xref: /openbmc/linux/include/net/sock.h (revision 5bd8e16d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 	return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88  * This structure really needs to be cleaned up.
89  * Most of it is for TCP, and not used by any of
90  * the other protocols.
91  */
92 
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 					printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105 
106 /* This is the per-socket lock.  The spinlock provides a synchronization
107  * between user contexts and software interrupt processing, whereas the
108  * mini-semaphore synchronizes multiple users amongst themselves.
109  */
110 typedef struct {
111 	spinlock_t		slock;
112 	int			owned;
113 	wait_queue_head_t	wq;
114 	/*
115 	 * We express the mutex-alike socket_lock semantics
116 	 * to the lock validator by explicitly managing
117 	 * the slock as a lock variant (in addition to
118 	 * the slock itself):
119 	 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 	struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124 
125 struct sock;
126 struct proto;
127 struct net;
128 
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131 
132 /**
133  *	struct sock_common - minimal network layer representation of sockets
134  *	@skc_daddr: Foreign IPv4 addr
135  *	@skc_rcv_saddr: Bound local IPv4 addr
136  *	@skc_hash: hash value used with various protocol lookup tables
137  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
138  *	@skc_dport: placeholder for inet_dport/tw_dport
139  *	@skc_num: placeholder for inet_num/tw_num
140  *	@skc_family: network address family
141  *	@skc_state: Connection state
142  *	@skc_reuse: %SO_REUSEADDR setting
143  *	@skc_reuseport: %SO_REUSEPORT setting
144  *	@skc_bound_dev_if: bound device index if != 0
145  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
146  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147  *	@skc_prot: protocol handlers inside a network family
148  *	@skc_net: reference to the network namespace of this socket
149  *	@skc_node: main hash linkage for various protocol lookup tables
150  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151  *	@skc_tx_queue_mapping: tx queue number for this connection
152  *	@skc_refcnt: reference count
153  *
154  *	This is the minimal network layer representation of sockets, the header
155  *	for struct sock and struct inet_timewait_sock.
156  */
157 struct sock_common {
158 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 	 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
160 	 */
161 	union {
162 		__addrpair	skc_addrpair;
163 		struct {
164 			__be32	skc_daddr;
165 			__be32	skc_rcv_saddr;
166 		};
167 	};
168 	union  {
169 		unsigned int	skc_hash;
170 		__u16		skc_u16hashes[2];
171 	};
172 	/* skc_dport && skc_num must be grouped as well */
173 	union {
174 		__portpair	skc_portpair;
175 		struct {
176 			__be16	skc_dport;
177 			__u16	skc_num;
178 		};
179 	};
180 
181 	unsigned short		skc_family;
182 	volatile unsigned char	skc_state;
183 	unsigned char		skc_reuse:4;
184 	unsigned char		skc_reuseport:4;
185 	int			skc_bound_dev_if;
186 	union {
187 		struct hlist_node	skc_bind_node;
188 		struct hlist_nulls_node skc_portaddr_node;
189 	};
190 	struct proto		*skc_prot;
191 #ifdef CONFIG_NET_NS
192 	struct net	 	*skc_net;
193 #endif
194 	/*
195 	 * fields between dontcopy_begin/dontcopy_end
196 	 * are not copied in sock_copy()
197 	 */
198 	/* private: */
199 	int			skc_dontcopy_begin[0];
200 	/* public: */
201 	union {
202 		struct hlist_node	skc_node;
203 		struct hlist_nulls_node skc_nulls_node;
204 	};
205 	int			skc_tx_queue_mapping;
206 	atomic_t		skc_refcnt;
207 	/* private: */
208 	int                     skc_dontcopy_end[0];
209 	/* public: */
210 };
211 
212 struct cg_proto;
213 /**
214   *	struct sock - network layer representation of sockets
215   *	@__sk_common: shared layout with inet_timewait_sock
216   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
217   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
218   *	@sk_lock:	synchronizer
219   *	@sk_rcvbuf: size of receive buffer in bytes
220   *	@sk_wq: sock wait queue and async head
221   *	@sk_rx_dst: receive input route used by early tcp demux
222   *	@sk_dst_cache: destination cache
223   *	@sk_dst_lock: destination cache lock
224   *	@sk_policy: flow policy
225   *	@sk_receive_queue: incoming packets
226   *	@sk_wmem_alloc: transmit queue bytes committed
227   *	@sk_write_queue: Packet sending queue
228   *	@sk_async_wait_queue: DMA copied packets
229   *	@sk_omem_alloc: "o" is "option" or "other"
230   *	@sk_wmem_queued: persistent queue size
231   *	@sk_forward_alloc: space allocated forward
232   *	@sk_napi_id: id of the last napi context to receive data for sk
233   *	@sk_ll_usec: usecs to busypoll when there is no data
234   *	@sk_allocation: allocation mode
235   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
236   *	@sk_sndbuf: size of send buffer in bytes
237   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
238   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
239   *	@sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
240   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
241   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
242   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
243   *	@sk_gso_max_size: Maximum GSO segment size to build
244   *	@sk_gso_max_segs: Maximum number of GSO segments
245   *	@sk_lingertime: %SO_LINGER l_linger setting
246   *	@sk_backlog: always used with the per-socket spinlock held
247   *	@sk_callback_lock: used with the callbacks in the end of this struct
248   *	@sk_error_queue: rarely used
249   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
250   *			  IPV6_ADDRFORM for instance)
251   *	@sk_err: last error
252   *	@sk_err_soft: errors that don't cause failure but are the cause of a
253   *		      persistent failure not just 'timed out'
254   *	@sk_drops: raw/udp drops counter
255   *	@sk_ack_backlog: current listen backlog
256   *	@sk_max_ack_backlog: listen backlog set in listen()
257   *	@sk_priority: %SO_PRIORITY setting
258   *	@sk_cgrp_prioidx: socket group's priority map index
259   *	@sk_type: socket type (%SOCK_STREAM, etc)
260   *	@sk_protocol: which protocol this socket belongs in this network family
261   *	@sk_peer_pid: &struct pid for this socket's peer
262   *	@sk_peer_cred: %SO_PEERCRED setting
263   *	@sk_rcvlowat: %SO_RCVLOWAT setting
264   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
265   *	@sk_sndtimeo: %SO_SNDTIMEO setting
266   *	@sk_rxhash: flow hash received from netif layer
267   *	@sk_filter: socket filtering instructions
268   *	@sk_protinfo: private area, net family specific, when not using slab
269   *	@sk_timer: sock cleanup timer
270   *	@sk_stamp: time stamp of last packet received
271   *	@sk_socket: Identd and reporting IO signals
272   *	@sk_user_data: RPC layer private data
273   *	@sk_frag: cached page frag
274   *	@sk_peek_off: current peek_offset value
275   *	@sk_send_head: front of stuff to transmit
276   *	@sk_security: used by security modules
277   *	@sk_mark: generic packet mark
278   *	@sk_classid: this socket's cgroup classid
279   *	@sk_cgrp: this socket's cgroup-specific proto data
280   *	@sk_write_pending: a write to stream socket waits to start
281   *	@sk_state_change: callback to indicate change in the state of the sock
282   *	@sk_data_ready: callback to indicate there is data to be processed
283   *	@sk_write_space: callback to indicate there is bf sending space available
284   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
285   *	@sk_backlog_rcv: callback to process the backlog
286   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
287  */
288 struct sock {
289 	/*
290 	 * Now struct inet_timewait_sock also uses sock_common, so please just
291 	 * don't add nothing before this first member (__sk_common) --acme
292 	 */
293 	struct sock_common	__sk_common;
294 #define sk_node			__sk_common.skc_node
295 #define sk_nulls_node		__sk_common.skc_nulls_node
296 #define sk_refcnt		__sk_common.skc_refcnt
297 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
298 
299 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
300 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
301 #define sk_hash			__sk_common.skc_hash
302 #define sk_family		__sk_common.skc_family
303 #define sk_state		__sk_common.skc_state
304 #define sk_reuse		__sk_common.skc_reuse
305 #define sk_reuseport		__sk_common.skc_reuseport
306 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
307 #define sk_bind_node		__sk_common.skc_bind_node
308 #define sk_prot			__sk_common.skc_prot
309 #define sk_net			__sk_common.skc_net
310 	socket_lock_t		sk_lock;
311 	struct sk_buff_head	sk_receive_queue;
312 	/*
313 	 * The backlog queue is special, it is always used with
314 	 * the per-socket spinlock held and requires low latency
315 	 * access. Therefore we special case it's implementation.
316 	 * Note : rmem_alloc is in this structure to fill a hole
317 	 * on 64bit arches, not because its logically part of
318 	 * backlog.
319 	 */
320 	struct {
321 		atomic_t	rmem_alloc;
322 		int		len;
323 		struct sk_buff	*head;
324 		struct sk_buff	*tail;
325 	} sk_backlog;
326 #define sk_rmem_alloc sk_backlog.rmem_alloc
327 	int			sk_forward_alloc;
328 #ifdef CONFIG_RPS
329 	__u32			sk_rxhash;
330 #endif
331 #ifdef CONFIG_NET_RX_BUSY_POLL
332 	unsigned int		sk_napi_id;
333 	unsigned int		sk_ll_usec;
334 #endif
335 	atomic_t		sk_drops;
336 	int			sk_rcvbuf;
337 
338 	struct sk_filter __rcu	*sk_filter;
339 	struct socket_wq __rcu	*sk_wq;
340 
341 #ifdef CONFIG_NET_DMA
342 	struct sk_buff_head	sk_async_wait_queue;
343 #endif
344 
345 #ifdef CONFIG_XFRM
346 	struct xfrm_policy	*sk_policy[2];
347 #endif
348 	unsigned long 		sk_flags;
349 	struct dst_entry	*sk_rx_dst;
350 	struct dst_entry __rcu	*sk_dst_cache;
351 	spinlock_t		sk_dst_lock;
352 	atomic_t		sk_wmem_alloc;
353 	atomic_t		sk_omem_alloc;
354 	int			sk_sndbuf;
355 	struct sk_buff_head	sk_write_queue;
356 	kmemcheck_bitfield_begin(flags);
357 	unsigned int		sk_shutdown  : 2,
358 				sk_no_check  : 2,
359 				sk_userlocks : 4,
360 				sk_protocol  : 8,
361 				sk_type      : 16;
362 	kmemcheck_bitfield_end(flags);
363 	int			sk_wmem_queued;
364 	gfp_t			sk_allocation;
365 	u32			sk_pacing_rate; /* bytes per second */
366 	netdev_features_t	sk_route_caps;
367 	netdev_features_t	sk_route_nocaps;
368 	int			sk_gso_type;
369 	unsigned int		sk_gso_max_size;
370 	u16			sk_gso_max_segs;
371 	int			sk_rcvlowat;
372 	unsigned long	        sk_lingertime;
373 	struct sk_buff_head	sk_error_queue;
374 	struct proto		*sk_prot_creator;
375 	rwlock_t		sk_callback_lock;
376 	int			sk_err,
377 				sk_err_soft;
378 	unsigned short		sk_ack_backlog;
379 	unsigned short		sk_max_ack_backlog;
380 	__u32			sk_priority;
381 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
382 	__u32			sk_cgrp_prioidx;
383 #endif
384 	struct pid		*sk_peer_pid;
385 	const struct cred	*sk_peer_cred;
386 	long			sk_rcvtimeo;
387 	long			sk_sndtimeo;
388 	void			*sk_protinfo;
389 	struct timer_list	sk_timer;
390 	ktime_t			sk_stamp;
391 	struct socket		*sk_socket;
392 	void			*sk_user_data;
393 	struct page_frag	sk_frag;
394 	struct sk_buff		*sk_send_head;
395 	__s32			sk_peek_off;
396 	int			sk_write_pending;
397 #ifdef CONFIG_SECURITY
398 	void			*sk_security;
399 #endif
400 	__u32			sk_mark;
401 	u32			sk_classid;
402 	struct cg_proto		*sk_cgrp;
403 	void			(*sk_state_change)(struct sock *sk);
404 	void			(*sk_data_ready)(struct sock *sk, int bytes);
405 	void			(*sk_write_space)(struct sock *sk);
406 	void			(*sk_error_report)(struct sock *sk);
407 	int			(*sk_backlog_rcv)(struct sock *sk,
408 						  struct sk_buff *skb);
409 	void                    (*sk_destruct)(struct sock *sk);
410 };
411 
412 /*
413  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
414  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
415  * on a socket means that the socket will reuse everybody else's port
416  * without looking at the other's sk_reuse value.
417  */
418 
419 #define SK_NO_REUSE	0
420 #define SK_CAN_REUSE	1
421 #define SK_FORCE_REUSE	2
422 
423 static inline int sk_peek_offset(struct sock *sk, int flags)
424 {
425 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
426 		return sk->sk_peek_off;
427 	else
428 		return 0;
429 }
430 
431 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
432 {
433 	if (sk->sk_peek_off >= 0) {
434 		if (sk->sk_peek_off >= val)
435 			sk->sk_peek_off -= val;
436 		else
437 			sk->sk_peek_off = 0;
438 	}
439 }
440 
441 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
442 {
443 	if (sk->sk_peek_off >= 0)
444 		sk->sk_peek_off += val;
445 }
446 
447 /*
448  * Hashed lists helper routines
449  */
450 static inline struct sock *sk_entry(const struct hlist_node *node)
451 {
452 	return hlist_entry(node, struct sock, sk_node);
453 }
454 
455 static inline struct sock *__sk_head(const struct hlist_head *head)
456 {
457 	return hlist_entry(head->first, struct sock, sk_node);
458 }
459 
460 static inline struct sock *sk_head(const struct hlist_head *head)
461 {
462 	return hlist_empty(head) ? NULL : __sk_head(head);
463 }
464 
465 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
466 {
467 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
468 }
469 
470 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
471 {
472 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
473 }
474 
475 static inline struct sock *sk_next(const struct sock *sk)
476 {
477 	return sk->sk_node.next ?
478 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
479 }
480 
481 static inline struct sock *sk_nulls_next(const struct sock *sk)
482 {
483 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
484 		hlist_nulls_entry(sk->sk_nulls_node.next,
485 				  struct sock, sk_nulls_node) :
486 		NULL;
487 }
488 
489 static inline bool sk_unhashed(const struct sock *sk)
490 {
491 	return hlist_unhashed(&sk->sk_node);
492 }
493 
494 static inline bool sk_hashed(const struct sock *sk)
495 {
496 	return !sk_unhashed(sk);
497 }
498 
499 static inline void sk_node_init(struct hlist_node *node)
500 {
501 	node->pprev = NULL;
502 }
503 
504 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
505 {
506 	node->pprev = NULL;
507 }
508 
509 static inline void __sk_del_node(struct sock *sk)
510 {
511 	__hlist_del(&sk->sk_node);
512 }
513 
514 /* NB: equivalent to hlist_del_init_rcu */
515 static inline bool __sk_del_node_init(struct sock *sk)
516 {
517 	if (sk_hashed(sk)) {
518 		__sk_del_node(sk);
519 		sk_node_init(&sk->sk_node);
520 		return true;
521 	}
522 	return false;
523 }
524 
525 /* Grab socket reference count. This operation is valid only
526    when sk is ALREADY grabbed f.e. it is found in hash table
527    or a list and the lookup is made under lock preventing hash table
528    modifications.
529  */
530 
531 static inline void sock_hold(struct sock *sk)
532 {
533 	atomic_inc(&sk->sk_refcnt);
534 }
535 
536 /* Ungrab socket in the context, which assumes that socket refcnt
537    cannot hit zero, f.e. it is true in context of any socketcall.
538  */
539 static inline void __sock_put(struct sock *sk)
540 {
541 	atomic_dec(&sk->sk_refcnt);
542 }
543 
544 static inline bool sk_del_node_init(struct sock *sk)
545 {
546 	bool rc = __sk_del_node_init(sk);
547 
548 	if (rc) {
549 		/* paranoid for a while -acme */
550 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
551 		__sock_put(sk);
552 	}
553 	return rc;
554 }
555 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
556 
557 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
558 {
559 	if (sk_hashed(sk)) {
560 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
561 		return true;
562 	}
563 	return false;
564 }
565 
566 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
567 {
568 	bool rc = __sk_nulls_del_node_init_rcu(sk);
569 
570 	if (rc) {
571 		/* paranoid for a while -acme */
572 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
573 		__sock_put(sk);
574 	}
575 	return rc;
576 }
577 
578 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
579 {
580 	hlist_add_head(&sk->sk_node, list);
581 }
582 
583 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
584 {
585 	sock_hold(sk);
586 	__sk_add_node(sk, list);
587 }
588 
589 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
590 {
591 	sock_hold(sk);
592 	hlist_add_head_rcu(&sk->sk_node, list);
593 }
594 
595 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
596 {
597 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
598 }
599 
600 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
601 {
602 	sock_hold(sk);
603 	__sk_nulls_add_node_rcu(sk, list);
604 }
605 
606 static inline void __sk_del_bind_node(struct sock *sk)
607 {
608 	__hlist_del(&sk->sk_bind_node);
609 }
610 
611 static inline void sk_add_bind_node(struct sock *sk,
612 					struct hlist_head *list)
613 {
614 	hlist_add_head(&sk->sk_bind_node, list);
615 }
616 
617 #define sk_for_each(__sk, list) \
618 	hlist_for_each_entry(__sk, list, sk_node)
619 #define sk_for_each_rcu(__sk, list) \
620 	hlist_for_each_entry_rcu(__sk, list, sk_node)
621 #define sk_nulls_for_each(__sk, node, list) \
622 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
623 #define sk_nulls_for_each_rcu(__sk, node, list) \
624 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
625 #define sk_for_each_from(__sk) \
626 	hlist_for_each_entry_from(__sk, sk_node)
627 #define sk_nulls_for_each_from(__sk, node) \
628 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
629 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
630 #define sk_for_each_safe(__sk, tmp, list) \
631 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
632 #define sk_for_each_bound(__sk, list) \
633 	hlist_for_each_entry(__sk, list, sk_bind_node)
634 
635 static inline struct user_namespace *sk_user_ns(struct sock *sk)
636 {
637 	/* Careful only use this in a context where these parameters
638 	 * can not change and must all be valid, such as recvmsg from
639 	 * userspace.
640 	 */
641 	return sk->sk_socket->file->f_cred->user_ns;
642 }
643 
644 /* Sock flags */
645 enum sock_flags {
646 	SOCK_DEAD,
647 	SOCK_DONE,
648 	SOCK_URGINLINE,
649 	SOCK_KEEPOPEN,
650 	SOCK_LINGER,
651 	SOCK_DESTROY,
652 	SOCK_BROADCAST,
653 	SOCK_TIMESTAMP,
654 	SOCK_ZAPPED,
655 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
656 	SOCK_DBG, /* %SO_DEBUG setting */
657 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
658 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
659 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
660 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
661 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
662 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
663 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
664 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
665 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
666 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
667 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
668 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
669 	SOCK_FASYNC, /* fasync() active */
670 	SOCK_RXQ_OVFL,
671 	SOCK_ZEROCOPY, /* buffers from userspace */
672 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
673 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
674 		     * Will use last 4 bytes of packet sent from
675 		     * user-space instead.
676 		     */
677 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
678 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
679 };
680 
681 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
682 {
683 	nsk->sk_flags = osk->sk_flags;
684 }
685 
686 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
687 {
688 	__set_bit(flag, &sk->sk_flags);
689 }
690 
691 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
692 {
693 	__clear_bit(flag, &sk->sk_flags);
694 }
695 
696 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
697 {
698 	return test_bit(flag, &sk->sk_flags);
699 }
700 
701 #ifdef CONFIG_NET
702 extern struct static_key memalloc_socks;
703 static inline int sk_memalloc_socks(void)
704 {
705 	return static_key_false(&memalloc_socks);
706 }
707 #else
708 
709 static inline int sk_memalloc_socks(void)
710 {
711 	return 0;
712 }
713 
714 #endif
715 
716 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
717 {
718 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
719 }
720 
721 static inline void sk_acceptq_removed(struct sock *sk)
722 {
723 	sk->sk_ack_backlog--;
724 }
725 
726 static inline void sk_acceptq_added(struct sock *sk)
727 {
728 	sk->sk_ack_backlog++;
729 }
730 
731 static inline bool sk_acceptq_is_full(const struct sock *sk)
732 {
733 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
734 }
735 
736 /*
737  * Compute minimal free write space needed to queue new packets.
738  */
739 static inline int sk_stream_min_wspace(const struct sock *sk)
740 {
741 	return sk->sk_wmem_queued >> 1;
742 }
743 
744 static inline int sk_stream_wspace(const struct sock *sk)
745 {
746 	return sk->sk_sndbuf - sk->sk_wmem_queued;
747 }
748 
749 extern void sk_stream_write_space(struct sock *sk);
750 
751 /* OOB backlog add */
752 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
753 {
754 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
755 	skb_dst_force(skb);
756 
757 	if (!sk->sk_backlog.tail)
758 		sk->sk_backlog.head = skb;
759 	else
760 		sk->sk_backlog.tail->next = skb;
761 
762 	sk->sk_backlog.tail = skb;
763 	skb->next = NULL;
764 }
765 
766 /*
767  * Take into account size of receive queue and backlog queue
768  * Do not take into account this skb truesize,
769  * to allow even a single big packet to come.
770  */
771 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
772 				     unsigned int limit)
773 {
774 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
775 
776 	return qsize > limit;
777 }
778 
779 /* The per-socket spinlock must be held here. */
780 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
781 					      unsigned int limit)
782 {
783 	if (sk_rcvqueues_full(sk, skb, limit))
784 		return -ENOBUFS;
785 
786 	__sk_add_backlog(sk, skb);
787 	sk->sk_backlog.len += skb->truesize;
788 	return 0;
789 }
790 
791 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
792 
793 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
794 {
795 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
796 		return __sk_backlog_rcv(sk, skb);
797 
798 	return sk->sk_backlog_rcv(sk, skb);
799 }
800 
801 static inline void sock_rps_record_flow(const struct sock *sk)
802 {
803 #ifdef CONFIG_RPS
804 	struct rps_sock_flow_table *sock_flow_table;
805 
806 	rcu_read_lock();
807 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
808 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
809 	rcu_read_unlock();
810 #endif
811 }
812 
813 static inline void sock_rps_reset_flow(const struct sock *sk)
814 {
815 #ifdef CONFIG_RPS
816 	struct rps_sock_flow_table *sock_flow_table;
817 
818 	rcu_read_lock();
819 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
820 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
821 	rcu_read_unlock();
822 #endif
823 }
824 
825 static inline void sock_rps_save_rxhash(struct sock *sk,
826 					const struct sk_buff *skb)
827 {
828 #ifdef CONFIG_RPS
829 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
830 		sock_rps_reset_flow(sk);
831 		sk->sk_rxhash = skb->rxhash;
832 	}
833 #endif
834 }
835 
836 static inline void sock_rps_reset_rxhash(struct sock *sk)
837 {
838 #ifdef CONFIG_RPS
839 	sock_rps_reset_flow(sk);
840 	sk->sk_rxhash = 0;
841 #endif
842 }
843 
844 #define sk_wait_event(__sk, __timeo, __condition)			\
845 	({	int __rc;						\
846 		release_sock(__sk);					\
847 		__rc = __condition;					\
848 		if (!__rc) {						\
849 			*(__timeo) = schedule_timeout(*(__timeo));	\
850 		}							\
851 		lock_sock(__sk);					\
852 		__rc = __condition;					\
853 		__rc;							\
854 	})
855 
856 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
857 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
858 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
859 extern int sk_stream_error(struct sock *sk, int flags, int err);
860 extern void sk_stream_kill_queues(struct sock *sk);
861 extern void sk_set_memalloc(struct sock *sk);
862 extern void sk_clear_memalloc(struct sock *sk);
863 
864 extern int sk_wait_data(struct sock *sk, long *timeo);
865 
866 struct request_sock_ops;
867 struct timewait_sock_ops;
868 struct inet_hashinfo;
869 struct raw_hashinfo;
870 struct module;
871 
872 /*
873  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
874  * un-modified. Special care is taken when initializing object to zero.
875  */
876 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
877 {
878 	if (offsetof(struct sock, sk_node.next) != 0)
879 		memset(sk, 0, offsetof(struct sock, sk_node.next));
880 	memset(&sk->sk_node.pprev, 0,
881 	       size - offsetof(struct sock, sk_node.pprev));
882 }
883 
884 /* Networking protocol blocks we attach to sockets.
885  * socket layer -> transport layer interface
886  * transport -> network interface is defined by struct inet_proto
887  */
888 struct proto {
889 	void			(*close)(struct sock *sk,
890 					long timeout);
891 	int			(*connect)(struct sock *sk,
892 					struct sockaddr *uaddr,
893 					int addr_len);
894 	int			(*disconnect)(struct sock *sk, int flags);
895 
896 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
897 
898 	int			(*ioctl)(struct sock *sk, int cmd,
899 					 unsigned long arg);
900 	int			(*init)(struct sock *sk);
901 	void			(*destroy)(struct sock *sk);
902 	void			(*shutdown)(struct sock *sk, int how);
903 	int			(*setsockopt)(struct sock *sk, int level,
904 					int optname, char __user *optval,
905 					unsigned int optlen);
906 	int			(*getsockopt)(struct sock *sk, int level,
907 					int optname, char __user *optval,
908 					int __user *option);
909 #ifdef CONFIG_COMPAT
910 	int			(*compat_setsockopt)(struct sock *sk,
911 					int level,
912 					int optname, char __user *optval,
913 					unsigned int optlen);
914 	int			(*compat_getsockopt)(struct sock *sk,
915 					int level,
916 					int optname, char __user *optval,
917 					int __user *option);
918 	int			(*compat_ioctl)(struct sock *sk,
919 					unsigned int cmd, unsigned long arg);
920 #endif
921 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
922 					   struct msghdr *msg, size_t len);
923 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
924 					   struct msghdr *msg,
925 					   size_t len, int noblock, int flags,
926 					   int *addr_len);
927 	int			(*sendpage)(struct sock *sk, struct page *page,
928 					int offset, size_t size, int flags);
929 	int			(*bind)(struct sock *sk,
930 					struct sockaddr *uaddr, int addr_len);
931 
932 	int			(*backlog_rcv) (struct sock *sk,
933 						struct sk_buff *skb);
934 
935 	void		(*release_cb)(struct sock *sk);
936 	void		(*mtu_reduced)(struct sock *sk);
937 
938 	/* Keeping track of sk's, looking them up, and port selection methods. */
939 	void			(*hash)(struct sock *sk);
940 	void			(*unhash)(struct sock *sk);
941 	void			(*rehash)(struct sock *sk);
942 	int			(*get_port)(struct sock *sk, unsigned short snum);
943 	void			(*clear_sk)(struct sock *sk, int size);
944 
945 	/* Keeping track of sockets in use */
946 #ifdef CONFIG_PROC_FS
947 	unsigned int		inuse_idx;
948 #endif
949 
950 	bool			(*stream_memory_free)(const struct sock *sk);
951 	/* Memory pressure */
952 	void			(*enter_memory_pressure)(struct sock *sk);
953 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
954 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
955 	/*
956 	 * Pressure flag: try to collapse.
957 	 * Technical note: it is used by multiple contexts non atomically.
958 	 * All the __sk_mem_schedule() is of this nature: accounting
959 	 * is strict, actions are advisory and have some latency.
960 	 */
961 	int			*memory_pressure;
962 	long			*sysctl_mem;
963 	int			*sysctl_wmem;
964 	int			*sysctl_rmem;
965 	int			max_header;
966 	bool			no_autobind;
967 
968 	struct kmem_cache	*slab;
969 	unsigned int		obj_size;
970 	int			slab_flags;
971 
972 	struct percpu_counter	*orphan_count;
973 
974 	struct request_sock_ops	*rsk_prot;
975 	struct timewait_sock_ops *twsk_prot;
976 
977 	union {
978 		struct inet_hashinfo	*hashinfo;
979 		struct udp_table	*udp_table;
980 		struct raw_hashinfo	*raw_hash;
981 	} h;
982 
983 	struct module		*owner;
984 
985 	char			name[32];
986 
987 	struct list_head	node;
988 #ifdef SOCK_REFCNT_DEBUG
989 	atomic_t		socks;
990 #endif
991 #ifdef CONFIG_MEMCG_KMEM
992 	/*
993 	 * cgroup specific init/deinit functions. Called once for all
994 	 * protocols that implement it, from cgroups populate function.
995 	 * This function has to setup any files the protocol want to
996 	 * appear in the kmem cgroup filesystem.
997 	 */
998 	int			(*init_cgroup)(struct mem_cgroup *memcg,
999 					       struct cgroup_subsys *ss);
1000 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1001 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1002 #endif
1003 };
1004 
1005 /*
1006  * Bits in struct cg_proto.flags
1007  */
1008 enum cg_proto_flags {
1009 	/* Currently active and new sockets should be assigned to cgroups */
1010 	MEMCG_SOCK_ACTIVE,
1011 	/* It was ever activated; we must disarm static keys on destruction */
1012 	MEMCG_SOCK_ACTIVATED,
1013 };
1014 
1015 struct cg_proto {
1016 	void			(*enter_memory_pressure)(struct sock *sk);
1017 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
1018 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1019 	int			*memory_pressure;
1020 	long			*sysctl_mem;
1021 	unsigned long		flags;
1022 	/*
1023 	 * memcg field is used to find which memcg we belong directly
1024 	 * Each memcg struct can hold more than one cg_proto, so container_of
1025 	 * won't really cut.
1026 	 *
1027 	 * The elegant solution would be having an inverse function to
1028 	 * proto_cgroup in struct proto, but that means polluting the structure
1029 	 * for everybody, instead of just for memcg users.
1030 	 */
1031 	struct mem_cgroup	*memcg;
1032 };
1033 
1034 extern int proto_register(struct proto *prot, int alloc_slab);
1035 extern void proto_unregister(struct proto *prot);
1036 
1037 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1038 {
1039 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1040 }
1041 
1042 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1043 {
1044 	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1045 }
1046 
1047 #ifdef SOCK_REFCNT_DEBUG
1048 static inline void sk_refcnt_debug_inc(struct sock *sk)
1049 {
1050 	atomic_inc(&sk->sk_prot->socks);
1051 }
1052 
1053 static inline void sk_refcnt_debug_dec(struct sock *sk)
1054 {
1055 	atomic_dec(&sk->sk_prot->socks);
1056 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1057 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1058 }
1059 
1060 static inline void sk_refcnt_debug_release(const struct sock *sk)
1061 {
1062 	if (atomic_read(&sk->sk_refcnt) != 1)
1063 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1064 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1065 }
1066 #else /* SOCK_REFCNT_DEBUG */
1067 #define sk_refcnt_debug_inc(sk) do { } while (0)
1068 #define sk_refcnt_debug_dec(sk) do { } while (0)
1069 #define sk_refcnt_debug_release(sk) do { } while (0)
1070 #endif /* SOCK_REFCNT_DEBUG */
1071 
1072 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1073 extern struct static_key memcg_socket_limit_enabled;
1074 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1075 					       struct cg_proto *cg_proto)
1076 {
1077 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1078 }
1079 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1080 #else
1081 #define mem_cgroup_sockets_enabled 0
1082 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1083 					       struct cg_proto *cg_proto)
1084 {
1085 	return NULL;
1086 }
1087 #endif
1088 
1089 static inline bool sk_stream_memory_free(const struct sock *sk)
1090 {
1091 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1092 		return false;
1093 
1094 	return sk->sk_prot->stream_memory_free ?
1095 		sk->sk_prot->stream_memory_free(sk) : true;
1096 }
1097 
1098 static inline bool sk_stream_is_writeable(const struct sock *sk)
1099 {
1100 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1101 	       sk_stream_memory_free(sk);
1102 }
1103 
1104 
1105 static inline bool sk_has_memory_pressure(const struct sock *sk)
1106 {
1107 	return sk->sk_prot->memory_pressure != NULL;
1108 }
1109 
1110 static inline bool sk_under_memory_pressure(const struct sock *sk)
1111 {
1112 	if (!sk->sk_prot->memory_pressure)
1113 		return false;
1114 
1115 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1116 		return !!*sk->sk_cgrp->memory_pressure;
1117 
1118 	return !!*sk->sk_prot->memory_pressure;
1119 }
1120 
1121 static inline void sk_leave_memory_pressure(struct sock *sk)
1122 {
1123 	int *memory_pressure = sk->sk_prot->memory_pressure;
1124 
1125 	if (!memory_pressure)
1126 		return;
1127 
1128 	if (*memory_pressure)
1129 		*memory_pressure = 0;
1130 
1131 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1132 		struct cg_proto *cg_proto = sk->sk_cgrp;
1133 		struct proto *prot = sk->sk_prot;
1134 
1135 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1136 			if (*cg_proto->memory_pressure)
1137 				*cg_proto->memory_pressure = 0;
1138 	}
1139 
1140 }
1141 
1142 static inline void sk_enter_memory_pressure(struct sock *sk)
1143 {
1144 	if (!sk->sk_prot->enter_memory_pressure)
1145 		return;
1146 
1147 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1148 		struct cg_proto *cg_proto = sk->sk_cgrp;
1149 		struct proto *prot = sk->sk_prot;
1150 
1151 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1152 			cg_proto->enter_memory_pressure(sk);
1153 	}
1154 
1155 	sk->sk_prot->enter_memory_pressure(sk);
1156 }
1157 
1158 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1159 {
1160 	long *prot = sk->sk_prot->sysctl_mem;
1161 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1162 		prot = sk->sk_cgrp->sysctl_mem;
1163 	return prot[index];
1164 }
1165 
1166 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1167 					      unsigned long amt,
1168 					      int *parent_status)
1169 {
1170 	struct res_counter *fail;
1171 	int ret;
1172 
1173 	ret = res_counter_charge_nofail(prot->memory_allocated,
1174 					amt << PAGE_SHIFT, &fail);
1175 	if (ret < 0)
1176 		*parent_status = OVER_LIMIT;
1177 }
1178 
1179 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1180 					      unsigned long amt)
1181 {
1182 	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1183 }
1184 
1185 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1186 {
1187 	u64 ret;
1188 	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1189 	return ret >> PAGE_SHIFT;
1190 }
1191 
1192 static inline long
1193 sk_memory_allocated(const struct sock *sk)
1194 {
1195 	struct proto *prot = sk->sk_prot;
1196 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1197 		return memcg_memory_allocated_read(sk->sk_cgrp);
1198 
1199 	return atomic_long_read(prot->memory_allocated);
1200 }
1201 
1202 static inline long
1203 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1204 {
1205 	struct proto *prot = sk->sk_prot;
1206 
1207 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1208 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1209 		/* update the root cgroup regardless */
1210 		atomic_long_add_return(amt, prot->memory_allocated);
1211 		return memcg_memory_allocated_read(sk->sk_cgrp);
1212 	}
1213 
1214 	return atomic_long_add_return(amt, prot->memory_allocated);
1215 }
1216 
1217 static inline void
1218 sk_memory_allocated_sub(struct sock *sk, int amt)
1219 {
1220 	struct proto *prot = sk->sk_prot;
1221 
1222 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1223 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1224 
1225 	atomic_long_sub(amt, prot->memory_allocated);
1226 }
1227 
1228 static inline void sk_sockets_allocated_dec(struct sock *sk)
1229 {
1230 	struct proto *prot = sk->sk_prot;
1231 
1232 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1233 		struct cg_proto *cg_proto = sk->sk_cgrp;
1234 
1235 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1236 			percpu_counter_dec(cg_proto->sockets_allocated);
1237 	}
1238 
1239 	percpu_counter_dec(prot->sockets_allocated);
1240 }
1241 
1242 static inline void sk_sockets_allocated_inc(struct sock *sk)
1243 {
1244 	struct proto *prot = sk->sk_prot;
1245 
1246 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1247 		struct cg_proto *cg_proto = sk->sk_cgrp;
1248 
1249 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1250 			percpu_counter_inc(cg_proto->sockets_allocated);
1251 	}
1252 
1253 	percpu_counter_inc(prot->sockets_allocated);
1254 }
1255 
1256 static inline int
1257 sk_sockets_allocated_read_positive(struct sock *sk)
1258 {
1259 	struct proto *prot = sk->sk_prot;
1260 
1261 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1262 		return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1263 
1264 	return percpu_counter_read_positive(prot->sockets_allocated);
1265 }
1266 
1267 static inline int
1268 proto_sockets_allocated_sum_positive(struct proto *prot)
1269 {
1270 	return percpu_counter_sum_positive(prot->sockets_allocated);
1271 }
1272 
1273 static inline long
1274 proto_memory_allocated(struct proto *prot)
1275 {
1276 	return atomic_long_read(prot->memory_allocated);
1277 }
1278 
1279 static inline bool
1280 proto_memory_pressure(struct proto *prot)
1281 {
1282 	if (!prot->memory_pressure)
1283 		return false;
1284 	return !!*prot->memory_pressure;
1285 }
1286 
1287 
1288 #ifdef CONFIG_PROC_FS
1289 /* Called with local bh disabled */
1290 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1291 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1292 #else
1293 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1294 		int inc)
1295 {
1296 }
1297 #endif
1298 
1299 
1300 /* With per-bucket locks this operation is not-atomic, so that
1301  * this version is not worse.
1302  */
1303 static inline void __sk_prot_rehash(struct sock *sk)
1304 {
1305 	sk->sk_prot->unhash(sk);
1306 	sk->sk_prot->hash(sk);
1307 }
1308 
1309 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1310 
1311 /* About 10 seconds */
1312 #define SOCK_DESTROY_TIME (10*HZ)
1313 
1314 /* Sockets 0-1023 can't be bound to unless you are superuser */
1315 #define PROT_SOCK	1024
1316 
1317 #define SHUTDOWN_MASK	3
1318 #define RCV_SHUTDOWN	1
1319 #define SEND_SHUTDOWN	2
1320 
1321 #define SOCK_SNDBUF_LOCK	1
1322 #define SOCK_RCVBUF_LOCK	2
1323 #define SOCK_BINDADDR_LOCK	4
1324 #define SOCK_BINDPORT_LOCK	8
1325 
1326 /* sock_iocb: used to kick off async processing of socket ios */
1327 struct sock_iocb {
1328 	struct list_head	list;
1329 
1330 	int			flags;
1331 	int			size;
1332 	struct socket		*sock;
1333 	struct sock		*sk;
1334 	struct scm_cookie	*scm;
1335 	struct msghdr		*msg, async_msg;
1336 	struct kiocb		*kiocb;
1337 };
1338 
1339 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1340 {
1341 	return (struct sock_iocb *)iocb->private;
1342 }
1343 
1344 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1345 {
1346 	return si->kiocb;
1347 }
1348 
1349 struct socket_alloc {
1350 	struct socket socket;
1351 	struct inode vfs_inode;
1352 };
1353 
1354 static inline struct socket *SOCKET_I(struct inode *inode)
1355 {
1356 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1357 }
1358 
1359 static inline struct inode *SOCK_INODE(struct socket *socket)
1360 {
1361 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1362 }
1363 
1364 /*
1365  * Functions for memory accounting
1366  */
1367 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1368 extern void __sk_mem_reclaim(struct sock *sk);
1369 
1370 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1371 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1372 #define SK_MEM_SEND	0
1373 #define SK_MEM_RECV	1
1374 
1375 static inline int sk_mem_pages(int amt)
1376 {
1377 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1378 }
1379 
1380 static inline bool sk_has_account(struct sock *sk)
1381 {
1382 	/* return true if protocol supports memory accounting */
1383 	return !!sk->sk_prot->memory_allocated;
1384 }
1385 
1386 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1387 {
1388 	if (!sk_has_account(sk))
1389 		return true;
1390 	return size <= sk->sk_forward_alloc ||
1391 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1392 }
1393 
1394 static inline bool
1395 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1396 {
1397 	if (!sk_has_account(sk))
1398 		return true;
1399 	return size<= sk->sk_forward_alloc ||
1400 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1401 		skb_pfmemalloc(skb);
1402 }
1403 
1404 static inline void sk_mem_reclaim(struct sock *sk)
1405 {
1406 	if (!sk_has_account(sk))
1407 		return;
1408 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1409 		__sk_mem_reclaim(sk);
1410 }
1411 
1412 static inline void sk_mem_reclaim_partial(struct sock *sk)
1413 {
1414 	if (!sk_has_account(sk))
1415 		return;
1416 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1417 		__sk_mem_reclaim(sk);
1418 }
1419 
1420 static inline void sk_mem_charge(struct sock *sk, int size)
1421 {
1422 	if (!sk_has_account(sk))
1423 		return;
1424 	sk->sk_forward_alloc -= size;
1425 }
1426 
1427 static inline void sk_mem_uncharge(struct sock *sk, int size)
1428 {
1429 	if (!sk_has_account(sk))
1430 		return;
1431 	sk->sk_forward_alloc += size;
1432 }
1433 
1434 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1435 {
1436 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1437 	sk->sk_wmem_queued -= skb->truesize;
1438 	sk_mem_uncharge(sk, skb->truesize);
1439 	__kfree_skb(skb);
1440 }
1441 
1442 /* Used by processes to "lock" a socket state, so that
1443  * interrupts and bottom half handlers won't change it
1444  * from under us. It essentially blocks any incoming
1445  * packets, so that we won't get any new data or any
1446  * packets that change the state of the socket.
1447  *
1448  * While locked, BH processing will add new packets to
1449  * the backlog queue.  This queue is processed by the
1450  * owner of the socket lock right before it is released.
1451  *
1452  * Since ~2.3.5 it is also exclusive sleep lock serializing
1453  * accesses from user process context.
1454  */
1455 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1456 
1457 /*
1458  * Macro so as to not evaluate some arguments when
1459  * lockdep is not enabled.
1460  *
1461  * Mark both the sk_lock and the sk_lock.slock as a
1462  * per-address-family lock class.
1463  */
1464 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1465 do {									\
1466 	sk->sk_lock.owned = 0;						\
1467 	init_waitqueue_head(&sk->sk_lock.wq);				\
1468 	spin_lock_init(&(sk)->sk_lock.slock);				\
1469 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1470 			sizeof((sk)->sk_lock));				\
1471 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1472 				(skey), (sname));				\
1473 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1474 } while (0)
1475 
1476 extern void lock_sock_nested(struct sock *sk, int subclass);
1477 
1478 static inline void lock_sock(struct sock *sk)
1479 {
1480 	lock_sock_nested(sk, 0);
1481 }
1482 
1483 extern void release_sock(struct sock *sk);
1484 
1485 /* BH context may only use the following locking interface. */
1486 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1487 #define bh_lock_sock_nested(__sk) \
1488 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1489 				SINGLE_DEPTH_NESTING)
1490 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1491 
1492 extern bool lock_sock_fast(struct sock *sk);
1493 /**
1494  * unlock_sock_fast - complement of lock_sock_fast
1495  * @sk: socket
1496  * @slow: slow mode
1497  *
1498  * fast unlock socket for user context.
1499  * If slow mode is on, we call regular release_sock()
1500  */
1501 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1502 {
1503 	if (slow)
1504 		release_sock(sk);
1505 	else
1506 		spin_unlock_bh(&sk->sk_lock.slock);
1507 }
1508 
1509 
1510 extern struct sock		*sk_alloc(struct net *net, int family,
1511 					  gfp_t priority,
1512 					  struct proto *prot);
1513 extern void			sk_free(struct sock *sk);
1514 extern void			sk_release_kernel(struct sock *sk);
1515 extern struct sock		*sk_clone_lock(const struct sock *sk,
1516 					       const gfp_t priority);
1517 
1518 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1519 					      unsigned long size, int force,
1520 					      gfp_t priority);
1521 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1522 					      unsigned long size, int force,
1523 					      gfp_t priority);
1524 extern void			sock_wfree(struct sk_buff *skb);
1525 extern void			skb_orphan_partial(struct sk_buff *skb);
1526 extern void			sock_rfree(struct sk_buff *skb);
1527 extern void			sock_edemux(struct sk_buff *skb);
1528 
1529 extern int			sock_setsockopt(struct socket *sock, int level,
1530 						int op, char __user *optval,
1531 						unsigned int optlen);
1532 
1533 extern int			sock_getsockopt(struct socket *sock, int level,
1534 						int op, char __user *optval,
1535 						int __user *optlen);
1536 extern struct sk_buff		*sock_alloc_send_skb(struct sock *sk,
1537 						     unsigned long size,
1538 						     int noblock,
1539 						     int *errcode);
1540 extern struct sk_buff		*sock_alloc_send_pskb(struct sock *sk,
1541 						      unsigned long header_len,
1542 						      unsigned long data_len,
1543 						      int noblock,
1544 						      int *errcode,
1545 						      int max_page_order);
1546 extern void *sock_kmalloc(struct sock *sk, int size,
1547 			  gfp_t priority);
1548 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1549 extern void sk_send_sigurg(struct sock *sk);
1550 
1551 /*
1552  * Functions to fill in entries in struct proto_ops when a protocol
1553  * does not implement a particular function.
1554  */
1555 extern int                      sock_no_bind(struct socket *,
1556 					     struct sockaddr *, int);
1557 extern int                      sock_no_connect(struct socket *,
1558 						struct sockaddr *, int, int);
1559 extern int                      sock_no_socketpair(struct socket *,
1560 						   struct socket *);
1561 extern int                      sock_no_accept(struct socket *,
1562 					       struct socket *, int);
1563 extern int                      sock_no_getname(struct socket *,
1564 						struct sockaddr *, int *, int);
1565 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1566 					     struct poll_table_struct *);
1567 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1568 					      unsigned long);
1569 extern int			sock_no_listen(struct socket *, int);
1570 extern int                      sock_no_shutdown(struct socket *, int);
1571 extern int			sock_no_getsockopt(struct socket *, int , int,
1572 						   char __user *, int __user *);
1573 extern int			sock_no_setsockopt(struct socket *, int, int,
1574 						   char __user *, unsigned int);
1575 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1576 						struct msghdr *, size_t);
1577 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1578 						struct msghdr *, size_t, int);
1579 extern int			sock_no_mmap(struct file *file,
1580 					     struct socket *sock,
1581 					     struct vm_area_struct *vma);
1582 extern ssize_t			sock_no_sendpage(struct socket *sock,
1583 						struct page *page,
1584 						int offset, size_t size,
1585 						int flags);
1586 
1587 /*
1588  * Functions to fill in entries in struct proto_ops when a protocol
1589  * uses the inet style.
1590  */
1591 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1592 				  char __user *optval, int __user *optlen);
1593 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1594 			       struct msghdr *msg, size_t size, int flags);
1595 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1596 				  char __user *optval, unsigned int optlen);
1597 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1598 		int optname, char __user *optval, int __user *optlen);
1599 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1600 		int optname, char __user *optval, unsigned int optlen);
1601 
1602 extern void sk_common_release(struct sock *sk);
1603 
1604 /*
1605  *	Default socket callbacks and setup code
1606  */
1607 
1608 /* Initialise core socket variables */
1609 extern void sock_init_data(struct socket *sock, struct sock *sk);
1610 
1611 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1612 
1613 /**
1614  *	sk_filter_release - release a socket filter
1615  *	@fp: filter to remove
1616  *
1617  *	Remove a filter from a socket and release its resources.
1618  */
1619 
1620 static inline void sk_filter_release(struct sk_filter *fp)
1621 {
1622 	if (atomic_dec_and_test(&fp->refcnt))
1623 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1624 }
1625 
1626 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1627 {
1628 	unsigned int size = sk_filter_len(fp);
1629 
1630 	atomic_sub(size, &sk->sk_omem_alloc);
1631 	sk_filter_release(fp);
1632 }
1633 
1634 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1635 {
1636 	atomic_inc(&fp->refcnt);
1637 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1638 }
1639 
1640 /*
1641  * Socket reference counting postulates.
1642  *
1643  * * Each user of socket SHOULD hold a reference count.
1644  * * Each access point to socket (an hash table bucket, reference from a list,
1645  *   running timer, skb in flight MUST hold a reference count.
1646  * * When reference count hits 0, it means it will never increase back.
1647  * * When reference count hits 0, it means that no references from
1648  *   outside exist to this socket and current process on current CPU
1649  *   is last user and may/should destroy this socket.
1650  * * sk_free is called from any context: process, BH, IRQ. When
1651  *   it is called, socket has no references from outside -> sk_free
1652  *   may release descendant resources allocated by the socket, but
1653  *   to the time when it is called, socket is NOT referenced by any
1654  *   hash tables, lists etc.
1655  * * Packets, delivered from outside (from network or from another process)
1656  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1657  *   when they sit in queue. Otherwise, packets will leak to hole, when
1658  *   socket is looked up by one cpu and unhasing is made by another CPU.
1659  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1660  *   (leak to backlog). Packet socket does all the processing inside
1661  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1662  *   use separate SMP lock, so that they are prone too.
1663  */
1664 
1665 /* Ungrab socket and destroy it, if it was the last reference. */
1666 static inline void sock_put(struct sock *sk)
1667 {
1668 	if (atomic_dec_and_test(&sk->sk_refcnt))
1669 		sk_free(sk);
1670 }
1671 
1672 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1673 			  const int nested);
1674 
1675 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1676 {
1677 	sk->sk_tx_queue_mapping = tx_queue;
1678 }
1679 
1680 static inline void sk_tx_queue_clear(struct sock *sk)
1681 {
1682 	sk->sk_tx_queue_mapping = -1;
1683 }
1684 
1685 static inline int sk_tx_queue_get(const struct sock *sk)
1686 {
1687 	return sk ? sk->sk_tx_queue_mapping : -1;
1688 }
1689 
1690 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1691 {
1692 	sk_tx_queue_clear(sk);
1693 	sk->sk_socket = sock;
1694 }
1695 
1696 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1697 {
1698 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1699 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1700 }
1701 /* Detach socket from process context.
1702  * Announce socket dead, detach it from wait queue and inode.
1703  * Note that parent inode held reference count on this struct sock,
1704  * we do not release it in this function, because protocol
1705  * probably wants some additional cleanups or even continuing
1706  * to work with this socket (TCP).
1707  */
1708 static inline void sock_orphan(struct sock *sk)
1709 {
1710 	write_lock_bh(&sk->sk_callback_lock);
1711 	sock_set_flag(sk, SOCK_DEAD);
1712 	sk_set_socket(sk, NULL);
1713 	sk->sk_wq  = NULL;
1714 	write_unlock_bh(&sk->sk_callback_lock);
1715 }
1716 
1717 static inline void sock_graft(struct sock *sk, struct socket *parent)
1718 {
1719 	write_lock_bh(&sk->sk_callback_lock);
1720 	sk->sk_wq = parent->wq;
1721 	parent->sk = sk;
1722 	sk_set_socket(sk, parent);
1723 	security_sock_graft(sk, parent);
1724 	write_unlock_bh(&sk->sk_callback_lock);
1725 }
1726 
1727 extern kuid_t sock_i_uid(struct sock *sk);
1728 extern unsigned long sock_i_ino(struct sock *sk);
1729 
1730 static inline struct dst_entry *
1731 __sk_dst_get(struct sock *sk)
1732 {
1733 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1734 						       lockdep_is_held(&sk->sk_lock.slock));
1735 }
1736 
1737 static inline struct dst_entry *
1738 sk_dst_get(struct sock *sk)
1739 {
1740 	struct dst_entry *dst;
1741 
1742 	rcu_read_lock();
1743 	dst = rcu_dereference(sk->sk_dst_cache);
1744 	if (dst)
1745 		dst_hold(dst);
1746 	rcu_read_unlock();
1747 	return dst;
1748 }
1749 
1750 extern void sk_reset_txq(struct sock *sk);
1751 
1752 static inline void dst_negative_advice(struct sock *sk)
1753 {
1754 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1755 
1756 	if (dst && dst->ops->negative_advice) {
1757 		ndst = dst->ops->negative_advice(dst);
1758 
1759 		if (ndst != dst) {
1760 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1761 			sk_reset_txq(sk);
1762 		}
1763 	}
1764 }
1765 
1766 static inline void
1767 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1768 {
1769 	struct dst_entry *old_dst;
1770 
1771 	sk_tx_queue_clear(sk);
1772 	/*
1773 	 * This can be called while sk is owned by the caller only,
1774 	 * with no state that can be checked in a rcu_dereference_check() cond
1775 	 */
1776 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1777 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1778 	dst_release(old_dst);
1779 }
1780 
1781 static inline void
1782 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1783 {
1784 	spin_lock(&sk->sk_dst_lock);
1785 	__sk_dst_set(sk, dst);
1786 	spin_unlock(&sk->sk_dst_lock);
1787 }
1788 
1789 static inline void
1790 __sk_dst_reset(struct sock *sk)
1791 {
1792 	__sk_dst_set(sk, NULL);
1793 }
1794 
1795 static inline void
1796 sk_dst_reset(struct sock *sk)
1797 {
1798 	spin_lock(&sk->sk_dst_lock);
1799 	__sk_dst_reset(sk);
1800 	spin_unlock(&sk->sk_dst_lock);
1801 }
1802 
1803 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1804 
1805 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1806 
1807 static inline bool sk_can_gso(const struct sock *sk)
1808 {
1809 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1810 }
1811 
1812 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1813 
1814 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1815 {
1816 	sk->sk_route_nocaps |= flags;
1817 	sk->sk_route_caps &= ~flags;
1818 }
1819 
1820 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1821 					   char __user *from, char *to,
1822 					   int copy, int offset)
1823 {
1824 	if (skb->ip_summed == CHECKSUM_NONE) {
1825 		int err = 0;
1826 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1827 		if (err)
1828 			return err;
1829 		skb->csum = csum_block_add(skb->csum, csum, offset);
1830 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1831 		if (!access_ok(VERIFY_READ, from, copy) ||
1832 		    __copy_from_user_nocache(to, from, copy))
1833 			return -EFAULT;
1834 	} else if (copy_from_user(to, from, copy))
1835 		return -EFAULT;
1836 
1837 	return 0;
1838 }
1839 
1840 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1841 				       char __user *from, int copy)
1842 {
1843 	int err, offset = skb->len;
1844 
1845 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1846 				       copy, offset);
1847 	if (err)
1848 		__skb_trim(skb, offset);
1849 
1850 	return err;
1851 }
1852 
1853 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1854 					   struct sk_buff *skb,
1855 					   struct page *page,
1856 					   int off, int copy)
1857 {
1858 	int err;
1859 
1860 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1861 				       copy, skb->len);
1862 	if (err)
1863 		return err;
1864 
1865 	skb->len	     += copy;
1866 	skb->data_len	     += copy;
1867 	skb->truesize	     += copy;
1868 	sk->sk_wmem_queued   += copy;
1869 	sk_mem_charge(sk, copy);
1870 	return 0;
1871 }
1872 
1873 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1874 				   struct sk_buff *skb, struct page *page,
1875 				   int off, int copy)
1876 {
1877 	if (skb->ip_summed == CHECKSUM_NONE) {
1878 		int err = 0;
1879 		__wsum csum = csum_and_copy_from_user(from,
1880 						     page_address(page) + off,
1881 							    copy, 0, &err);
1882 		if (err)
1883 			return err;
1884 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1885 	} else if (copy_from_user(page_address(page) + off, from, copy))
1886 		return -EFAULT;
1887 
1888 	skb->len	     += copy;
1889 	skb->data_len	     += copy;
1890 	skb->truesize	     += copy;
1891 	sk->sk_wmem_queued   += copy;
1892 	sk_mem_charge(sk, copy);
1893 	return 0;
1894 }
1895 
1896 /**
1897  * sk_wmem_alloc_get - returns write allocations
1898  * @sk: socket
1899  *
1900  * Returns sk_wmem_alloc minus initial offset of one
1901  */
1902 static inline int sk_wmem_alloc_get(const struct sock *sk)
1903 {
1904 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1905 }
1906 
1907 /**
1908  * sk_rmem_alloc_get - returns read allocations
1909  * @sk: socket
1910  *
1911  * Returns sk_rmem_alloc
1912  */
1913 static inline int sk_rmem_alloc_get(const struct sock *sk)
1914 {
1915 	return atomic_read(&sk->sk_rmem_alloc);
1916 }
1917 
1918 /**
1919  * sk_has_allocations - check if allocations are outstanding
1920  * @sk: socket
1921  *
1922  * Returns true if socket has write or read allocations
1923  */
1924 static inline bool sk_has_allocations(const struct sock *sk)
1925 {
1926 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1927 }
1928 
1929 /**
1930  * wq_has_sleeper - check if there are any waiting processes
1931  * @wq: struct socket_wq
1932  *
1933  * Returns true if socket_wq has waiting processes
1934  *
1935  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1936  * barrier call. They were added due to the race found within the tcp code.
1937  *
1938  * Consider following tcp code paths:
1939  *
1940  * CPU1                  CPU2
1941  *
1942  * sys_select            receive packet
1943  *   ...                 ...
1944  *   __add_wait_queue    update tp->rcv_nxt
1945  *   ...                 ...
1946  *   tp->rcv_nxt check   sock_def_readable
1947  *   ...                 {
1948  *   schedule               rcu_read_lock();
1949  *                          wq = rcu_dereference(sk->sk_wq);
1950  *                          if (wq && waitqueue_active(&wq->wait))
1951  *                              wake_up_interruptible(&wq->wait)
1952  *                          ...
1953  *                       }
1954  *
1955  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1956  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1957  * could then endup calling schedule and sleep forever if there are no more
1958  * data on the socket.
1959  *
1960  */
1961 static inline bool wq_has_sleeper(struct socket_wq *wq)
1962 {
1963 	/* We need to be sure we are in sync with the
1964 	 * add_wait_queue modifications to the wait queue.
1965 	 *
1966 	 * This memory barrier is paired in the sock_poll_wait.
1967 	 */
1968 	smp_mb();
1969 	return wq && waitqueue_active(&wq->wait);
1970 }
1971 
1972 /**
1973  * sock_poll_wait - place memory barrier behind the poll_wait call.
1974  * @filp:           file
1975  * @wait_address:   socket wait queue
1976  * @p:              poll_table
1977  *
1978  * See the comments in the wq_has_sleeper function.
1979  */
1980 static inline void sock_poll_wait(struct file *filp,
1981 		wait_queue_head_t *wait_address, poll_table *p)
1982 {
1983 	if (!poll_does_not_wait(p) && wait_address) {
1984 		poll_wait(filp, wait_address, p);
1985 		/* We need to be sure we are in sync with the
1986 		 * socket flags modification.
1987 		 *
1988 		 * This memory barrier is paired in the wq_has_sleeper.
1989 		 */
1990 		smp_mb();
1991 	}
1992 }
1993 
1994 /*
1995  *	Queue a received datagram if it will fit. Stream and sequenced
1996  *	protocols can't normally use this as they need to fit buffers in
1997  *	and play with them.
1998  *
1999  *	Inlined as it's very short and called for pretty much every
2000  *	packet ever received.
2001  */
2002 
2003 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2004 {
2005 	skb_orphan(skb);
2006 	skb->sk = sk;
2007 	skb->destructor = sock_wfree;
2008 	/*
2009 	 * We used to take a refcount on sk, but following operation
2010 	 * is enough to guarantee sk_free() wont free this sock until
2011 	 * all in-flight packets are completed
2012 	 */
2013 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2014 }
2015 
2016 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2017 {
2018 	skb_orphan(skb);
2019 	skb->sk = sk;
2020 	skb->destructor = sock_rfree;
2021 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2022 	sk_mem_charge(sk, skb->truesize);
2023 }
2024 
2025 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2026 			   unsigned long expires);
2027 
2028 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2029 
2030 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2031 
2032 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2033 
2034 /*
2035  *	Recover an error report and clear atomically
2036  */
2037 
2038 static inline int sock_error(struct sock *sk)
2039 {
2040 	int err;
2041 	if (likely(!sk->sk_err))
2042 		return 0;
2043 	err = xchg(&sk->sk_err, 0);
2044 	return -err;
2045 }
2046 
2047 static inline unsigned long sock_wspace(struct sock *sk)
2048 {
2049 	int amt = 0;
2050 
2051 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2052 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2053 		if (amt < 0)
2054 			amt = 0;
2055 	}
2056 	return amt;
2057 }
2058 
2059 static inline void sk_wake_async(struct sock *sk, int how, int band)
2060 {
2061 	if (sock_flag(sk, SOCK_FASYNC))
2062 		sock_wake_async(sk->sk_socket, how, band);
2063 }
2064 
2065 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2066  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2067  * Note: for send buffers, TCP works better if we can build two skbs at
2068  * minimum.
2069  */
2070 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2071 
2072 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2073 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2074 
2075 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2076 {
2077 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2078 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2079 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2080 	}
2081 }
2082 
2083 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2084 
2085 /**
2086  * sk_page_frag - return an appropriate page_frag
2087  * @sk: socket
2088  *
2089  * If socket allocation mode allows current thread to sleep, it means its
2090  * safe to use the per task page_frag instead of the per socket one.
2091  */
2092 static inline struct page_frag *sk_page_frag(struct sock *sk)
2093 {
2094 	if (sk->sk_allocation & __GFP_WAIT)
2095 		return &current->task_frag;
2096 
2097 	return &sk->sk_frag;
2098 }
2099 
2100 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2101 
2102 /*
2103  *	Default write policy as shown to user space via poll/select/SIGIO
2104  */
2105 static inline bool sock_writeable(const struct sock *sk)
2106 {
2107 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2108 }
2109 
2110 static inline gfp_t gfp_any(void)
2111 {
2112 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2113 }
2114 
2115 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2116 {
2117 	return noblock ? 0 : sk->sk_rcvtimeo;
2118 }
2119 
2120 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2121 {
2122 	return noblock ? 0 : sk->sk_sndtimeo;
2123 }
2124 
2125 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2126 {
2127 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2128 }
2129 
2130 /* Alas, with timeout socket operations are not restartable.
2131  * Compare this to poll().
2132  */
2133 static inline int sock_intr_errno(long timeo)
2134 {
2135 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2136 }
2137 
2138 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2139 	struct sk_buff *skb);
2140 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2141 	struct sk_buff *skb);
2142 
2143 static inline void
2144 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2145 {
2146 	ktime_t kt = skb->tstamp;
2147 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2148 
2149 	/*
2150 	 * generate control messages if
2151 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2152 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2153 	 * - software time stamp available and wanted
2154 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2155 	 * - hardware time stamps available and wanted
2156 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2157 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2158 	 */
2159 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2160 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2161 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2162 	    (hwtstamps->hwtstamp.tv64 &&
2163 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2164 	    (hwtstamps->syststamp.tv64 &&
2165 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2166 		__sock_recv_timestamp(msg, sk, skb);
2167 	else
2168 		sk->sk_stamp = kt;
2169 
2170 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2171 		__sock_recv_wifi_status(msg, sk, skb);
2172 }
2173 
2174 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2175 				     struct sk_buff *skb);
2176 
2177 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2178 					  struct sk_buff *skb)
2179 {
2180 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2181 			   (1UL << SOCK_RCVTSTAMP)			| \
2182 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2183 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2184 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)	| \
2185 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2186 
2187 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2188 		__sock_recv_ts_and_drops(msg, sk, skb);
2189 	else
2190 		sk->sk_stamp = skb->tstamp;
2191 }
2192 
2193 /**
2194  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2195  * @sk:		socket sending this packet
2196  * @tx_flags:	filled with instructions for time stamping
2197  *
2198  * Currently only depends on SOCK_TIMESTAMPING* flags.
2199  */
2200 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2201 
2202 /**
2203  * sk_eat_skb - Release a skb if it is no longer needed
2204  * @sk: socket to eat this skb from
2205  * @skb: socket buffer to eat
2206  * @copied_early: flag indicating whether DMA operations copied this data early
2207  *
2208  * This routine must be called with interrupts disabled or with the socket
2209  * locked so that the sk_buff queue operation is ok.
2210 */
2211 #ifdef CONFIG_NET_DMA
2212 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2213 {
2214 	__skb_unlink(skb, &sk->sk_receive_queue);
2215 	if (!copied_early)
2216 		__kfree_skb(skb);
2217 	else
2218 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2219 }
2220 #else
2221 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2222 {
2223 	__skb_unlink(skb, &sk->sk_receive_queue);
2224 	__kfree_skb(skb);
2225 }
2226 #endif
2227 
2228 static inline
2229 struct net *sock_net(const struct sock *sk)
2230 {
2231 	return read_pnet(&sk->sk_net);
2232 }
2233 
2234 static inline
2235 void sock_net_set(struct sock *sk, struct net *net)
2236 {
2237 	write_pnet(&sk->sk_net, net);
2238 }
2239 
2240 /*
2241  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2242  * They should not hold a reference to a namespace in order to allow
2243  * to stop it.
2244  * Sockets after sk_change_net should be released using sk_release_kernel
2245  */
2246 static inline void sk_change_net(struct sock *sk, struct net *net)
2247 {
2248 	put_net(sock_net(sk));
2249 	sock_net_set(sk, hold_net(net));
2250 }
2251 
2252 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2253 {
2254 	if (skb->sk) {
2255 		struct sock *sk = skb->sk;
2256 
2257 		skb->destructor = NULL;
2258 		skb->sk = NULL;
2259 		return sk;
2260 	}
2261 	return NULL;
2262 }
2263 
2264 extern void sock_enable_timestamp(struct sock *sk, int flag);
2265 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2266 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2267 extern int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2268 			      int level, int type);
2269 
2270 /*
2271  *	Enable debug/info messages
2272  */
2273 extern int net_msg_warn;
2274 #define NETDEBUG(fmt, args...) \
2275 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2276 
2277 #define LIMIT_NETDEBUG(fmt, args...) \
2278 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2279 
2280 extern __u32 sysctl_wmem_max;
2281 extern __u32 sysctl_rmem_max;
2282 
2283 extern int sysctl_optmem_max;
2284 
2285 extern __u32 sysctl_wmem_default;
2286 extern __u32 sysctl_rmem_default;
2287 
2288 #endif	/* _SOCK_H */
2289