xref: /openbmc/linux/include/net/sock.h (revision 5ae75a1a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	union {
165 		__addrpair	skc_addrpair;
166 		struct {
167 			__be32	skc_daddr;
168 			__be32	skc_rcv_saddr;
169 		};
170 	};
171 	union  {
172 		unsigned int	skc_hash;
173 		__u16		skc_u16hashes[2];
174 	};
175 	/* skc_dport && skc_num must be grouped as well */
176 	union {
177 		__portpair	skc_portpair;
178 		struct {
179 			__be16	skc_dport;
180 			__u16	skc_num;
181 		};
182 	};
183 
184 	unsigned short		skc_family;
185 	volatile unsigned char	skc_state;
186 	unsigned char		skc_reuse:4;
187 	unsigned char		skc_reuseport:1;
188 	unsigned char		skc_ipv6only:1;
189 	unsigned char		skc_net_refcnt:1;
190 	int			skc_bound_dev_if;
191 	union {
192 		struct hlist_node	skc_bind_node;
193 		struct hlist_node	skc_portaddr_node;
194 	};
195 	struct proto		*skc_prot;
196 	possible_net_t		skc_net;
197 
198 #if IS_ENABLED(CONFIG_IPV6)
199 	struct in6_addr		skc_v6_daddr;
200 	struct in6_addr		skc_v6_rcv_saddr;
201 #endif
202 
203 	atomic64_t		skc_cookie;
204 
205 	/* following fields are padding to force
206 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 	 * assuming IPV6 is enabled. We use this padding differently
208 	 * for different kind of 'sockets'
209 	 */
210 	union {
211 		unsigned long	skc_flags;
212 		struct sock	*skc_listener; /* request_sock */
213 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 	};
215 	/*
216 	 * fields between dontcopy_begin/dontcopy_end
217 	 * are not copied in sock_copy()
218 	 */
219 	/* private: */
220 	int			skc_dontcopy_begin[0];
221 	/* public: */
222 	union {
223 		struct hlist_node	skc_node;
224 		struct hlist_nulls_node skc_nulls_node;
225 	};
226 	unsigned short		skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 	unsigned short		skc_rx_queue_mapping;
229 #endif
230 	union {
231 		int		skc_incoming_cpu;
232 		u32		skc_rcv_wnd;
233 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
234 	};
235 
236 	refcount_t		skc_refcnt;
237 	/* private: */
238 	int                     skc_dontcopy_end[0];
239 	union {
240 		u32		skc_rxhash;
241 		u32		skc_window_clamp;
242 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 	};
244 	/* public: */
245 };
246 
247 struct bpf_local_storage;
248 struct sk_filter;
249 
250 /**
251   *	struct sock - network layer representation of sockets
252   *	@__sk_common: shared layout with inet_timewait_sock
253   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255   *	@sk_lock:	synchronizer
256   *	@sk_kern_sock: True if sock is using kernel lock classes
257   *	@sk_rcvbuf: size of receive buffer in bytes
258   *	@sk_wq: sock wait queue and async head
259   *	@sk_rx_dst: receive input route used by early demux
260   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
262   *	@sk_dst_cache: destination cache
263   *	@sk_dst_pending_confirm: need to confirm neighbour
264   *	@sk_policy: flow policy
265   *	@sk_receive_queue: incoming packets
266   *	@sk_wmem_alloc: transmit queue bytes committed
267   *	@sk_tsq_flags: TCP Small Queues flags
268   *	@sk_write_queue: Packet sending queue
269   *	@sk_omem_alloc: "o" is "option" or "other"
270   *	@sk_wmem_queued: persistent queue size
271   *	@sk_forward_alloc: space allocated forward
272   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
273   *	@sk_napi_id: id of the last napi context to receive data for sk
274   *	@sk_ll_usec: usecs to busypoll when there is no data
275   *	@sk_allocation: allocation mode
276   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
278   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279   *	@sk_sndbuf: size of send buffer in bytes
280   *	@__sk_flags_offset: empty field used to determine location of bitfield
281   *	@sk_padding: unused element for alignment
282   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283   *	@sk_no_check_rx: allow zero checksum in RX packets
284   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287   *	@sk_gso_max_size: Maximum GSO segment size to build
288   *	@sk_gso_max_segs: Maximum number of GSO segments
289   *	@sk_pacing_shift: scaling factor for TCP Small Queues
290   *	@sk_lingertime: %SO_LINGER l_linger setting
291   *	@sk_backlog: always used with the per-socket spinlock held
292   *	@sk_callback_lock: used with the callbacks in the end of this struct
293   *	@sk_error_queue: rarely used
294   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295   *			  IPV6_ADDRFORM for instance)
296   *	@sk_err: last error
297   *	@sk_err_soft: errors that don't cause failure but are the cause of a
298   *		      persistent failure not just 'timed out'
299   *	@sk_drops: raw/udp drops counter
300   *	@sk_ack_backlog: current listen backlog
301   *	@sk_max_ack_backlog: listen backlog set in listen()
302   *	@sk_uid: user id of owner
303   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
304   *	@sk_busy_poll_budget: napi processing budget when busypolling
305   *	@sk_priority: %SO_PRIORITY setting
306   *	@sk_type: socket type (%SOCK_STREAM, etc)
307   *	@sk_protocol: which protocol this socket belongs in this network family
308   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309   *	@sk_peer_pid: &struct pid for this socket's peer
310   *	@sk_peer_cred: %SO_PEERCRED setting
311   *	@sk_rcvlowat: %SO_RCVLOWAT setting
312   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
313   *	@sk_sndtimeo: %SO_SNDTIMEO setting
314   *	@sk_txhash: computed flow hash for use on transmit
315   *	@sk_txrehash: enable TX hash rethink
316   *	@sk_filter: socket filtering instructions
317   *	@sk_timer: sock cleanup timer
318   *	@sk_stamp: time stamp of last packet received
319   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320   *	@sk_tsflags: SO_TIMESTAMPING flags
321   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
322   *	              for timestamping
323   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
324   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
325   *	@sk_socket: Identd and reporting IO signals
326   *	@sk_user_data: RPC layer private data
327   *	@sk_frag: cached page frag
328   *	@sk_peek_off: current peek_offset value
329   *	@sk_send_head: front of stuff to transmit
330   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331   *	@sk_security: used by security modules
332   *	@sk_mark: generic packet mark
333   *	@sk_cgrp_data: cgroup data for this cgroup
334   *	@sk_memcg: this socket's memory cgroup association
335   *	@sk_write_pending: a write to stream socket waits to start
336   *	@sk_state_change: callback to indicate change in the state of the sock
337   *	@sk_data_ready: callback to indicate there is data to be processed
338   *	@sk_write_space: callback to indicate there is bf sending space available
339   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
340   *	@sk_backlog_rcv: callback to process the backlog
341   *	@sk_validate_xmit_skb: ptr to an optional validate function
342   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
343   *	@sk_reuseport_cb: reuseport group container
344   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
345   *	@sk_rcu: used during RCU grace period
346   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
347   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
348   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
349   *	@sk_txtime_unused: unused txtime flags
350   *	@ns_tracker: tracker for netns reference
351   *	@sk_bind2_node: bind node in the bhash2 table
352   */
353 struct sock {
354 	/*
355 	 * Now struct inet_timewait_sock also uses sock_common, so please just
356 	 * don't add nothing before this first member (__sk_common) --acme
357 	 */
358 	struct sock_common	__sk_common;
359 #define sk_node			__sk_common.skc_node
360 #define sk_nulls_node		__sk_common.skc_nulls_node
361 #define sk_refcnt		__sk_common.skc_refcnt
362 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
363 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
364 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
365 #endif
366 
367 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
368 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
369 #define sk_hash			__sk_common.skc_hash
370 #define sk_portpair		__sk_common.skc_portpair
371 #define sk_num			__sk_common.skc_num
372 #define sk_dport		__sk_common.skc_dport
373 #define sk_addrpair		__sk_common.skc_addrpair
374 #define sk_daddr		__sk_common.skc_daddr
375 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
376 #define sk_family		__sk_common.skc_family
377 #define sk_state		__sk_common.skc_state
378 #define sk_reuse		__sk_common.skc_reuse
379 #define sk_reuseport		__sk_common.skc_reuseport
380 #define sk_ipv6only		__sk_common.skc_ipv6only
381 #define sk_net_refcnt		__sk_common.skc_net_refcnt
382 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
383 #define sk_bind_node		__sk_common.skc_bind_node
384 #define sk_prot			__sk_common.skc_prot
385 #define sk_net			__sk_common.skc_net
386 #define sk_v6_daddr		__sk_common.skc_v6_daddr
387 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
388 #define sk_cookie		__sk_common.skc_cookie
389 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
390 #define sk_flags		__sk_common.skc_flags
391 #define sk_rxhash		__sk_common.skc_rxhash
392 
393 	/* early demux fields */
394 	struct dst_entry __rcu	*sk_rx_dst;
395 	int			sk_rx_dst_ifindex;
396 	u32			sk_rx_dst_cookie;
397 
398 	socket_lock_t		sk_lock;
399 	atomic_t		sk_drops;
400 	int			sk_rcvlowat;
401 	struct sk_buff_head	sk_error_queue;
402 	struct sk_buff_head	sk_receive_queue;
403 	/*
404 	 * The backlog queue is special, it is always used with
405 	 * the per-socket spinlock held and requires low latency
406 	 * access. Therefore we special case it's implementation.
407 	 * Note : rmem_alloc is in this structure to fill a hole
408 	 * on 64bit arches, not because its logically part of
409 	 * backlog.
410 	 */
411 	struct {
412 		atomic_t	rmem_alloc;
413 		int		len;
414 		struct sk_buff	*head;
415 		struct sk_buff	*tail;
416 	} sk_backlog;
417 
418 #define sk_rmem_alloc sk_backlog.rmem_alloc
419 
420 	int			sk_forward_alloc;
421 	u32			sk_reserved_mem;
422 #ifdef CONFIG_NET_RX_BUSY_POLL
423 	unsigned int		sk_ll_usec;
424 	/* ===== mostly read cache line ===== */
425 	unsigned int		sk_napi_id;
426 #endif
427 	int			sk_rcvbuf;
428 
429 	struct sk_filter __rcu	*sk_filter;
430 	union {
431 		struct socket_wq __rcu	*sk_wq;
432 		/* private: */
433 		struct socket_wq	*sk_wq_raw;
434 		/* public: */
435 	};
436 #ifdef CONFIG_XFRM
437 	struct xfrm_policy __rcu *sk_policy[2];
438 #endif
439 
440 	struct dst_entry __rcu	*sk_dst_cache;
441 	atomic_t		sk_omem_alloc;
442 	int			sk_sndbuf;
443 
444 	/* ===== cache line for TX ===== */
445 	int			sk_wmem_queued;
446 	refcount_t		sk_wmem_alloc;
447 	unsigned long		sk_tsq_flags;
448 	union {
449 		struct sk_buff	*sk_send_head;
450 		struct rb_root	tcp_rtx_queue;
451 	};
452 	struct sk_buff_head	sk_write_queue;
453 	__s32			sk_peek_off;
454 	int			sk_write_pending;
455 	__u32			sk_dst_pending_confirm;
456 	u32			sk_pacing_status; /* see enum sk_pacing */
457 	long			sk_sndtimeo;
458 	struct timer_list	sk_timer;
459 	__u32			sk_priority;
460 	__u32			sk_mark;
461 	unsigned long		sk_pacing_rate; /* bytes per second */
462 	unsigned long		sk_max_pacing_rate;
463 	struct page_frag	sk_frag;
464 	netdev_features_t	sk_route_caps;
465 	int			sk_gso_type;
466 	unsigned int		sk_gso_max_size;
467 	gfp_t			sk_allocation;
468 	__u32			sk_txhash;
469 
470 	/*
471 	 * Because of non atomicity rules, all
472 	 * changes are protected by socket lock.
473 	 */
474 	u8			sk_gso_disabled : 1,
475 				sk_kern_sock : 1,
476 				sk_no_check_tx : 1,
477 				sk_no_check_rx : 1,
478 				sk_userlocks : 4;
479 	u8			sk_pacing_shift;
480 	u16			sk_type;
481 	u16			sk_protocol;
482 	u16			sk_gso_max_segs;
483 	unsigned long	        sk_lingertime;
484 	struct proto		*sk_prot_creator;
485 	rwlock_t		sk_callback_lock;
486 	int			sk_err,
487 				sk_err_soft;
488 	u32			sk_ack_backlog;
489 	u32			sk_max_ack_backlog;
490 	kuid_t			sk_uid;
491 	u8			sk_txrehash;
492 #ifdef CONFIG_NET_RX_BUSY_POLL
493 	u8			sk_prefer_busy_poll;
494 	u16			sk_busy_poll_budget;
495 #endif
496 	spinlock_t		sk_peer_lock;
497 	int			sk_bind_phc;
498 	struct pid		*sk_peer_pid;
499 	const struct cred	*sk_peer_cred;
500 
501 	long			sk_rcvtimeo;
502 	ktime_t			sk_stamp;
503 #if BITS_PER_LONG==32
504 	seqlock_t		sk_stamp_seq;
505 #endif
506 	u16			sk_tsflags;
507 	u8			sk_shutdown;
508 	atomic_t		sk_tskey;
509 	atomic_t		sk_zckey;
510 
511 	u8			sk_clockid;
512 	u8			sk_txtime_deadline_mode : 1,
513 				sk_txtime_report_errors : 1,
514 				sk_txtime_unused : 6;
515 
516 	struct socket		*sk_socket;
517 	void			*sk_user_data;
518 #ifdef CONFIG_SECURITY
519 	void			*sk_security;
520 #endif
521 	struct sock_cgroup_data	sk_cgrp_data;
522 	struct mem_cgroup	*sk_memcg;
523 	void			(*sk_state_change)(struct sock *sk);
524 	void			(*sk_data_ready)(struct sock *sk);
525 	void			(*sk_write_space)(struct sock *sk);
526 	void			(*sk_error_report)(struct sock *sk);
527 	int			(*sk_backlog_rcv)(struct sock *sk,
528 						  struct sk_buff *skb);
529 #ifdef CONFIG_SOCK_VALIDATE_XMIT
530 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
531 							struct net_device *dev,
532 							struct sk_buff *skb);
533 #endif
534 	void                    (*sk_destruct)(struct sock *sk);
535 	struct sock_reuseport __rcu	*sk_reuseport_cb;
536 #ifdef CONFIG_BPF_SYSCALL
537 	struct bpf_local_storage __rcu	*sk_bpf_storage;
538 #endif
539 	struct rcu_head		sk_rcu;
540 	netns_tracker		ns_tracker;
541 	struct hlist_node	sk_bind2_node;
542 };
543 
544 enum sk_pacing {
545 	SK_PACING_NONE		= 0,
546 	SK_PACING_NEEDED	= 1,
547 	SK_PACING_FQ		= 2,
548 };
549 
550 /* flag bits in sk_user_data
551  *
552  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
553  *   not be suitable for copying when cloning the socket. For instance,
554  *   it can point to a reference counted object. sk_user_data bottom
555  *   bit is set if pointer must not be copied.
556  *
557  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
558  *   managed/owned by a BPF reuseport array. This bit should be set
559  *   when sk_user_data's sk is added to the bpf's reuseport_array.
560  *
561  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
562  *   sk_user_data points to psock type. This bit should be set
563  *   when sk_user_data is assigned to a psock object.
564  */
565 #define SK_USER_DATA_NOCOPY	1UL
566 #define SK_USER_DATA_BPF	2UL
567 #define SK_USER_DATA_PSOCK	4UL
568 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
569 				  SK_USER_DATA_PSOCK)
570 
571 /**
572  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
573  * @sk: socket
574  */
575 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
576 {
577 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
578 }
579 
580 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
581 
582 /**
583  * __locked_read_sk_user_data_with_flags - return the pointer
584  * only if argument flags all has been set in sk_user_data. Otherwise
585  * return NULL
586  *
587  * @sk: socket
588  * @flags: flag bits
589  *
590  * The caller must be holding sk->sk_callback_lock.
591  */
592 static inline void *
593 __locked_read_sk_user_data_with_flags(const struct sock *sk,
594 				      uintptr_t flags)
595 {
596 	uintptr_t sk_user_data =
597 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
598 						 lockdep_is_held(&sk->sk_callback_lock));
599 
600 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
601 
602 	if ((sk_user_data & flags) == flags)
603 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
604 	return NULL;
605 }
606 
607 /**
608  * __rcu_dereference_sk_user_data_with_flags - return the pointer
609  * only if argument flags all has been set in sk_user_data. Otherwise
610  * return NULL
611  *
612  * @sk: socket
613  * @flags: flag bits
614  */
615 static inline void *
616 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
617 					  uintptr_t flags)
618 {
619 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
620 
621 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
622 
623 	if ((sk_user_data & flags) == flags)
624 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
625 	return NULL;
626 }
627 
628 #define rcu_dereference_sk_user_data(sk)				\
629 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
630 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
631 ({									\
632 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
633 		  __tmp2 = (uintptr_t)(flags);				\
634 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
635 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
636 	rcu_assign_pointer(__sk_user_data((sk)),			\
637 			   __tmp1 | __tmp2);				\
638 })
639 #define rcu_assign_sk_user_data(sk, ptr)				\
640 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
641 
642 static inline
643 struct net *sock_net(const struct sock *sk)
644 {
645 	return read_pnet(&sk->sk_net);
646 }
647 
648 static inline
649 void sock_net_set(struct sock *sk, struct net *net)
650 {
651 	write_pnet(&sk->sk_net, net);
652 }
653 
654 /*
655  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
656  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
657  * on a socket means that the socket will reuse everybody else's port
658  * without looking at the other's sk_reuse value.
659  */
660 
661 #define SK_NO_REUSE	0
662 #define SK_CAN_REUSE	1
663 #define SK_FORCE_REUSE	2
664 
665 int sk_set_peek_off(struct sock *sk, int val);
666 
667 static inline int sk_peek_offset(const struct sock *sk, int flags)
668 {
669 	if (unlikely(flags & MSG_PEEK)) {
670 		return READ_ONCE(sk->sk_peek_off);
671 	}
672 
673 	return 0;
674 }
675 
676 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
677 {
678 	s32 off = READ_ONCE(sk->sk_peek_off);
679 
680 	if (unlikely(off >= 0)) {
681 		off = max_t(s32, off - val, 0);
682 		WRITE_ONCE(sk->sk_peek_off, off);
683 	}
684 }
685 
686 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
687 {
688 	sk_peek_offset_bwd(sk, -val);
689 }
690 
691 /*
692  * Hashed lists helper routines
693  */
694 static inline struct sock *sk_entry(const struct hlist_node *node)
695 {
696 	return hlist_entry(node, struct sock, sk_node);
697 }
698 
699 static inline struct sock *__sk_head(const struct hlist_head *head)
700 {
701 	return hlist_entry(head->first, struct sock, sk_node);
702 }
703 
704 static inline struct sock *sk_head(const struct hlist_head *head)
705 {
706 	return hlist_empty(head) ? NULL : __sk_head(head);
707 }
708 
709 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
710 {
711 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
712 }
713 
714 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
715 {
716 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
717 }
718 
719 static inline struct sock *sk_next(const struct sock *sk)
720 {
721 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
722 }
723 
724 static inline struct sock *sk_nulls_next(const struct sock *sk)
725 {
726 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
727 		hlist_nulls_entry(sk->sk_nulls_node.next,
728 				  struct sock, sk_nulls_node) :
729 		NULL;
730 }
731 
732 static inline bool sk_unhashed(const struct sock *sk)
733 {
734 	return hlist_unhashed(&sk->sk_node);
735 }
736 
737 static inline bool sk_hashed(const struct sock *sk)
738 {
739 	return !sk_unhashed(sk);
740 }
741 
742 static inline void sk_node_init(struct hlist_node *node)
743 {
744 	node->pprev = NULL;
745 }
746 
747 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
748 {
749 	node->pprev = NULL;
750 }
751 
752 static inline void __sk_del_node(struct sock *sk)
753 {
754 	__hlist_del(&sk->sk_node);
755 }
756 
757 /* NB: equivalent to hlist_del_init_rcu */
758 static inline bool __sk_del_node_init(struct sock *sk)
759 {
760 	if (sk_hashed(sk)) {
761 		__sk_del_node(sk);
762 		sk_node_init(&sk->sk_node);
763 		return true;
764 	}
765 	return false;
766 }
767 
768 /* Grab socket reference count. This operation is valid only
769    when sk is ALREADY grabbed f.e. it is found in hash table
770    or a list and the lookup is made under lock preventing hash table
771    modifications.
772  */
773 
774 static __always_inline void sock_hold(struct sock *sk)
775 {
776 	refcount_inc(&sk->sk_refcnt);
777 }
778 
779 /* Ungrab socket in the context, which assumes that socket refcnt
780    cannot hit zero, f.e. it is true in context of any socketcall.
781  */
782 static __always_inline void __sock_put(struct sock *sk)
783 {
784 	refcount_dec(&sk->sk_refcnt);
785 }
786 
787 static inline bool sk_del_node_init(struct sock *sk)
788 {
789 	bool rc = __sk_del_node_init(sk);
790 
791 	if (rc) {
792 		/* paranoid for a while -acme */
793 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
794 		__sock_put(sk);
795 	}
796 	return rc;
797 }
798 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
799 
800 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
801 {
802 	if (sk_hashed(sk)) {
803 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
804 		return true;
805 	}
806 	return false;
807 }
808 
809 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
810 {
811 	bool rc = __sk_nulls_del_node_init_rcu(sk);
812 
813 	if (rc) {
814 		/* paranoid for a while -acme */
815 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
816 		__sock_put(sk);
817 	}
818 	return rc;
819 }
820 
821 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
822 {
823 	hlist_add_head(&sk->sk_node, list);
824 }
825 
826 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
827 {
828 	sock_hold(sk);
829 	__sk_add_node(sk, list);
830 }
831 
832 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
833 {
834 	sock_hold(sk);
835 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
836 	    sk->sk_family == AF_INET6)
837 		hlist_add_tail_rcu(&sk->sk_node, list);
838 	else
839 		hlist_add_head_rcu(&sk->sk_node, list);
840 }
841 
842 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
843 {
844 	sock_hold(sk);
845 	hlist_add_tail_rcu(&sk->sk_node, list);
846 }
847 
848 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
849 {
850 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
851 }
852 
853 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
854 {
855 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
856 }
857 
858 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
859 {
860 	sock_hold(sk);
861 	__sk_nulls_add_node_rcu(sk, list);
862 }
863 
864 static inline void __sk_del_bind_node(struct sock *sk)
865 {
866 	__hlist_del(&sk->sk_bind_node);
867 }
868 
869 static inline void sk_add_bind_node(struct sock *sk,
870 					struct hlist_head *list)
871 {
872 	hlist_add_head(&sk->sk_bind_node, list);
873 }
874 
875 static inline void __sk_del_bind2_node(struct sock *sk)
876 {
877 	__hlist_del(&sk->sk_bind2_node);
878 }
879 
880 static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
881 {
882 	hlist_add_head(&sk->sk_bind2_node, list);
883 }
884 
885 #define sk_for_each(__sk, list) \
886 	hlist_for_each_entry(__sk, list, sk_node)
887 #define sk_for_each_rcu(__sk, list) \
888 	hlist_for_each_entry_rcu(__sk, list, sk_node)
889 #define sk_nulls_for_each(__sk, node, list) \
890 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
891 #define sk_nulls_for_each_rcu(__sk, node, list) \
892 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
893 #define sk_for_each_from(__sk) \
894 	hlist_for_each_entry_from(__sk, sk_node)
895 #define sk_nulls_for_each_from(__sk, node) \
896 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
897 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
898 #define sk_for_each_safe(__sk, tmp, list) \
899 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
900 #define sk_for_each_bound(__sk, list) \
901 	hlist_for_each_entry(__sk, list, sk_bind_node)
902 #define sk_for_each_bound_bhash2(__sk, list) \
903 	hlist_for_each_entry(__sk, list, sk_bind2_node)
904 
905 /**
906  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
907  * @tpos:	the type * to use as a loop cursor.
908  * @pos:	the &struct hlist_node to use as a loop cursor.
909  * @head:	the head for your list.
910  * @offset:	offset of hlist_node within the struct.
911  *
912  */
913 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
914 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
915 	     pos != NULL &&						       \
916 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
917 	     pos = rcu_dereference(hlist_next_rcu(pos)))
918 
919 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
920 {
921 	/* Careful only use this in a context where these parameters
922 	 * can not change and must all be valid, such as recvmsg from
923 	 * userspace.
924 	 */
925 	return sk->sk_socket->file->f_cred->user_ns;
926 }
927 
928 /* Sock flags */
929 enum sock_flags {
930 	SOCK_DEAD,
931 	SOCK_DONE,
932 	SOCK_URGINLINE,
933 	SOCK_KEEPOPEN,
934 	SOCK_LINGER,
935 	SOCK_DESTROY,
936 	SOCK_BROADCAST,
937 	SOCK_TIMESTAMP,
938 	SOCK_ZAPPED,
939 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
940 	SOCK_DBG, /* %SO_DEBUG setting */
941 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
942 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
943 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
944 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
945 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
946 	SOCK_FASYNC, /* fasync() active */
947 	SOCK_RXQ_OVFL,
948 	SOCK_ZEROCOPY, /* buffers from userspace */
949 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
950 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
951 		     * Will use last 4 bytes of packet sent from
952 		     * user-space instead.
953 		     */
954 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
955 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
956 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
957 	SOCK_TXTIME,
958 	SOCK_XDP, /* XDP is attached */
959 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
960 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
961 };
962 
963 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
964 
965 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
966 {
967 	nsk->sk_flags = osk->sk_flags;
968 }
969 
970 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
971 {
972 	__set_bit(flag, &sk->sk_flags);
973 }
974 
975 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
976 {
977 	__clear_bit(flag, &sk->sk_flags);
978 }
979 
980 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
981 				     int valbool)
982 {
983 	if (valbool)
984 		sock_set_flag(sk, bit);
985 	else
986 		sock_reset_flag(sk, bit);
987 }
988 
989 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
990 {
991 	return test_bit(flag, &sk->sk_flags);
992 }
993 
994 #ifdef CONFIG_NET
995 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
996 static inline int sk_memalloc_socks(void)
997 {
998 	return static_branch_unlikely(&memalloc_socks_key);
999 }
1000 
1001 void __receive_sock(struct file *file);
1002 #else
1003 
1004 static inline int sk_memalloc_socks(void)
1005 {
1006 	return 0;
1007 }
1008 
1009 static inline void __receive_sock(struct file *file)
1010 { }
1011 #endif
1012 
1013 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1014 {
1015 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1016 }
1017 
1018 static inline void sk_acceptq_removed(struct sock *sk)
1019 {
1020 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1021 }
1022 
1023 static inline void sk_acceptq_added(struct sock *sk)
1024 {
1025 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1026 }
1027 
1028 /* Note: If you think the test should be:
1029  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1030  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1031  */
1032 static inline bool sk_acceptq_is_full(const struct sock *sk)
1033 {
1034 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1035 }
1036 
1037 /*
1038  * Compute minimal free write space needed to queue new packets.
1039  */
1040 static inline int sk_stream_min_wspace(const struct sock *sk)
1041 {
1042 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1043 }
1044 
1045 static inline int sk_stream_wspace(const struct sock *sk)
1046 {
1047 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1048 }
1049 
1050 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1051 {
1052 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1053 }
1054 
1055 void sk_stream_write_space(struct sock *sk);
1056 
1057 /* OOB backlog add */
1058 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1059 {
1060 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1061 	skb_dst_force(skb);
1062 
1063 	if (!sk->sk_backlog.tail)
1064 		WRITE_ONCE(sk->sk_backlog.head, skb);
1065 	else
1066 		sk->sk_backlog.tail->next = skb;
1067 
1068 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1069 	skb->next = NULL;
1070 }
1071 
1072 /*
1073  * Take into account size of receive queue and backlog queue
1074  * Do not take into account this skb truesize,
1075  * to allow even a single big packet to come.
1076  */
1077 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1078 {
1079 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1080 
1081 	return qsize > limit;
1082 }
1083 
1084 /* The per-socket spinlock must be held here. */
1085 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1086 					      unsigned int limit)
1087 {
1088 	if (sk_rcvqueues_full(sk, limit))
1089 		return -ENOBUFS;
1090 
1091 	/*
1092 	 * If the skb was allocated from pfmemalloc reserves, only
1093 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1094 	 * helping free memory
1095 	 */
1096 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1097 		return -ENOMEM;
1098 
1099 	__sk_add_backlog(sk, skb);
1100 	sk->sk_backlog.len += skb->truesize;
1101 	return 0;
1102 }
1103 
1104 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1105 
1106 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1107 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1108 
1109 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1110 {
1111 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1112 		return __sk_backlog_rcv(sk, skb);
1113 
1114 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1115 				  tcp_v6_do_rcv,
1116 				  tcp_v4_do_rcv,
1117 				  sk, skb);
1118 }
1119 
1120 static inline void sk_incoming_cpu_update(struct sock *sk)
1121 {
1122 	int cpu = raw_smp_processor_id();
1123 
1124 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1125 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1126 }
1127 
1128 static inline void sock_rps_record_flow_hash(__u32 hash)
1129 {
1130 #ifdef CONFIG_RPS
1131 	struct rps_sock_flow_table *sock_flow_table;
1132 
1133 	rcu_read_lock();
1134 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1135 	rps_record_sock_flow(sock_flow_table, hash);
1136 	rcu_read_unlock();
1137 #endif
1138 }
1139 
1140 static inline void sock_rps_record_flow(const struct sock *sk)
1141 {
1142 #ifdef CONFIG_RPS
1143 	if (static_branch_unlikely(&rfs_needed)) {
1144 		/* Reading sk->sk_rxhash might incur an expensive cache line
1145 		 * miss.
1146 		 *
1147 		 * TCP_ESTABLISHED does cover almost all states where RFS
1148 		 * might be useful, and is cheaper [1] than testing :
1149 		 *	IPv4: inet_sk(sk)->inet_daddr
1150 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1151 		 * OR	an additional socket flag
1152 		 * [1] : sk_state and sk_prot are in the same cache line.
1153 		 */
1154 		if (sk->sk_state == TCP_ESTABLISHED)
1155 			sock_rps_record_flow_hash(sk->sk_rxhash);
1156 	}
1157 #endif
1158 }
1159 
1160 static inline void sock_rps_save_rxhash(struct sock *sk,
1161 					const struct sk_buff *skb)
1162 {
1163 #ifdef CONFIG_RPS
1164 	if (unlikely(sk->sk_rxhash != skb->hash))
1165 		sk->sk_rxhash = skb->hash;
1166 #endif
1167 }
1168 
1169 static inline void sock_rps_reset_rxhash(struct sock *sk)
1170 {
1171 #ifdef CONFIG_RPS
1172 	sk->sk_rxhash = 0;
1173 #endif
1174 }
1175 
1176 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1177 	({	int __rc;						\
1178 		release_sock(__sk);					\
1179 		__rc = __condition;					\
1180 		if (!__rc) {						\
1181 			*(__timeo) = wait_woken(__wait,			\
1182 						TASK_INTERRUPTIBLE,	\
1183 						*(__timeo));		\
1184 		}							\
1185 		sched_annotate_sleep();					\
1186 		lock_sock(__sk);					\
1187 		__rc = __condition;					\
1188 		__rc;							\
1189 	})
1190 
1191 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1192 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1193 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1194 int sk_stream_error(struct sock *sk, int flags, int err);
1195 void sk_stream_kill_queues(struct sock *sk);
1196 void sk_set_memalloc(struct sock *sk);
1197 void sk_clear_memalloc(struct sock *sk);
1198 
1199 void __sk_flush_backlog(struct sock *sk);
1200 
1201 static inline bool sk_flush_backlog(struct sock *sk)
1202 {
1203 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1204 		__sk_flush_backlog(sk);
1205 		return true;
1206 	}
1207 	return false;
1208 }
1209 
1210 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1211 
1212 struct request_sock_ops;
1213 struct timewait_sock_ops;
1214 struct inet_hashinfo;
1215 struct raw_hashinfo;
1216 struct smc_hashinfo;
1217 struct module;
1218 struct sk_psock;
1219 
1220 /*
1221  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1222  * un-modified. Special care is taken when initializing object to zero.
1223  */
1224 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1225 {
1226 	if (offsetof(struct sock, sk_node.next) != 0)
1227 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1228 	memset(&sk->sk_node.pprev, 0,
1229 	       size - offsetof(struct sock, sk_node.pprev));
1230 }
1231 
1232 /* Networking protocol blocks we attach to sockets.
1233  * socket layer -> transport layer interface
1234  */
1235 struct proto {
1236 	void			(*close)(struct sock *sk,
1237 					long timeout);
1238 	int			(*pre_connect)(struct sock *sk,
1239 					struct sockaddr *uaddr,
1240 					int addr_len);
1241 	int			(*connect)(struct sock *sk,
1242 					struct sockaddr *uaddr,
1243 					int addr_len);
1244 	int			(*disconnect)(struct sock *sk, int flags);
1245 
1246 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1247 					  bool kern);
1248 
1249 	int			(*ioctl)(struct sock *sk, int cmd,
1250 					 unsigned long arg);
1251 	int			(*init)(struct sock *sk);
1252 	void			(*destroy)(struct sock *sk);
1253 	void			(*shutdown)(struct sock *sk, int how);
1254 	int			(*setsockopt)(struct sock *sk, int level,
1255 					int optname, sockptr_t optval,
1256 					unsigned int optlen);
1257 	int			(*getsockopt)(struct sock *sk, int level,
1258 					int optname, char __user *optval,
1259 					int __user *option);
1260 	void			(*keepalive)(struct sock *sk, int valbool);
1261 #ifdef CONFIG_COMPAT
1262 	int			(*compat_ioctl)(struct sock *sk,
1263 					unsigned int cmd, unsigned long arg);
1264 #endif
1265 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1266 					   size_t len);
1267 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1268 					   size_t len, int flags, int *addr_len);
1269 	int			(*sendpage)(struct sock *sk, struct page *page,
1270 					int offset, size_t size, int flags);
1271 	int			(*bind)(struct sock *sk,
1272 					struct sockaddr *addr, int addr_len);
1273 	int			(*bind_add)(struct sock *sk,
1274 					struct sockaddr *addr, int addr_len);
1275 
1276 	int			(*backlog_rcv) (struct sock *sk,
1277 						struct sk_buff *skb);
1278 	bool			(*bpf_bypass_getsockopt)(int level,
1279 							 int optname);
1280 
1281 	void		(*release_cb)(struct sock *sk);
1282 
1283 	/* Keeping track of sk's, looking them up, and port selection methods. */
1284 	int			(*hash)(struct sock *sk);
1285 	void			(*unhash)(struct sock *sk);
1286 	void			(*rehash)(struct sock *sk);
1287 	int			(*get_port)(struct sock *sk, unsigned short snum);
1288 	void			(*put_port)(struct sock *sk);
1289 #ifdef CONFIG_BPF_SYSCALL
1290 	int			(*psock_update_sk_prot)(struct sock *sk,
1291 							struct sk_psock *psock,
1292 							bool restore);
1293 #endif
1294 
1295 	/* Keeping track of sockets in use */
1296 #ifdef CONFIG_PROC_FS
1297 	unsigned int		inuse_idx;
1298 #endif
1299 
1300 #if IS_ENABLED(CONFIG_MPTCP)
1301 	int			(*forward_alloc_get)(const struct sock *sk);
1302 #endif
1303 
1304 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1305 	bool			(*sock_is_readable)(struct sock *sk);
1306 	/* Memory pressure */
1307 	void			(*enter_memory_pressure)(struct sock *sk);
1308 	void			(*leave_memory_pressure)(struct sock *sk);
1309 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1310 	int  __percpu		*per_cpu_fw_alloc;
1311 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1312 
1313 	/*
1314 	 * Pressure flag: try to collapse.
1315 	 * Technical note: it is used by multiple contexts non atomically.
1316 	 * All the __sk_mem_schedule() is of this nature: accounting
1317 	 * is strict, actions are advisory and have some latency.
1318 	 */
1319 	unsigned long		*memory_pressure;
1320 	long			*sysctl_mem;
1321 
1322 	int			*sysctl_wmem;
1323 	int			*sysctl_rmem;
1324 	u32			sysctl_wmem_offset;
1325 	u32			sysctl_rmem_offset;
1326 
1327 	int			max_header;
1328 	bool			no_autobind;
1329 
1330 	struct kmem_cache	*slab;
1331 	unsigned int		obj_size;
1332 	slab_flags_t		slab_flags;
1333 	unsigned int		useroffset;	/* Usercopy region offset */
1334 	unsigned int		usersize;	/* Usercopy region size */
1335 
1336 	unsigned int __percpu	*orphan_count;
1337 
1338 	struct request_sock_ops	*rsk_prot;
1339 	struct timewait_sock_ops *twsk_prot;
1340 
1341 	union {
1342 		struct inet_hashinfo	*hashinfo;
1343 		struct udp_table	*udp_table;
1344 		struct raw_hashinfo	*raw_hash;
1345 		struct smc_hashinfo	*smc_hash;
1346 	} h;
1347 
1348 	struct module		*owner;
1349 
1350 	char			name[32];
1351 
1352 	struct list_head	node;
1353 #ifdef SOCK_REFCNT_DEBUG
1354 	atomic_t		socks;
1355 #endif
1356 	int			(*diag_destroy)(struct sock *sk, int err);
1357 } __randomize_layout;
1358 
1359 int proto_register(struct proto *prot, int alloc_slab);
1360 void proto_unregister(struct proto *prot);
1361 int sock_load_diag_module(int family, int protocol);
1362 
1363 #ifdef SOCK_REFCNT_DEBUG
1364 static inline void sk_refcnt_debug_inc(struct sock *sk)
1365 {
1366 	atomic_inc(&sk->sk_prot->socks);
1367 }
1368 
1369 static inline void sk_refcnt_debug_dec(struct sock *sk)
1370 {
1371 	atomic_dec(&sk->sk_prot->socks);
1372 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1373 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1374 }
1375 
1376 static inline void sk_refcnt_debug_release(const struct sock *sk)
1377 {
1378 	if (refcount_read(&sk->sk_refcnt) != 1)
1379 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1380 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1381 }
1382 #else /* SOCK_REFCNT_DEBUG */
1383 #define sk_refcnt_debug_inc(sk) do { } while (0)
1384 #define sk_refcnt_debug_dec(sk) do { } while (0)
1385 #define sk_refcnt_debug_release(sk) do { } while (0)
1386 #endif /* SOCK_REFCNT_DEBUG */
1387 
1388 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1389 
1390 static inline int sk_forward_alloc_get(const struct sock *sk)
1391 {
1392 #if IS_ENABLED(CONFIG_MPTCP)
1393 	if (sk->sk_prot->forward_alloc_get)
1394 		return sk->sk_prot->forward_alloc_get(sk);
1395 #endif
1396 	return sk->sk_forward_alloc;
1397 }
1398 
1399 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1400 {
1401 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1402 		return false;
1403 
1404 	return sk->sk_prot->stream_memory_free ?
1405 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1406 				     tcp_stream_memory_free, sk, wake) : true;
1407 }
1408 
1409 static inline bool sk_stream_memory_free(const struct sock *sk)
1410 {
1411 	return __sk_stream_memory_free(sk, 0);
1412 }
1413 
1414 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1415 {
1416 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1417 	       __sk_stream_memory_free(sk, wake);
1418 }
1419 
1420 static inline bool sk_stream_is_writeable(const struct sock *sk)
1421 {
1422 	return __sk_stream_is_writeable(sk, 0);
1423 }
1424 
1425 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1426 					    struct cgroup *ancestor)
1427 {
1428 #ifdef CONFIG_SOCK_CGROUP_DATA
1429 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1430 				    ancestor);
1431 #else
1432 	return -ENOTSUPP;
1433 #endif
1434 }
1435 
1436 static inline bool sk_has_memory_pressure(const struct sock *sk)
1437 {
1438 	return sk->sk_prot->memory_pressure != NULL;
1439 }
1440 
1441 static inline bool sk_under_memory_pressure(const struct sock *sk)
1442 {
1443 	if (!sk->sk_prot->memory_pressure)
1444 		return false;
1445 
1446 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1447 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1448 		return true;
1449 
1450 	return !!*sk->sk_prot->memory_pressure;
1451 }
1452 
1453 static inline long
1454 proto_memory_allocated(const struct proto *prot)
1455 {
1456 	return max(0L, atomic_long_read(prot->memory_allocated));
1457 }
1458 
1459 static inline long
1460 sk_memory_allocated(const struct sock *sk)
1461 {
1462 	return proto_memory_allocated(sk->sk_prot);
1463 }
1464 
1465 /* 1 MB per cpu, in page units */
1466 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1467 
1468 static inline void
1469 sk_memory_allocated_add(struct sock *sk, int amt)
1470 {
1471 	int local_reserve;
1472 
1473 	preempt_disable();
1474 	local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1475 	if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1476 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1477 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1478 	}
1479 	preempt_enable();
1480 }
1481 
1482 static inline void
1483 sk_memory_allocated_sub(struct sock *sk, int amt)
1484 {
1485 	int local_reserve;
1486 
1487 	preempt_disable();
1488 	local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1489 	if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1490 		__this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1491 		atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1492 	}
1493 	preempt_enable();
1494 }
1495 
1496 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1497 
1498 static inline void sk_sockets_allocated_dec(struct sock *sk)
1499 {
1500 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1501 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1502 }
1503 
1504 static inline void sk_sockets_allocated_inc(struct sock *sk)
1505 {
1506 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1507 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1508 }
1509 
1510 static inline u64
1511 sk_sockets_allocated_read_positive(struct sock *sk)
1512 {
1513 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1514 }
1515 
1516 static inline int
1517 proto_sockets_allocated_sum_positive(struct proto *prot)
1518 {
1519 	return percpu_counter_sum_positive(prot->sockets_allocated);
1520 }
1521 
1522 static inline bool
1523 proto_memory_pressure(struct proto *prot)
1524 {
1525 	if (!prot->memory_pressure)
1526 		return false;
1527 	return !!*prot->memory_pressure;
1528 }
1529 
1530 
1531 #ifdef CONFIG_PROC_FS
1532 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1533 struct prot_inuse {
1534 	int all;
1535 	int val[PROTO_INUSE_NR];
1536 };
1537 
1538 static inline void sock_prot_inuse_add(const struct net *net,
1539 				       const struct proto *prot, int val)
1540 {
1541 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1542 }
1543 
1544 static inline void sock_inuse_add(const struct net *net, int val)
1545 {
1546 	this_cpu_add(net->core.prot_inuse->all, val);
1547 }
1548 
1549 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1550 int sock_inuse_get(struct net *net);
1551 #else
1552 static inline void sock_prot_inuse_add(const struct net *net,
1553 				       const struct proto *prot, int val)
1554 {
1555 }
1556 
1557 static inline void sock_inuse_add(const struct net *net, int val)
1558 {
1559 }
1560 #endif
1561 
1562 
1563 /* With per-bucket locks this operation is not-atomic, so that
1564  * this version is not worse.
1565  */
1566 static inline int __sk_prot_rehash(struct sock *sk)
1567 {
1568 	sk->sk_prot->unhash(sk);
1569 	return sk->sk_prot->hash(sk);
1570 }
1571 
1572 /* About 10 seconds */
1573 #define SOCK_DESTROY_TIME (10*HZ)
1574 
1575 /* Sockets 0-1023 can't be bound to unless you are superuser */
1576 #define PROT_SOCK	1024
1577 
1578 #define SHUTDOWN_MASK	3
1579 #define RCV_SHUTDOWN	1
1580 #define SEND_SHUTDOWN	2
1581 
1582 #define SOCK_BINDADDR_LOCK	4
1583 #define SOCK_BINDPORT_LOCK	8
1584 
1585 struct socket_alloc {
1586 	struct socket socket;
1587 	struct inode vfs_inode;
1588 };
1589 
1590 static inline struct socket *SOCKET_I(struct inode *inode)
1591 {
1592 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1593 }
1594 
1595 static inline struct inode *SOCK_INODE(struct socket *socket)
1596 {
1597 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1598 }
1599 
1600 /*
1601  * Functions for memory accounting
1602  */
1603 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1604 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1605 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1606 void __sk_mem_reclaim(struct sock *sk, int amount);
1607 
1608 #define SK_MEM_SEND	0
1609 #define SK_MEM_RECV	1
1610 
1611 /* sysctl_mem values are in pages */
1612 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1613 {
1614 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1615 }
1616 
1617 static inline int sk_mem_pages(int amt)
1618 {
1619 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1620 }
1621 
1622 static inline bool sk_has_account(struct sock *sk)
1623 {
1624 	/* return true if protocol supports memory accounting */
1625 	return !!sk->sk_prot->memory_allocated;
1626 }
1627 
1628 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1629 {
1630 	int delta;
1631 
1632 	if (!sk_has_account(sk))
1633 		return true;
1634 	delta = size - sk->sk_forward_alloc;
1635 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1636 }
1637 
1638 static inline bool
1639 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1640 {
1641 	int delta;
1642 
1643 	if (!sk_has_account(sk))
1644 		return true;
1645 	delta = size - sk->sk_forward_alloc;
1646 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1647 		skb_pfmemalloc(skb);
1648 }
1649 
1650 static inline int sk_unused_reserved_mem(const struct sock *sk)
1651 {
1652 	int unused_mem;
1653 
1654 	if (likely(!sk->sk_reserved_mem))
1655 		return 0;
1656 
1657 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1658 			atomic_read(&sk->sk_rmem_alloc);
1659 
1660 	return unused_mem > 0 ? unused_mem : 0;
1661 }
1662 
1663 static inline void sk_mem_reclaim(struct sock *sk)
1664 {
1665 	int reclaimable;
1666 
1667 	if (!sk_has_account(sk))
1668 		return;
1669 
1670 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1671 
1672 	if (reclaimable >= (int)PAGE_SIZE)
1673 		__sk_mem_reclaim(sk, reclaimable);
1674 }
1675 
1676 static inline void sk_mem_reclaim_final(struct sock *sk)
1677 {
1678 	sk->sk_reserved_mem = 0;
1679 	sk_mem_reclaim(sk);
1680 }
1681 
1682 static inline void sk_mem_charge(struct sock *sk, int size)
1683 {
1684 	if (!sk_has_account(sk))
1685 		return;
1686 	sk->sk_forward_alloc -= size;
1687 }
1688 
1689 static inline void sk_mem_uncharge(struct sock *sk, int size)
1690 {
1691 	if (!sk_has_account(sk))
1692 		return;
1693 	sk->sk_forward_alloc += size;
1694 	sk_mem_reclaim(sk);
1695 }
1696 
1697 /*
1698  * Macro so as to not evaluate some arguments when
1699  * lockdep is not enabled.
1700  *
1701  * Mark both the sk_lock and the sk_lock.slock as a
1702  * per-address-family lock class.
1703  */
1704 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1705 do {									\
1706 	sk->sk_lock.owned = 0;						\
1707 	init_waitqueue_head(&sk->sk_lock.wq);				\
1708 	spin_lock_init(&(sk)->sk_lock.slock);				\
1709 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1710 			sizeof((sk)->sk_lock));				\
1711 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1712 				(skey), (sname));				\
1713 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1714 } while (0)
1715 
1716 static inline bool lockdep_sock_is_held(const struct sock *sk)
1717 {
1718 	return lockdep_is_held(&sk->sk_lock) ||
1719 	       lockdep_is_held(&sk->sk_lock.slock);
1720 }
1721 
1722 void lock_sock_nested(struct sock *sk, int subclass);
1723 
1724 static inline void lock_sock(struct sock *sk)
1725 {
1726 	lock_sock_nested(sk, 0);
1727 }
1728 
1729 void __lock_sock(struct sock *sk);
1730 void __release_sock(struct sock *sk);
1731 void release_sock(struct sock *sk);
1732 
1733 /* BH context may only use the following locking interface. */
1734 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1735 #define bh_lock_sock_nested(__sk) \
1736 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1737 				SINGLE_DEPTH_NESTING)
1738 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1739 
1740 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1741 
1742 /**
1743  * lock_sock_fast - fast version of lock_sock
1744  * @sk: socket
1745  *
1746  * This version should be used for very small section, where process wont block
1747  * return false if fast path is taken:
1748  *
1749  *   sk_lock.slock locked, owned = 0, BH disabled
1750  *
1751  * return true if slow path is taken:
1752  *
1753  *   sk_lock.slock unlocked, owned = 1, BH enabled
1754  */
1755 static inline bool lock_sock_fast(struct sock *sk)
1756 {
1757 	/* The sk_lock has mutex_lock() semantics here. */
1758 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1759 
1760 	return __lock_sock_fast(sk);
1761 }
1762 
1763 /* fast socket lock variant for caller already holding a [different] socket lock */
1764 static inline bool lock_sock_fast_nested(struct sock *sk)
1765 {
1766 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1767 
1768 	return __lock_sock_fast(sk);
1769 }
1770 
1771 /**
1772  * unlock_sock_fast - complement of lock_sock_fast
1773  * @sk: socket
1774  * @slow: slow mode
1775  *
1776  * fast unlock socket for user context.
1777  * If slow mode is on, we call regular release_sock()
1778  */
1779 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1780 	__releases(&sk->sk_lock.slock)
1781 {
1782 	if (slow) {
1783 		release_sock(sk);
1784 		__release(&sk->sk_lock.slock);
1785 	} else {
1786 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1787 		spin_unlock_bh(&sk->sk_lock.slock);
1788 	}
1789 }
1790 
1791 void sockopt_lock_sock(struct sock *sk);
1792 void sockopt_release_sock(struct sock *sk);
1793 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1794 bool sockopt_capable(int cap);
1795 
1796 /* Used by processes to "lock" a socket state, so that
1797  * interrupts and bottom half handlers won't change it
1798  * from under us. It essentially blocks any incoming
1799  * packets, so that we won't get any new data or any
1800  * packets that change the state of the socket.
1801  *
1802  * While locked, BH processing will add new packets to
1803  * the backlog queue.  This queue is processed by the
1804  * owner of the socket lock right before it is released.
1805  *
1806  * Since ~2.3.5 it is also exclusive sleep lock serializing
1807  * accesses from user process context.
1808  */
1809 
1810 static inline void sock_owned_by_me(const struct sock *sk)
1811 {
1812 #ifdef CONFIG_LOCKDEP
1813 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1814 #endif
1815 }
1816 
1817 static inline bool sock_owned_by_user(const struct sock *sk)
1818 {
1819 	sock_owned_by_me(sk);
1820 	return sk->sk_lock.owned;
1821 }
1822 
1823 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1824 {
1825 	return sk->sk_lock.owned;
1826 }
1827 
1828 static inline void sock_release_ownership(struct sock *sk)
1829 {
1830 	if (sock_owned_by_user_nocheck(sk)) {
1831 		sk->sk_lock.owned = 0;
1832 
1833 		/* The sk_lock has mutex_unlock() semantics: */
1834 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1835 	}
1836 }
1837 
1838 /* no reclassification while locks are held */
1839 static inline bool sock_allow_reclassification(const struct sock *csk)
1840 {
1841 	struct sock *sk = (struct sock *)csk;
1842 
1843 	return !sock_owned_by_user_nocheck(sk) &&
1844 		!spin_is_locked(&sk->sk_lock.slock);
1845 }
1846 
1847 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1848 		      struct proto *prot, int kern);
1849 void sk_free(struct sock *sk);
1850 void sk_destruct(struct sock *sk);
1851 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1852 void sk_free_unlock_clone(struct sock *sk);
1853 
1854 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1855 			     gfp_t priority);
1856 void __sock_wfree(struct sk_buff *skb);
1857 void sock_wfree(struct sk_buff *skb);
1858 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1859 			     gfp_t priority);
1860 void skb_orphan_partial(struct sk_buff *skb);
1861 void sock_rfree(struct sk_buff *skb);
1862 void sock_efree(struct sk_buff *skb);
1863 #ifdef CONFIG_INET
1864 void sock_edemux(struct sk_buff *skb);
1865 void sock_pfree(struct sk_buff *skb);
1866 #else
1867 #define sock_edemux sock_efree
1868 #endif
1869 
1870 int sk_setsockopt(struct sock *sk, int level, int optname,
1871 		  sockptr_t optval, unsigned int optlen);
1872 int sock_setsockopt(struct socket *sock, int level, int op,
1873 		    sockptr_t optval, unsigned int optlen);
1874 
1875 int sk_getsockopt(struct sock *sk, int level, int optname,
1876 		  sockptr_t optval, sockptr_t optlen);
1877 int sock_getsockopt(struct socket *sock, int level, int op,
1878 		    char __user *optval, int __user *optlen);
1879 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1880 		   bool timeval, bool time32);
1881 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1882 				     unsigned long data_len, int noblock,
1883 				     int *errcode, int max_page_order);
1884 
1885 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1886 						  unsigned long size,
1887 						  int noblock, int *errcode)
1888 {
1889 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1890 }
1891 
1892 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1893 void sock_kfree_s(struct sock *sk, void *mem, int size);
1894 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1895 void sk_send_sigurg(struct sock *sk);
1896 
1897 struct sockcm_cookie {
1898 	u64 transmit_time;
1899 	u32 mark;
1900 	u16 tsflags;
1901 };
1902 
1903 static inline void sockcm_init(struct sockcm_cookie *sockc,
1904 			       const struct sock *sk)
1905 {
1906 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1907 }
1908 
1909 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1910 		     struct sockcm_cookie *sockc);
1911 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1912 		   struct sockcm_cookie *sockc);
1913 
1914 /*
1915  * Functions to fill in entries in struct proto_ops when a protocol
1916  * does not implement a particular function.
1917  */
1918 int sock_no_bind(struct socket *, struct sockaddr *, int);
1919 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1920 int sock_no_socketpair(struct socket *, struct socket *);
1921 int sock_no_accept(struct socket *, struct socket *, int, bool);
1922 int sock_no_getname(struct socket *, struct sockaddr *, int);
1923 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1924 int sock_no_listen(struct socket *, int);
1925 int sock_no_shutdown(struct socket *, int);
1926 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1927 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1928 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1929 int sock_no_mmap(struct file *file, struct socket *sock,
1930 		 struct vm_area_struct *vma);
1931 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1932 			 size_t size, int flags);
1933 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1934 				int offset, size_t size, int flags);
1935 
1936 /*
1937  * Functions to fill in entries in struct proto_ops when a protocol
1938  * uses the inet style.
1939  */
1940 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1941 				  char __user *optval, int __user *optlen);
1942 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1943 			int flags);
1944 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1945 			   sockptr_t optval, unsigned int optlen);
1946 
1947 void sk_common_release(struct sock *sk);
1948 
1949 /*
1950  *	Default socket callbacks and setup code
1951  */
1952 
1953 /* Initialise core socket variables */
1954 void sock_init_data(struct socket *sock, struct sock *sk);
1955 
1956 /*
1957  * Socket reference counting postulates.
1958  *
1959  * * Each user of socket SHOULD hold a reference count.
1960  * * Each access point to socket (an hash table bucket, reference from a list,
1961  *   running timer, skb in flight MUST hold a reference count.
1962  * * When reference count hits 0, it means it will never increase back.
1963  * * When reference count hits 0, it means that no references from
1964  *   outside exist to this socket and current process on current CPU
1965  *   is last user and may/should destroy this socket.
1966  * * sk_free is called from any context: process, BH, IRQ. When
1967  *   it is called, socket has no references from outside -> sk_free
1968  *   may release descendant resources allocated by the socket, but
1969  *   to the time when it is called, socket is NOT referenced by any
1970  *   hash tables, lists etc.
1971  * * Packets, delivered from outside (from network or from another process)
1972  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1973  *   when they sit in queue. Otherwise, packets will leak to hole, when
1974  *   socket is looked up by one cpu and unhasing is made by another CPU.
1975  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1976  *   (leak to backlog). Packet socket does all the processing inside
1977  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1978  *   use separate SMP lock, so that they are prone too.
1979  */
1980 
1981 /* Ungrab socket and destroy it, if it was the last reference. */
1982 static inline void sock_put(struct sock *sk)
1983 {
1984 	if (refcount_dec_and_test(&sk->sk_refcnt))
1985 		sk_free(sk);
1986 }
1987 /* Generic version of sock_put(), dealing with all sockets
1988  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1989  */
1990 void sock_gen_put(struct sock *sk);
1991 
1992 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1993 		     unsigned int trim_cap, bool refcounted);
1994 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1995 				 const int nested)
1996 {
1997 	return __sk_receive_skb(sk, skb, nested, 1, true);
1998 }
1999 
2000 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2001 {
2002 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
2003 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2004 		return;
2005 	sk->sk_tx_queue_mapping = tx_queue;
2006 }
2007 
2008 #define NO_QUEUE_MAPPING	USHRT_MAX
2009 
2010 static inline void sk_tx_queue_clear(struct sock *sk)
2011 {
2012 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
2013 }
2014 
2015 static inline int sk_tx_queue_get(const struct sock *sk)
2016 {
2017 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
2018 		return sk->sk_tx_queue_mapping;
2019 
2020 	return -1;
2021 }
2022 
2023 static inline void __sk_rx_queue_set(struct sock *sk,
2024 				     const struct sk_buff *skb,
2025 				     bool force_set)
2026 {
2027 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028 	if (skb_rx_queue_recorded(skb)) {
2029 		u16 rx_queue = skb_get_rx_queue(skb);
2030 
2031 		if (force_set ||
2032 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2033 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2034 	}
2035 #endif
2036 }
2037 
2038 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2039 {
2040 	__sk_rx_queue_set(sk, skb, true);
2041 }
2042 
2043 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2044 {
2045 	__sk_rx_queue_set(sk, skb, false);
2046 }
2047 
2048 static inline void sk_rx_queue_clear(struct sock *sk)
2049 {
2050 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2051 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2052 #endif
2053 }
2054 
2055 static inline int sk_rx_queue_get(const struct sock *sk)
2056 {
2057 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2058 	if (sk) {
2059 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2060 
2061 		if (res != NO_QUEUE_MAPPING)
2062 			return res;
2063 	}
2064 #endif
2065 
2066 	return -1;
2067 }
2068 
2069 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2070 {
2071 	sk->sk_socket = sock;
2072 }
2073 
2074 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2075 {
2076 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2077 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2078 }
2079 /* Detach socket from process context.
2080  * Announce socket dead, detach it from wait queue and inode.
2081  * Note that parent inode held reference count on this struct sock,
2082  * we do not release it in this function, because protocol
2083  * probably wants some additional cleanups or even continuing
2084  * to work with this socket (TCP).
2085  */
2086 static inline void sock_orphan(struct sock *sk)
2087 {
2088 	write_lock_bh(&sk->sk_callback_lock);
2089 	sock_set_flag(sk, SOCK_DEAD);
2090 	sk_set_socket(sk, NULL);
2091 	sk->sk_wq  = NULL;
2092 	write_unlock_bh(&sk->sk_callback_lock);
2093 }
2094 
2095 static inline void sock_graft(struct sock *sk, struct socket *parent)
2096 {
2097 	WARN_ON(parent->sk);
2098 	write_lock_bh(&sk->sk_callback_lock);
2099 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2100 	parent->sk = sk;
2101 	sk_set_socket(sk, parent);
2102 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2103 	security_sock_graft(sk, parent);
2104 	write_unlock_bh(&sk->sk_callback_lock);
2105 }
2106 
2107 kuid_t sock_i_uid(struct sock *sk);
2108 unsigned long sock_i_ino(struct sock *sk);
2109 
2110 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2111 {
2112 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2113 }
2114 
2115 static inline u32 net_tx_rndhash(void)
2116 {
2117 	u32 v = prandom_u32();
2118 
2119 	return v ?: 1;
2120 }
2121 
2122 static inline void sk_set_txhash(struct sock *sk)
2123 {
2124 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2125 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2126 }
2127 
2128 static inline bool sk_rethink_txhash(struct sock *sk)
2129 {
2130 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2131 		sk_set_txhash(sk);
2132 		return true;
2133 	}
2134 	return false;
2135 }
2136 
2137 static inline struct dst_entry *
2138 __sk_dst_get(struct sock *sk)
2139 {
2140 	return rcu_dereference_check(sk->sk_dst_cache,
2141 				     lockdep_sock_is_held(sk));
2142 }
2143 
2144 static inline struct dst_entry *
2145 sk_dst_get(struct sock *sk)
2146 {
2147 	struct dst_entry *dst;
2148 
2149 	rcu_read_lock();
2150 	dst = rcu_dereference(sk->sk_dst_cache);
2151 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2152 		dst = NULL;
2153 	rcu_read_unlock();
2154 	return dst;
2155 }
2156 
2157 static inline void __dst_negative_advice(struct sock *sk)
2158 {
2159 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2160 
2161 	if (dst && dst->ops->negative_advice) {
2162 		ndst = dst->ops->negative_advice(dst);
2163 
2164 		if (ndst != dst) {
2165 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2166 			sk_tx_queue_clear(sk);
2167 			sk->sk_dst_pending_confirm = 0;
2168 		}
2169 	}
2170 }
2171 
2172 static inline void dst_negative_advice(struct sock *sk)
2173 {
2174 	sk_rethink_txhash(sk);
2175 	__dst_negative_advice(sk);
2176 }
2177 
2178 static inline void
2179 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2180 {
2181 	struct dst_entry *old_dst;
2182 
2183 	sk_tx_queue_clear(sk);
2184 	sk->sk_dst_pending_confirm = 0;
2185 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2186 					    lockdep_sock_is_held(sk));
2187 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2188 	dst_release(old_dst);
2189 }
2190 
2191 static inline void
2192 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2193 {
2194 	struct dst_entry *old_dst;
2195 
2196 	sk_tx_queue_clear(sk);
2197 	sk->sk_dst_pending_confirm = 0;
2198 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2199 	dst_release(old_dst);
2200 }
2201 
2202 static inline void
2203 __sk_dst_reset(struct sock *sk)
2204 {
2205 	__sk_dst_set(sk, NULL);
2206 }
2207 
2208 static inline void
2209 sk_dst_reset(struct sock *sk)
2210 {
2211 	sk_dst_set(sk, NULL);
2212 }
2213 
2214 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2215 
2216 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2217 
2218 static inline void sk_dst_confirm(struct sock *sk)
2219 {
2220 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2221 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2222 }
2223 
2224 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2225 {
2226 	if (skb_get_dst_pending_confirm(skb)) {
2227 		struct sock *sk = skb->sk;
2228 
2229 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2230 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2231 		neigh_confirm(n);
2232 	}
2233 }
2234 
2235 bool sk_mc_loop(struct sock *sk);
2236 
2237 static inline bool sk_can_gso(const struct sock *sk)
2238 {
2239 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2240 }
2241 
2242 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2243 
2244 static inline void sk_gso_disable(struct sock *sk)
2245 {
2246 	sk->sk_gso_disabled = 1;
2247 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2248 }
2249 
2250 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2251 					   struct iov_iter *from, char *to,
2252 					   int copy, int offset)
2253 {
2254 	if (skb->ip_summed == CHECKSUM_NONE) {
2255 		__wsum csum = 0;
2256 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2257 			return -EFAULT;
2258 		skb->csum = csum_block_add(skb->csum, csum, offset);
2259 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2260 		if (!copy_from_iter_full_nocache(to, copy, from))
2261 			return -EFAULT;
2262 	} else if (!copy_from_iter_full(to, copy, from))
2263 		return -EFAULT;
2264 
2265 	return 0;
2266 }
2267 
2268 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2269 				       struct iov_iter *from, int copy)
2270 {
2271 	int err, offset = skb->len;
2272 
2273 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2274 				       copy, offset);
2275 	if (err)
2276 		__skb_trim(skb, offset);
2277 
2278 	return err;
2279 }
2280 
2281 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2282 					   struct sk_buff *skb,
2283 					   struct page *page,
2284 					   int off, int copy)
2285 {
2286 	int err;
2287 
2288 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2289 				       copy, skb->len);
2290 	if (err)
2291 		return err;
2292 
2293 	skb_len_add(skb, copy);
2294 	sk_wmem_queued_add(sk, copy);
2295 	sk_mem_charge(sk, copy);
2296 	return 0;
2297 }
2298 
2299 /**
2300  * sk_wmem_alloc_get - returns write allocations
2301  * @sk: socket
2302  *
2303  * Return: sk_wmem_alloc minus initial offset of one
2304  */
2305 static inline int sk_wmem_alloc_get(const struct sock *sk)
2306 {
2307 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2308 }
2309 
2310 /**
2311  * sk_rmem_alloc_get - returns read allocations
2312  * @sk: socket
2313  *
2314  * Return: sk_rmem_alloc
2315  */
2316 static inline int sk_rmem_alloc_get(const struct sock *sk)
2317 {
2318 	return atomic_read(&sk->sk_rmem_alloc);
2319 }
2320 
2321 /**
2322  * sk_has_allocations - check if allocations are outstanding
2323  * @sk: socket
2324  *
2325  * Return: true if socket has write or read allocations
2326  */
2327 static inline bool sk_has_allocations(const struct sock *sk)
2328 {
2329 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2330 }
2331 
2332 /**
2333  * skwq_has_sleeper - check if there are any waiting processes
2334  * @wq: struct socket_wq
2335  *
2336  * Return: true if socket_wq has waiting processes
2337  *
2338  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2339  * barrier call. They were added due to the race found within the tcp code.
2340  *
2341  * Consider following tcp code paths::
2342  *
2343  *   CPU1                CPU2
2344  *   sys_select          receive packet
2345  *   ...                 ...
2346  *   __add_wait_queue    update tp->rcv_nxt
2347  *   ...                 ...
2348  *   tp->rcv_nxt check   sock_def_readable
2349  *   ...                 {
2350  *   schedule               rcu_read_lock();
2351  *                          wq = rcu_dereference(sk->sk_wq);
2352  *                          if (wq && waitqueue_active(&wq->wait))
2353  *                              wake_up_interruptible(&wq->wait)
2354  *                          ...
2355  *                       }
2356  *
2357  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2358  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2359  * could then endup calling schedule and sleep forever if there are no more
2360  * data on the socket.
2361  *
2362  */
2363 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2364 {
2365 	return wq && wq_has_sleeper(&wq->wait);
2366 }
2367 
2368 /**
2369  * sock_poll_wait - place memory barrier behind the poll_wait call.
2370  * @filp:           file
2371  * @sock:           socket to wait on
2372  * @p:              poll_table
2373  *
2374  * See the comments in the wq_has_sleeper function.
2375  */
2376 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2377 				  poll_table *p)
2378 {
2379 	if (!poll_does_not_wait(p)) {
2380 		poll_wait(filp, &sock->wq.wait, p);
2381 		/* We need to be sure we are in sync with the
2382 		 * socket flags modification.
2383 		 *
2384 		 * This memory barrier is paired in the wq_has_sleeper.
2385 		 */
2386 		smp_mb();
2387 	}
2388 }
2389 
2390 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2391 {
2392 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2393 	u32 txhash = READ_ONCE(sk->sk_txhash);
2394 
2395 	if (txhash) {
2396 		skb->l4_hash = 1;
2397 		skb->hash = txhash;
2398 	}
2399 }
2400 
2401 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2402 
2403 /*
2404  *	Queue a received datagram if it will fit. Stream and sequenced
2405  *	protocols can't normally use this as they need to fit buffers in
2406  *	and play with them.
2407  *
2408  *	Inlined as it's very short and called for pretty much every
2409  *	packet ever received.
2410  */
2411 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2412 {
2413 	skb_orphan(skb);
2414 	skb->sk = sk;
2415 	skb->destructor = sock_rfree;
2416 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2417 	sk_mem_charge(sk, skb->truesize);
2418 }
2419 
2420 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2421 {
2422 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2423 		skb_orphan(skb);
2424 		skb->destructor = sock_efree;
2425 		skb->sk = sk;
2426 		return true;
2427 	}
2428 	return false;
2429 }
2430 
2431 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2432 {
2433 	if (skb->destructor != sock_wfree) {
2434 		skb_orphan(skb);
2435 		return;
2436 	}
2437 	skb->slow_gro = 1;
2438 }
2439 
2440 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2441 		    unsigned long expires);
2442 
2443 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2444 
2445 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2446 
2447 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2448 			struct sk_buff *skb, unsigned int flags,
2449 			void (*destructor)(struct sock *sk,
2450 					   struct sk_buff *skb));
2451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2452 
2453 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2454 			      enum skb_drop_reason *reason);
2455 
2456 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2457 {
2458 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2459 }
2460 
2461 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2462 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2463 
2464 /*
2465  *	Recover an error report and clear atomically
2466  */
2467 
2468 static inline int sock_error(struct sock *sk)
2469 {
2470 	int err;
2471 
2472 	/* Avoid an atomic operation for the common case.
2473 	 * This is racy since another cpu/thread can change sk_err under us.
2474 	 */
2475 	if (likely(data_race(!sk->sk_err)))
2476 		return 0;
2477 
2478 	err = xchg(&sk->sk_err, 0);
2479 	return -err;
2480 }
2481 
2482 void sk_error_report(struct sock *sk);
2483 
2484 static inline unsigned long sock_wspace(struct sock *sk)
2485 {
2486 	int amt = 0;
2487 
2488 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2489 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2490 		if (amt < 0)
2491 			amt = 0;
2492 	}
2493 	return amt;
2494 }
2495 
2496 /* Note:
2497  *  We use sk->sk_wq_raw, from contexts knowing this
2498  *  pointer is not NULL and cannot disappear/change.
2499  */
2500 static inline void sk_set_bit(int nr, struct sock *sk)
2501 {
2502 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2503 	    !sock_flag(sk, SOCK_FASYNC))
2504 		return;
2505 
2506 	set_bit(nr, &sk->sk_wq_raw->flags);
2507 }
2508 
2509 static inline void sk_clear_bit(int nr, struct sock *sk)
2510 {
2511 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2512 	    !sock_flag(sk, SOCK_FASYNC))
2513 		return;
2514 
2515 	clear_bit(nr, &sk->sk_wq_raw->flags);
2516 }
2517 
2518 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2519 {
2520 	if (sock_flag(sk, SOCK_FASYNC)) {
2521 		rcu_read_lock();
2522 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2523 		rcu_read_unlock();
2524 	}
2525 }
2526 
2527 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2528  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2529  * Note: for send buffers, TCP works better if we can build two skbs at
2530  * minimum.
2531  */
2532 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2533 
2534 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2535 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2536 
2537 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2538 {
2539 	u32 val;
2540 
2541 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2542 		return;
2543 
2544 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2545 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2546 
2547 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2548 }
2549 
2550 /**
2551  * sk_page_frag - return an appropriate page_frag
2552  * @sk: socket
2553  *
2554  * Use the per task page_frag instead of the per socket one for
2555  * optimization when we know that we're in process context and own
2556  * everything that's associated with %current.
2557  *
2558  * Both direct reclaim and page faults can nest inside other
2559  * socket operations and end up recursing into sk_page_frag()
2560  * while it's already in use: explicitly avoid task page_frag
2561  * usage if the caller is potentially doing any of them.
2562  * This assumes that page fault handlers use the GFP_NOFS flags.
2563  *
2564  * Return: a per task page_frag if context allows that,
2565  * otherwise a per socket one.
2566  */
2567 static inline struct page_frag *sk_page_frag(struct sock *sk)
2568 {
2569 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2570 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2571 		return &current->task_frag;
2572 
2573 	return &sk->sk_frag;
2574 }
2575 
2576 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2577 
2578 /*
2579  *	Default write policy as shown to user space via poll/select/SIGIO
2580  */
2581 static inline bool sock_writeable(const struct sock *sk)
2582 {
2583 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2584 }
2585 
2586 static inline gfp_t gfp_any(void)
2587 {
2588 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2589 }
2590 
2591 static inline gfp_t gfp_memcg_charge(void)
2592 {
2593 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2594 }
2595 
2596 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2597 {
2598 	return noblock ? 0 : sk->sk_rcvtimeo;
2599 }
2600 
2601 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2602 {
2603 	return noblock ? 0 : sk->sk_sndtimeo;
2604 }
2605 
2606 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2607 {
2608 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2609 
2610 	return v ?: 1;
2611 }
2612 
2613 /* Alas, with timeout socket operations are not restartable.
2614  * Compare this to poll().
2615  */
2616 static inline int sock_intr_errno(long timeo)
2617 {
2618 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2619 }
2620 
2621 struct sock_skb_cb {
2622 	u32 dropcount;
2623 };
2624 
2625 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2626  * using skb->cb[] would keep using it directly and utilize its
2627  * alignement guarantee.
2628  */
2629 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2630 			    sizeof(struct sock_skb_cb)))
2631 
2632 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2633 			    SOCK_SKB_CB_OFFSET))
2634 
2635 #define sock_skb_cb_check_size(size) \
2636 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2637 
2638 static inline void
2639 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2640 {
2641 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2642 						atomic_read(&sk->sk_drops) : 0;
2643 }
2644 
2645 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2646 {
2647 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2648 
2649 	atomic_add(segs, &sk->sk_drops);
2650 }
2651 
2652 static inline ktime_t sock_read_timestamp(struct sock *sk)
2653 {
2654 #if BITS_PER_LONG==32
2655 	unsigned int seq;
2656 	ktime_t kt;
2657 
2658 	do {
2659 		seq = read_seqbegin(&sk->sk_stamp_seq);
2660 		kt = sk->sk_stamp;
2661 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2662 
2663 	return kt;
2664 #else
2665 	return READ_ONCE(sk->sk_stamp);
2666 #endif
2667 }
2668 
2669 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2670 {
2671 #if BITS_PER_LONG==32
2672 	write_seqlock(&sk->sk_stamp_seq);
2673 	sk->sk_stamp = kt;
2674 	write_sequnlock(&sk->sk_stamp_seq);
2675 #else
2676 	WRITE_ONCE(sk->sk_stamp, kt);
2677 #endif
2678 }
2679 
2680 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2681 			   struct sk_buff *skb);
2682 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2683 			     struct sk_buff *skb);
2684 
2685 static inline void
2686 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2687 {
2688 	ktime_t kt = skb->tstamp;
2689 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2690 
2691 	/*
2692 	 * generate control messages if
2693 	 * - receive time stamping in software requested
2694 	 * - software time stamp available and wanted
2695 	 * - hardware time stamps available and wanted
2696 	 */
2697 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2698 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2699 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2700 	    (hwtstamps->hwtstamp &&
2701 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2702 		__sock_recv_timestamp(msg, sk, skb);
2703 	else
2704 		sock_write_timestamp(sk, kt);
2705 
2706 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2707 		__sock_recv_wifi_status(msg, sk, skb);
2708 }
2709 
2710 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2711 		       struct sk_buff *skb);
2712 
2713 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2714 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2715 				   struct sk_buff *skb)
2716 {
2717 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2718 			   (1UL << SOCK_RCVTSTAMP)			| \
2719 			   (1UL << SOCK_RCVMARK))
2720 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2721 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2722 
2723 	if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2724 		__sock_recv_cmsgs(msg, sk, skb);
2725 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2726 		sock_write_timestamp(sk, skb->tstamp);
2727 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2728 		sock_write_timestamp(sk, 0);
2729 }
2730 
2731 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2732 
2733 /**
2734  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2735  * @sk:		socket sending this packet
2736  * @tsflags:	timestamping flags to use
2737  * @tx_flags:	completed with instructions for time stamping
2738  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2739  *
2740  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2741  */
2742 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2743 				      __u8 *tx_flags, __u32 *tskey)
2744 {
2745 	if (unlikely(tsflags)) {
2746 		__sock_tx_timestamp(tsflags, tx_flags);
2747 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2748 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2749 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2750 	}
2751 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2752 		*tx_flags |= SKBTX_WIFI_STATUS;
2753 }
2754 
2755 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2756 				     __u8 *tx_flags)
2757 {
2758 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2759 }
2760 
2761 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2762 {
2763 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2764 			   &skb_shinfo(skb)->tskey);
2765 }
2766 
2767 static inline bool sk_is_tcp(const struct sock *sk)
2768 {
2769 	return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2770 }
2771 
2772 /**
2773  * sk_eat_skb - Release a skb if it is no longer needed
2774  * @sk: socket to eat this skb from
2775  * @skb: socket buffer to eat
2776  *
2777  * This routine must be called with interrupts disabled or with the socket
2778  * locked so that the sk_buff queue operation is ok.
2779 */
2780 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2781 {
2782 	__skb_unlink(skb, &sk->sk_receive_queue);
2783 	__kfree_skb(skb);
2784 }
2785 
2786 static inline bool
2787 skb_sk_is_prefetched(struct sk_buff *skb)
2788 {
2789 #ifdef CONFIG_INET
2790 	return skb->destructor == sock_pfree;
2791 #else
2792 	return false;
2793 #endif /* CONFIG_INET */
2794 }
2795 
2796 /* This helper checks if a socket is a full socket,
2797  * ie _not_ a timewait or request socket.
2798  */
2799 static inline bool sk_fullsock(const struct sock *sk)
2800 {
2801 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2802 }
2803 
2804 static inline bool
2805 sk_is_refcounted(struct sock *sk)
2806 {
2807 	/* Only full sockets have sk->sk_flags. */
2808 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2809 }
2810 
2811 /**
2812  * skb_steal_sock - steal a socket from an sk_buff
2813  * @skb: sk_buff to steal the socket from
2814  * @refcounted: is set to true if the socket is reference-counted
2815  */
2816 static inline struct sock *
2817 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2818 {
2819 	if (skb->sk) {
2820 		struct sock *sk = skb->sk;
2821 
2822 		*refcounted = true;
2823 		if (skb_sk_is_prefetched(skb))
2824 			*refcounted = sk_is_refcounted(sk);
2825 		skb->destructor = NULL;
2826 		skb->sk = NULL;
2827 		return sk;
2828 	}
2829 	*refcounted = false;
2830 	return NULL;
2831 }
2832 
2833 /* Checks if this SKB belongs to an HW offloaded socket
2834  * and whether any SW fallbacks are required based on dev.
2835  * Check decrypted mark in case skb_orphan() cleared socket.
2836  */
2837 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2838 						   struct net_device *dev)
2839 {
2840 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2841 	struct sock *sk = skb->sk;
2842 
2843 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2844 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2845 #ifdef CONFIG_TLS_DEVICE
2846 	} else if (unlikely(skb->decrypted)) {
2847 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2848 		kfree_skb(skb);
2849 		skb = NULL;
2850 #endif
2851 	}
2852 #endif
2853 
2854 	return skb;
2855 }
2856 
2857 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2858  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2859  */
2860 static inline bool sk_listener(const struct sock *sk)
2861 {
2862 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2863 }
2864 
2865 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2866 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2867 		       int type);
2868 
2869 bool sk_ns_capable(const struct sock *sk,
2870 		   struct user_namespace *user_ns, int cap);
2871 bool sk_capable(const struct sock *sk, int cap);
2872 bool sk_net_capable(const struct sock *sk, int cap);
2873 
2874 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2875 
2876 /* Take into consideration the size of the struct sk_buff overhead in the
2877  * determination of these values, since that is non-constant across
2878  * platforms.  This makes socket queueing behavior and performance
2879  * not depend upon such differences.
2880  */
2881 #define _SK_MEM_PACKETS		256
2882 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2883 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2884 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2885 
2886 extern __u32 sysctl_wmem_max;
2887 extern __u32 sysctl_rmem_max;
2888 
2889 extern int sysctl_tstamp_allow_data;
2890 extern int sysctl_optmem_max;
2891 
2892 extern __u32 sysctl_wmem_default;
2893 extern __u32 sysctl_rmem_default;
2894 
2895 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2896 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2897 
2898 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2899 {
2900 	/* Does this proto have per netns sysctl_wmem ? */
2901 	if (proto->sysctl_wmem_offset)
2902 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2903 
2904 	return READ_ONCE(*proto->sysctl_wmem);
2905 }
2906 
2907 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2908 {
2909 	/* Does this proto have per netns sysctl_rmem ? */
2910 	if (proto->sysctl_rmem_offset)
2911 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2912 
2913 	return READ_ONCE(*proto->sysctl_rmem);
2914 }
2915 
2916 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2917  * Some wifi drivers need to tweak it to get more chunks.
2918  * They can use this helper from their ndo_start_xmit()
2919  */
2920 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2921 {
2922 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2923 		return;
2924 	WRITE_ONCE(sk->sk_pacing_shift, val);
2925 }
2926 
2927 /* if a socket is bound to a device, check that the given device
2928  * index is either the same or that the socket is bound to an L3
2929  * master device and the given device index is also enslaved to
2930  * that L3 master
2931  */
2932 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2933 {
2934 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2935 	int mdif;
2936 
2937 	if (!bound_dev_if || bound_dev_if == dif)
2938 		return true;
2939 
2940 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2941 	if (mdif && mdif == bound_dev_if)
2942 		return true;
2943 
2944 	return false;
2945 }
2946 
2947 void sock_def_readable(struct sock *sk);
2948 
2949 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2950 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2951 int sock_set_timestamping(struct sock *sk, int optname,
2952 			  struct so_timestamping timestamping);
2953 
2954 void sock_enable_timestamps(struct sock *sk);
2955 void sock_no_linger(struct sock *sk);
2956 void sock_set_keepalive(struct sock *sk);
2957 void sock_set_priority(struct sock *sk, u32 priority);
2958 void sock_set_rcvbuf(struct sock *sk, int val);
2959 void sock_set_mark(struct sock *sk, u32 val);
2960 void sock_set_reuseaddr(struct sock *sk);
2961 void sock_set_reuseport(struct sock *sk);
2962 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2963 
2964 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2965 
2966 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2967 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2968 			   sockptr_t optval, int optlen, bool old_timeval);
2969 
2970 static inline bool sk_is_readable(struct sock *sk)
2971 {
2972 	if (sk->sk_prot->sock_is_readable)
2973 		return sk->sk_prot->sock_is_readable(sk);
2974 	return false;
2975 }
2976 #endif	/* _SOCK_H */
2977