1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/memcontrol.h> 58 #include <linux/res_counter.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 #include <linux/net_tstamp.h> 71 72 struct cgroup; 73 struct cgroup_subsys; 74 #ifdef CONFIG_NET 75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 77 #else 78 static inline 79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 80 { 81 return 0; 82 } 83 static inline 84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 85 { 86 } 87 #endif 88 /* 89 * This structure really needs to be cleaned up. 90 * Most of it is for TCP, and not used by any of 91 * the other protocols. 92 */ 93 94 /* Define this to get the SOCK_DBG debugging facility. */ 95 #define SOCK_DEBUGGING 96 #ifdef SOCK_DEBUGGING 97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 98 printk(KERN_DEBUG msg); } while (0) 99 #else 100 /* Validate arguments and do nothing */ 101 static inline __printf(2, 3) 102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 103 { 104 } 105 #endif 106 107 /* This is the per-socket lock. The spinlock provides a synchronization 108 * between user contexts and software interrupt processing, whereas the 109 * mini-semaphore synchronizes multiple users amongst themselves. 110 */ 111 typedef struct { 112 spinlock_t slock; 113 int owned; 114 wait_queue_head_t wq; 115 /* 116 * We express the mutex-alike socket_lock semantics 117 * to the lock validator by explicitly managing 118 * the slock as a lock variant (in addition to 119 * the slock itself): 120 */ 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 struct lockdep_map dep_map; 123 #endif 124 } socket_lock_t; 125 126 struct sock; 127 struct proto; 128 struct net; 129 130 typedef __u32 __bitwise __portpair; 131 typedef __u64 __bitwise __addrpair; 132 133 /** 134 * struct sock_common - minimal network layer representation of sockets 135 * @skc_daddr: Foreign IPv4 addr 136 * @skc_rcv_saddr: Bound local IPv4 addr 137 * @skc_hash: hash value used with various protocol lookup tables 138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 139 * @skc_dport: placeholder for inet_dport/tw_dport 140 * @skc_num: placeholder for inet_num/tw_num 141 * @skc_family: network address family 142 * @skc_state: Connection state 143 * @skc_reuse: %SO_REUSEADDR setting 144 * @skc_reuseport: %SO_REUSEPORT setting 145 * @skc_bound_dev_if: bound device index if != 0 146 * @skc_bind_node: bind hash linkage for various protocol lookup tables 147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 148 * @skc_prot: protocol handlers inside a network family 149 * @skc_net: reference to the network namespace of this socket 150 * @skc_node: main hash linkage for various protocol lookup tables 151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 152 * @skc_tx_queue_mapping: tx queue number for this connection 153 * @skc_refcnt: reference count 154 * 155 * This is the minimal network layer representation of sockets, the header 156 * for struct sock and struct inet_timewait_sock. 157 */ 158 struct sock_common { 159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 160 * address on 64bit arches : cf INET_MATCH() 161 */ 162 union { 163 __addrpair skc_addrpair; 164 struct { 165 __be32 skc_daddr; 166 __be32 skc_rcv_saddr; 167 }; 168 }; 169 union { 170 unsigned int skc_hash; 171 __u16 skc_u16hashes[2]; 172 }; 173 /* skc_dport && skc_num must be grouped as well */ 174 union { 175 __portpair skc_portpair; 176 struct { 177 __be16 skc_dport; 178 __u16 skc_num; 179 }; 180 }; 181 182 unsigned short skc_family; 183 volatile unsigned char skc_state; 184 unsigned char skc_reuse:4; 185 unsigned char skc_reuseport:1; 186 unsigned char skc_ipv6only:1; 187 int skc_bound_dev_if; 188 union { 189 struct hlist_node skc_bind_node; 190 struct hlist_nulls_node skc_portaddr_node; 191 }; 192 struct proto *skc_prot; 193 #ifdef CONFIG_NET_NS 194 struct net *skc_net; 195 #endif 196 197 #if IS_ENABLED(CONFIG_IPV6) 198 struct in6_addr skc_v6_daddr; 199 struct in6_addr skc_v6_rcv_saddr; 200 #endif 201 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 int skc_tx_queue_mapping; 214 atomic_t skc_refcnt; 215 /* private: */ 216 int skc_dontcopy_end[0]; 217 /* public: */ 218 }; 219 220 struct cg_proto; 221 /** 222 * struct sock - network layer representation of sockets 223 * @__sk_common: shared layout with inet_timewait_sock 224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 226 * @sk_lock: synchronizer 227 * @sk_rcvbuf: size of receive buffer in bytes 228 * @sk_wq: sock wait queue and async head 229 * @sk_rx_dst: receive input route used by early demux 230 * @sk_dst_cache: destination cache 231 * @sk_dst_lock: destination cache lock 232 * @sk_policy: flow policy 233 * @sk_receive_queue: incoming packets 234 * @sk_wmem_alloc: transmit queue bytes committed 235 * @sk_write_queue: Packet sending queue 236 * @sk_async_wait_queue: DMA copied packets 237 * @sk_omem_alloc: "o" is "option" or "other" 238 * @sk_wmem_queued: persistent queue size 239 * @sk_forward_alloc: space allocated forward 240 * @sk_napi_id: id of the last napi context to receive data for sk 241 * @sk_ll_usec: usecs to busypoll when there is no data 242 * @sk_allocation: allocation mode 243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 245 * @sk_sndbuf: size of send buffer in bytes 246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 249 * @sk_no_check_rx: allow zero checksum in RX packets 250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 253 * @sk_gso_max_size: Maximum GSO segment size to build 254 * @sk_gso_max_segs: Maximum number of GSO segments 255 * @sk_lingertime: %SO_LINGER l_linger setting 256 * @sk_backlog: always used with the per-socket spinlock held 257 * @sk_callback_lock: used with the callbacks in the end of this struct 258 * @sk_error_queue: rarely used 259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 260 * IPV6_ADDRFORM for instance) 261 * @sk_err: last error 262 * @sk_err_soft: errors that don't cause failure but are the cause of a 263 * persistent failure not just 'timed out' 264 * @sk_drops: raw/udp drops counter 265 * @sk_ack_backlog: current listen backlog 266 * @sk_max_ack_backlog: listen backlog set in listen() 267 * @sk_priority: %SO_PRIORITY setting 268 * @sk_cgrp_prioidx: socket group's priority map index 269 * @sk_type: socket type (%SOCK_STREAM, etc) 270 * @sk_protocol: which protocol this socket belongs in this network family 271 * @sk_peer_pid: &struct pid for this socket's peer 272 * @sk_peer_cred: %SO_PEERCRED setting 273 * @sk_rcvlowat: %SO_RCVLOWAT setting 274 * @sk_rcvtimeo: %SO_RCVTIMEO setting 275 * @sk_sndtimeo: %SO_SNDTIMEO setting 276 * @sk_rxhash: flow hash received from netif layer 277 * @sk_txhash: computed flow hash for use on transmit 278 * @sk_filter: socket filtering instructions 279 * @sk_protinfo: private area, net family specific, when not using slab 280 * @sk_timer: sock cleanup timer 281 * @sk_stamp: time stamp of last packet received 282 * @sk_tsflags: SO_TIMESTAMPING socket options 283 * @sk_tskey: counter to disambiguate concurrent tstamp requests 284 * @sk_socket: Identd and reporting IO signals 285 * @sk_user_data: RPC layer private data 286 * @sk_frag: cached page frag 287 * @sk_peek_off: current peek_offset value 288 * @sk_send_head: front of stuff to transmit 289 * @sk_security: used by security modules 290 * @sk_mark: generic packet mark 291 * @sk_classid: this socket's cgroup classid 292 * @sk_cgrp: this socket's cgroup-specific proto data 293 * @sk_write_pending: a write to stream socket waits to start 294 * @sk_state_change: callback to indicate change in the state of the sock 295 * @sk_data_ready: callback to indicate there is data to be processed 296 * @sk_write_space: callback to indicate there is bf sending space available 297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 298 * @sk_backlog_rcv: callback to process the backlog 299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 300 */ 301 struct sock { 302 /* 303 * Now struct inet_timewait_sock also uses sock_common, so please just 304 * don't add nothing before this first member (__sk_common) --acme 305 */ 306 struct sock_common __sk_common; 307 #define sk_node __sk_common.skc_node 308 #define sk_nulls_node __sk_common.skc_nulls_node 309 #define sk_refcnt __sk_common.skc_refcnt 310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 311 312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 314 #define sk_hash __sk_common.skc_hash 315 #define sk_portpair __sk_common.skc_portpair 316 #define sk_num __sk_common.skc_num 317 #define sk_dport __sk_common.skc_dport 318 #define sk_addrpair __sk_common.skc_addrpair 319 #define sk_daddr __sk_common.skc_daddr 320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 321 #define sk_family __sk_common.skc_family 322 #define sk_state __sk_common.skc_state 323 #define sk_reuse __sk_common.skc_reuse 324 #define sk_reuseport __sk_common.skc_reuseport 325 #define sk_ipv6only __sk_common.skc_ipv6only 326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 327 #define sk_bind_node __sk_common.skc_bind_node 328 #define sk_prot __sk_common.skc_prot 329 #define sk_net __sk_common.skc_net 330 #define sk_v6_daddr __sk_common.skc_v6_daddr 331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 332 333 socket_lock_t sk_lock; 334 struct sk_buff_head sk_receive_queue; 335 /* 336 * The backlog queue is special, it is always used with 337 * the per-socket spinlock held and requires low latency 338 * access. Therefore we special case it's implementation. 339 * Note : rmem_alloc is in this structure to fill a hole 340 * on 64bit arches, not because its logically part of 341 * backlog. 342 */ 343 struct { 344 atomic_t rmem_alloc; 345 int len; 346 struct sk_buff *head; 347 struct sk_buff *tail; 348 } sk_backlog; 349 #define sk_rmem_alloc sk_backlog.rmem_alloc 350 int sk_forward_alloc; 351 #ifdef CONFIG_RPS 352 __u32 sk_rxhash; 353 #endif 354 __u32 sk_txhash; 355 #ifdef CONFIG_NET_RX_BUSY_POLL 356 unsigned int sk_napi_id; 357 unsigned int sk_ll_usec; 358 #endif 359 atomic_t sk_drops; 360 int sk_rcvbuf; 361 362 struct sk_filter __rcu *sk_filter; 363 struct socket_wq __rcu *sk_wq; 364 365 #ifdef CONFIG_NET_DMA 366 struct sk_buff_head sk_async_wait_queue; 367 #endif 368 369 #ifdef CONFIG_XFRM 370 struct xfrm_policy *sk_policy[2]; 371 #endif 372 unsigned long sk_flags; 373 struct dst_entry *sk_rx_dst; 374 struct dst_entry __rcu *sk_dst_cache; 375 spinlock_t sk_dst_lock; 376 atomic_t sk_wmem_alloc; 377 atomic_t sk_omem_alloc; 378 int sk_sndbuf; 379 struct sk_buff_head sk_write_queue; 380 kmemcheck_bitfield_begin(flags); 381 unsigned int sk_shutdown : 2, 382 sk_no_check_tx : 1, 383 sk_no_check_rx : 1, 384 sk_userlocks : 4, 385 sk_protocol : 8, 386 sk_type : 16; 387 kmemcheck_bitfield_end(flags); 388 int sk_wmem_queued; 389 gfp_t sk_allocation; 390 u32 sk_pacing_rate; /* bytes per second */ 391 u32 sk_max_pacing_rate; 392 netdev_features_t sk_route_caps; 393 netdev_features_t sk_route_nocaps; 394 int sk_gso_type; 395 unsigned int sk_gso_max_size; 396 u16 sk_gso_max_segs; 397 int sk_rcvlowat; 398 unsigned long sk_lingertime; 399 struct sk_buff_head sk_error_queue; 400 struct proto *sk_prot_creator; 401 rwlock_t sk_callback_lock; 402 int sk_err, 403 sk_err_soft; 404 unsigned short sk_ack_backlog; 405 unsigned short sk_max_ack_backlog; 406 __u32 sk_priority; 407 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 408 __u32 sk_cgrp_prioidx; 409 #endif 410 struct pid *sk_peer_pid; 411 const struct cred *sk_peer_cred; 412 long sk_rcvtimeo; 413 long sk_sndtimeo; 414 void *sk_protinfo; 415 struct timer_list sk_timer; 416 ktime_t sk_stamp; 417 u16 sk_tsflags; 418 u32 sk_tskey; 419 struct socket *sk_socket; 420 void *sk_user_data; 421 struct page_frag sk_frag; 422 struct sk_buff *sk_send_head; 423 __s32 sk_peek_off; 424 int sk_write_pending; 425 #ifdef CONFIG_SECURITY 426 void *sk_security; 427 #endif 428 __u32 sk_mark; 429 u32 sk_classid; 430 struct cg_proto *sk_cgrp; 431 void (*sk_state_change)(struct sock *sk); 432 void (*sk_data_ready)(struct sock *sk); 433 void (*sk_write_space)(struct sock *sk); 434 void (*sk_error_report)(struct sock *sk); 435 int (*sk_backlog_rcv)(struct sock *sk, 436 struct sk_buff *skb); 437 void (*sk_destruct)(struct sock *sk); 438 }; 439 440 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 441 442 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 443 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 444 445 /* 446 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 447 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 448 * on a socket means that the socket will reuse everybody else's port 449 * without looking at the other's sk_reuse value. 450 */ 451 452 #define SK_NO_REUSE 0 453 #define SK_CAN_REUSE 1 454 #define SK_FORCE_REUSE 2 455 456 static inline int sk_peek_offset(struct sock *sk, int flags) 457 { 458 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 459 return sk->sk_peek_off; 460 else 461 return 0; 462 } 463 464 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 465 { 466 if (sk->sk_peek_off >= 0) { 467 if (sk->sk_peek_off >= val) 468 sk->sk_peek_off -= val; 469 else 470 sk->sk_peek_off = 0; 471 } 472 } 473 474 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 475 { 476 if (sk->sk_peek_off >= 0) 477 sk->sk_peek_off += val; 478 } 479 480 /* 481 * Hashed lists helper routines 482 */ 483 static inline struct sock *sk_entry(const struct hlist_node *node) 484 { 485 return hlist_entry(node, struct sock, sk_node); 486 } 487 488 static inline struct sock *__sk_head(const struct hlist_head *head) 489 { 490 return hlist_entry(head->first, struct sock, sk_node); 491 } 492 493 static inline struct sock *sk_head(const struct hlist_head *head) 494 { 495 return hlist_empty(head) ? NULL : __sk_head(head); 496 } 497 498 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 499 { 500 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 501 } 502 503 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 504 { 505 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 506 } 507 508 static inline struct sock *sk_next(const struct sock *sk) 509 { 510 return sk->sk_node.next ? 511 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 512 } 513 514 static inline struct sock *sk_nulls_next(const struct sock *sk) 515 { 516 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 517 hlist_nulls_entry(sk->sk_nulls_node.next, 518 struct sock, sk_nulls_node) : 519 NULL; 520 } 521 522 static inline bool sk_unhashed(const struct sock *sk) 523 { 524 return hlist_unhashed(&sk->sk_node); 525 } 526 527 static inline bool sk_hashed(const struct sock *sk) 528 { 529 return !sk_unhashed(sk); 530 } 531 532 static inline void sk_node_init(struct hlist_node *node) 533 { 534 node->pprev = NULL; 535 } 536 537 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 538 { 539 node->pprev = NULL; 540 } 541 542 static inline void __sk_del_node(struct sock *sk) 543 { 544 __hlist_del(&sk->sk_node); 545 } 546 547 /* NB: equivalent to hlist_del_init_rcu */ 548 static inline bool __sk_del_node_init(struct sock *sk) 549 { 550 if (sk_hashed(sk)) { 551 __sk_del_node(sk); 552 sk_node_init(&sk->sk_node); 553 return true; 554 } 555 return false; 556 } 557 558 /* Grab socket reference count. This operation is valid only 559 when sk is ALREADY grabbed f.e. it is found in hash table 560 or a list and the lookup is made under lock preventing hash table 561 modifications. 562 */ 563 564 static inline void sock_hold(struct sock *sk) 565 { 566 atomic_inc(&sk->sk_refcnt); 567 } 568 569 /* Ungrab socket in the context, which assumes that socket refcnt 570 cannot hit zero, f.e. it is true in context of any socketcall. 571 */ 572 static inline void __sock_put(struct sock *sk) 573 { 574 atomic_dec(&sk->sk_refcnt); 575 } 576 577 static inline bool sk_del_node_init(struct sock *sk) 578 { 579 bool rc = __sk_del_node_init(sk); 580 581 if (rc) { 582 /* paranoid for a while -acme */ 583 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 584 __sock_put(sk); 585 } 586 return rc; 587 } 588 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 589 590 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 591 { 592 if (sk_hashed(sk)) { 593 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 594 return true; 595 } 596 return false; 597 } 598 599 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 600 { 601 bool rc = __sk_nulls_del_node_init_rcu(sk); 602 603 if (rc) { 604 /* paranoid for a while -acme */ 605 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 606 __sock_put(sk); 607 } 608 return rc; 609 } 610 611 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 612 { 613 hlist_add_head(&sk->sk_node, list); 614 } 615 616 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 617 { 618 sock_hold(sk); 619 __sk_add_node(sk, list); 620 } 621 622 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 623 { 624 sock_hold(sk); 625 hlist_add_head_rcu(&sk->sk_node, list); 626 } 627 628 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 629 { 630 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 631 } 632 633 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 634 { 635 sock_hold(sk); 636 __sk_nulls_add_node_rcu(sk, list); 637 } 638 639 static inline void __sk_del_bind_node(struct sock *sk) 640 { 641 __hlist_del(&sk->sk_bind_node); 642 } 643 644 static inline void sk_add_bind_node(struct sock *sk, 645 struct hlist_head *list) 646 { 647 hlist_add_head(&sk->sk_bind_node, list); 648 } 649 650 #define sk_for_each(__sk, list) \ 651 hlist_for_each_entry(__sk, list, sk_node) 652 #define sk_for_each_rcu(__sk, list) \ 653 hlist_for_each_entry_rcu(__sk, list, sk_node) 654 #define sk_nulls_for_each(__sk, node, list) \ 655 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 656 #define sk_nulls_for_each_rcu(__sk, node, list) \ 657 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 658 #define sk_for_each_from(__sk) \ 659 hlist_for_each_entry_from(__sk, sk_node) 660 #define sk_nulls_for_each_from(__sk, node) \ 661 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 662 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 663 #define sk_for_each_safe(__sk, tmp, list) \ 664 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 665 #define sk_for_each_bound(__sk, list) \ 666 hlist_for_each_entry(__sk, list, sk_bind_node) 667 668 /** 669 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 670 * @tpos: the type * to use as a loop cursor. 671 * @pos: the &struct hlist_node to use as a loop cursor. 672 * @head: the head for your list. 673 * @offset: offset of hlist_node within the struct. 674 * 675 */ 676 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 677 for (pos = (head)->first; \ 678 (!is_a_nulls(pos)) && \ 679 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 680 pos = pos->next) 681 682 static inline struct user_namespace *sk_user_ns(struct sock *sk) 683 { 684 /* Careful only use this in a context where these parameters 685 * can not change and must all be valid, such as recvmsg from 686 * userspace. 687 */ 688 return sk->sk_socket->file->f_cred->user_ns; 689 } 690 691 /* Sock flags */ 692 enum sock_flags { 693 SOCK_DEAD, 694 SOCK_DONE, 695 SOCK_URGINLINE, 696 SOCK_KEEPOPEN, 697 SOCK_LINGER, 698 SOCK_DESTROY, 699 SOCK_BROADCAST, 700 SOCK_TIMESTAMP, 701 SOCK_ZAPPED, 702 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 703 SOCK_DBG, /* %SO_DEBUG setting */ 704 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 705 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 706 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 707 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 708 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 709 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 710 SOCK_FASYNC, /* fasync() active */ 711 SOCK_RXQ_OVFL, 712 SOCK_ZEROCOPY, /* buffers from userspace */ 713 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 714 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 715 * Will use last 4 bytes of packet sent from 716 * user-space instead. 717 */ 718 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 719 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 720 }; 721 722 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 723 { 724 nsk->sk_flags = osk->sk_flags; 725 } 726 727 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 728 { 729 __set_bit(flag, &sk->sk_flags); 730 } 731 732 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 733 { 734 __clear_bit(flag, &sk->sk_flags); 735 } 736 737 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 738 { 739 return test_bit(flag, &sk->sk_flags); 740 } 741 742 #ifdef CONFIG_NET 743 extern struct static_key memalloc_socks; 744 static inline int sk_memalloc_socks(void) 745 { 746 return static_key_false(&memalloc_socks); 747 } 748 #else 749 750 static inline int sk_memalloc_socks(void) 751 { 752 return 0; 753 } 754 755 #endif 756 757 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 758 { 759 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 760 } 761 762 static inline void sk_acceptq_removed(struct sock *sk) 763 { 764 sk->sk_ack_backlog--; 765 } 766 767 static inline void sk_acceptq_added(struct sock *sk) 768 { 769 sk->sk_ack_backlog++; 770 } 771 772 static inline bool sk_acceptq_is_full(const struct sock *sk) 773 { 774 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 775 } 776 777 /* 778 * Compute minimal free write space needed to queue new packets. 779 */ 780 static inline int sk_stream_min_wspace(const struct sock *sk) 781 { 782 return sk->sk_wmem_queued >> 1; 783 } 784 785 static inline int sk_stream_wspace(const struct sock *sk) 786 { 787 return sk->sk_sndbuf - sk->sk_wmem_queued; 788 } 789 790 void sk_stream_write_space(struct sock *sk); 791 792 /* OOB backlog add */ 793 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 794 { 795 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 796 skb_dst_force(skb); 797 798 if (!sk->sk_backlog.tail) 799 sk->sk_backlog.head = skb; 800 else 801 sk->sk_backlog.tail->next = skb; 802 803 sk->sk_backlog.tail = skb; 804 skb->next = NULL; 805 } 806 807 /* 808 * Take into account size of receive queue and backlog queue 809 * Do not take into account this skb truesize, 810 * to allow even a single big packet to come. 811 */ 812 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 813 { 814 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 815 816 return qsize > limit; 817 } 818 819 /* The per-socket spinlock must be held here. */ 820 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 821 unsigned int limit) 822 { 823 if (sk_rcvqueues_full(sk, limit)) 824 return -ENOBUFS; 825 826 __sk_add_backlog(sk, skb); 827 sk->sk_backlog.len += skb->truesize; 828 return 0; 829 } 830 831 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 832 833 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 834 { 835 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 836 return __sk_backlog_rcv(sk, skb); 837 838 return sk->sk_backlog_rcv(sk, skb); 839 } 840 841 static inline void sock_rps_record_flow_hash(__u32 hash) 842 { 843 #ifdef CONFIG_RPS 844 struct rps_sock_flow_table *sock_flow_table; 845 846 rcu_read_lock(); 847 sock_flow_table = rcu_dereference(rps_sock_flow_table); 848 rps_record_sock_flow(sock_flow_table, hash); 849 rcu_read_unlock(); 850 #endif 851 } 852 853 static inline void sock_rps_reset_flow_hash(__u32 hash) 854 { 855 #ifdef CONFIG_RPS 856 struct rps_sock_flow_table *sock_flow_table; 857 858 rcu_read_lock(); 859 sock_flow_table = rcu_dereference(rps_sock_flow_table); 860 rps_reset_sock_flow(sock_flow_table, hash); 861 rcu_read_unlock(); 862 #endif 863 } 864 865 static inline void sock_rps_record_flow(const struct sock *sk) 866 { 867 #ifdef CONFIG_RPS 868 sock_rps_record_flow_hash(sk->sk_rxhash); 869 #endif 870 } 871 872 static inline void sock_rps_reset_flow(const struct sock *sk) 873 { 874 #ifdef CONFIG_RPS 875 sock_rps_reset_flow_hash(sk->sk_rxhash); 876 #endif 877 } 878 879 static inline void sock_rps_save_rxhash(struct sock *sk, 880 const struct sk_buff *skb) 881 { 882 #ifdef CONFIG_RPS 883 if (unlikely(sk->sk_rxhash != skb->hash)) { 884 sock_rps_reset_flow(sk); 885 sk->sk_rxhash = skb->hash; 886 } 887 #endif 888 } 889 890 static inline void sock_rps_reset_rxhash(struct sock *sk) 891 { 892 #ifdef CONFIG_RPS 893 sock_rps_reset_flow(sk); 894 sk->sk_rxhash = 0; 895 #endif 896 } 897 898 #define sk_wait_event(__sk, __timeo, __condition) \ 899 ({ int __rc; \ 900 release_sock(__sk); \ 901 __rc = __condition; \ 902 if (!__rc) { \ 903 *(__timeo) = schedule_timeout(*(__timeo)); \ 904 } \ 905 lock_sock(__sk); \ 906 __rc = __condition; \ 907 __rc; \ 908 }) 909 910 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 911 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 912 void sk_stream_wait_close(struct sock *sk, long timeo_p); 913 int sk_stream_error(struct sock *sk, int flags, int err); 914 void sk_stream_kill_queues(struct sock *sk); 915 void sk_set_memalloc(struct sock *sk); 916 void sk_clear_memalloc(struct sock *sk); 917 918 int sk_wait_data(struct sock *sk, long *timeo); 919 920 struct request_sock_ops; 921 struct timewait_sock_ops; 922 struct inet_hashinfo; 923 struct raw_hashinfo; 924 struct module; 925 926 /* 927 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 928 * un-modified. Special care is taken when initializing object to zero. 929 */ 930 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 931 { 932 if (offsetof(struct sock, sk_node.next) != 0) 933 memset(sk, 0, offsetof(struct sock, sk_node.next)); 934 memset(&sk->sk_node.pprev, 0, 935 size - offsetof(struct sock, sk_node.pprev)); 936 } 937 938 /* Networking protocol blocks we attach to sockets. 939 * socket layer -> transport layer interface 940 * transport -> network interface is defined by struct inet_proto 941 */ 942 struct proto { 943 void (*close)(struct sock *sk, 944 long timeout); 945 int (*connect)(struct sock *sk, 946 struct sockaddr *uaddr, 947 int addr_len); 948 int (*disconnect)(struct sock *sk, int flags); 949 950 struct sock * (*accept)(struct sock *sk, int flags, int *err); 951 952 int (*ioctl)(struct sock *sk, int cmd, 953 unsigned long arg); 954 int (*init)(struct sock *sk); 955 void (*destroy)(struct sock *sk); 956 void (*shutdown)(struct sock *sk, int how); 957 int (*setsockopt)(struct sock *sk, int level, 958 int optname, char __user *optval, 959 unsigned int optlen); 960 int (*getsockopt)(struct sock *sk, int level, 961 int optname, char __user *optval, 962 int __user *option); 963 #ifdef CONFIG_COMPAT 964 int (*compat_setsockopt)(struct sock *sk, 965 int level, 966 int optname, char __user *optval, 967 unsigned int optlen); 968 int (*compat_getsockopt)(struct sock *sk, 969 int level, 970 int optname, char __user *optval, 971 int __user *option); 972 int (*compat_ioctl)(struct sock *sk, 973 unsigned int cmd, unsigned long arg); 974 #endif 975 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 976 struct msghdr *msg, size_t len); 977 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 978 struct msghdr *msg, 979 size_t len, int noblock, int flags, 980 int *addr_len); 981 int (*sendpage)(struct sock *sk, struct page *page, 982 int offset, size_t size, int flags); 983 int (*bind)(struct sock *sk, 984 struct sockaddr *uaddr, int addr_len); 985 986 int (*backlog_rcv) (struct sock *sk, 987 struct sk_buff *skb); 988 989 void (*release_cb)(struct sock *sk); 990 void (*mtu_reduced)(struct sock *sk); 991 992 /* Keeping track of sk's, looking them up, and port selection methods. */ 993 void (*hash)(struct sock *sk); 994 void (*unhash)(struct sock *sk); 995 void (*rehash)(struct sock *sk); 996 int (*get_port)(struct sock *sk, unsigned short snum); 997 void (*clear_sk)(struct sock *sk, int size); 998 999 /* Keeping track of sockets in use */ 1000 #ifdef CONFIG_PROC_FS 1001 unsigned int inuse_idx; 1002 #endif 1003 1004 bool (*stream_memory_free)(const struct sock *sk); 1005 /* Memory pressure */ 1006 void (*enter_memory_pressure)(struct sock *sk); 1007 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1008 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1009 /* 1010 * Pressure flag: try to collapse. 1011 * Technical note: it is used by multiple contexts non atomically. 1012 * All the __sk_mem_schedule() is of this nature: accounting 1013 * is strict, actions are advisory and have some latency. 1014 */ 1015 int *memory_pressure; 1016 long *sysctl_mem; 1017 int *sysctl_wmem; 1018 int *sysctl_rmem; 1019 int max_header; 1020 bool no_autobind; 1021 1022 struct kmem_cache *slab; 1023 unsigned int obj_size; 1024 int slab_flags; 1025 1026 struct percpu_counter *orphan_count; 1027 1028 struct request_sock_ops *rsk_prot; 1029 struct timewait_sock_ops *twsk_prot; 1030 1031 union { 1032 struct inet_hashinfo *hashinfo; 1033 struct udp_table *udp_table; 1034 struct raw_hashinfo *raw_hash; 1035 } h; 1036 1037 struct module *owner; 1038 1039 char name[32]; 1040 1041 struct list_head node; 1042 #ifdef SOCK_REFCNT_DEBUG 1043 atomic_t socks; 1044 #endif 1045 #ifdef CONFIG_MEMCG_KMEM 1046 /* 1047 * cgroup specific init/deinit functions. Called once for all 1048 * protocols that implement it, from cgroups populate function. 1049 * This function has to setup any files the protocol want to 1050 * appear in the kmem cgroup filesystem. 1051 */ 1052 int (*init_cgroup)(struct mem_cgroup *memcg, 1053 struct cgroup_subsys *ss); 1054 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1055 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1056 #endif 1057 }; 1058 1059 /* 1060 * Bits in struct cg_proto.flags 1061 */ 1062 enum cg_proto_flags { 1063 /* Currently active and new sockets should be assigned to cgroups */ 1064 MEMCG_SOCK_ACTIVE, 1065 /* It was ever activated; we must disarm static keys on destruction */ 1066 MEMCG_SOCK_ACTIVATED, 1067 }; 1068 1069 struct cg_proto { 1070 struct res_counter memory_allocated; /* Current allocated memory. */ 1071 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1072 int memory_pressure; 1073 long sysctl_mem[3]; 1074 unsigned long flags; 1075 /* 1076 * memcg field is used to find which memcg we belong directly 1077 * Each memcg struct can hold more than one cg_proto, so container_of 1078 * won't really cut. 1079 * 1080 * The elegant solution would be having an inverse function to 1081 * proto_cgroup in struct proto, but that means polluting the structure 1082 * for everybody, instead of just for memcg users. 1083 */ 1084 struct mem_cgroup *memcg; 1085 }; 1086 1087 int proto_register(struct proto *prot, int alloc_slab); 1088 void proto_unregister(struct proto *prot); 1089 1090 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1091 { 1092 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1093 } 1094 1095 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 1096 { 1097 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1098 } 1099 1100 #ifdef SOCK_REFCNT_DEBUG 1101 static inline void sk_refcnt_debug_inc(struct sock *sk) 1102 { 1103 atomic_inc(&sk->sk_prot->socks); 1104 } 1105 1106 static inline void sk_refcnt_debug_dec(struct sock *sk) 1107 { 1108 atomic_dec(&sk->sk_prot->socks); 1109 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1110 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1111 } 1112 1113 static inline void sk_refcnt_debug_release(const struct sock *sk) 1114 { 1115 if (atomic_read(&sk->sk_refcnt) != 1) 1116 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1117 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1118 } 1119 #else /* SOCK_REFCNT_DEBUG */ 1120 #define sk_refcnt_debug_inc(sk) do { } while (0) 1121 #define sk_refcnt_debug_dec(sk) do { } while (0) 1122 #define sk_refcnt_debug_release(sk) do { } while (0) 1123 #endif /* SOCK_REFCNT_DEBUG */ 1124 1125 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1126 extern struct static_key memcg_socket_limit_enabled; 1127 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1128 struct cg_proto *cg_proto) 1129 { 1130 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1131 } 1132 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1133 #else 1134 #define mem_cgroup_sockets_enabled 0 1135 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1136 struct cg_proto *cg_proto) 1137 { 1138 return NULL; 1139 } 1140 #endif 1141 1142 static inline bool sk_stream_memory_free(const struct sock *sk) 1143 { 1144 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1145 return false; 1146 1147 return sk->sk_prot->stream_memory_free ? 1148 sk->sk_prot->stream_memory_free(sk) : true; 1149 } 1150 1151 static inline bool sk_stream_is_writeable(const struct sock *sk) 1152 { 1153 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1154 sk_stream_memory_free(sk); 1155 } 1156 1157 1158 static inline bool sk_has_memory_pressure(const struct sock *sk) 1159 { 1160 return sk->sk_prot->memory_pressure != NULL; 1161 } 1162 1163 static inline bool sk_under_memory_pressure(const struct sock *sk) 1164 { 1165 if (!sk->sk_prot->memory_pressure) 1166 return false; 1167 1168 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1169 return !!sk->sk_cgrp->memory_pressure; 1170 1171 return !!*sk->sk_prot->memory_pressure; 1172 } 1173 1174 static inline void sk_leave_memory_pressure(struct sock *sk) 1175 { 1176 int *memory_pressure = sk->sk_prot->memory_pressure; 1177 1178 if (!memory_pressure) 1179 return; 1180 1181 if (*memory_pressure) 1182 *memory_pressure = 0; 1183 1184 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1185 struct cg_proto *cg_proto = sk->sk_cgrp; 1186 struct proto *prot = sk->sk_prot; 1187 1188 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1189 cg_proto->memory_pressure = 0; 1190 } 1191 1192 } 1193 1194 static inline void sk_enter_memory_pressure(struct sock *sk) 1195 { 1196 if (!sk->sk_prot->enter_memory_pressure) 1197 return; 1198 1199 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1200 struct cg_proto *cg_proto = sk->sk_cgrp; 1201 struct proto *prot = sk->sk_prot; 1202 1203 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1204 cg_proto->memory_pressure = 1; 1205 } 1206 1207 sk->sk_prot->enter_memory_pressure(sk); 1208 } 1209 1210 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1211 { 1212 long *prot = sk->sk_prot->sysctl_mem; 1213 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1214 prot = sk->sk_cgrp->sysctl_mem; 1215 return prot[index]; 1216 } 1217 1218 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1219 unsigned long amt, 1220 int *parent_status) 1221 { 1222 struct res_counter *fail; 1223 int ret; 1224 1225 ret = res_counter_charge_nofail(&prot->memory_allocated, 1226 amt << PAGE_SHIFT, &fail); 1227 if (ret < 0) 1228 *parent_status = OVER_LIMIT; 1229 } 1230 1231 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1232 unsigned long amt) 1233 { 1234 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT); 1235 } 1236 1237 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1238 { 1239 u64 ret; 1240 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE); 1241 return ret >> PAGE_SHIFT; 1242 } 1243 1244 static inline long 1245 sk_memory_allocated(const struct sock *sk) 1246 { 1247 struct proto *prot = sk->sk_prot; 1248 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1249 return memcg_memory_allocated_read(sk->sk_cgrp); 1250 1251 return atomic_long_read(prot->memory_allocated); 1252 } 1253 1254 static inline long 1255 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1256 { 1257 struct proto *prot = sk->sk_prot; 1258 1259 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1260 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1261 /* update the root cgroup regardless */ 1262 atomic_long_add_return(amt, prot->memory_allocated); 1263 return memcg_memory_allocated_read(sk->sk_cgrp); 1264 } 1265 1266 return atomic_long_add_return(amt, prot->memory_allocated); 1267 } 1268 1269 static inline void 1270 sk_memory_allocated_sub(struct sock *sk, int amt) 1271 { 1272 struct proto *prot = sk->sk_prot; 1273 1274 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1275 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1276 1277 atomic_long_sub(amt, prot->memory_allocated); 1278 } 1279 1280 static inline void sk_sockets_allocated_dec(struct sock *sk) 1281 { 1282 struct proto *prot = sk->sk_prot; 1283 1284 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1285 struct cg_proto *cg_proto = sk->sk_cgrp; 1286 1287 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1288 percpu_counter_dec(&cg_proto->sockets_allocated); 1289 } 1290 1291 percpu_counter_dec(prot->sockets_allocated); 1292 } 1293 1294 static inline void sk_sockets_allocated_inc(struct sock *sk) 1295 { 1296 struct proto *prot = sk->sk_prot; 1297 1298 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1299 struct cg_proto *cg_proto = sk->sk_cgrp; 1300 1301 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1302 percpu_counter_inc(&cg_proto->sockets_allocated); 1303 } 1304 1305 percpu_counter_inc(prot->sockets_allocated); 1306 } 1307 1308 static inline int 1309 sk_sockets_allocated_read_positive(struct sock *sk) 1310 { 1311 struct proto *prot = sk->sk_prot; 1312 1313 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1314 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1315 1316 return percpu_counter_read_positive(prot->sockets_allocated); 1317 } 1318 1319 static inline int 1320 proto_sockets_allocated_sum_positive(struct proto *prot) 1321 { 1322 return percpu_counter_sum_positive(prot->sockets_allocated); 1323 } 1324 1325 static inline long 1326 proto_memory_allocated(struct proto *prot) 1327 { 1328 return atomic_long_read(prot->memory_allocated); 1329 } 1330 1331 static inline bool 1332 proto_memory_pressure(struct proto *prot) 1333 { 1334 if (!prot->memory_pressure) 1335 return false; 1336 return !!*prot->memory_pressure; 1337 } 1338 1339 1340 #ifdef CONFIG_PROC_FS 1341 /* Called with local bh disabled */ 1342 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1343 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1344 #else 1345 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1346 int inc) 1347 { 1348 } 1349 #endif 1350 1351 1352 /* With per-bucket locks this operation is not-atomic, so that 1353 * this version is not worse. 1354 */ 1355 static inline void __sk_prot_rehash(struct sock *sk) 1356 { 1357 sk->sk_prot->unhash(sk); 1358 sk->sk_prot->hash(sk); 1359 } 1360 1361 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1362 1363 /* About 10 seconds */ 1364 #define SOCK_DESTROY_TIME (10*HZ) 1365 1366 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1367 #define PROT_SOCK 1024 1368 1369 #define SHUTDOWN_MASK 3 1370 #define RCV_SHUTDOWN 1 1371 #define SEND_SHUTDOWN 2 1372 1373 #define SOCK_SNDBUF_LOCK 1 1374 #define SOCK_RCVBUF_LOCK 2 1375 #define SOCK_BINDADDR_LOCK 4 1376 #define SOCK_BINDPORT_LOCK 8 1377 1378 /* sock_iocb: used to kick off async processing of socket ios */ 1379 struct sock_iocb { 1380 struct list_head list; 1381 1382 int flags; 1383 int size; 1384 struct socket *sock; 1385 struct sock *sk; 1386 struct scm_cookie *scm; 1387 struct msghdr *msg, async_msg; 1388 struct kiocb *kiocb; 1389 }; 1390 1391 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1392 { 1393 return (struct sock_iocb *)iocb->private; 1394 } 1395 1396 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1397 { 1398 return si->kiocb; 1399 } 1400 1401 struct socket_alloc { 1402 struct socket socket; 1403 struct inode vfs_inode; 1404 }; 1405 1406 static inline struct socket *SOCKET_I(struct inode *inode) 1407 { 1408 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1409 } 1410 1411 static inline struct inode *SOCK_INODE(struct socket *socket) 1412 { 1413 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1414 } 1415 1416 /* 1417 * Functions for memory accounting 1418 */ 1419 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1420 void __sk_mem_reclaim(struct sock *sk); 1421 1422 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1423 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1424 #define SK_MEM_SEND 0 1425 #define SK_MEM_RECV 1 1426 1427 static inline int sk_mem_pages(int amt) 1428 { 1429 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1430 } 1431 1432 static inline bool sk_has_account(struct sock *sk) 1433 { 1434 /* return true if protocol supports memory accounting */ 1435 return !!sk->sk_prot->memory_allocated; 1436 } 1437 1438 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1439 { 1440 if (!sk_has_account(sk)) 1441 return true; 1442 return size <= sk->sk_forward_alloc || 1443 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1444 } 1445 1446 static inline bool 1447 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1448 { 1449 if (!sk_has_account(sk)) 1450 return true; 1451 return size<= sk->sk_forward_alloc || 1452 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1453 skb_pfmemalloc(skb); 1454 } 1455 1456 static inline void sk_mem_reclaim(struct sock *sk) 1457 { 1458 if (!sk_has_account(sk)) 1459 return; 1460 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1461 __sk_mem_reclaim(sk); 1462 } 1463 1464 static inline void sk_mem_reclaim_partial(struct sock *sk) 1465 { 1466 if (!sk_has_account(sk)) 1467 return; 1468 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1469 __sk_mem_reclaim(sk); 1470 } 1471 1472 static inline void sk_mem_charge(struct sock *sk, int size) 1473 { 1474 if (!sk_has_account(sk)) 1475 return; 1476 sk->sk_forward_alloc -= size; 1477 } 1478 1479 static inline void sk_mem_uncharge(struct sock *sk, int size) 1480 { 1481 if (!sk_has_account(sk)) 1482 return; 1483 sk->sk_forward_alloc += size; 1484 } 1485 1486 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1487 { 1488 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1489 sk->sk_wmem_queued -= skb->truesize; 1490 sk_mem_uncharge(sk, skb->truesize); 1491 __kfree_skb(skb); 1492 } 1493 1494 /* Used by processes to "lock" a socket state, so that 1495 * interrupts and bottom half handlers won't change it 1496 * from under us. It essentially blocks any incoming 1497 * packets, so that we won't get any new data or any 1498 * packets that change the state of the socket. 1499 * 1500 * While locked, BH processing will add new packets to 1501 * the backlog queue. This queue is processed by the 1502 * owner of the socket lock right before it is released. 1503 * 1504 * Since ~2.3.5 it is also exclusive sleep lock serializing 1505 * accesses from user process context. 1506 */ 1507 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1508 1509 static inline void sock_release_ownership(struct sock *sk) 1510 { 1511 sk->sk_lock.owned = 0; 1512 } 1513 1514 /* 1515 * Macro so as to not evaluate some arguments when 1516 * lockdep is not enabled. 1517 * 1518 * Mark both the sk_lock and the sk_lock.slock as a 1519 * per-address-family lock class. 1520 */ 1521 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1522 do { \ 1523 sk->sk_lock.owned = 0; \ 1524 init_waitqueue_head(&sk->sk_lock.wq); \ 1525 spin_lock_init(&(sk)->sk_lock.slock); \ 1526 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1527 sizeof((sk)->sk_lock)); \ 1528 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1529 (skey), (sname)); \ 1530 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1531 } while (0) 1532 1533 void lock_sock_nested(struct sock *sk, int subclass); 1534 1535 static inline void lock_sock(struct sock *sk) 1536 { 1537 lock_sock_nested(sk, 0); 1538 } 1539 1540 void release_sock(struct sock *sk); 1541 1542 /* BH context may only use the following locking interface. */ 1543 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1544 #define bh_lock_sock_nested(__sk) \ 1545 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1546 SINGLE_DEPTH_NESTING) 1547 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1548 1549 bool lock_sock_fast(struct sock *sk); 1550 /** 1551 * unlock_sock_fast - complement of lock_sock_fast 1552 * @sk: socket 1553 * @slow: slow mode 1554 * 1555 * fast unlock socket for user context. 1556 * If slow mode is on, we call regular release_sock() 1557 */ 1558 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1559 { 1560 if (slow) 1561 release_sock(sk); 1562 else 1563 spin_unlock_bh(&sk->sk_lock.slock); 1564 } 1565 1566 1567 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1568 struct proto *prot); 1569 void sk_free(struct sock *sk); 1570 void sk_release_kernel(struct sock *sk); 1571 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1572 1573 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1574 gfp_t priority); 1575 void sock_wfree(struct sk_buff *skb); 1576 void skb_orphan_partial(struct sk_buff *skb); 1577 void sock_rfree(struct sk_buff *skb); 1578 void sock_edemux(struct sk_buff *skb); 1579 1580 int sock_setsockopt(struct socket *sock, int level, int op, 1581 char __user *optval, unsigned int optlen); 1582 1583 int sock_getsockopt(struct socket *sock, int level, int op, 1584 char __user *optval, int __user *optlen); 1585 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1586 int noblock, int *errcode); 1587 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1588 unsigned long data_len, int noblock, 1589 int *errcode, int max_page_order); 1590 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1591 void sock_kfree_s(struct sock *sk, void *mem, int size); 1592 void sk_send_sigurg(struct sock *sk); 1593 1594 /* 1595 * Functions to fill in entries in struct proto_ops when a protocol 1596 * does not implement a particular function. 1597 */ 1598 int sock_no_bind(struct socket *, struct sockaddr *, int); 1599 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1600 int sock_no_socketpair(struct socket *, struct socket *); 1601 int sock_no_accept(struct socket *, struct socket *, int); 1602 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1603 unsigned int sock_no_poll(struct file *, struct socket *, 1604 struct poll_table_struct *); 1605 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1606 int sock_no_listen(struct socket *, int); 1607 int sock_no_shutdown(struct socket *, int); 1608 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1609 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1610 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); 1611 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, 1612 int); 1613 int sock_no_mmap(struct file *file, struct socket *sock, 1614 struct vm_area_struct *vma); 1615 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1616 size_t size, int flags); 1617 1618 /* 1619 * Functions to fill in entries in struct proto_ops when a protocol 1620 * uses the inet style. 1621 */ 1622 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1623 char __user *optval, int __user *optlen); 1624 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1625 struct msghdr *msg, size_t size, int flags); 1626 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1627 char __user *optval, unsigned int optlen); 1628 int compat_sock_common_getsockopt(struct socket *sock, int level, 1629 int optname, char __user *optval, int __user *optlen); 1630 int compat_sock_common_setsockopt(struct socket *sock, int level, 1631 int optname, char __user *optval, unsigned int optlen); 1632 1633 void sk_common_release(struct sock *sk); 1634 1635 /* 1636 * Default socket callbacks and setup code 1637 */ 1638 1639 /* Initialise core socket variables */ 1640 void sock_init_data(struct socket *sock, struct sock *sk); 1641 1642 /* 1643 * Socket reference counting postulates. 1644 * 1645 * * Each user of socket SHOULD hold a reference count. 1646 * * Each access point to socket (an hash table bucket, reference from a list, 1647 * running timer, skb in flight MUST hold a reference count. 1648 * * When reference count hits 0, it means it will never increase back. 1649 * * When reference count hits 0, it means that no references from 1650 * outside exist to this socket and current process on current CPU 1651 * is last user and may/should destroy this socket. 1652 * * sk_free is called from any context: process, BH, IRQ. When 1653 * it is called, socket has no references from outside -> sk_free 1654 * may release descendant resources allocated by the socket, but 1655 * to the time when it is called, socket is NOT referenced by any 1656 * hash tables, lists etc. 1657 * * Packets, delivered from outside (from network or from another process) 1658 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1659 * when they sit in queue. Otherwise, packets will leak to hole, when 1660 * socket is looked up by one cpu and unhasing is made by another CPU. 1661 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1662 * (leak to backlog). Packet socket does all the processing inside 1663 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1664 * use separate SMP lock, so that they are prone too. 1665 */ 1666 1667 /* Ungrab socket and destroy it, if it was the last reference. */ 1668 static inline void sock_put(struct sock *sk) 1669 { 1670 if (atomic_dec_and_test(&sk->sk_refcnt)) 1671 sk_free(sk); 1672 } 1673 /* Generic version of sock_put(), dealing with all sockets 1674 * (TCP_TIMEWAIT, ESTABLISHED...) 1675 */ 1676 void sock_gen_put(struct sock *sk); 1677 1678 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1679 1680 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1681 { 1682 sk->sk_tx_queue_mapping = tx_queue; 1683 } 1684 1685 static inline void sk_tx_queue_clear(struct sock *sk) 1686 { 1687 sk->sk_tx_queue_mapping = -1; 1688 } 1689 1690 static inline int sk_tx_queue_get(const struct sock *sk) 1691 { 1692 return sk ? sk->sk_tx_queue_mapping : -1; 1693 } 1694 1695 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1696 { 1697 sk_tx_queue_clear(sk); 1698 sk->sk_socket = sock; 1699 } 1700 1701 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1702 { 1703 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1704 return &rcu_dereference_raw(sk->sk_wq)->wait; 1705 } 1706 /* Detach socket from process context. 1707 * Announce socket dead, detach it from wait queue and inode. 1708 * Note that parent inode held reference count on this struct sock, 1709 * we do not release it in this function, because protocol 1710 * probably wants some additional cleanups or even continuing 1711 * to work with this socket (TCP). 1712 */ 1713 static inline void sock_orphan(struct sock *sk) 1714 { 1715 write_lock_bh(&sk->sk_callback_lock); 1716 sock_set_flag(sk, SOCK_DEAD); 1717 sk_set_socket(sk, NULL); 1718 sk->sk_wq = NULL; 1719 write_unlock_bh(&sk->sk_callback_lock); 1720 } 1721 1722 static inline void sock_graft(struct sock *sk, struct socket *parent) 1723 { 1724 write_lock_bh(&sk->sk_callback_lock); 1725 sk->sk_wq = parent->wq; 1726 parent->sk = sk; 1727 sk_set_socket(sk, parent); 1728 security_sock_graft(sk, parent); 1729 write_unlock_bh(&sk->sk_callback_lock); 1730 } 1731 1732 kuid_t sock_i_uid(struct sock *sk); 1733 unsigned long sock_i_ino(struct sock *sk); 1734 1735 static inline struct dst_entry * 1736 __sk_dst_get(struct sock *sk) 1737 { 1738 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1739 lockdep_is_held(&sk->sk_lock.slock)); 1740 } 1741 1742 static inline struct dst_entry * 1743 sk_dst_get(struct sock *sk) 1744 { 1745 struct dst_entry *dst; 1746 1747 rcu_read_lock(); 1748 dst = rcu_dereference(sk->sk_dst_cache); 1749 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1750 dst = NULL; 1751 rcu_read_unlock(); 1752 return dst; 1753 } 1754 1755 static inline void dst_negative_advice(struct sock *sk) 1756 { 1757 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1758 1759 if (dst && dst->ops->negative_advice) { 1760 ndst = dst->ops->negative_advice(dst); 1761 1762 if (ndst != dst) { 1763 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1764 sk_tx_queue_clear(sk); 1765 } 1766 } 1767 } 1768 1769 static inline void 1770 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1771 { 1772 struct dst_entry *old_dst; 1773 1774 sk_tx_queue_clear(sk); 1775 /* 1776 * This can be called while sk is owned by the caller only, 1777 * with no state that can be checked in a rcu_dereference_check() cond 1778 */ 1779 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1780 rcu_assign_pointer(sk->sk_dst_cache, dst); 1781 dst_release(old_dst); 1782 } 1783 1784 static inline void 1785 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1786 { 1787 struct dst_entry *old_dst; 1788 1789 sk_tx_queue_clear(sk); 1790 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1791 dst_release(old_dst); 1792 } 1793 1794 static inline void 1795 __sk_dst_reset(struct sock *sk) 1796 { 1797 __sk_dst_set(sk, NULL); 1798 } 1799 1800 static inline void 1801 sk_dst_reset(struct sock *sk) 1802 { 1803 sk_dst_set(sk, NULL); 1804 } 1805 1806 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1807 1808 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1809 1810 static inline bool sk_can_gso(const struct sock *sk) 1811 { 1812 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1813 } 1814 1815 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1816 1817 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1818 { 1819 sk->sk_route_nocaps |= flags; 1820 sk->sk_route_caps &= ~flags; 1821 } 1822 1823 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1824 char __user *from, char *to, 1825 int copy, int offset) 1826 { 1827 if (skb->ip_summed == CHECKSUM_NONE) { 1828 int err = 0; 1829 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1830 if (err) 1831 return err; 1832 skb->csum = csum_block_add(skb->csum, csum, offset); 1833 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1834 if (!access_ok(VERIFY_READ, from, copy) || 1835 __copy_from_user_nocache(to, from, copy)) 1836 return -EFAULT; 1837 } else if (copy_from_user(to, from, copy)) 1838 return -EFAULT; 1839 1840 return 0; 1841 } 1842 1843 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1844 char __user *from, int copy) 1845 { 1846 int err, offset = skb->len; 1847 1848 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1849 copy, offset); 1850 if (err) 1851 __skb_trim(skb, offset); 1852 1853 return err; 1854 } 1855 1856 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1857 struct sk_buff *skb, 1858 struct page *page, 1859 int off, int copy) 1860 { 1861 int err; 1862 1863 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1864 copy, skb->len); 1865 if (err) 1866 return err; 1867 1868 skb->len += copy; 1869 skb->data_len += copy; 1870 skb->truesize += copy; 1871 sk->sk_wmem_queued += copy; 1872 sk_mem_charge(sk, copy); 1873 return 0; 1874 } 1875 1876 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1877 struct sk_buff *skb, struct page *page, 1878 int off, int copy) 1879 { 1880 if (skb->ip_summed == CHECKSUM_NONE) { 1881 int err = 0; 1882 __wsum csum = csum_and_copy_from_user(from, 1883 page_address(page) + off, 1884 copy, 0, &err); 1885 if (err) 1886 return err; 1887 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1888 } else if (copy_from_user(page_address(page) + off, from, copy)) 1889 return -EFAULT; 1890 1891 skb->len += copy; 1892 skb->data_len += copy; 1893 skb->truesize += copy; 1894 sk->sk_wmem_queued += copy; 1895 sk_mem_charge(sk, copy); 1896 return 0; 1897 } 1898 1899 /** 1900 * sk_wmem_alloc_get - returns write allocations 1901 * @sk: socket 1902 * 1903 * Returns sk_wmem_alloc minus initial offset of one 1904 */ 1905 static inline int sk_wmem_alloc_get(const struct sock *sk) 1906 { 1907 return atomic_read(&sk->sk_wmem_alloc) - 1; 1908 } 1909 1910 /** 1911 * sk_rmem_alloc_get - returns read allocations 1912 * @sk: socket 1913 * 1914 * Returns sk_rmem_alloc 1915 */ 1916 static inline int sk_rmem_alloc_get(const struct sock *sk) 1917 { 1918 return atomic_read(&sk->sk_rmem_alloc); 1919 } 1920 1921 /** 1922 * sk_has_allocations - check if allocations are outstanding 1923 * @sk: socket 1924 * 1925 * Returns true if socket has write or read allocations 1926 */ 1927 static inline bool sk_has_allocations(const struct sock *sk) 1928 { 1929 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1930 } 1931 1932 /** 1933 * wq_has_sleeper - check if there are any waiting processes 1934 * @wq: struct socket_wq 1935 * 1936 * Returns true if socket_wq has waiting processes 1937 * 1938 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1939 * barrier call. They were added due to the race found within the tcp code. 1940 * 1941 * Consider following tcp code paths: 1942 * 1943 * CPU1 CPU2 1944 * 1945 * sys_select receive packet 1946 * ... ... 1947 * __add_wait_queue update tp->rcv_nxt 1948 * ... ... 1949 * tp->rcv_nxt check sock_def_readable 1950 * ... { 1951 * schedule rcu_read_lock(); 1952 * wq = rcu_dereference(sk->sk_wq); 1953 * if (wq && waitqueue_active(&wq->wait)) 1954 * wake_up_interruptible(&wq->wait) 1955 * ... 1956 * } 1957 * 1958 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1959 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1960 * could then endup calling schedule and sleep forever if there are no more 1961 * data on the socket. 1962 * 1963 */ 1964 static inline bool wq_has_sleeper(struct socket_wq *wq) 1965 { 1966 /* We need to be sure we are in sync with the 1967 * add_wait_queue modifications to the wait queue. 1968 * 1969 * This memory barrier is paired in the sock_poll_wait. 1970 */ 1971 smp_mb(); 1972 return wq && waitqueue_active(&wq->wait); 1973 } 1974 1975 /** 1976 * sock_poll_wait - place memory barrier behind the poll_wait call. 1977 * @filp: file 1978 * @wait_address: socket wait queue 1979 * @p: poll_table 1980 * 1981 * See the comments in the wq_has_sleeper function. 1982 */ 1983 static inline void sock_poll_wait(struct file *filp, 1984 wait_queue_head_t *wait_address, poll_table *p) 1985 { 1986 if (!poll_does_not_wait(p) && wait_address) { 1987 poll_wait(filp, wait_address, p); 1988 /* We need to be sure we are in sync with the 1989 * socket flags modification. 1990 * 1991 * This memory barrier is paired in the wq_has_sleeper. 1992 */ 1993 smp_mb(); 1994 } 1995 } 1996 1997 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1998 { 1999 if (sk->sk_txhash) { 2000 skb->l4_hash = 1; 2001 skb->hash = sk->sk_txhash; 2002 } 2003 } 2004 2005 /* 2006 * Queue a received datagram if it will fit. Stream and sequenced 2007 * protocols can't normally use this as they need to fit buffers in 2008 * and play with them. 2009 * 2010 * Inlined as it's very short and called for pretty much every 2011 * packet ever received. 2012 */ 2013 2014 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2015 { 2016 skb_orphan(skb); 2017 skb->sk = sk; 2018 skb->destructor = sock_wfree; 2019 skb_set_hash_from_sk(skb, sk); 2020 /* 2021 * We used to take a refcount on sk, but following operation 2022 * is enough to guarantee sk_free() wont free this sock until 2023 * all in-flight packets are completed 2024 */ 2025 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 2026 } 2027 2028 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2029 { 2030 skb_orphan(skb); 2031 skb->sk = sk; 2032 skb->destructor = sock_rfree; 2033 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2034 sk_mem_charge(sk, skb->truesize); 2035 } 2036 2037 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2038 unsigned long expires); 2039 2040 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2041 2042 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2043 2044 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2045 2046 /* 2047 * Recover an error report and clear atomically 2048 */ 2049 2050 static inline int sock_error(struct sock *sk) 2051 { 2052 int err; 2053 if (likely(!sk->sk_err)) 2054 return 0; 2055 err = xchg(&sk->sk_err, 0); 2056 return -err; 2057 } 2058 2059 static inline unsigned long sock_wspace(struct sock *sk) 2060 { 2061 int amt = 0; 2062 2063 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2064 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2065 if (amt < 0) 2066 amt = 0; 2067 } 2068 return amt; 2069 } 2070 2071 static inline void sk_wake_async(struct sock *sk, int how, int band) 2072 { 2073 if (sock_flag(sk, SOCK_FASYNC)) 2074 sock_wake_async(sk->sk_socket, how, band); 2075 } 2076 2077 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2078 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2079 * Note: for send buffers, TCP works better if we can build two skbs at 2080 * minimum. 2081 */ 2082 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2083 2084 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2085 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2086 2087 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2088 { 2089 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2090 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2091 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2092 } 2093 } 2094 2095 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2096 2097 /** 2098 * sk_page_frag - return an appropriate page_frag 2099 * @sk: socket 2100 * 2101 * If socket allocation mode allows current thread to sleep, it means its 2102 * safe to use the per task page_frag instead of the per socket one. 2103 */ 2104 static inline struct page_frag *sk_page_frag(struct sock *sk) 2105 { 2106 if (sk->sk_allocation & __GFP_WAIT) 2107 return ¤t->task_frag; 2108 2109 return &sk->sk_frag; 2110 } 2111 2112 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2113 2114 /* 2115 * Default write policy as shown to user space via poll/select/SIGIO 2116 */ 2117 static inline bool sock_writeable(const struct sock *sk) 2118 { 2119 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2120 } 2121 2122 static inline gfp_t gfp_any(void) 2123 { 2124 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2125 } 2126 2127 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2128 { 2129 return noblock ? 0 : sk->sk_rcvtimeo; 2130 } 2131 2132 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2133 { 2134 return noblock ? 0 : sk->sk_sndtimeo; 2135 } 2136 2137 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2138 { 2139 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2140 } 2141 2142 /* Alas, with timeout socket operations are not restartable. 2143 * Compare this to poll(). 2144 */ 2145 static inline int sock_intr_errno(long timeo) 2146 { 2147 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2148 } 2149 2150 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2151 struct sk_buff *skb); 2152 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2153 struct sk_buff *skb); 2154 2155 static inline void 2156 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2157 { 2158 ktime_t kt = skb->tstamp; 2159 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2160 2161 /* 2162 * generate control messages if 2163 * - receive time stamping in software requested 2164 * - software time stamp available and wanted 2165 * - hardware time stamps available and wanted 2166 */ 2167 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2168 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2169 (kt.tv64 && 2170 (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE || 2171 skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP)) || 2172 (hwtstamps->hwtstamp.tv64 && 2173 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2174 __sock_recv_timestamp(msg, sk, skb); 2175 else 2176 sk->sk_stamp = kt; 2177 2178 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2179 __sock_recv_wifi_status(msg, sk, skb); 2180 } 2181 2182 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2183 struct sk_buff *skb); 2184 2185 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2186 struct sk_buff *skb) 2187 { 2188 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2189 (1UL << SOCK_RCVTSTAMP)) 2190 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2191 SOF_TIMESTAMPING_RAW_HARDWARE) 2192 2193 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2194 __sock_recv_ts_and_drops(msg, sk, skb); 2195 else 2196 sk->sk_stamp = skb->tstamp; 2197 } 2198 2199 /** 2200 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2201 * @sk: socket sending this packet 2202 * @tx_flags: filled with instructions for time stamping 2203 */ 2204 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2205 2206 /** 2207 * sk_eat_skb - Release a skb if it is no longer needed 2208 * @sk: socket to eat this skb from 2209 * @skb: socket buffer to eat 2210 * @copied_early: flag indicating whether DMA operations copied this data early 2211 * 2212 * This routine must be called with interrupts disabled or with the socket 2213 * locked so that the sk_buff queue operation is ok. 2214 */ 2215 #ifdef CONFIG_NET_DMA 2216 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2217 { 2218 __skb_unlink(skb, &sk->sk_receive_queue); 2219 if (!copied_early) 2220 __kfree_skb(skb); 2221 else 2222 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2223 } 2224 #else 2225 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2226 { 2227 __skb_unlink(skb, &sk->sk_receive_queue); 2228 __kfree_skb(skb); 2229 } 2230 #endif 2231 2232 static inline 2233 struct net *sock_net(const struct sock *sk) 2234 { 2235 return read_pnet(&sk->sk_net); 2236 } 2237 2238 static inline 2239 void sock_net_set(struct sock *sk, struct net *net) 2240 { 2241 write_pnet(&sk->sk_net, net); 2242 } 2243 2244 /* 2245 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2246 * They should not hold a reference to a namespace in order to allow 2247 * to stop it. 2248 * Sockets after sk_change_net should be released using sk_release_kernel 2249 */ 2250 static inline void sk_change_net(struct sock *sk, struct net *net) 2251 { 2252 struct net *current_net = sock_net(sk); 2253 2254 if (!net_eq(current_net, net)) { 2255 put_net(current_net); 2256 sock_net_set(sk, hold_net(net)); 2257 } 2258 } 2259 2260 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2261 { 2262 if (skb->sk) { 2263 struct sock *sk = skb->sk; 2264 2265 skb->destructor = NULL; 2266 skb->sk = NULL; 2267 return sk; 2268 } 2269 return NULL; 2270 } 2271 2272 void sock_enable_timestamp(struct sock *sk, int flag); 2273 int sock_get_timestamp(struct sock *, struct timeval __user *); 2274 int sock_get_timestampns(struct sock *, struct timespec __user *); 2275 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2276 int type); 2277 2278 bool sk_ns_capable(const struct sock *sk, 2279 struct user_namespace *user_ns, int cap); 2280 bool sk_capable(const struct sock *sk, int cap); 2281 bool sk_net_capable(const struct sock *sk, int cap); 2282 2283 /* 2284 * Enable debug/info messages 2285 */ 2286 extern int net_msg_warn; 2287 #define NETDEBUG(fmt, args...) \ 2288 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2289 2290 #define LIMIT_NETDEBUG(fmt, args...) \ 2291 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2292 2293 extern __u32 sysctl_wmem_max; 2294 extern __u32 sysctl_rmem_max; 2295 2296 extern int sysctl_optmem_max; 2297 2298 extern __u32 sysctl_wmem_default; 2299 extern __u32 sysctl_rmem_default; 2300 2301 #endif /* _SOCK_H */ 2302