock(); 746 #endif 747 } 748 749 static inline void sock_rps_save_rxhash(struct sock *sk, 750 const struct sk_buff *skb) 751 { 752 #ifdef CONFIG_RPS 753 if (unlikely(sk->sk_rxhash != skb->rxhash)) { 754 sock_rps_reset_flow(sk); 755 sk->sk_rxhash = skb->rxhash; 756 } 757 #endif 758 } 759 760 static inline void sock_rps_reset_rxhash(struct sock *sk) 761 { 762 #ifdef CONFIG_RPS 763 sock_rps_reset_flow(sk); 764 sk->sk_rxhash = 0; 765 #endif 766 } 767 768 #define sk_wait_event(__sk, __timeo, __condition) \ 769 ({ int __rc; \ 770 release_sock(__sk); \ 771 __rc = __condition; \ 772 if (!__rc) { \ 773 *(__timeo) = schedule_timeout(*(__timeo)); \ 774 } \ 775 lock_sock(__sk); \ 776 __rc = __condition; \ 777 __rc; \ 778 }) 779 780 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 781 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 782 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 783 extern int sk_stream_error(struct sock *sk, int flags, int err); 784 extern void sk_stream_kill_queues(struct sock *sk); 785 786 extern int sk_wait_data(struct sock *sk, long *timeo); 787 788 struct request_sock_ops; 789 struct timewait_sock_ops; 790 struct inet_hashinfo; 791 struct raw_hashinfo; 792 struct module; 793 794 /* Networking protocol blocks we attach to sockets. 795 * socket layer -> transport layer interface 796 * transport -> network interface is defined by struct inet_proto 797 */ 798 struct proto { 799 void (*close)(struct sock *sk, 800 long timeout); 801 int (*connect)(struct sock *sk, 802 struct sockaddr *uaddr, 803 int addr_len); 804 int (*disconnect)(struct sock *sk, int flags); 805 806 struct sock * (*accept) (struct sock *sk, int flags, int *err); 807 808 int (*ioctl)(struct sock *sk, int cmd, 809 unsigned long arg); 810 int (*init)(struct sock *sk); 811 void (*destroy)(struct sock *sk); 812 void (*shutdown)(struct sock *sk, int how); 813 int (*setsockopt)(struct sock *sk, int level, 814 int optname, char __user *optval, 815 unsigned int optlen); 816 int (*getsockopt)(struct sock *sk, int level, 817 int optname, char __user *optval, 818 int __user *option); 819 #ifdef CONFIG_COMPAT 820 int (*compat_setsockopt)(struct sock *sk, 821 int level, 822 int optname, char __user *optval, 823 unsigned int optlen); 824 int (*compat_getsockopt)(struct sock *sk, 825 int level, 826 int optname, char __user *optval, 827 int __user *option); 828 int (*compat_ioctl)(struct sock *sk, 829 unsigned int cmd, unsigned long arg); 830 #endif 831 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 832 struct msghdr *msg, size_t len); 833 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 834 struct msghdr *msg, 835 size_t len, int noblock, int flags, 836 int *addr_len); 837 int (*sendpage)(struct sock *sk, struct page *page, 838 int offset, size_t size, int flags); 839 int (*bind)(struct sock *sk, 840 struct sockaddr *uaddr, int addr_len); 841 842 int (*backlog_rcv) (struct sock *sk, 843 struct sk_buff *skb); 844 845 /* Keeping track of sk's, looking them up, and port selection methods. */ 846 void (*hash)(struct sock *sk); 847 void (*unhash)(struct sock *sk); 848 void (*rehash)(struct sock *sk); 849 int (*get_port)(struct sock *sk, unsigned short snum); 850 void (*clear_sk)(struct sock *sk, int size); 851 852 /* Keeping track of sockets in use */ 853 #ifdef CONFIG_PROC_FS 854 unsigned int inuse_idx; 855 #endif 856 857 /* Memory pressure */ 858 void (*enter_memory_pressure)(struct sock *sk); 859 atomic_long_t *memory_allocated; /* Current allocated memory. */ 860 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 861 /* 862 * Pressure flag: try to collapse. 863 * Technical note: it is used by multiple contexts non atomically. 864 * All the __sk_mem_schedule() is of this nature: accounting 865 * is strict, actions are advisory and have some latency. 866 */ 867 int *memory_pressure; 868 long *sysctl_mem; 869 int *sysctl_wmem; 870 int *sysctl_rmem; 871 int max_header; 872 bool no_autobind; 873 874 struct kmem_cache *slab; 875 unsigned int obj_size; 876 int slab_flags; 877 878 struct percpu_counter *orphan_count; 879 880 struct request_sock_ops *rsk_prot; 881 struct timewait_sock_ops *twsk_prot; 882 883 union { 884 struct inet_hashinfo *hashinfo; 885 struct udp_table *udp_table; 886 struct raw_hashinfo *raw_hash; 887 } h; 888 889 struct module *owner; 890 891 char name[32]; 892 893 struct list_head node; 894 #ifdef SOCK_REFCNT_DEBUG 895 atomic_t socks; 896 #endif 897 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 898 /* 899 * cgroup specific init/deinit functions. Called once for all 900 * protocols that implement it, from cgroups populate function. 901 * This function has to setup any files the protocol want to 902 * appear in the kmem cgroup filesystem. 903 */ 904 int (*init_cgroup)(struct cgroup *cgrp, 905 struct cgroup_subsys *ss); 906 void (*destroy_cgroup)(struct cgroup *cgrp); 907 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 908 #endif 909 }; 910 911 struct cg_proto { 912 void (*enter_memory_pressure)(struct sock *sk); 913 struct res_counter *memory_allocated; /* Current allocated memory. */ 914 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 915 int *memory_pressure; 916 long *sysctl_mem; 917 /* 918 * memcg field is used to find which memcg we belong directly 919 * Each memcg struct can hold more than one cg_proto, so container_of 920 * won't really cut. 921 * 922 * The elegant solution would be having an inverse function to 923 * proto_cgroup in struct proto, but that means polluting the structure 924 * for everybody, instead of just for memcg users. 925 */ 926 struct mem_cgroup *memcg; 927 }; 928 929 extern int proto_register(struct proto *prot, int alloc_slab); 930 extern void proto_unregister(struct proto *prot); 931 932 #ifdef SOCK_REFCNT_DEBUG 933 static inline void sk_refcnt_debug_inc(struct sock *sk) 934 { 935 atomic_inc(&sk->sk_prot->socks); 936 } 937 938 static inline void sk_refcnt_debug_dec(struct sock *sk) 939 { 940 atomic_dec(&sk->sk_prot->socks); 941 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 942 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 943 } 944 945 inline void sk_refcnt_debug_release(const struct sock *sk) 946 { 947 if (atomic_read(&sk->sk_refcnt) != 1) 948 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 949 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 950 } 951 #else /* SOCK_REFCNT_DEBUG */ 952 #define sk_refcnt_debug_inc(sk) do { } while (0) 953 #define sk_refcnt_debug_dec(sk) do { } while (0) 954 #define sk_refcnt_debug_release(sk) do { } while (0) 955 #endif /* SOCK_REFCNT_DEBUG */ 956 957 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET) 958 extern struct static_key memcg_socket_limit_enabled; 959 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 960 struct cg_proto *cg_proto) 961 { 962 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 963 } 964 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 965 #else 966 #define mem_cgroup_sockets_enabled 0 967 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 968 struct cg_proto *cg_proto) 969 { 970 return NULL; 971 } 972 #endif 973 974 975 static inline bool sk_has_memory_pressure(const struct sock *sk) 976 { 977 return sk->sk_prot->memory_pressure != NULL; 978 } 979 980 static inline bool sk_under_memory_pressure(const struct sock *sk) 981 { 982 if (!sk->sk_prot->memory_pressure) 983 return false; 984 985 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 986 return !!*sk->sk_cgrp->memory_pressure; 987 988 return !!*sk->sk_prot->memory_pressure; 989 } 990 991 static inline void sk_leave_memory_pressure(struct sock *sk) 992 { 993 int *memory_pressure = sk->sk_prot->memory_pressure; 994 995 if (!memory_pressure) 996 return; 997 998 if (*memory_pressure) 999 *memory_pressure = 0; 1000 1001 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1002 struct cg_proto *cg_proto = sk->sk_cgrp; 1003 struct proto *prot = sk->sk_prot; 1004 1005 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1006 if (*cg_proto->memory_pressure) 1007 *cg_proto->memory_pressure = 0; 1008 } 1009 1010 } 1011 1012 static inline void sk_enter_memory_pressure(struct sock *sk) 1013 { 1014 if (!sk->sk_prot->enter_memory_pressure) 1015 return; 1016 1017 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1018 struct cg_proto *cg_proto = sk->sk_cgrp; 1019 struct proto *prot = sk->sk_prot; 1020 1021 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1022 cg_proto->enter_memory_pressure(sk); 1023 } 1024 1025 sk->sk_prot->enter_memory_pressure(sk); 1026 } 1027 1028 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1029 { 1030 long *prot = sk->sk_prot->sysctl_mem; 1031 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1032 prot = sk->sk_cgrp->sysctl_mem; 1033 return prot[index]; 1034 } 1035 1036 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1037 unsigned long amt, 1038 int *parent_status) 1039 { 1040 struct res_counter *fail; 1041 int ret; 1042 1043 ret = res_counter_charge_nofail(prot->memory_allocated, 1044 amt << PAGE_SHIFT, &fail); 1045 if (ret < 0) 1046 *parent_status = OVER_LIMIT; 1047 } 1048 1049 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1050 unsigned long amt) 1051 { 1052 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT); 1053 } 1054 1055 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1056 { 1057 u64 ret; 1058 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE); 1059 return ret >> PAGE_SHIFT; 1060 } 1061 1062 static inline long 1063 sk_memory_allocated(const struct sock *sk) 1064 { 1065 struct proto *prot = sk->sk_prot; 1066 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1067 return memcg_memory_allocated_read(sk->sk_cgrp); 1068 1069 return atomic_long_read(prot->memory_allocated); 1070 } 1071 1072 static inline long 1073 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1074 { 1075 struct proto *prot = sk->sk_prot; 1076 1077 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1078 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1079 /* update the root cgroup regardless */ 1080 atomic_long_add_return(amt, prot->memory_allocated); 1081 return memcg_memory_allocated_read(sk->sk_cgrp); 1082 } 1083 1084 return atomic_long_add_return(amt, prot->memory_allocated); 1085 } 1086 1087 static inline void 1088 sk_memory_allocated_sub(struct sock *sk, int amt) 1089 { 1090 struct proto *prot = sk->sk_prot; 1091 1092 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1093 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1094 1095 atomic_long_sub(amt, prot->memory_allocated); 1096 } 1097 1098 static inline void sk_sockets_allocated_dec(struct sock *sk) 1099 { 1100 struct proto *prot = sk->sk_prot; 1101 1102 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1103 struct cg_proto *cg_proto = sk->sk_cgrp; 1104 1105 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1106 percpu_counter_dec(cg_proto->sockets_allocated); 1107 } 1108 1109 percpu_counter_dec(prot->sockets_allocated); 1110 } 1111 1112 static inline void sk_sockets_allocated_inc(struct sock *sk) 1113 { 1114 struct proto *prot = sk->sk_prot; 1115 1116 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1117 struct cg_proto *cg_proto = sk->sk_cgrp; 1118 1119 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1120 percpu_counter_inc(cg_proto->sockets_allocated); 1121 } 1122 1123 percpu_counter_inc(prot->sockets_allocated); 1124 } 1125 1126 static inline int 1127 sk_sockets_allocated_read_positive(struct sock *sk) 1128 { 1129 struct proto *prot = sk->sk_prot; 1130 1131 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1132 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated); 1133 1134 return percpu_counter_read_positive(prot->sockets_allocated); 1135 } 1136 1137 static inline int 1138 proto_sockets_allocated_sum_positive(struct proto *prot) 1139 { 1140 return percpu_counter_sum_positive(prot->sockets_allocated); 1141 } 1142 1143 static inline long 1144 proto_memory_allocated(struct proto *prot) 1145 { 1146 return atomic_long_read(prot->memory_allocated); 1147 } 1148 1149 static inline bool 1150 proto_memory_pressure(struct proto *prot) 1151 { 1152 if (!prot->memory_pressure) 1153 return false; 1154 return !!*prot->memory_pressure; 1155 } 1156 1157 1158 #ifdef CONFIG_PROC_FS 1159 /* Called with local bh disabled */ 1160 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1161 extern int sock_prot_inuse_get(struct net *net, struct proto *proto); 1162 #else 1163 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot, 1164 int inc) 1165 { 1166 } 1167 #endif 1168 1169 1170 /* With per-bucket locks this operation is not-atomic, so that 1171 * this version is not worse. 1172 */ 1173 static inline void __sk_prot_rehash(struct sock *sk) 1174 { 1175 sk->sk_prot->unhash(sk); 1176 sk->sk_prot->hash(sk); 1177 } 1178 1179 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1180 1181 /* About 10 seconds */ 1182 #define SOCK_DESTROY_TIME (10*HZ) 1183 1184 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1185 #define PROT_SOCK 1024 1186 1187 #define SHUTDOWN_MASK 3 1188 #define RCV_SHUTDOWN 1 1189 #define SEND_SHUTDOWN 2 1190 1191 #define SOCK_SNDBUF_LOCK 1 1192 #define SOCK_RCVBUF_LOCK 2 1193 #define SOCK_BINDADDR_LOCK 4 1194 #define SOCK_BINDPORT_LOCK 8 1195 1196 /* sock_iocb: used to kick off async processing of socket ios */ 1197 struct sock_iocb { 1198 struct list_head list; 1199 1200 int flags; 1201 int size; 1202 struct socket *sock; 1203 struct sock *sk; 1204 struct scm_cookie *scm; 1205 struct msghdr *msg, async_msg; 1206 struct kiocb *kiocb; 1207 }; 1208 1209 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1210 { 1211 return (struct sock_iocb *)iocb->private; 1212 } 1213 1214 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1215 { 1216 return si->kiocb; 1217 } 1218 1219 struct socket_alloc { 1220 struct socket socket; 1221 struct inode vfs_inode; 1222 }; 1223 1224 static inline struct socket *SOCKET_I(struct inode *inode) 1225 { 1226 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1227 } 1228 1229 static inline struct inode *SOCK_INODE(struct socket *socket) 1230 { 1231 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1232 } 1233 1234 /* 1235 * Functions for memory accounting 1236 */ 1237 extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 1238 extern void __sk_mem_reclaim(struct sock *sk); 1239 1240 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1241 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1242 #define SK_MEM_SEND 0 1243 #define SK_MEM_RECV 1 1244 1245 static inline int sk_mem_pages(int amt) 1246 { 1247 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1248 } 1249 1250 static inline int sk_has_account(struct sock *sk) 1251 { 1252 /* return true if protocol supports memory accounting */ 1253 return !!sk->sk_prot->memory_allocated; 1254 } 1255 1256 static inline int sk_wmem_schedule(struct sock *sk, int size) 1257 { 1258 if (!sk_has_account(sk)) 1259 return 1; 1260 return size <= sk->sk_forward_alloc || 1261 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1262 } 1263 1264 static inline int sk_rmem_schedule(struct sock *sk, int size) 1265 { 1266 if (!sk_has_account(sk)) 1267 return 1; 1268 return size <= sk->sk_forward_alloc || 1269 __sk_mem_schedule(sk, size, SK_MEM_RECV); 1270 } 1271 1272 static inline void sk_mem_reclaim(struct sock *sk) 1273 { 1274 if (!sk_has_account(sk)) 1275 return; 1276 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1277 __sk_mem_reclaim(sk); 1278 } 1279 1280 static inline void sk_mem_reclaim_partial(struct sock *sk) 1281 { 1282 if (!sk_has_account(sk)) 1283 return; 1284 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1285 __sk_mem_reclaim(sk); 1286 } 1287 1288 static inline void sk_mem_charge(struct sock *sk, int size) 1289 { 1290 if (!sk_has_account(sk)) 1291 return; 1292 sk->sk_forward_alloc -= size; 1293 } 1294 1295 static inline void sk_mem_uncharge(struct sock *sk, int size) 1296 { 1297 if (!sk_has_account(sk)) 1298 return; 1299 sk->sk_forward_alloc += size; 1300 } 1301 1302 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1303 { 1304 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1305 sk->sk_wmem_queued -= skb->truesize; 1306 sk_mem_uncharge(sk, skb->truesize); 1307 __kfree_skb(skb); 1308 } 1309 1310 /* Used by processes to "lock" a socket state, so that 1311 * interrupts and bottom half handlers won't change it 1312 * from under us. It essentially blocks any incoming 1313 * packets, so that we won't get any new data or any 1314 * packets that change the state of the socket. 1315 * 1316 * While locked, BH processing will add new packets to 1317 * the backlog queue. This queue is processed by the 1318 * owner of the socket lock right before it is released. 1319 * 1320 * Since ~2.3.5 it is also exclusive sleep lock serializing 1321 * accesses from user process context. 1322 */ 1323 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1324 1325 /* 1326 * Macro so as to not evaluate some arguments when 1327 * lockdep is not enabled. 1328 * 1329 * Mark both the sk_lock and the sk_lock.slock as a 1330 * per-address-family lock class. 1331 */ 1332 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1333 do { \ 1334 sk->sk_lock.owned = 0; \ 1335 init_waitqueue_head(&sk->sk_lock.wq); \ 1336 spin_lock_init(&(sk)->sk_lock.slock); \ 1337 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1338 sizeof((sk)->sk_lock)); \ 1339 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1340 (skey), (sname)); \ 1341 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1342 } while (0) 1343 1344 extern void lock_sock_nested(struct sock *sk, int subclass); 1345 1346 static inline void lock_sock(struct sock *sk) 1347 { 1348 lock_sock_nested(sk, 0); 1349 } 1350 1351 extern void release_sock(struct sock *sk); 1352 1353 /* BH context may only use the following locking interface. */ 1354 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1355 #define bh_lock_sock_nested(__sk) \ 1356 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1357 SINGLE_DEPTH_NESTING) 1358 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1359 1360 extern bool lock_sock_fast(struct sock *sk); 1361 /** 1362 * unlock_sock_fast - complement of lock_sock_fast 1363 * @sk: socket 1364 * @slow: slow mode 1365 * 1366 * fast unlock socket for user context. 1367 * If slow mode is on, we call regular release_sock() 1368 */ 1369 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1370 { 1371 if (slow) 1372 release_sock(sk); 1373 else 1374 spin_unlock_bh(&sk->sk_lock.slock); 1375 } 1376 1377 1378 extern struct sock *sk_alloc(struct net *net, int family, 1379 gfp_t priority, 1380 struct proto *prot); 1381 extern void sk_free(struct sock *sk); 1382 extern void sk_release_kernel(struct sock *sk); 1383 extern struct sock *sk_clone_lock(const struct sock *sk, 1384 const gfp_t priority); 1385 1386 extern struct sk_buff *sock_wmalloc(struct sock *sk, 1387 unsigned long size, int force, 1388 gfp_t priority); 1389 extern struct sk_buff *sock_rmalloc(struct sock *sk, 1390 unsigned long size, int force, 1391 gfp_t priority); 1392 extern void sock_wfree(struct sk_buff *skb); 1393 extern void sock_rfree(struct sk_buff *skb); 1394 1395 extern int sock_setsockopt(struct socket *sock, int level, 1396 int op, char __user *optval, 1397 unsigned int optlen); 1398 1399 extern int sock_getsockopt(struct socket *sock, int level, 1400 int op, char __user *optval, 1401 int __user *optlen); 1402 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1403 unsigned long size, 1404 int noblock, 1405 int *errcode); 1406 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 1407 unsigned long header_len, 1408 unsigned long data_len, 1409 int noblock, 1410 int *errcode); 1411 extern void *sock_kmalloc(struct sock *sk, int size, 1412 gfp_t priority); 1413 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 1414 extern void sk_send_sigurg(struct sock *sk); 1415 1416 #ifdef CONFIG_CGROUPS 1417 extern void sock_update_classid(struct sock *sk); 1418 #else 1419 static inline void sock_update_classid(struct sock *sk) 1420 { 1421 } 1422 #endif 1423 1424 /* 1425 * Functions to fill in entries in struct proto_ops when a protocol 1426 * does not implement a particular function. 1427 */ 1428 extern int sock_no_bind(struct socket *, 1429 struct sockaddr *, int); 1430 extern int sock_no_connect(struct socket *, 1431 struct sockaddr *, int, int); 1432 extern int sock_no_socketpair(struct socket *, 1433 struct socket *); 1434 extern int sock_no_accept(struct socket *, 1435 struct socket *, int); 1436 extern int sock_no_getname(struct socket *, 1437 struct sockaddr *, int *, int); 1438 extern unsigned int sock_no_poll(struct file *, struct socket *, 1439 struct poll_table_struct *); 1440 extern int sock_no_ioctl(struct socket *, unsigned int, 1441 unsigned long); 1442 extern int sock_no_listen(struct socket *, int); 1443 extern int sock_no_shutdown(struct socket *, int); 1444 extern int sock_no_getsockopt(struct socket *, int , int, 1445 char __user *, int __user *); 1446 extern int sock_no_setsockopt(struct socket *, int, int, 1447 char __user *, unsigned int); 1448 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 1449 struct msghdr *, size_t); 1450 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 1451 struct msghdr *, size_t, int); 1452 extern int sock_no_mmap(struct file *file, 1453 struct socket *sock, 1454 struct vm_area_struct *vma); 1455 extern ssize_t sock_no_sendpage(struct socket *sock, 1456 struct page *page, 1457 int offset, size_t size, 1458 int flags); 1459 1460 /* 1461 * Functions to fill in entries in struct proto_ops when a protocol 1462 * uses the inet style. 1463 */ 1464 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 1465 char __user *optval, int __user *optlen); 1466 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1467 struct msghdr *msg, size_t size, int flags); 1468 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 1469 char __user *optval, unsigned int optlen); 1470 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 1471 int optname, char __user *optval, int __user *optlen); 1472 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 1473 int optname, char __user *optval, unsigned int optlen); 1474 1475 extern void sk_common_release(struct sock *sk); 1476 1477 /* 1478 * Default socket callbacks and setup code 1479 */ 1480 1481 /* Initialise core socket variables */ 1482 extern void sock_init_data(struct socket *sock, struct sock *sk); 1483 1484 extern void sk_filter_release_rcu(struct rcu_head *rcu); 1485 1486 /** 1487 * sk_filter_release - release a socket filter 1488 * @fp: filter to remove 1489 * 1490 * Remove a filter from a socket and release its resources. 1491 */ 1492 1493 static inline void sk_filter_release(struct sk_filter *fp) 1494 { 1495 if (atomic_dec_and_test(&fp->refcnt)) 1496 call_rcu(&fp->rcu, sk_filter_release_rcu); 1497 } 1498 1499 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1500 { 1501 unsigned int size = sk_filter_len(fp); 1502 1503 atomic_sub(size, &sk->sk_omem_alloc); 1504 sk_filter_release(fp); 1505 } 1506 1507 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1508 { 1509 atomic_inc(&fp->refcnt); 1510 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 1511 } 1512 1513 /* 1514 * Socket reference counting postulates. 1515 * 1516 * * Each user of socket SHOULD hold a reference count. 1517 * * Each access point to socket (an hash table bucket, reference from a list, 1518 * running timer, skb in flight MUST hold a reference count. 1519 * * When reference count hits 0, it means it will never increase back. 1520 * * When reference count hits 0, it means that no references from 1521 * outside exist to this socket and current process on current CPU 1522 * is last user and may/should destroy this socket. 1523 * * sk_free is called from any context: process, BH, IRQ. When 1524 * it is called, socket has no references from outside -> sk_free 1525 * may release descendant resources allocated by the socket, but 1526 * to the time when it is called, socket is NOT referenced by any 1527 * hash tables, lists etc. 1528 * * Packets, delivered from outside (from network or from another process) 1529 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1530 * when they sit in queue. Otherwise, packets will leak to hole, when 1531 * socket is looked up by one cpu and unhasing is made by another CPU. 1532 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1533 * (leak to backlog). Packet socket does all the processing inside 1534 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1535 * use separate SMP lock, so that they are prone too. 1536 */ 1537 1538 /* Ungrab socket and destroy it, if it was the last reference. */ 1539 static inline void sock_put(struct sock *sk) 1540 { 1541 if (atomic_dec_and_test(&sk->sk_refcnt)) 1542 sk_free(sk); 1543 } 1544 1545 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1546 const int nested); 1547 1548 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1549 { 1550 sk->sk_tx_queue_mapping = tx_queue; 1551 } 1552 1553 static inline void sk_tx_queue_clear(struct sock *sk) 1554 { 1555 sk->sk_tx_queue_mapping = -1; 1556 } 1557 1558 static inline int sk_tx_queue_get(const struct sock *sk) 1559 { 1560 return sk ? sk->sk_tx_queue_mapping : -1; 1561 } 1562 1563 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1564 { 1565 sk_tx_queue_clear(sk); 1566 sk->sk_socket = sock; 1567 } 1568 1569 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1570 { 1571 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1572 return &rcu_dereference_raw(sk->sk_wq)->wait; 1573 } 1574 /* Detach socket from process context. 1575 * Announce socket dead, detach it from wait queue and inode. 1576 * Note that parent inode held reference count on this struct sock, 1577 * we do not release it in this function, because protocol 1578 * probably wants some additional cleanups or even continuing 1579 * to work with this socket (TCP). 1580 */ 1581 static inline void sock_orphan(struct sock *sk) 1582 { 1583 write_lock_bh(&sk->sk_callback_lock); 1584 sock_set_flag(sk, SOCK_DEAD); 1585 sk_set_socket(sk, NULL); 1586 sk->sk_wq = NULL; 1587 write_unlock_bh(&sk->sk_callback_lock); 1588 } 1589 1590 static inline void sock_graft(struct sock *sk, struct socket *parent) 1591 { 1592 write_lock_bh(&sk->sk_callback_lock); 1593 sk->sk_wq = parent->wq; 1594 parent->sk = sk; 1595 sk_set_socket(sk, parent); 1596 security_sock_graft(sk, parent); 1597 write_unlock_bh(&sk->sk_callback_lock); 1598 } 1599 1600 extern int sock_i_uid(struct sock *sk); 1601 extern unsigned long sock_i_ino(struct sock *sk); 1602 1603 static inline struct dst_entry * 1604 __sk_dst_get(struct sock *sk) 1605 { 1606 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1607 lockdep_is_held(&sk->sk_lock.slock)); 1608 } 1609 1610 static inline struct dst_entry * 1611 sk_dst_get(struct sock *sk) 1612 { 1613 struct dst_entry *dst; 1614 1615 rcu_read_lock(); 1616 dst = rcu_dereference(sk->sk_dst_cache); 1617 if (dst) 1618 dst_hold(dst); 1619 rcu_read_unlock(); 1620 return dst; 1621 } 1622 1623 extern void sk_reset_txq(struct sock *sk); 1624 1625 static inline void dst_negative_advice(struct sock *sk) 1626 { 1627 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1628 1629 if (dst && dst->ops->negative_advice) { 1630 ndst = dst->ops->negative_advice(dst); 1631 1632 if (ndst != dst) { 1633 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1634 sk_reset_txq(sk); 1635 } 1636 } 1637 } 1638 1639 static inline void 1640 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1641 { 1642 struct dst_entry *old_dst; 1643 1644 sk_tx_queue_clear(sk); 1645 /* 1646 * This can be called while sk is owned by the caller only, 1647 * with no state that can be checked in a rcu_dereference_check() cond 1648 */ 1649 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1650 rcu_assign_pointer(sk->sk_dst_cache, dst); 1651 dst_release(old_dst); 1652 } 1653 1654 static inline void 1655 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1656 { 1657 spin_lock(&sk->sk_dst_lock); 1658 __sk_dst_set(sk, dst); 1659 spin_unlock(&sk->sk_dst_lock); 1660 } 1661 1662 static inline void 1663 __sk_dst_reset(struct sock *sk) 1664 { 1665 __sk_dst_set(sk, NULL); 1666 } 1667 1668 static inline void 1669 sk_dst_reset(struct sock *sk) 1670 { 1671 spin_lock(&sk->sk_dst_lock); 1672 __sk_dst_reset(sk); 1673 spin_unlock(&sk->sk_dst_lock); 1674 } 1675 1676 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1677 1678 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1679 1680 static inline int sk_can_gso(const struct sock *sk) 1681 { 1682 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1683 } 1684 1685 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1686 1687 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1688 { 1689 sk->sk_route_nocaps |= flags; 1690 sk->sk_route_caps &= ~flags; 1691 } 1692 1693 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1694 char __user *from, char *to, 1695 int copy, int offset) 1696 { 1697 if (skb->ip_summed == CHECKSUM_NONE) { 1698 int err = 0; 1699 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1700 if (err) 1701 return err; 1702 skb->csum = csum_block_add(skb->csum, csum, offset); 1703 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1704 if (!access_ok(VERIFY_READ, from, copy) || 1705 __copy_from_user_nocache(to, from, copy)) 1706 return -EFAULT; 1707 } else if (copy_from_user(to, from, copy)) 1708 return -EFAULT; 1709 1710 return 0; 1711 } 1712 1713 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1714 char __user *from, int copy) 1715 { 1716 int err, offset = skb->len; 1717 1718 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1719 copy, offset); 1720 if (err) 1721 __skb_trim(skb, offset); 1722 1723 return err; 1724 } 1725 1726 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1727 struct sk_buff *skb, 1728 struct page *page, 1729 int off, int copy) 1730 { 1731 int err; 1732 1733 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1734 copy, skb->len); 1735 if (err) 1736 return err; 1737 1738 skb->len += copy; 1739 skb->data_len += copy; 1740 skb->truesize += copy; 1741 sk->sk_wmem_queued += copy; 1742 sk_mem_charge(sk, copy); 1743 return 0; 1744 } 1745 1746 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1747 struct sk_buff *skb, struct page *page, 1748 int off, int copy) 1749 { 1750 if (skb->ip_summed == CHECKSUM_NONE) { 1751 int err = 0; 1752 __wsum csum = csum_and_copy_from_user(from, 1753 page_address(page) + off, 1754 copy, 0, &err); 1755 if (err) 1756 return err; 1757 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1758 } else if (copy_from_user(page_address(page) + off, from, copy)) 1759 return -EFAULT; 1760 1761 skb->len += copy; 1762 skb->data_len += copy; 1763 skb->truesize += copy; 1764 sk->sk_wmem_queued += copy; 1765 sk_mem_charge(sk, copy); 1766 return 0; 1767 } 1768 1769 /** 1770 * sk_wmem_alloc_get - returns write allocations 1771 * @sk: socket 1772 * 1773 * Returns sk_wmem_alloc minus initial offset of one 1774 */ 1775 static inline int sk_wmem_alloc_get(const struct sock *sk) 1776 { 1777 return atomic_read(&sk->sk_wmem_alloc) - 1; 1778 } 1779 1780 /** 1781 * sk_rmem_alloc_get - returns read allocations 1782 * @sk: socket 1783 * 1784 * Returns sk_rmem_alloc 1785 */ 1786 static inline int sk_rmem_alloc_get(const struct sock *sk) 1787 { 1788 return atomic_read(&sk->sk_rmem_alloc); 1789 } 1790 1791 /** 1792 * sk_has_allocations - check if allocations are outstanding 1793 * @sk: socket 1794 * 1795 * Returns true if socket has write or read allocations 1796 */ 1797 static inline int sk_has_allocations(const struct sock *sk) 1798 { 1799 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1800 } 1801 1802 /** 1803 * wq_has_sleeper - check if there are any waiting processes 1804 * @wq: struct socket_wq 1805 * 1806 * Returns true if socket_wq has waiting processes 1807 * 1808 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1809 * barrier call. They were added due to the race found within the tcp code. 1810 * 1811 * Consider following tcp code paths: 1812 * 1813 * CPU1 CPU2 1814 * 1815 * sys_select receive packet 1816 * ... ... 1817 * __add_wait_queue update tp->rcv_nxt 1818 * ... ... 1819 * tp->rcv_nxt check sock_def_readable 1820 * ... { 1821 * schedule rcu_read_lock(); 1822 * wq = rcu_dereference(sk->sk_wq); 1823 * if (wq && waitqueue_active(&wq->wait)) 1824 * wake_up_interruptible(&wq->wait) 1825 * ... 1826 * } 1827 * 1828 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1829 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1830 * could then endup calling schedule and sleep forever if there are no more 1831 * data on the socket. 1832 * 1833 */ 1834 static inline bool wq_has_sleeper(struct socket_wq *wq) 1835 { 1836 1837 /* 1838 * We need to be sure we are in sync with the 1839 * add_wait_queue modifications to the wait queue. 1840 * 1841 * This memory barrier is paired in the sock_poll_wait. 1842 */ 1843 smp_mb(); 1844 return wq && waitqueue_active(&wq->wait); 1845 } 1846 1847 /** 1848 * sock_poll_wait - place memory barrier behind the poll_wait call. 1849 * @filp: file 1850 * @wait_address: socket wait queue 1851 * @p: poll_table 1852 * 1853 * See the comments in the wq_has_sleeper function. 1854 */ 1855 static inline void sock_poll_wait(struct file *filp, 1856 wait_queue_head_t *wait_address, poll_table *p) 1857 { 1858 if (!poll_does_not_wait(p) && wait_address) { 1859 poll_wait(filp, wait_address, p); 1860 /* 1861 * We need to be sure we are in sync with the 1862 * socket flags modification. 1863 * 1864 * This memory barrier is paired in the wq_has_sleeper. 1865 */ 1866 smp_mb(); 1867 } 1868 } 1869 1870 /* 1871 * Queue a received datagram if it will fit. Stream and sequenced 1872 * protocols can't normally use this as they need to fit buffers in 1873 * and play with them. 1874 * 1875 * Inlined as it's very short and called for pretty much every 1876 * packet ever received. 1877 */ 1878 1879 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1880 { 1881 skb_orphan(skb); 1882 skb->sk = sk; 1883 skb->destructor = sock_wfree; 1884 /* 1885 * We used to take a refcount on sk, but following operation 1886 * is enough to guarantee sk_free() wont free this sock until 1887 * all in-flight packets are completed 1888 */ 1889 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1890 } 1891 1892 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1893 { 1894 skb_orphan(skb); 1895 skb->sk = sk; 1896 skb->destructor = sock_rfree; 1897 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1898 sk_mem_charge(sk, skb->truesize); 1899 } 1900 1901 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1902 unsigned long expires); 1903 1904 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1905 1906 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1907 1908 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1909 1910 /* 1911 * Recover an error report and clear atomically 1912 */ 1913 1914 static inline int sock_error(struct sock *sk) 1915 { 1916 int err; 1917 if (likely(!sk->sk_err)) 1918 return 0; 1919 err = xchg(&sk->sk_err, 0); 1920 return -err; 1921 } 1922 1923 static inline unsigned long sock_wspace(struct sock *sk) 1924 { 1925 int amt = 0; 1926 1927 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1928 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1929 if (amt < 0) 1930 amt = 0; 1931 } 1932 return amt; 1933 } 1934 1935 static inline void sk_wake_async(struct sock *sk, int how, int band) 1936 { 1937 if (sock_flag(sk, SOCK_FASYNC)) 1938 sock_wake_async(sk->sk_socket, how, band); 1939 } 1940 1941 #define SOCK_MIN_SNDBUF 2048 1942 /* 1943 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need 1944 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak 1945 */ 1946 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff)) 1947 1948 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1949 { 1950 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1951 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 1952 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1953 } 1954 } 1955 1956 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 1957 1958 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1959 { 1960 struct page *page = NULL; 1961 1962 page = alloc_pages(sk->sk_allocation, 0); 1963 if (!page) { 1964 sk_enter_memory_pressure(sk); 1965 sk_stream_moderate_sndbuf(sk); 1966 } 1967 return page; 1968 } 1969 1970 /* 1971 * Default write policy as shown to user space via poll/select/SIGIO 1972 */ 1973 static inline int sock_writeable(const struct sock *sk) 1974 { 1975 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 1976 } 1977 1978 static inline gfp_t gfp_any(void) 1979 { 1980 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1981 } 1982 1983 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1984 { 1985 return noblock ? 0 : sk->sk_rcvtimeo; 1986 } 1987 1988 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1989 { 1990 return noblock ? 0 : sk->sk_sndtimeo; 1991 } 1992 1993 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1994 { 1995 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1996 } 1997 1998 /* Alas, with timeout socket operations are not restartable. 1999 * Compare this to poll(). 2000 */ 2001 static inline int sock_intr_errno(long timeo) 2002 { 2003 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2004 } 2005 2006 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2007 struct sk_buff *skb); 2008 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2009 struct sk_buff *skb); 2010 2011 static __inline__ void 2012 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2013 { 2014 ktime_t kt = skb->tstamp; 2015 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2016 2017 /* 2018 * generate control messages if 2019 * - receive time stamping in software requested (SOCK_RCVTSTAMP 2020 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 2021 * - software time stamp available and wanted 2022 * (SOCK_TIMESTAMPING_SOFTWARE) 2023 * - hardware time stamps available and wanted 2024 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 2025 * SOCK_TIMESTAMPING_RAW_HARDWARE) 2026 */ 2027 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2028 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 2029 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 2030 (hwtstamps->hwtstamp.tv64 && 2031 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 2032 (hwtstamps->syststamp.tv64 && 2033 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 2034 __sock_recv_timestamp(msg, sk, skb); 2035 else 2036 sk->sk_stamp = kt; 2037 2038 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2039 __sock_recv_wifi_status(msg, sk, skb); 2040 } 2041 2042 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2043 struct sk_buff *skb); 2044 2045 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2046 struct sk_buff *skb) 2047 { 2048 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2049 (1UL << SOCK_RCVTSTAMP) | \ 2050 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 2051 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 2052 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 2053 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 2054 2055 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 2056 __sock_recv_ts_and_drops(msg, sk, skb); 2057 else 2058 sk->sk_stamp = skb->tstamp; 2059 } 2060 2061 /** 2062 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2063 * @sk: socket sending this packet 2064 * @tx_flags: filled with instructions for time stamping 2065 * 2066 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if 2067 * parameters are invalid. 2068 */ 2069 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2070 2071 /** 2072 * sk_eat_skb - Release a skb if it is no longer needed 2073 * @sk: socket to eat this skb from 2074 * @skb: socket buffer to eat 2075 * @copied_early: flag indicating whether DMA operations copied this data early 2076 * 2077 * This routine must be called with interrupts disabled or with the socket 2078 * locked so that the sk_buff queue operation is ok. 2079 */ 2080 #ifdef CONFIG_NET_DMA 2081 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 2082 { 2083 __skb_unlink(skb, &sk->sk_receive_queue); 2084 if (!copied_early) 2085 __kfree_skb(skb); 2086 else 2087 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2088 } 2089 #else 2090 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 2091 { 2092 __skb_unlink(skb, &sk->sk_receive_queue); 2093 __kfree_skb(skb); 2094 } 2095 #endif 2096 2097 static inline 2098 struct net *sock_net(const struct sock *sk) 2099 { 2100 return read_pnet(&sk->sk_net); 2101 } 2102 2103 static inline 2104 void sock_net_set(struct sock *sk, struct net *net) 2105 { 2106 write_pnet(&sk->sk_net, net); 2107 } 2108 2109 /* 2110 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2111 * They should not hold a reference to a namespace in order to allow 2112 * to stop it. 2113 * Sockets after sk_change_net should be released using sk_release_kernel 2114 */ 2115 static inline void sk_change_net(struct sock *sk, struct net *net) 2116 { 2117 put_net(sock_net(sk)); 2118 sock_net_set(sk, hold_net(net)); 2119 } 2120 2121 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2122 { 2123 if (unlikely(skb->sk)) { 2124 struct sock *sk = skb->sk; 2125 2126 skb->destructor = NULL; 2127 skb->sk = NULL; 2128 return sk; 2129 } 2130 return NULL; 2131 } 2132 2133 extern void sock_enable_timestamp(struct sock *sk, int flag); 2134 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 2135 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 2136 2137 /* 2138 * Enable debug/info messages 2139 */ 2140 extern int net_msg_warn; 2141 #define NETDEBUG(fmt, args...) \ 2142 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2143 2144 #define LIMIT_NETDEBUG(fmt, args...) \ 2145 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2146 2147 extern __u32 sysctl_wmem_max; 2148 extern __u32 sysctl_rmem_max; 2149 2150 extern void sk_init(void); 2151 2152 extern int sysctl_optmem_max; 2153 2154 extern __u32 sysctl_wmem_default; 2155 extern __u32 sysctl_rmem_default; 2156 2157 #endif /* _SOCK_H */ 2158